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AUTOMATIC TARGET RECOGNITION Another embodiment of the present invention is to include 
SYSTEM WITH ONLINE MACHINE an on - board automatic target recognition ( ATR ) module 

LEARNING CAPABILITY with a sparsity driven technique , which has been used by the 
inventors in face recognition . The key advantage of the 

CROSS - REFERENCE TO RELATED 5 algorithm is its high accuracy . 
APPLICATIONS Another embodiment of the present invention is to include 

an ATR performance optimization using deep neural net 
This application claims priority to U . S . Provisional Patent works ( DNN ) . In the case of mine detection in coastal 

Application No . 62 / 155 , 748 filed on May 1 , 2015 , the entire regions , ATR performance can be iteratively improved with 
content of which is incorporated herein by reference . 10 the help of known sand and water locations , which are 

abundant in coastal images . The DNN architecture is used to 
BACKGROUND OF THE INVENTION extract the relationship between ATR performance and the 

ATR parameters using the known sand and water data and 
The invention generally relates to the process of auto the imagery data . This optimization can also be performed in 

matic target detection ( ATR ) within a multispectral or hyper r . 15 post - mission analysis . 
spectral image . Multispectral and hyperspectral images Another embodiment of the present invention is to incor 
record electromagnetic radiation of various wavelengths porate an accurate anomaly detection algorithm to help 

detect new targets in the scene . New targets can be found by hitting each pixel of the image , and are commonly used for subtracting the set of known targets from the set of anoma detection of objects of interest . Multispectral and hyperspec - 20 1 
tral remote sensing is particularly well suited to detection of Another embodiment of the present invention is to allow 
areas of interest on the Earth from satellite or aircraft users to interact with the target detection results through a images , such as search and rescue operations , surveillance , user friendly graphical user interface . 
detection of mineral deposits , or areas of ecological harm . Another embodiment of the present invention is to pro 

Multispectral and hyperspectral sensors generally collect 25 vide a method and system that can perform accurate search 
information as a set of images , where each image is a and rescue operations . The invention uses a manned or 
two - dimensional array of pixels . Each pixel represents unmanned aircraft , a multispectral or hyperspectral imager , 
received electromagnetic energy in a range of wavelengths and an onboard PC . One application is to accurately detect 
of the electromagnetic spectrum . Given the amount of mines and obstacles in minefield using multispectral or 
information conveyed in each pixel , it is possible to identify 30 hyperspectral images in coastal areas . Another potential 
objects even if the objects are captured in only a few pixels . application is to search and rescue missing aircraft or 

Various algorithms exist to classify multispectral and missing persons in mountain climbing accidents . 
hyperspectral pixels as part of a target for ATR , however , 
conventional ATR for multispectral and hyperspectral BRIEF DESCRIPTION OF THE SEVERAL 
images works in the reflectance domain where atmospheric 35 VIEWS OF THE DRAWINGS 
compensation is applied to every pixel in the raw hyper 
spectral image . This is extremely time consuming and is not FIG . 1 is a signal flow chart of the present invention in 
suitable for real - time operations . coastal region search operations . 

Thus , there exists a need for an ATR system that improves FIG . 2 shows the relationship between ATR performance 
upon the time - consuming aspects of conventional ATR to 40 metrics and ATR parameters as provided by the current 
enable real - time target detection . invention . 

FIG . 3 shows a dual window to locally search for targets 
BRIEF SUMMARY OF THE INVENTION in a multispectral or hyperspectral image . 

FIG . 4 shows burn scar detection results . 
The present invention is a method and apparatus for 45 FIG . 5 shows plots of the estimated model parameters . 

real - time target recognition within a multispectral or hyper - FIG . 6 shows plots of the radiance values of a first case 
spectral image . The method generates radiance signatures as illustrated by the current invention . 
from reflectance signatures using a modeling approach that FIG . 7 shows plots of the radiance values of a second case 
takes into account sensor information and environment as illustrated by the current invention . 
information , and then detects targets in the multispectral and 50 FIG . 8 shows results of different algorithms . 
hyperspectral image using the model of radiance signatures FIG . 9 shows the comparison of kernel RX with back 
and the real - time sensor and environment information . This ground subsampling ( 2x2 ) options and CKRX . 
detection in the radiance domain is implemented with a 
sparsity - driven target recognition algorithm according to a DETAILED DESCRIPTION OF THE 
set of parameters , to result in optimized known target 55 INVENTION 
detection results . 

An embodiment of the present invention is to incorporate FIG . 1 illustrates the present invention for target detection 
a model based real - time radiance signature generation sub - using a multispectral or hyperspectral image . The automatic 
system that incorporates mission information . Specifically , a target recognition apparatus of the invention comprises a 
set of known target radiance signatures is generated in 60 radiance signature generator 1 , configured to generate radi 
real - time based on factors such as sensor geometry , illumi - ance signatures 2 from reflectance signatures 3 , according to 
nation , flying altitude , and weather conditions at the target sensor and environment information 4 . The automatic target 
location . A model based transformation is performed to recognition apparatus also comprises a detection system 5 , 
quickly transform the known target reflectance signatures to receiving the radiance signatures 2 and a multispectral or 
the radiance domain . Compared to most conventional 65 hyperspectral image 6 . The detection system 5 comprises a 
approaches , this present invention is fast and allows onboard detector 7 implementing a sparsity - driven target recognition 
processing of sensor data in real - time . algorithm on the multispectral or hyperspectral image 6 
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. 

x 

m = 1 , 2 , . . . , M . 

according to the radiance signatures 2 and a set of param Sparse representation - based classification relies on the 
eters 8 to detect targets in the multispectral or hyperspectral assumption that a test signal approximately lies in the low 
image 6 , so that the detection system 5 outputs optimized dimensional subspace spanned by training samples in the 
known target detection results 9 . same signal class . A test sample y can thus be represented by 

In an embodiment , the detection system 5 further com - 5 the linear combination of only a few samples from the 
prises a deep neural network 10 configured to iteratively training dictionary ( or equivalently , basis matrix ) A as : 
tune the set of parameters 8 based on a set of known targets 
11 within said multispectral or hyperspectral image 6 . 

In an embodiment , the automatic target recognition appa ( 1 ) 
ratus further comprises a processing circuit 12 , configured to 10 

y = A1x1 + A2x2 + . . . + AMXM = [ A1 A2 . . . AM ] receive the optimized known target detection results 9 and | = Ax 

output a new target map 13 corresponding to the optimized 
| XM 

known target detection results 9 . In a further embodiment , 
the automatic target recognition apparatus further comprises 
an input system 14 , configured to receive operator inputs and 15 
generate operator data , wherein the processing circuit 12 where Ann ' s are the class - specific training sub - dictionaries 
receives said operator data and outputs the new target map and xm ' s are corresponding coefficient vectors . The sparse 13 according to said operator data . In a further embodiment , vector x is recovered by solving a constrained optimization the automatic target recognition apparatus further comprises problem an anomaly detection system 15 , configured to perform 
cluster kernel Reed - Xiaoli algorithm on the multispectral or 
hyperspectral image 6 and output a set of anomalies to the 
processing circuit 12 , wherein the processing circuit 12 Î = argmin | | xllo s . t . | | y – Axllz < € 
receives this set of anomalies and outputs the new target map 
13 according to the set of anomalies 
Given a new multispectral or hyperspectral image 6 , the 25 The problem in ( 2 ) can be solved by greedy pursuit 

system first obtains the sensor geometry , viewing angle , algorithms , or relaxed to a convex 1 , - norm minimization if 
illumination , and atmospheric information at the target loca the solution is sufficiently sparse . The identity of the test 
tion , and passes the information to the radiance signature Snature sample is then determined to be the class yielding the generator 1 . The radiance signature generator 1 generates an 
at - sensor target radiance signature for the new image 6 . In 30 " an minimal approximation error : 
the radiance signature generator 1 , the at - sensor radiance 
signature is computed in real - time using a target reflectance 
signature collected from a historical database . All illumina Class ( y ) = argmin lly - Amîm | l2 
tion effects , weather information , flying altitude , and other 
factors known to affect at - sensor radiance from a given 35 
surface reflectance are incorporated in the radiance signature The current invention employs the deep neural network 
generator 1 . A model - based transformation is adopted in the 10 to further improve the ATR performance . As shown in radiance signature generator 1 , after which automatic target FIG . 2 , inputs to the Deep Neural Network ( DNN ) include detection begins by using a novel sparsity based ATR the ATR performance metrics ( Pd and FAR ) and the outputs algorithm . Unlike conventional ATR which works in the 
reflectance domain where atmospheric compensation is 40 is 40 are the ATR parameters 8 such as dictionary size M as shown 
applied to every pixel in the raw multispectral or hyperspec in the equation ( 1 ) above and dual window sizes as shown 
tral image 6 , the radiance signature generator 1 of the in FIG . 3 . In the dual window , the outer region contains 
present inventions enables the ATR algorithm to work pixels that will be used to build a statistical model for the 
directly in the radiance domain . background , and is referred to as the outer background 

The current invention further provides a robust algorithm 45 window . The inner window , referred to as the inner target 
which can also handle errors due to imperfect atmospheric window , serves as a buffer and will not be used for gener 
compensation . The ATR algorithm parameters 8 are opti - ating the background model . The sizes of outer background 
mized based on known information such as water and sand and inner target windows will affect target detection perfor 
locations with the multi - or hyper - spectral image 6 using the mance . In principle , a larger outer background window will 
deep neural network 10 . In other words , the current inven - 50 generate a more accurate background model ; a small inner 
tion uses the known sand and water locations in the multi target window will have inferior performance . The two 
spectral or hyperspectral image 6 to calibrate and fine tune window sizes are initialized based on empirical studies and 
the ATR algorithm parameters . After several iterations , the optimized by the DNN . To capture the relationship between 
probability of detection ( Pd ) and false alarm rate ( FAR ) in inputs and outputs of ATR , an ATR model is needed , whose the ATR improve based upon the ATR algorithm parameters se ters 55 inputs are ATR parameters 8 and the outputs are the Pd and 
8 selected by the deep neural network 10 . FAR . Pd and FAR can be computed by using known sand During post - mission optimization , human operators can and water locations , which are readily available in input provide new training data sets and can also look at the ATR 
target detection map and quickly point out the locations of images . For example , known sand and water locations are 
beach , water , grass , trees , etc . The deep neural network 10 used as calibration data . The model is run quickly while the 
is utilized at this step due to its significantly better perfor - 60 ATR parameters 8 are varied to obtain corresponding Pd and 
mance over non - deep neural networks . Finally , the current FAR parameters . After running the ATR models many times , 
invention optionally applies the novel anomaly detector 15 the resulting data is used to train the DNN using the 
to locate anomalies in the multispectral or hyperspectral configuration shown in FIG . 2 . 
image 6 . New targets can be located by comparing the The DNN has the following advantages : 
known target map and the anomaly detection map . A graphi - 65 Better capture of hierarchical feature representations 
cal user interface allows human operators to add or modify Ability to learn more complex behaviors 
target locations via a user friendly interface . Better performance than that of conventional methods 
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AP2 A = Gp2 - Gp2S 
? 

De 

CO B = ( Cp - PC - s ) 

Distributed representations that learn the interactions of Using the expressions in ( 5 ) , the model parameters S , A , 
many different factors on different levels P and B can be found as follows : 

Programmed to learn from unlabeled data such as using 
the restricted Boltzmann machine ( RBM ) pretraining 
method - Go2 / 22 - G?i 01 

Performance can scale up with the number of hidden Gp2 - Gp1 
layers and hidden nodes on fast graphical processor 
units ( GPUs ) 

The sparse representation - based classification method in 
current invention was applied to some Moderate Resolution 10 S ( Cpl - Cp2 ) + Cp2 / P2 - Collpi 
Imaging Spectroradiometer ( MODIS ) images for burnt area 1 / 22 - 1 / 21 
detection . MODIS is a multispectral imager developed by 
NASA . Several processing results are shown in the figures 
discussed below , including a pre - processing step to remove 15 
cloud interference using robust principal component analy 
sis ( RPCA ) . It can be seen that the current invention is able Two MODTRAN runs have been conducted separately 
to perform quite accurate burnt area detection . For compari with each of the two constant reflectance values and with the 
son purposes , a pixel based detection result is also included . identified atmospheric , solar illumination and geometric 

FIG . 3 shows the burn scar detection results for frame 20 location parameters . Using the MODTRAN outputs ' results 
A2009252 ( almost no cloud ) : ( a ) Original MODIS image in ( “ DRCT _ REFL ” , “ GRND _ RFLT ” , “ SOL _ SCAT ” ) and the 
RGB mode ; ( b ) Output low - rank component of RPCA ; ( C ) above mathematical equations , the five parameters of the 

radiance model ( A , B , S , D , and P ) have been determined at Output sparse component of RPCA ( cloud ) ; ( d ) ( e ) and ( f ) 
Zoom - in patches of multispectral images within the burn the wavelengths of interest . The estimated model param 
scar testing region ( red - rectangle region ) shown in ( a ) , ( b ) 25 eters ' plots are shown in FIG . 5 . 
and ( c ) , respectively ; ( g ) ground truth burn map within the With these estimated model parameters , two analysis 
testing patch ; ( h ) Output residual difference of joint - sparsity ca cases have then been considered : 
detection ; ( i ) Output burn scar detection ( by thresholding FIG . 6 shows the comparison of the MODTRAN - com 
( h ) ) ; the receiver operating characteristic ( ROC ) curves of puted radiance values and the radiance values computed by 
pixel - wise and joint - sparsity target detections . 30 the estimated five model parameters . In this case , it is 

Spectral radiance is calculated with the equation shown in assumed that the reflectance value is constant at 0 . 6 for the 
( 4 ) : wavelengths of interest ( from 373 nm to 2501 nm ) . As seen 

in FIG . 6 , the results are almost the same . 
FIG . 7 shows the comparison of the MODTRAN - com 

?? ??? ( 4 ) 35 puted radiance values and the radiance values as computed 
by the estimated five model parameters . In this case , a lab 
reflectance signature of green tree coverage is used for the 
wavelengths ( from 373 nm to 2501 nm ) . MODTRAN is run 

In ( 2 ) , p is the material reflectance , PA is the adjacent using the same atmosphere / solar / location conditions and the 
region reflectance , S is the spherical albedo , A and B are 40 radiance values are retrieved with MODTRAN with respect 
coefficients that depend on atmospheric , geometric and solar to the green tree reflectance signature . Afterwards , the to the green tree reflectance signature Afterwards the 
illumination conditions ; P is the path radiance , D gives the radiance values are computed using the five estimated model 
radiance that is due to direct solar illumination which parameters and the green tree lab reflectance values for the 
reflects from the target , and a is the amount of solar wavelengths of interest ( from 373 nm to 2501 nm ) . Similar 
occlusion . 45 to the results seen in FIG . 6 , the results ( MODTRAN vs 

In order to compute L , for a given material reflectance model estimations ) are very close to each other , indicating 
value , one needs to estimate the parameters , A , B , S , D , and that the applied radiance model parameter estimation suc 
P . These five radiance equation model parameters are com cessfully estimates the model parameters that MODTRAN 
puted as follows . The MODTRAN software is run two times runs in the background but does not provide as output . 
with two different reflectance values , p = 0 . 05 and p = 0 . 6 for 50 The current invention employs a DNN technique known 
an identified set of time of day , solar illumination and as Deep Belief Network ( DBN ) for target classification in 
geometric location conditions . The model parameter , D , can hyperspectral data . The hyperspectral data / image in this 
be extracted from one of the MODTRAN runs ' results since example is called “ NASA - KSC ” image . The image corre 
it is equal to MODTRAN ' s output : “ DRCT _ REFL ” divided sponds to the mixed vegetation site over Kennedy Space 
by the material reflectance . Suppose G , is the MODTRAN ' s 55 Center ( KSC ) , Florida . The image data was acquired by the 
output “ GRND _ RFLT ” for the constant reflectance of p , and National Aeronautics and Space Administration ( NASA ) 
suppose C , is the MODTRAN ' s output “ SOL _ SCAT ” for p . Airborne Visible / Infrared Imaging Spectrometer ( AVIRIS ) Airborne Visible / Infrare 
The following relations can then be formed between the instrument , on Mar . 23 , 1996 . AVIRIS acquires data in a 
outputs of MODTRAN and the model parameters in ( 4 ) : range of 224 bands with wavelengths ranging from 0 . 4 um 

60 to 2 . 5 um . The KSC data has a spatial resolution of 18 m . 
Excluding water absorption and low signal - to noise ratio 
( SNR ) bands , there are 176 spectral bands for classification . 
In the NASA - KSC image , there are 13 different land - cover 
classes available . It should be noted that only a small portion 

65 of the image has been tagged with the ground truth infor 
mation and these pixels with the tagged ground truth infor 
mation have been used in the classification study . 

1 - PAS 1 - es + P - aDp 

Op = este Copa = begin + P 
Gp2 = Anons Co2 = Php + P 
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For the benchmark techniques , SVM ( Support Vector - continued Machine ) and SAM ( Spectral Angle Mapper ) are applied . In 
SVM , LIBSVM toolbox is used with a kernel type of Radial Algorithm WKRX 
Basis Function and automatically regularized support vector 7 . Set y = y - ewt y where Yi = k ( X ; , r ) 
classification SVM method type ( nu - SVC ) . In addition to 5 8 . Set v = 1D - 17T ( - ) 12 " 
using spectral information , local spatial information is 
extracted for each pixel ( RGB bands of a local window of FIG . 8 shows the result of different algorithms , ( a ) shows size 7x7 ) and transformed this information in to a vector and the result of KRX using all data points , ( b ) shows the results added to the end of the spectral information . The correct 10 using 50 points , and ( c ) shows the results using 50 clusters . classification rates for the test data set are shown in Table 1 . The data model is a mixture of Gaussian functions and there It can be seen that DBN and SVM results are very close to 
each other and both perform significantly better than SAM . are 1000 data points . The kernel is a Gaussian kernel . The 

color in the image corresponds to the log of the anomaly 
value . The results using KRX , KRX with sub - sampling , and TABLE 1 15 CKRX are shown in ( a ) , ( b ) and ( c ) respectively . 

Classification performance for NASA - KSC The number of the original data points is 1000 and the 
data point number in both sub - sampled KRX and CKRX is 

Input data Test set ( correct 50 . From the image , we can observe that the CKRX provides type classification rate ) better approximation than sub - sampled KRX . We also com 
SAM Spectral 0 . 7847 20 pared the speed of these three algorithms and the result is 
SVM Spectral 0 . 9340 shown in Table 2 . The eigen - decomposition of the kernel 
DBN Spectral 0 . 9389 matrix in CKRX is about 1 / 2000 of that in original KRX , SVM Spectral + 0 . 9709 

Spatial which is a huge speed improvement . 
DBN Spectral + 0 . 9631 

Spatial TABLE 2 25 

35 

1 . 

45 times . 
ni 

Comparison of the speed of KRX , The current invention employs cluster kernel RX ( CKRX ) KRX with sub - sampling and CKRX . 
algorithm . The algorithm is based on of Kernel RX , which 
is a generalization of the Reed - Xiaoli ( RX ) algorithm . For Algorithm 
instance , when the kernel distance function is defined as the 30 KRX KRX CKRX dot product of two vectors , kernel RX is the same as RX . Its Time ( s ) ( 1000 points ) ( 50 points ) ( 50 clusters ) 
advantage lies in its flexibility over RX ; however , it is 
significantly slower than RX . The CKRX is a generalization Construct Kernel 0 . 1590 0 . 0038 0 . 0030 

Eigen 4 . 6511 0 . 0018 0 . 0023 of kernel RX , i . e . CKRX is reduced to kernel RX under Decomposition some particular settings . Image Anomaly 6 . 82 0 . 62 0 . 61 
The CKRX algorithm is below : 

Another experiment was to use the Air Force hyperspec 
tral image with PCA transformation and only 10 bands are Algorithm CKRX 

- 40 kept . FIG . 9 shows the comparison of kernel RX with 
Input : Background X2 = [ X1 , X2 , . . . , XM ] , a testing pixel r background sub - sampling ( 2x2 ) , and CKRX . FIG . 9 shows Output : The anomaly value v the comparison of kernel RX with background subsampling Algorithm : 

Perform clustering on X and get a set of clusters C = ( 2x2 ) options and CKRX . The performance CKRX is better 
{ ( 21 , S1 ) , ( 22 , S2 ) , . . . , ( zm , Sm ) } where z ; and s ; are than KRX , but the speed improvement factor is more than 2 
center and size of ith cluster . 
Set v = WKRX ( C , r ) . As shown in the disclosure and examples above , the 

invention provides an ATR system that improves upon the 
WKRX is the weighted KRX algorithm : time - consuming aspects of conventional ATR to enable 

real - time target detection . 
Although the present disclosure has been described in 

Algorithm WKRX considerable detail with reference to certain embodiments 
thereof , other embodiments are possible . Therefore , the Input : Weighted points C = { ( 21 , S1 ) , ( 22 , sz ) , . . . , ( Zm Sm ) } , a testing 

point r spirit and scope of the appended claims should not be limited 
Output : The anomaly value v to the description of the embodiments contained herein . 
Algorithm : 55 It will be apparent to those skilled in the art that various 1 . Construct kernel matrix K , where Kj ; = k ( x ; , x ; ) and k is the kernel modifications and variations can be made to the structure of function . A commonly used kernel is the Gaussian radial basis 

function ( RBF ) kernel k ( x , y ) = exp ( ( - | | x - y1B ) / c ) the present disclosure without departing from the scope or 
spirit of the disclosure . In view of the foregoing , it is 
intended that the present disclosure cover modifications and 

Set în = u = Kw where w ; = si 60 variations of this disclosure provided they fall within the 
scope of the following claims . 

Set K = K - ue ? - eu ? + ew ? ue ? where e ; = 1 is an m x 1 matrix . 
Perform eigen - decomposition . KSV = VD where S is a diagonal What is claimed is : 
matrix with Si = S ; 
Cut D and V to a length of t . D = D ( 1 : t , 1 : 0 ) , V = V ( : , 1 : 1 ) where 1 . An automatic target recognition apparatus , comprising : 
D ( t + 1 , t + 1 ) < D ( 1 , 1 ) × 10 - 8 65 a radiance signature generator , configured to generate 
Set ? = u – ew u radiance signatures from reflectance signatures , 

according to sensor and environment information ; and 

50 

mi 

i 

o 
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a detection system , receiving said radiance signatures and 5 . The automatic target recognition apparatus of claim 4 , 
a multispectral or hyperspectral image , said detection wherein said deep neural network is a deep belief network 
system comprising a detector , implementing a sparsity - receiving a probability of detection input and a false alarm 
driven target recognition algorithm on said multispec rate input and outputting said set of parameters . 

5 6 . The automatic target recognition apparatus of claim 1 , tral or hyperspectral image according to said radiance 5 further comprising a processing circuit , configured to signatures and a set of parameters to detect targets in receive said optimized known target detection results and said multispectral or hyperspectral image , wherein said output a new target map corresponding to said optimized 
detection system outputs optimized known target known target detection results . 
detection results ; 7 . The automatic target recognition apparatus of claim 6 , 

wherein said multispectral or hyperspectral image com - further comprising an input system , configured to receive 
prises electromagnetic image data produced in a two operator inputs and generate operator data , wherein said 
dimensional array by a multispectral or hyperspectral processing circuit receives said operator data and outputs 
imager . said new target map according to said operator data . 

2 . The automatic target recognition apparatus of claim 1 , 1 8 . The automatic target recognition apparatus of claim 6 
15 further comprising an anomaly detection system , configured wherein said radiance signatures are determined according to perform cluster kernel Reed - Xiaoli algorithm on said to the equation : multispectral or hyperspectral image and output a set of 

anomalies to said processing circuit , wherein said process 
ing circuit receives said set of anomalies and outputs said ?? ??? 

L = ( 1 - PAS ) + 1 - pasti 20 new target map according to said set of anomalies . 
9 . A method for real - time target recognition within a 

multispectral or hyperspectral image , comprising : 
wherein L is the radiance , p is the material reflectance , Pa generating radiance signatures from reflectance signa 

is the adjacent region reflectance , S is the spherical tures , sensor information and environment information ; 
albedo , A and B are coefficients dependent upon atmo 
spheric , geometric and solar illumination conditions , P detecting targets in said multispectral or hyperspectral 
is the path radiance , D is the radiance due to direct solar image , comprising : 
illumination , and a is the amount of solar occlusion . receiving said radiance signatures and said multispec 

3 . The automatic target recognition apparatus of claim 1 , z tral or hyperspectral image by a detection system 

wherein said set of parameters comprises a dictionary size , wherein said multispectral or hyperspectral image 
an outer background window size , and an inner target comprises electromagnetic image data produced in a 

two dimensional array by a multispectral or hyper window size , and said sparsity - driven target recognition 
algorithm comprises determining a class of a test sample y spectral imager ; 

implementing a sparsity - driven target recognition algo 
as the class with the minimal approximation error deter - 35 rithm on said multispectral or hyperspectral image mined by the equation : according to said radiance signatures and a set of 

parameters ; and 
outputting optimized known target detection results . 

Class ( y ) = m = 1 , 2979mm | | y – Am îm | l2 , 10 . The method for real - time target recognition within a 
40 multispectral or hyperspectral image of claim 9 , wherein 

said radiance signatures are determined according to the wherein Â is a sparse vector determined by solving a equation : constrained optimization : 

and 

30 

45 Ap BPA 
L = î = argmin | | xllo such that | | y – Axll2 < E , ( 1 - PAS ) * 1 - es + P - aDp 

55 

and said test sample y is represented by a linear combi wherein L is the radiance , p is the material reflectance , PA 
nation of a plurality of training samples corresponding 50 is the adjacent region reflectance , S is the spherical 
to said dictionary size of a training dictionary A , albedo , A and B are coefficients dependent upon atmo 
wherein spheric , geometric and solar illumination conditions , P 

is the path radiance , D is the radiance due to direct solar 
illumination , and a is the amount of solar occlusion . 

11 . The method for real - time target recognition within a 
multispectral or hyperspectral image of claim 9 , wherein 

y = A1x1 + A2x2 + . . . + AMXM = [ A1 A2 . . . AM ] : = Ax , said set of parameters comprises a dictionary size , an outer 
background window size , and an inner target window size , 
and said sparsity - driven target recognition algorithm com 

60 prises determining a class of a test sample y as the class with 
where A ( . . . mare class - specific training sub - dictionaries the minimal approximation error determined by the equa 
and X ( 1 . . . M ) are corresponding coefficient vectors . tion : 

4 . The automatic target recognition apparatus of claim 1 , 
wherein said detection system further comprises a deep 
neural network , configured to iteratively tune said set of 65 Class ( y ) = m = 1 , 20 r3mm ly - Amîmlla , 
parameters based on a set of known targets within said 
multispectral or hyperspectral image . 

v argmin , _ A II 
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wherein în is a sparse vector determined by solving a said deep neural network is a deep belief network receiving 
constrained optimization : a probability of detection input and a false alarm rate input 

and outputting said set of parameters . 
14 . The method for real - time target recognition within a 

Î = argmin | | xllo such that | | y – Ax | l2 < £ , 5 multispectral or hyperspectral image of claim 9 , further 
comprising : 

receiving said optimized known target detection results ; and said test sample y is represented by a linear combi 
nation of a plurality of training samples corresponding and 
to said dictionary size of a training dictionary A , 10 outputting a new target map corresponding to said opti 

mized known target detection results . wherein 15 . The method for real - time target recognition within a 
multispectral or hyperspectral image of claim 14 , further 
comprising : 

receiving operator inputs and generating operator data 
y = A1X1 + A2x2 + . . . + AMXM = [ A1 A2 . . . AM ] : ) = AX , with an input system ; and 

outputting said new target map corresponding to said 
optimized known target detection results and said 
operator data . 

16 . The method for real - time target recognition within a where A ( 1 . . . My are class - specific training sub - dictionaries 20 20 multispectral or hyperspectral image of claim 14 further and x 1 . mare corresponding coefficient vectors . 
12 . The method for real - time target recognition within a comprising : 

performing a cluster kernel Reed - Xiaoli algorithm on said multispectral image of claim 9 , wherein said detecting 
targets in said multispectral or hyperspectral image further multispectral or hyperspectral image to identify an 
comprises iteratively tuning said set of parameters with a 25 anomaly ; and 

outputting said new target map corresponding to said deep neural network based on a set of known targets within 
said multispectral image . optimized known target detection results and said 

anomaly . 13 . The method for real - time target recognition within a 
multispectral or hyperspectral image of claim 12 , wherein * * * * * 

15 15 
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