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ABSTRACT 
In an embodiment , an integrated circuit may include one or 
more processors . Each processor may include multiple pro 
cessor cores , and each core has a different design / imple 
mentation and performance level . For example , a core may 
be implemented for high performance , and another core may 
be implemented at a lower maximum performance , but may 
be optimized for efficiency . Additionally , in some embodi 
ments , some features of the instruction set architecture 
implemented by the processor may be implemented in only 
one of the cores that make up the processor . If such a feature 
is invoked by a code sequence while a different core is 
active , the processor may swap cores to the core the imple 
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ments the feature . Alternatively , an exception may be taken 
and an exception handler may be executed to identify the 
feature and activate the corresponding core . 
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PROCESSOR INCLUDING MULTIPLE In some embodiments , limiting certain features to one 
DISSIMILAR PROCESSOR CORES THAT core or , at least , to less than all the cores may provide an area 
IMPLEMENT DIFFERENT PORTIONS OF efficient implementation by eliminating duplicative circuitry 
INSTRUCTION SET ARCHITECTURE in the cores to process the same instruction types . Features 

that will only likely be used in high performance code , for 
BACKGROUND example , may be implemented only in the high performance 

core since that core is the most likely to execute the high 
Technical Field performance code . Features which are unlikely to be used 
Embodiments described herein are related to processors ( e . g . features provided for backwards compatibility but 

and , more particularly , to multiple processor cores forming orming 10 which are not used by newer code ) may be implemented in 
a processor . one core and thus may be supported efficiently from an area 

standpoint . Description of the Related Art The processor may support multiple processor states Various processors are included in electronic systems to ( PStates ) . Each PState may specify an operating point ( e . g . execute software providing some amount of user function 15 a combination of supply voltage magnitude and clock fre ality . The processors may include the central processing quency ) , and each PState may be mapped to one of the units ( CPUs ) in the system , as well as special purpose processor cores . During operation , one of the cores is active : processors dedicated to specific tasks such as graphics , the core to which the current PState is mapped . If a new media processing , etc . Generally , the processors are PState is selected and is mapped to a different core , the 
designed to operate at multiple operating points ( settings of 20 processor may automatically context switch the processor 
supply voltage magnitude and clock frequency ) . Lower state to the newly - selected core and may begin execution on 
operating points consume less power but also offer limited that core . In an embodiment , the processor may detect 
performance compared to higher operating points . For some whether or not the newly - selected core supports the features 
workloads , the limited performance is sufficient and the in use by the current workload and may take corrective 
lower operating points can be used . For other workloads , the 25 action if not supported . 
higher operating points are needed to provide sufficient 
performance . BRIEF DESCRIPTION OF THE DRAWINGS 

In some systems , a wide diversity of workloads are 
experienced . Designing a processor that can provide the The following detailed description makes reference to the 
performance needed by the most demanding workloads 30 accompanying drawings , which are now briefly described . 
while also supporting the lowest possible operating point FIG . 1 is a block diagram of one embodiment of a 
that would provide sufficient performance for many fre - processor cluster . 
quently - executed workloads has become a challenge . Pro - FIG . 2 is a graph illustrating efficiency versus perfor 
cessors that operate at high operating points may only mance for a PCore and an ECore as illustrated in FIG . 1 for 
support a reduction in supply voltage to a certain level 35 one embodiment . 
before circuitry ceases to function correctly . Compromises FIG . 3 is a flowchart illustrating operation of one embodi 
must be made , and typically the lowest operating point is ment of a processor power management unit to change 
increased until the design can meet the desired high end processor states . 
operating point . As the high end operating points continue to FIG . 4 is a flowchart illustrating operation of one embodi 
increase , more and more workloads are executable at the 40 ment of the processor power management unit to swap 
lowest operating point ( and many could be executed at even cores . 
lower operating points ) . Power is expended unnecessarily FIG . 5 is a flowchart illustrating operation on one embodi 
for such workloads , which can be a critical factor in mobile m ent of an active core during execution of instructions . 
systems that frequently operate on a limited energy source FIG . 6 is a flowchart illustrating operation on another 
such as a battery . 45 embodiment of an active core during execution of instruc 

tions . 
SUMMARY FIG . 7 is a block diagram of a computer accessible storage 

medium . 
In an embodiment , an integrated circuit may include one FIG . 8 is a block diagram of one embodiment of context 

or more processors . Each processor may include multiple 50 switching hardware for a core swap . 
processor cores , and each core has a different design / FIG . 9 is a block diagram of one embodiment of a system 
implementation and performance level . For example , a core on a chip ( SOC ) including one embodiment of the processor 
may be implemented for high performance , but may have cluster shown in FIG . 1 . 
higher minimum voltage at which it operates correctly . FIG . 10 is a block diagram of one embodiment of a 
Another core may be implemented at a lower maximum 55 system . 
performance , but may be optimized for efficiency and may While embodiments described in this disclosure may be 
operate correctly at a lower minimum voltage . Additionally , susceptible to various modifications and alternative forms , 
in some embodiments , some features of the instruction set specific embodiments thereof are shown by way of example 
architecture employed by the processor may be implemented in the drawings and will herein be described in detail . It 
in only one of the cores that make up the processor ( or may 60 should be understood , however , that the drawings and 
be implemented by a subset of the cores that excludes at detailed description thereto are not intended to limit the 
least one core ) . If such a feature is invoked by a code embodiments to the particular form disclosed , but on the 
sequence while a different core is active , the processor may contrary , the intention is to cover all modifications , equiva 
swap cores to one of the cores the implements the feature . lents and alternatives falling within the spirit and scope of 
Alternatively , an exception may be taken and an exception 65 the appended claims . The headings used herein are for 
handler may be executed to identify the feature and activate organizational purposes only and are not meant to be used to 
the corresponding core . limit the scope of the description . As used throughout this 
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application , the word “ may ” is used in a permissive sense may statically record information for each thread / task to 
( i . e . , meaning having the potential to ) , rather than the select a PState , etc . , or any combination thereof . In addition 
mandatory sense ( i . e . , meaning must ) . Similarly , the words or alternatively , the PState may be affected by other condi 
“ include ” , “ including ” , and “ includes ” mean including , but tions in the system ( thermal limits , battery power available , 
not limited to . 5 etc . ) . 

Various units , circuits , or other components may be The PCore 40 and the ECore 42 may be different designs , 
described as " configured to ” perform a task or tasks . In such different implementations of an instruction set architecture 
contexts , " configured to ” is a broad recitation of structure ( ISA ) employed by the processors 32A - 32n . Viewed in 
generally meaning " having circuitry that ” performs the task another way , the PCore 40 and the ECore 42 may implement 
or tasks during operation . As such , the unit / circuit / compo - 10 different microarchitectures . The PCore 40 may be an 
nent can be configured to perform the task even when the aggressive design that attempts to maximize performance 
unit / circuit / component is not currently on . In general , the with power conservation as a less - emphasized design goal . 
circuitry that forms the structure corresponding to " config - The circuitry in the PCore 40 may be aggressive , which may 
ured to ” may include hardware circuits and / or memory prevent the minimum supply voltage at which the PCore 40 
storing program instructions executable to implement the 15 may operate from being as low as may be desired in some 
operation . The memory can include volatile memory such as of the PStates . On the other hand , the ECore 42 may 
static or dynamic random access memory and / or nonvolatile implement a more conservative design , and thus may oper 
memory such as optical or magnetic disk storage , flash ate correctly at lower minimum voltages than the PCore 40 . 
memory , programmable read - only memories , etc . Similarly , The performance of the ECore 42 may be lower than the 
various units / circuits / components may be described as per - 20 PCore 40 at a given operating point , and power conservation 
forming a task or tasks , for convenience in the description . may be a more highly - emphasized goal for the ECore 42 . 
Such descriptions should be interpreted as including the The semiconductor area occupied by the ECore 42 may be 
phrase " configured to . ” Reciting a unit / circuit / component less than that of the PCore 40 as well . 
that is configured to perform one or more tasks is expressly More particularly , in an embodiment , the ECore 42 and / or 
intended not to invoke 35 U . S . C . $ 112 ( f ) interpretation for 25 the PCore 40 may implement a subset of the ISA employed 
that unit / circuit / component . by the processors 32A - 32n , where one or more features of 

This specification includes references to " one embodi the ISA are not included in the subset . In an embodiment , the 
ment ” or “ an embodiment . " The appearances of the phrases PCore 40 may implement an entirety of the ISA and the 
" in one embodiment ” or “ in an embodiment ” do not neces - ECore 42 may implement a subset . In another embodiment , 
sarily refer to the same embodiment , although embodiments 30 the PCore 40 and the ECore 42 may each implement a 
that include any combination of the features are generally different subset . The subsets may partially overlap ( e . g . 
contemplated , unless expressly disclaimed herein . Particular commonly used instructions , such as the integer instructions , 
features , structures , or characteristics may be combined in may be part of each subset ) . 
any suitable manner consistent with this disclosure . Various embodiments may select the features that are 

35 excluded from a particular subset in a variety of ways . For 
DETAILED DESCRIPTION OF EMBODIMENTS the ECore 42 , a feature that is both infrequently used and 

expensive to implement ( e . g . in terms of semiconductor 
FIG . 1 is a block diagram of one embodiment of a substrate area occupied , power consumption , etc . ) may be 

processor cluster 30 . In the illustrated embodiment , multiple excluded . For example , in an embodiment , the ISA may 
processors 32A - 32n and a level 2 ( L2 ) cache 34 are 40 define multiple operand sizes of a given operand type . In an 
included . The processors 32A - 32n are coupled to the L2 embodiment , the operand type may be integer and the sizes 
cache 34 , which is further coupled to communicate with may include 32 - bit and 64 - bit . Modern code appears to be 
other elements of a system that includes the cluster 30 . In the trending toward 64 - bit integer code . On the other hand , the 
illustrated embodiment , the L2 cache 34 includes a proces - hardware to support both 64 - bit and 32 - bit integer operand 
sor power manager 36 that includes a PState register 38 45 sizes may be area - consuming and may pressure timing , 
storing a PState for the processors 32A - 32n . Each processor which may result in a higher power implementation . 
32A - 32n may have its own independent PState , groups of Accordingly , the ECore 42 may implement 64 - bit integer 
processors 32A - 32n may share a PState , or the cluster 30 hardware and may exclude support for 32 - bit integer code . 
may have a shared PState for the processors 32A - 32n , in Other ISA features may similarly be excluded . For example , 
various embodiments . Processor 32A is shown in more 50 ISAs often include vector instruction sets that perform 
detail in FIG . 1 to include at least two processor cores , a single - instruction , multiple data ( SIMD ) processing on a 
performance core ( PCore ) 40 and an efficient core ( ECore ) vector of operands . The vector implementations may be high 
42 . Other embodiments may include additional cores . Each power and / or area - consuming . A more recent ISA introduc 
core 40 and 42 is coupled to a power supply rail ( VP ) tion is the predicated vector instruction set to facilitate loop 
through respective power switches 44 and 46 . Thus , each 55 vectorization . Such a feature may also be eliminated from 
core 40 and 42 may be independently powered up or down . the ECore 42 . In general , an ISA feature may include an 
Other processors , such as the processor 32n , may be similar instruction , a set of instructions , an operand type or size , a 
to the processor 32A . mode , etc . 

Each processor 32A - 32n may be an entity to which Each possible PState may specify an operating point for 
software executing in the system may assign code to 60 a processor 32A - 32n . For example , the operating point may 
execute . For example , the software may be part of an include a supply voltage magnitude for V , and a clock 
operating system ( OS ) that controls the hardware in the frequency for the clocks in the processor 32A - 32n . Other 
system . The software may be a thread or task scheduler embodiments may define the operating point in other fash 
which schedules code to be executed . The OS may also ions , but generally the operating point may indicate the 
assign a PState to the processors 32A - 32n , based on the 65 performance and power consumption of the processor . In an 
performance demands of the code being executed . The OS embodiment , the PState may be a pair of values that are 
may track the behavior of the code to determine PStates , directly used as the supply voltage magnitude and the clock 
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frequency . In other embodiments , the PState may be a value on / up of the processor cores and powering off / down of the 
that is used to obtain the supply voltage magnitude and the processor cores using the power switches 44 and 46 . 
clock frequency ( e . g . an index into a table of values ) . In some embodiments , the cores 40 and / or 42 may imple 

As illustrated in FIG . 1 , the processor 32A includes the ment data caches that may store modified data ( i . e . data that 
PCore 40 and the ECore 42 . Each PState that is supported by 5 has been written in the cache , e . g . responsive to stores in the 
the processor 32A is mapped to one of the cores 40 and 42 . processor code being executed , but that has not been written 
Each core 40 and 42 may have more than one PState mapped to memory yet such that the data in memory is no longer the 
to it . correct data ) . In addition to transferring processor context , 

the modified data may be flushed from the data cache . As the code being executed by a processor 32A - 32n 
changes and / or other system considerations warrant a 10 Particularly , the data may be flushed to the L2 cache 34 , but 

may remain stored in the L2 cache 34 unless normal change in the PState , the PState register 38 may be updated operation of the L2 cache 34 causes the data to be evicted . ( e . g . by the OS ) . If the PState is changed from a current Once the newly - active core is executing , modified data may PState that is mapped to one of the cores 40 and 42 ( the be a hit in the L2 cache 34 and may be moved into the 
" active core ” ) to a new PState that is mapped to another one 15 newly - active core ' s cache with relatively low latency . 
of the cores 40 and 42 ( the “ target core ” ) , the cluster 30 may The processor power manager 36 may be configured to 
automatically , in hardware , transfer the processor context of manage PState transitions within the processor cluster 30 . 
the processor 32A from the active core to the target core . The The processor power manager 36 may be configured to 
target core may be powered off at the time the PState is communicate supply voltage magnitude transitions to a 
changed . The process of transferring the context may 20 system level power manager or directly to a power man 
include powering on the target core , resetting and initializing agement unit ( PMU ) that supplies the voltages to the system . 
the target core , transferring the processor context , and pow - The processor power manager 36 may be configured to 
ering off the active core ( making the target core the active interact with the clock generation hardware ( not shown in 
core ) . Execution may continue on the target core ( now active FIG . 1 ) such as a phase lock loop ( PLL ) or the like . 
core ) . Accordingly , switching between cores may be invis - 25 The processor context may generally include any soft 
ible to software . In fact , software may not even be “ aware ” ware - visible processor state . The state may typically be 
that there are multiple cores in the processor 32A - 32n . stored in registers accessible as operands of various instruc 

While the example illustrated in FIG . 1 includes two cores tions defined in the ISA . The state may include architected 
in the processor 32A , other embodiments may include more registers such as the operand registers of various types 
than two cores . One core may be the most efficient core 30 ( integer , floating point , vector , etc . ) . The registers may also 
operating at the lowest PStates , and other cores may be include processor control registers such as status registers , 
optimized for other points along the performance / efficiency processor mode registers , etc . The registers may also include 
spectrum until yet another core is the highest performance special purpose registers defined to include specific content 
core of the multiple cores in the processor . Any number of for a specific unit . The registers may further include model 
cores may be used in various embodiments . 35 specific registers , whose existence may be architecturally 

Generally , a processor may be any circuitry configured to specified but whose contents may vary from implementation 
implement a defined instruction set architecture ( ISA ) . Vari - to implementation . 
ous ISAs exist and may be used in various embodiments , The L2 cache 34 may have any capacity and configura 
such as the x86 architecture ( also known as APX ) , the ARM tion . The L2 cache 34 may be inclusive of caches in the 
architecture , the MIPS architecture , PowerPC ( now simply 40 processors 32A - 32n , exclusive of the caches , or non - inclu 
Power ) , etc . A variety of microarchitectural techniques may sive . 
be employed by the processor , including the multiple core FIG . 2 is a graph illustrating efficiency versus perfor 
approach described above . Each core may implement vari - mance for one embodiment of the cores 40 and 42 . The 
ous microarchitectural techniques as well . Generally , the dotted curve corresponds to the ECore 42 and the solid line 
microarchitecture may refer to the organization of execution 45 corresponds to the PCore 40 . Efficiency is graphed on the 
units and other circuitry that is used to implement the ISA . vertical axis and performance on the horizontal axis . Effi 
Examples may include in - order versus out - of - order execu ciency may be measured in a variety of ways ( e . g . perfor 
tion , speculative execution , branch prediction , superscalar , mance / watt ) . Performance may be measured using various 
superpipelined , etc . Embodiments may implement microc - benchmark programs such as Specint , SpecFlt , Dhrystone , 
oding techniques in addition to various other techniques . 50 etc . Various PStates for the processor 32A are illustrated 

The processors 32A - 32n and / or the processor complex 30 along the curves in FIG . 2 . PStates that corresponding to 
may be used as any processors in a system . For example , the higher performance are on the PCore curve , since the PCore 
processors may be central processing units ( CPU ) that is optimized for performance , wherein the PStates corre 
execute the OS to control other hardware in the system and sponding to lower performance / higher energy conservation 
schedule application code to be executed . The CPU may 55 are on the ECore curve , which is more efficient at lower 
execute the application code as well , etc . The processors performance levels but less performant at higher perfor 
may be special purpose processors such as graphics pro mance levels . 
cessing units ( GPU ) optimized for graphics manipulations , Accordingly , in the example of FIG . 2 , the PStates 1 , 2 , 
digital signal processors ( DSPs ) optimized for signal pro - and 3 are mapped to the ECore 42 and the PStates 4 , 5 , 6 , 
cessing , embedded processors performing software execu - 60 and 7 are mapped to the PCore 40 . Any number of PStates 
tion in various peripheral components , etc . may be supported and any number may be mapped to 

In an embodiment , at most one of the cores 40 and 42 various cores . In another embodiment , continuous PState 
forming a processor 32A - 32n may be powered on during settings may be supported . In such an embodiment , a break 
execution , except for times when the processor context is over point where the curves intersect in FIG . 2 may be 
being transferred . A given processor 32A - 32n may be com - 65 defined at which a core switch may occur . 
pletely off ( all cores powered down ) . The processor power FIG . 3 is a flowchart illustrating one embodiment of 
manager 36 may be configured to control the powering operation of the processor power manager 36 in response to 
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a new PState written to the PState register 38 . While the may update the clock frequency and request the new supply 
blocks are shown in a particular order for ease of under - voltage without waiting for the voltage change to complete 
standing , other orders may be used . Blocks may be per - ( block 62 ) . 
formed in parallel in combinatorial logic in the processor FIG . 4 is a flowchart illustrating one embodiment of 
power manager 36 . Blocks , combinations of blocks , and / or 5 operation of the processor power manager 36 to perform a 
the flowchart as a whole may be pipelined over multiple core swap ( block 52 from FIG . 3 ) . While the blocks are 
clock cycles . The processor power state manager 36 may be shown in a particular order for ease of understanding , other 

orders may be used . Blocks may be performed in parallel in configured to implement the operation shown in FIG . 3 . combinatorial logic in the processor power manager 36 . The active core may be the core 40 / 42 which is currently 
executing code . In some embodiments , the active core may 10 Blocks , combinations of blocks , and / or the flowchart as a 

whole may be pipelined over multiple clock cycles . The be the only core that is powered on during steady state processor power state manager 36 may be configured to operation at the current PState . If the new PState is not implement the operation shown in FIG . 4 . mapped to the active core ( decision block 50 , “ no ” leg ) , the The processor power manager 36 may transition the processor power state manager 36 may consider any infor ly intor - 15 active core to a " safe ” PState ( block 70 ) . The safe PState mation regarding the workload and the target core to deter may be a state at which both the active core and the target 
mine if the target core supports the workload ( decision block core operate correctly . In this context , the target core may be 
64 ) . For example , some code may include descriptors when the core to which the new PState is mapped . In embodiments 
stored in non - volatile memory such as a Flash memory , and in which there are more than two cores , the safe PState may 
the descriptors may indicate which ISA features are used by 20 be different depending on which cores are the active and 
the code . The processor power state manager 36 may target cores . The safe PState need not be a PState that is 
determine the features used by the code from the descriptors . selectable in the PState register 38 . That is , the combination 
Alternatively , the processors 32A - 32n may track ISA fea of supply voltage and frequency may not be one of the 
tures that are implemented by fewer than all the cores . The supported combinations that are mapped to the cores . For 
tracked state may be used to determine if the target core 25 example , the PCore may be capable of running at a higher 
supports the features that are currently in use . frequency given the supply voltage magnitude in the safe 

If the code being executed uses features that are not PState . However , the ECore may not be capable of running 
implemented on the target core ( decision block 64 , “ no ” at the higher frequency with the given supply voltage 
leg ) , the processor power state manager 36 may not perform magnitude . Thus , a safe PState could include the current 
the state change . In an embodiment , the processor power 30 supply Voltage magnitude but a lower clock frequency . 

Alternatively , the target core may not support the current state manager 36 may record the lack of state change in a supply voltage , and the safe PState may include different register or other software - readable location so that software supply voltage magnitude and clock frequency . Transition may determine that the state change did not occur . Other ing to the safe PState may be similar to blocks 54 , 56 , 58 , 
indications may be used as well ( e . g . an interrupt or other 35 60 and 62 in FIG 3 
signalling mechanism ) when the state change is not per In some embodiments , the operation of FIGS . 3 and 4 may formed . In some embodiments , the attempt to prevent state be implemented in hardware circuitry . In other embodi 
change may not be performed and decision block 64 may be ments , the operation may be implemented in a combination 
omitted . Instead , unsupported features may be detected of hardware and software stored on a computer accessible of hardware and software stored on a computer accessible 
while the code is executed on the target core . If the code 40 storage medium and executed by the processors 32A - 32n , or 
being executed uses only features that are implemented on completely in software . 
the target core ( decision block 64 , “ yes ” leg ) , the processor The processor power manager 36 may power up the target 
power state manager 36 may perform a " core swap ” to the core ( block 72 ) . For example , in the embodiment of FIG . 1 , 
core to which the new PState is mapped ( block 52 ) . the processor power manager 36 may close the power 

If the new PState is mapped to the active core ( decision 45 switches to the target core , allowing power to flow to the 
block 50 , “ yes ” leg ) , the active core may remain active and target core . The target core may be reset after power has 
execution may continue while the PState is changed . If the stabilized . In some embodiments , the target core may ini 
new PState is an increase from the current PState ( decision tialize after reset is complete . Once reset ( and initialization , 
block 54 , “ yes ” leg ) , the supply voltage magnitude may be if applicable ) is complete ( decision block 74 , “ yes ” leg ) , the 
increased first to support the increased frequency . Thus , the 50 processor power manager 36 may initiate a transfer of the 
processor power state manager 36 may request the voltage processor context from the active core to the target core 
increase ( block 56 ) and wait for the voltage increase to ( block 76 ) . In an embodiment , the cores may include cir 
complete ( decision block 58 , “ yes ” leg ) . The processor cuitry configured to transmit / receive the processor context . 
power state manager 36 may determine that voltage increase In another embodiment , the circuitry may be in the processor 
is complete by waiting for a specified period of time , or may 55 power manager 36 . As mentioned previously , the cores may 
receive a communication that indicates when the voltage also be configured to flush the caches during the context 
increase is complete . In an embodiment , the processor transfer . Once the context transfer is complete ( decision 
power state manager 36 may transmit the voltage increase block 78 , “ yes ” leg ) , the processor power manager may 
request to another power manager ( e . g . an SOC level power power down the ( previously ) active core and the target core 
manager shown in FIG . 9 , in one embodiment ) or may 60 may become the active core ( block 80 ) . The powering down 
transmit the voltage request directly to a PMU that supplies may be accomplished , e . g . by opening the power switches to 
the voltage . Once the voltage increase is complete , the the previously active core . The processor power manager 36 
processor power manager 36 may increase the frequency of may transition the active core to the new PState ( block 82 ) . 
the clock ( block 60 ) . On the other hand , if the new PState is Transitioning to the new PState may be similar to blocks 54 , 
a decrease from the current PState , the current supply 65 56 , 58 , 60 , and 62 in FIG . 3 . 
voltage may support the new ( lower ) frequency . Thus ( deci - FIG . 5 is a flowchart illustrating one embodiment of 
sion block 54 , “ no ” leg ) , the processor power manager 36 operation of a given processor 32A - 32n ( and more particu 
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larly the active core 40 / 42 ) during code execution . While the medium 200 may store data in a non - transitory manner , 
blocks are shown in a particular order for ease of under where non - transitory in this context may refer to not trans 
standing , other orders may be used . Blocks may be per m itting the instructions / data on a signal . For example , 
formed in parallel in combinatorial logic within the proces non - transitory storage may be volatile ( and may lose the 
sor 32A - 32n . Blocks , combinations of blocks , and / or the 5 stored instructions / data in response to a power down ) or 
flowchart as a whole may be pipelined over multiple clock non - volatile . 
cycles . The computer accessible storage medium 200 in FIG . 7 

Each instruction in the code may be an ISA feature and / or may store code forming the core swap exception handler 
may make use of one or more ISA features . If the ISA 202 . The core swap exception handler 202 may include 
features used for a given instruction are implemented by the 10 instructions which , when executed by a processor 32A - 32n , 
active core ( decision block 100 , " yes ” leg ) , the instruction implements the operation described above for the core swap 
may be processed normally ( block 102 ) . On the other hand , exception handler ( for example , block 108 in FIG . 6 and the 
if at least one feature is not implemented by the active core blocks of FIG . 4 ) . A carrier medium may include computer 
( decision block 100 , " no ” leg ) but another core does imple - accessible storage media as well as transmission media such 
ment the feature ( decision block 104 , “ yes ” leg ) , a core swap 15 as wired or wireless transmission . 
may be performed to the core that does implement the FIG . 8 is a block diagram of one embodiment of the 
features ( block 52 ) . If none of the cores implement the processor 32A in greater detail . In the illustrated embodi 
feature ( decision blocks 100 and 104 , “ no ” legs ) , a " not ment , the PCore 40 and ECore 42 are shown including 
implemented ” exception may be taken so that software may instances of a context state machine 90 ( i . e . 90A and 90B in 
handle the error ( block 106 ) . 20 FIG . 8 ) . The implementations of the state machine 90 in the 

Generally , the operation illustrated in FIG . 5 ( and FIG . 6 cores 40 and 42 may differ , but they may logically operate 
discussed below ) may be performed for each instruction as in a similar fashion . Generally , the state machine 90 in the 
it is processed through the processor pipeline . Various active core may cause register state to be output by the active 
features may be detected at different states . Thus , the flow core to a context buffer 92 to which the state machines 90 are 
charts of FIGS . 5 and 6 may be implemented by the 25 coupled . The order of the registers in the state may be fixed , 
processors 32A - 32n in parallel for each instruction in the so that the receiving state machine may simply read the data 
code sequence being executed . and write it to the correct registers . In another implementa 

FIG . 6 is another embodiment of operation of a given t ion , the order may be arbitrary and each register may be 
processor 32A - 32n ( and more particularly the active core assigned an identifier which may be written , with the register 
40 / 42 ) during code execution . Similar to the embodiment of 30 contents , to the context buffer 92 and used by the receiving 
FIG . 5 , the embodiment of FIG . 6 may determine whether or state machine to write the correct register within the receiv 
not the active core implements the ISA features used by the ing core . 
code ( decision block 100 ) , process the code normally if so The state machine may be implemented in a variety of 
( block 102 ) , determine whether or not another core imple - fashions : fixed function circuitry ( e . g . a finite state 
ments the feature ( decision block 104 ) , and take the not 35 machine ) , microcode executed by the processor , in the 
implemented exception if not implemented on any core processor power manager 36 ( e . g . transmitting commands to 
( block 106 ) . However , in this embodiment , if another core the cores to transfer various registers ) , etc . Additionally , the 
does implement the features ( decision block 104 ) , a core state machine 90 in the active processor may flush the data 
swap exception may be taken ( block 108 ) . The core swap cache ( s ) to the L2 cache 34 , as mentioned above . 
exception may be different from the not implemented excep - 40 The context buffer 92 may be a first in , first out buffer 
tion and other exceptions implemented by the cores 40 / 42 . ( FIFO ) to capture context state from one core to another . The 
The core swap exception may cause the processor to execute context buffer 92 may provide elasticity , handle clock 
a core swap exception handler , which may perform the core domain crossings , etc . In an embodiment , the context buffer 
swap 52 mentioned previously . Similarly , the core swap 92 may be part of the processor power manager 36 and thus 
exception handler may be used at other times that the core 45 is shown in dotted lines in FIG . 8 . The state machines 90 
swap 52 is performed in some embodiments . may also be implemented in the processor power manager 

FIG . 7 is a block diagram of one embodiment of a 36 in another embodiment . In such embodiments , the pro 
computer accessible storage medium 200 . Generally speak - cessor power manager 36 may have access to the register 
ing , a computer accessible storage medium may include any state in the cores 40 and 42 , or may cause instructions to be 
storage media accessible by a computer during use to 50 executed to perform the register reads / writes to perform the 
provide instructions and / or data to the computer . For transmission of the register states . 
example , a computer accessible storage medium may FIG . 9 is a block diagram of one embodiment of an SOC 
include storage media such as magnetic or optical media , 10 coupled to a memory 12 . As implied by the name , the 
e . g . , disk ( fixed or removable ) , tape , CD - ROM , DVD - ROM , components of the SOC 10 may be integrated onto a single 
CD - R , CD - RW , DVD - R , DVD - RW , or Blu - Ray . Storage 55 semiconductor substrate as an integrated circuit " chip . ” In 
media may further include volatile or non - volatile memory some embodiments , the components may be implemented 
media such as RAM ( e . g . synchronous dynamic RAM on two or more discrete chips in a system . However , the 
( SDRAM ) , Rambus DRAM ( RDRAM ) , static RAM SOC 10 will be used as an example herein . In the illustrated 
( SRAM ) , etc . ) , ROM , or Flash memory . The storage media embodiment , the components of the SOC 10 include a 
may be physically included within the computer to which 60 central processing unit ( CPU ) complex 14 ( which may be 
the storage media provides instructions / data . Alternatively , implemented by the processor cluster 30 shown in FIG . 1 ) , 
the storage media may be connected to the computer . For peripheral components 18A - 18B ( more briefly , “ peripher 
example , the storage media may be connected to the com - als ” 18 ) , a memory controller 22 , an SOC power manager 
puter over a network or wireless link , such as network ( PMGR ) 16 , and a communication fabric 27 . The compo 
attached storage . The storage media may be connected 65 nents 14 , 16 , 18A - 18B , and 22 may all be coupled to the 
through a peripheral interface such as the Universal Serial communication fabric 27 . The memory controller 22 may be 
Bus ( USB ) . Generally , the computer accessible storage coupled to the memory 12 during use . 
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The memory controller 22 may generally include the arrays in the CPU complex 14 and / or the SOC 10 . The 
circuitry for receiving memory operations from the other memory supply voltage may be used with the voltage 
components of the SOC 10 and for accessing the memory 12 supplied to the logic circuitry ( e . g . V por Vsoc ) , which may 
to complete the memory operations . The memory controller have a lower voltage magnitude than that required to ensure 
22 may be configured to access any type of memory 12 . For 5 robust memory operation . The SOC PMGR 16 may be under 
example , the memory 12 may be static random access direct software control ( e . g . software may directly request 
memory ( SRAM ) , dynamic RAM ( DRAM ) such as syn - the power up and / or power down of components ) and / or 
chronous DRAM ( SDRAM ) including double data rate may be configured to monitor the SOC 10 and determine 
( DDR , DDR2 , DDR3 , DDR4 , etc . ) DRAM . Low power when various components are to be powered up or powered 
mobile versions of the DDR DRAM may be supported ( e . g . 10 down . For the CPU complex 14 , the voltage requests for Vp 
LPDDR , mDDR , etc . ) . The memory controller 22 may may be provided to the SOC PMGR 16 , which may com 
include queues for memory operations , for ordering ( and municate the requests to the PMU to effect the change in 
potentially reordering ) the operations and presenting the supply voltage magnitudes . 
operations to the memory 12 . The memory controller 22 Generally , a component may be referred to as powered on 
may further include data buffers to store write data awaiting 15 or powered off . The component may be powered on if it is 
write to memory and read data awaiting return to the source receiving supply voltage so that it may operate as designed . 
of the memory operation . In some embodiments , the If the component is powered off , then it is not receiving the 
memory controller 22 may include a memory cache to store supply voltage and is not in operation . The component may 
recently accessed memory data . In SOC implementations , also be referred to as powered up if it is powered on , and 
for example , the memory cache may reduce power con - 20 powered down if it is powered off . Powering up a compo 
sumption in the SOC by avoiding reaccess of data from the nent may refer to supplying the supply voltage to a com 
memory 12 if it is expected to be accessed again soon . In ponent that is powered off , and powering down the compo 
some cases , the memory cache may also be referred to as a nent may refer to terminating the supply of the supply 
system cache , as opposed to private caches such as the L2 voltage to the component . Similarly , any subcomponent 
cache or caches in the processors , which serve only certain 25 and / or the SOC 10 as a whole may be referred to as powered 
components . Additionally , in some embodiments , a system up / down , etc . A component may be a predefined block of 
cache need not be located within the memory controller 22 . circuitry which provides a specified function within the SOC 

The peripherals 18A - 18B may be any set of additional 10 and which has a specific interface to the rest of the SOC 
hardware functionality included in the SOC 10 . For 10 . Thus , the peripherals 18A - 18B , the CPU complex 14 , the 
example , the peripherals 18A - 18B may include video 30 memory controller 22 , and the SOC PMGR 16 may each be 
peripherals such as an image signal processor configured to examples of a component . 
process image capture data from a camera or other image It is noted that the number of components of the SOC 10 
sensor , display controllers configured to display video data ( and the number of subcomponents for those shown in FIG . 
on one or more display devices , graphics processing units 1 , such as within the CPU complex 14 ) may vary from 
( GPUs ) , video encoder / decoders , scalers , rotators , blenders , 35 embodiment to embodiment . There may be more or fewer of 
etc . The peripherals may include audio peripherals such as each component / subcomponent than the number shown in 
microphones , speakers , interfaces to microphones and FIG . 1 . 
speakers , audio processors , digital signal processors , mixers , Turning next to FIG . 10 , a block diagram of one embodi 
etc . The peripherals may include interface controllers for ment of a system 150 is shown . In the illustrated embodi 
various interfaces external to the SOC 10 ( e . g . the peripheral 40 ment , the system 150 includes at least one instance of the 
18B ) including interfaces such as Universal Serial Bus SOC 10 coupled to one or more peripherals 154 and the 
( USB ) , peripheral component interconnect ( PCI ) including external memory 12 . The PMU 156 is provided which 
PCI Express ( PCIe ) , serial and parallel ports , etc . The supplies the supply voltages to the SOC 10 as well as one or 
peripherals may include networking peripherals such as more supply voltages to the memory 12 and / or the periph 
media access controllers ( MACs ) . Any set of hardware may 45 erals 154 . In some embodiments , more than one instance of 
be included . the SOC 10 may be included ( and more than one memory 12 

The communication fabric 27 may be any communication may be included as well ) . 
interconnect and protocol for communicating among the The PMU 156 may generally include the circuitry to 
components of the SOC 10 . The communication fabric 27 generate supply voltages and to provide those supply volt 
may be bus - based , including shared bus configurations , 50 ages to other components of the system such as the SOC 10 , 
cross bar configurations , and hierarchical buses with the memory 12 , various off - chip peripheral components 154 
bridges . The communication fabric 27 may also be packet such as display devices , image sensors , user interface 
based , and may be hierarchical with bridges , cross bar , devices , etc . The PMU 156 may thus include programmable 
point - to - point , or other interconnects . voltage regulators , logic to interface to the SOC 10 and more 

The SOC PMGR 16 may be configured to control the 55 particularly the SOC PMGR 16 to receive voltage requests , 
supply voltage magnitudes requested from the PMU in the etc . 
system . There may be multiple supply voltages generated by The peripherals 154 may include any desired circuitry , 
the PMU for the SOC 10 . For example , the Vp voltage may depending on the type of system 150 . For example , in one 
be generated for the processors 32A - 32n in the CPU com - embodiment , the system 150 may be a mobile device ( e . g . 
plex 14 , and a Vsec voltage may be generated for other 60 personal digital assistant ( PDA ) , smart phone , etc . ) and the 
components in the SOC 10 . In an embodiment , Vsoc may peripherals 154 may include devices for various types of 
serve the memory controller 22 , the peripherals 18 , the SOC wireless communication , such as wifi , Bluetooth , cellular , 
PMGR 16 , and the other components of the SOC 10 and global positioning system , etc . The peripherals 154 may also 
power gating may be employed based on power domains . include additional storage , including RAM storage , solid 
There may be multiple supply voltages for the rest of the 65 state storage , or disk storage . The peripherals 154 may 
SOC 10 , in some embodiments . In some embodiments , there include user interface devices such as a display screen , 
may also be a memory supply voltage for various memory including touch display screens or multitouch display 
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screens , keyboard or other input devices , microphones , sor core is configured to continue execution of the 
speakers , etc . In other embodiments , the system 150 may be code responsive to the transfer ; and 
any type of computing system ( e . g . desktop personal com prevent the change to the requested power state and 
puter , laptop , workstation , net top etc . ) . prevent the transfer to the first processor core and 

The external memory 12 may include any type of 5 continue execution of the code the second processor 
memory . For example , the external memory 12 may be core responsive to detecting that the code uses one or 
SRAM , dynamic RAM ( DRAM ) such as synchronous more operand sizes of the plurality of operand sizes 
DRAM ( SDRAM ) , double data rate ( DDR , DDR2 , DDR3 , that are different from the first operand size . 
etc . ) SDRAM , RAMBUS DRAM , low power versions of 2 . The processor apparatus as recited in claim 1 , wherein 
the DDR DRAM ( e . g . LPDDR , mDDR , etc . ) , etc . The 10 the processor power manager is configured to : 
external memory 12 may include one or more memory activate the second processor core and deactivate the first 
modules to which the memory devices are mounted , such as processor core responsive to the code being executed 
single inline memory modules ( SIMMs ) , dual inline on the first processor core and the code using the one 
memory modules ( DIMM5 ) , etc . Alternatively , the external or more operand sizes . 
memory 12 may include one or more memory devices that 15 3 . The processor apparatus as recited in claim 1 , wherein : 
are mounted on the SOC 10 in a chip - on - chip or package - the first processor core is configured to detect the use of 
on - package implementation . the one or more operand sizes during execution of the 
Numerous variations and modifications will become code and to signal an exception in response to detecting 

apparent to those skilled in the art once the above disclosure the use ; and 
is fully appreciated . It is intended that the following claims 20 the exception indicates to the processor power manager 
be interpreted to embrace all such variations and modifica that the code uses the one or more operand sizes . 
tions . 4 . The processor apparatus as recited in claim 3 , wherein 
What is claimed is : the processor power manager is configured to cause the 
1 . A processor apparatus comprising : transfer of the processor context from the first processor core 
a plurality of processor cores , wherein : 25 to the second processor core responsive to the exception . 

the processor cores implement at least a portion of an 5 . The processor apparatus as recited in claim 4 , wherein 
instruction set architecture employed by the proces - the processor power manager comprises a non - transitory 
sor apparatus ; computer accessible storage medium storing a plurality of 

the instruction set architecture specifies a plurality of instructions executable by the processor apparatus . 
operand sizes for a first operand type ; 30 6 . The processor apparatus as recited in claim 3 , wherein : 

a first processor core of the plurality of processor cores the first processor core is configured to detect that a 
implements only a first operand size of the plurality different feature of the instruction set architecture is not 
of operand sizes , wherein a first instruction is execut implemented by any core of the plurality of cores ; and 
able by the first processor core in the event that the the first processor core is configured to signal a different 
first instruction uses the first operand size and the 35 exception in response to detecting use of the different 
first instruction is not executable by the first proces feature . 
sor core in the event that the first instruction uses a 7 . The processor apparatus as recited in claim 1 , wherein 
different operand size of the plurality of operand the processor power manager is configured to : 
sizes ; power on the second processor core ; and 

a second processor core of the plurality of processor 40 power down the first processor core responsive to trans 
cores implements the plurality of operand sizes , ferring the processor context to the second processor 
wherein the first instruction is executable by the core . 
second processor core with any of the plurality of 8 . The processor apparatus as recited in claim 1 wherein 
operand sizes ; and the instruction set architecture further specifies a vector 

at most one of the plurality of processor cores is active 45 instruction set that is not implemented by the first processor 
at a given point in time , except during a context core . 
switch between two of the plurality of processor 9 . The processor apparatus as recited in claim 1 wherein 
cores ; and the instruction set architecture further specifies a predicated 

a processor power manager coupled to the plurality of vector instruction set that is not implemented by the first 
processor cores , wherein the processor power manager 50 processor core . 
is programmable with a plurality of processor states , 10 . The processor apparatus as recited in claim 1 wherein 
wherein each of the plurality of processor states maps the first operand size is a largest operand size of the plurality 
to one of the plurality of processor cores , and wherein of operand sizes . 
the processor power manager is configured to : 11 . A processor apparatus employing an instruction set 
detect that the processor power manager has been 55 architecture , the processor apparatus comprising : 
programmed to change a current processor state a plurality of processor cores , wherein : 
mapped to the second processor core to a requested a first processor core of the plurality of processor cores 
processor state mapped to the first processor core implements a subset of the instruction set architec 
during a time that code is being executed by the ture ; 
second processor core ; a second processor core of the plurality of processor 

cause the change to the requested power state and a cores implements an entirety of the instruction set 
transfer of a processor context from the second architecture ; 
processor core to the first processor core in response the instruction set architecture specifies a plurality of 
to being programmed to change from the current operand sizes for a first operand type ; 
processor state to the requested processor state and 65 the subset implemented by the first processor core is the 
further in response to detecting that the code uses instructions that employ a first operand size of the 
only the first operand size , wherein the first proces plurality of operand sizes ; and 
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at most one of the plurality of processor cores is active 16 . A method comprising : 

at a given point in time , except during a context executing first code on a first processor core of a plurality 
switch between two of the plurality of processor of processor cores forming a processor , wherein the 
cores ; and first code is coded to an instruction set architecture that 

a processor power manager coupled to the plurality of 5 specifies a plurality of operand sizes for a first operand 
type , and wherein the first processor core implements processor cores , wherein : only a first operand size of the plurality of operand the processor power manager is configured to activate sizes , wherein a first instruction is executable by the 

the second processor core and deactivate the first first processor core in the event that the first instruction 
processor core responsive to code that uses one or uses the first operand size and the first instruction is not 
more operand sizes of the plurality of operand sizes executable by the first processor core in the event that 
that are different from the first operand size ; the first instruction uses a different operand size of the 

the processor power manager is programmable with a plurality of operand sizes ; 
plurality of processor states , wherein each of the determining that the first code uses one or more operand 
plurality of processor states maps to one of the 15 sizes of the plurality of operand sizes that are different 

from the first operand size , wherein the one or more plurality of processor cores ; operand sizes are implemented on a second processor the processor power manager is configured to detect core of the plurality of cores , and wherein the first that the processor power manager has been pro instruction is executable by the second processor core 
grammed to change a current processor state mapped with any of the plurality of operand sizes ; 
to the second processor core to a requested processor 20 transferring a processor context from the first processor 
state mapped to the first processor core during a time core to the second processor core responsive to the 
that code is being executed by the second processor determining ; 
core ; executing the first code on the second processor core ; 

cause the change to the requested power state and a operating the second processor core responsive to a first 
transfer of a processor context from the second 25 operating point ; 

detecting a change to a second operating point of the processor core to the first processor core in response processor during a time that the first code is executing to being programmed to change from the current on the second processor core , wherein the second processor state to the requested processor state and operating point is mapped to the first processor core ; 
further in response detecting that the code uses only 
the first operand size , wherein the first processor core 30 responsive to determining that the first code uses the one 
is configured to continue execution of the code or more operand sizes : 
responsive to the transfer ; and preventing the change to the second operating point ; 

the processor power manager is configured to prevent preventing a transfer of the processor context to the first 
the change to the requested power state and prevent 26 processor core ; and 
the transfer to the first processor core and continue continuing execution of the first code on the second 

processor at the first operating point . execution of the code the second processor core 17 . The method as recited in claim 16 further comprising : responsive to the code using the one or more operand 
sizes . powering on the second processor core responsive to the 

12 . The processor apparatus as recited in claim 11 wherein an determining ; and 
the first processor core is configured to detect the one or powering off the first processor core subsequent to the 
more operand sizes during execution of the code and indi transferring . 
cate the detection to the processor power manager . 18 . The method as recited in claim 16 further comprising : 

13 . The processor apparatus as recited in claim 12 operating the first processor core responsive to a third 
wherein the indication is an exception . operating point ; 

14 . The processor apparatus as recited in claim 11 wherein detecting a change to a fourth operating point of the first 
the processor power manager is configured to cause the processor , wherein the fourth operating point is mapped 
transfer of the processor context from the first processor to to the second processor core ; and 
the second processor core to activate the second processor transferring the processor context to the second processor 
core and deactivate the first processor core . core responding to the detecting . 

19 . The method as recited in claim 16 wherein the second 15 . The processor apparatus as recited in claim 14 
wherein the processor power manager is configured to cause processor core is a higher performance processor core than 

the first processor core and wherein the second processor a power on of the second processor core prior to the transfer 
of the processor context ; and cause a power off of the first core implements an entirety of the instruction set architec 

ture . processor core responsive to completing the transfer of the 
processor context . * * * * * 

and 

45 

50 


