

US009932557B2

(12) United States Patent

Yoshino et al.

(54) POLYPEPTIDE, SCAFFOLD COMPOSITION, COMPOSITION FOR CARTILAGE TISSUE RESTORATION, COMPOSITION FOR CARTILAGE CELL CULTURE, AND COMPOSITION FOR PROMOTING GLYCOSAMINOGLYCAN PRODUCTION

- (71) Applicant: FUJIFILM Corporation, Tokyo (JP)
- (72) Inventors: Yuichi Yoshino, Kanagawa (JP); Rie Iwata, Kanagawa (JP); Kentaro Nakamura, Kanagawa (JP)
- (73) Assignee: FUJIFILM Corporation, Tokyo (JP)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 14/640,218
- (22) Filed: Mar. 6, 2015

(65) **Prior Publication Data**

US 2015/0175969 A1 Jun. 25, 2015

Related U.S. Application Data

(63) Continuation of application No. PCT/JP2013/075946, filed on Sep. 25, 2013.

(30) Foreign Application Priority Data

Sep. 26, 2012 (JP) 2012-213110

(51) Int. Cl.

C07K 14/00	(2006.01)
C07K 14/78	(2006.01)
A61K 51/08	(2006.01)
A61K 38/00	(2006.01)
C12N 5/077	(2010.01)
A61L 27/22	(2006.01)

(58) Field of Classification Search None

See application file for complete search history.

(56) **References Cited**

U.S. PATENT DOCUMENTS

6,010,863	A *	1/2000	Te Koppele G01N 33/6887
7 202 020	D2 *	7/2000	435/7.1
7,393,928	B2 *	7/2008	Chang A23L 1/05625 435/320.1
2003/0095994	A1	5/2003	Geistlich et al.
2003/0219843	A1*	11/2003	Welsch G01N 33/68
			435/7.92

(10) Patent No.: US 9,932,557 B2

(45) **Date of Patent:** Apr. 3, 2018

2004/0077831 A1*	4/2004	Chapman A61K 35/18
2005/0050502	2/2005	530/350
2005/0058/03 AI*	3/2005	Chang A61K 9/2077 424/456
2007/0031415 A1*	2/2007	Kinashi A61K 31/44
		424/146.1

FOREIGN PATENT DOCUMENTS

JP	2003-180815	Α		7/2003		
JP	2007-528699	Α		10/2007		
JP	2008-537929	Α		10/2008		
WO	2002/100426	A1		12/2002		
WO	2004/085473	A2		10/2004		
WO	2006/091099	A2		8/2006		
WO	WO 2008046543	A1	*	4/2008	 G01N	33/6893
WO	2008/133196	A1		11/2008		

OTHER PUBLICATIONS

SEQ Align 4 (2017) pp. 1-2.*

SEQ Align 36 (2017) pp. 1-2.*

SEQ Align 79 (2017) pp. 1-2.*

Chen et al. (2005) Type I and II collagen regulation of chondrogenic differentiation by mesenchymal progenitor cells, J. Orthopaedic Res., vol. 23, pp. 446-453.*

Notice of Reasons for Rejection, dated Sep. 29, 2015, issued in related JP Application No. 2014-538541, 6 pp. in English and Japanese.

Communication dated Mar. 22,2016, from the Japanese Patent Office in counterpart application No. 2014-538541.

Database GenBank [online], Accession No. CAA32030.1 http://www.ncbi.nlm.nih.gov/protein/930050?report=genbank

&log\$=prottop&blast_rank=10&RID=5BWS64W1016>, Aug. 5, 1995, [retrieved on Dec. 2, 2013], DEFINITION: alpha-1 type 2 collagen (714 AA), partial [*Homo sapiens*].

Lee, C. R., et al., "Biosynthetic response of passaged chondrocytes in a type II collagen scaffold to mechanical compression", Journal of Biomedical Materials Research Part A, 2003, pp. 560-569, vol. 64A, No. 3.

Wu, Chun-Hsien, et al., "Effects of exogenous glycosaminoglycans on human chondrocytes cultivated on type II collagen scaffolds", Journal of Materials Science: Materials in Medicine, 2010, pp. 725-729, vol. 21, No. 2.

International Search Report of PCT/JP2013/075946 dated Dec. 10, 2013 [PCT/ISA/210], 6 pages.

(Continued)

Primary Examiner - Anand U Desai

Assistant Examiner — Samuel W Liu

(74) Attorney, Agent, or Firm — Sughrue Mion, PLLC

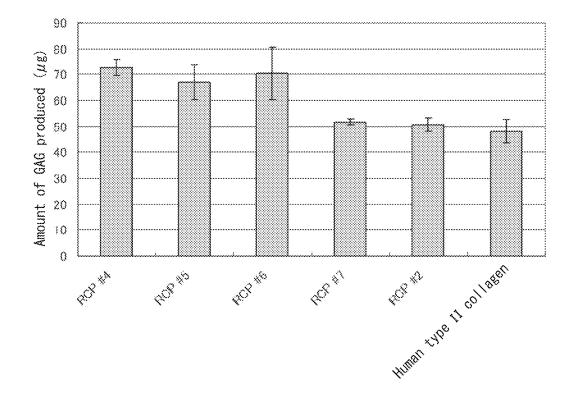
(57) ABSTRACT

A polypeptide having an amino acid sequence in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30; the number of GFPGER sequences contained per molecular weight of 10 kDa is not less than 0.15; and the number of GVMGFP sequences contained per molecular weight of 10 kDa is less than 0.30; is provided. A scaffold composition, a composition for repairing a cartilage tissue, a composition for culturing cartilage cells, and a composition for promoting gly-cosaminoglycan production, which compositions contain the above polypeptide, are also provided.

12 Claims, 1 Drawing Sheet

(56) **References Cited**

OTHER PUBLICATIONS


Written Opinion of PCT/JP2013/075946 dated Dec. 10, 2013 [PCT/ ISA/237], 8 pages.

Chiu, Li-Hsuan et al., "Differential effect of ECM molecules on re-expression of cartilaginous markers in near quiescent human chondrocytes," Journal of Cellular Physiology, 2011, vol. 226, No. 8, pp. 1981-1988, XP002754238, ISSN: 1097-4652.

Communication, dated Sep. 19, 2016, by the European Patent Office

Communication, dated Sep. 19, 2016, by the European Patent Office in counterpart European Patent Application No. 13842990.7. Communication dated Nov. 3, 2016, from the State Intellectual Property Office of People's Republic of China in counterpart Application No. 201380048501.0. Alpha-1 type 2 collagen (714 AA), partial [*Homosapiens*]; GenBank: CAA32030.1; Aug. 7, 1995; [online] ://www.ncbi.nlm. nih.gov/protein/CAA32030; (3 pages total).

* cited by examiner

10

POLYPEPTIDE, SCAFFOLD COMPOSITION, **COMPOSITION FOR CARTILAGE TISSUE RESTORATION, COMPOSITION FOR** CARTILAGE CELL CULTURE, AND **COMPOSITION FOR PROMOTING GLYCOSAMINOGLYCAN PRODUCTION**

CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation application of International Application No. PCT/JP2013/075946, filed Sep. 25, 2013, the disclosure of which is incorporated herein by reference in its entirety. Further, this application claims priority from Japanese Patent Application No. 2012-213110 15 filed on Sep. 26, 2012, the disclosure of which is incorporated herein by reference in its entirety.

TECHNICAL FIELD

The present invention relates to a polypeptide, scaffold composition, composition for cartilage tissue restoration, composition for cartilage cell culture, and composition for promoting glycosaminoglycan production.

BACKGROUND ART

Currently, practical use of regenerative medicine, in which attempts are made to regenerate a body tissue or organ whose function is deteriorated or impaired, is being pro- 30 moted. Regenerative medicine is a new medical technology in which a body tissue that cannot be recovered by the self-healing ability is reconstructed using three factors, that is, cells, scaffolds and growth factors, such that the tissue has a morphology and/or function similar to those of the original 35 tissue.

In the field of regenerative medicine, collagen or gelatin, which has high biocompatibility, is used in some cases for the purpose of, for example, helping tissue repair or regeneration by cells. In particular, collagen or gelatin is some- 40 which the number of RGD sequences contained per molecutimes used for regeneration of a tissue having a threedimensional structure such as bone or skin, and, for the purpose of achieving better tissue regeneration, various modifications are being made for collagen and gelatin.

Cartilage, for example, articular cartilage, is a tissue 45 composed of a very small amount (about 2%) of cartilage cells together with an extracellular matrix, and the extracellular matrix is known to contain about 70% water, about 20% collagen and about 10% proteoglycan. The proteoglycan in the extracellular matrix is a glycoprotein containing 50 a polysaccharide called glycosaminoglycan (GAG) in an amount of about 95%, and about 5% protein. In a cartilage, cartilage cells are supported by being surrounded by collagen or proteoglycan produced by the cartilage cells themselves. In particular, glycosaminoglycan is thought to be a 55 having an isoelectric point (pI) of not more than 6.0. substance playing a role in keeping water in the cartilage matrix and involved in suppression of deterioration of, or in repair of, cartilage. Thus, studies are being carried out to develop a scaffold material for cartilage cells, which scaffold material allows favorable matrix production by the cartilage 60 ID NO:1, 2, or 3; cells.

As a scaffold material for cartilage cells, natural form of type II collagen is conventionally used.

Japanese National-Phase Publication (JP-A) No. 2007-528699 discloses a cell support coated with an RGD- 65 enriched gelatin-like protein with enhanced cell binding capacity, and describes that such a cell support can be used

for skin grafting, wound healing, or enhancement of the growth (regeneration) of bone or cartilage.

WO 2008/133196 discloses a recombinant gelatin having an RGD sequence as a cell adhesion signal, and describes that such a gelatin can be used as a cell-adhesive matrix. WO 2008/133196 also describes that, in cases of cell therapy, a cell-adhesive matrix material that can be used as a scaffold for cells is generally preferred, and that, in cases of cartilage regeneration, a high-strength matrix is desirable.

SUMMARY OF INVENTION

Technical Problem

As described above, the GAG in the extracellular matrix is a matrix substance significantly involved in the metabolism of cartilage cells. However, natural form of type II collagen currently used shows only insufficient promotion of 20 production of the extracellular matrix. Scaffold materials which promote matrix production by cartilage cells have not been conventionally known so far. Moreover, compositions for cartilag tissues restoration or compositions for cartilage cell culture, which can promote repair of cartilage tissues from the viewpoint of extracellular-matrix production, or 25 compositions which can favorably promote cellular production of glycosaminoglycan among the extracellular matrix, have not been provided so far.

Accordingly, the invention aims to provide a scaffold composition excellent in promotion of extracellular-matrix production by cartilage cells, a composition for cartilage tissue restoration, a composition for cartilage cell culture, and a composition for promoting glycosaminoglycan production, and a material therefor.

Solution to Problem

The invention is as follows.

[1] A polypeptide having an amino acid sequence in lar weight of 10 kDa is not less than 0.30; the number of GFPGER (SEQ ID NO:12) sequences contained per molecular weight of 10 kDa is not less than 0.15; and the number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30.

[2] The polypeptide according to [1], wherein the number of amino acid residues in the full-length sequence is from 300 to 1400.

[3] The polypeptide according to [1] or [2], having an identity of not less than 85% to an amino acid sequence of natural form of human type II collagen.

[4] The polypeptide according to any one of [1] to [3], having a molecular weight of from 30 kDa to 80 kDa.

[5] The polypeptide according to any one of [1] to [4],

[6] The polypeptide according to any one of [1] to [5], which is a recombinant peptide.

[7] A polypeptide which is

(A) a polypeptide having the amino acid sequence of SEQ

(B) a polypeptide having the same amino acid sequence as the amino acid sequence of SEQ ID NO:1, 2, or 3 except that one or several amino acids are deleted, substituted and/or added, which polypeptide has a capacity to promote glycosaminoglycan production; or

(C) a polypeptide having an amino acid sequence having a sequence identity of not less than 80% to the amino acid

sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG production.

[8] A polypeptide having an amino acid sequence having a sequence identity of not less than 90% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has 5 a capacity to promote glycosaminoglycan production.

[9] A polypeptide having an amino acid sequence having a sequence identity of not less than 95% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote glycosaminoglycan production.

[10] A scaffold composition comprising the polypeptide according to any one of [1] to [9].

[11] A composition for cartilage tissue testoration, comprising the polypeptide according to any one of [1] to [9].

[12] A composition for cartilage cell culture, comprising 15 the polypeptide according to any one of [1] to [9].

[13] A composition for promoting glycosaminoglycan production, comprising the polypeptide according to any one of [1] to [9].

[9] in production of a scaffold composition.

[15] Use of the polypeptide according to any one of [1] to [9] in production of a composition for cartilage tissue restoration.

[16] Use of the polypeptide according to any one of [1] to 25 [9] in production of a composition for cartilage cell culture.

[17] Use of the polypeptide according to any one of [1] to [9] in production of a composition for promoting glycosaminoglycan production

30 [18] A method for restoration of cartilage or regeneration of cartilage, comprising administering the composition for cartilage tissue restoration according to [11] to a damaged area of cartilage.

Advantageous Effects of Invention

By the invention, a scaffold composition excellent in promotion of extracellular-matrix production by cartilage cells, a composition for cartilage tissue restoration, a composition for cartilage cell culture, and a composition for ${\rm ^{40}}$ promoting glycosaminoglycan production, and a material therefor can be provided.

BRIEF DESCRIPTION OF DRAWINGS

FIG. 1 is a graph showing the results of evaluation of the GAG production-promoting capacity of each polypeptide in Examples and Comparative Examples.

DESCRIPTION OF EMBODIMENTS

The polypeptide of the invention is a polypeptide having an amino acid sequence in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30; the number of GFPGER (SEQ ID NO:12) 55 sequences contained per molecular weight of 10 kDa is not less than 0.15; and the number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30.

In the invention, according to the above constitution, 60 production of an extracellular matrix, especially glycosaminoglycan (which may be hereinafter referred to as GAG), by cartilage cells is promoted when the cartilage cells are in contact with the polypeptide according to the invention. 65

That is, in order to promote production of GAG more efficiently than natural form of type II collagen, not less than 4

the predetermined numbers of RGD sequences and GFPGER (SEQ ID NO:12) sequences need to be present. In addition, the number of GVMGFP (SEQ ID NO:13) sequences needs to be 0, or not more than 0.30 per molecular weight of 10 kDa in the full-length polypeptide. In the invention, GAG production by cartilage cells is promoted by satisfaction of the conditions of the numbers of RGD sequences, GFPGER (SEQ ID NO:12) sequences, and GVMGFP (SEQ ID NO:13) sequences contained. It can be 10 assumed that GAG may be present in a large amount in the vicinity of cartilage cells after contacting with the polypeptide according to the invention, and that excellent proliferation and growth of the cartilage cells may also be obtained thereby. However, the invention is not bound by these theories.

The polypeptide according to the invention may be hereinafter referred to as "specific polypeptide".

The invention is described below.

In the present description, the term "step" means not only [14] Use of the polypeptide according to any one of [1] to 20 an independent step, but also a step which cannot be clearly distinguished from other steps, as long as an expected object of the step can be achieved therewith.

> In the present description, a numerical range indicated using "to" means the range in which the values described before and after "to" are included as the minimum value and the maximum value, respectively.

> In the present description, the amount of each component in a composition means, in cases in which plural substances corresponding to the component are present in the composition, the total amount of the plural substances present in the composition, unless otherwise specified.

In the invention, each amino acid residue in an amino acid sequence may be represented by the single-letter code (for example, "G" represents a glycine residue) or three-letter 35 code (for example, "Gly" represents a glycine residue), which are well known in the art.

In the invention, "%" as used in relation to the amino acid sequence of a polypeptide is based on the number of amino acid (or imino acid) residues, unless otherwise specified.

In the present description, the meaning of an expression such as "corresponding amino acid residue" as used for a specific amino acid residue in an amino acid sequence is as follows: when 2 or more amino acid sequences to be compared are aligned by a method well known in the art in consideration of insertions, deletions, and substitutions such that the number of identical amino acid residues becomes maximum, the amino acid residue, in another amino acid sequence, at the same position as the position of a specific amino acid residue in the amino acid sequence as a reference 50 is the "corresponding amino acid residue".

In the invention, the "identity" between the amino acid sequences of two polypeptides to be compared means the value calculated by the following equation. Comparison of plural polypeptides (alignment) is carried out by an ordinary method such that the number of identical amino acid residues is maximum.

In judgment of the identity between recombinant peptides, each of the two polypeptides to be compared is separated into arbitrary fragments each having not less than 10 amino acid residues, and the correspondence of the fragments derived from one polypeptide to the fragments derived from the other polypeptide is determined such that the identity becomes maximum. The amino acid sequence is then compared between the corresponding fragments, to determine the identity as a whole. In a case in which repeated sequences (sequences each having not less than 10 amino acid residues) are contained, the second and later

20

repeats are excluded before the determination of the identity (%) between the corresponding portions.

Identity (%)=[(Number of identical amino acid residues)/(Alignment length)]×100

[Specific Polypeptide]

The specific polypeptide according to the invention has an amino acid sequence in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30; the number of GFPGER (SEQ ID NO:12) 10 sequences contained per molecular weight of 10 kDa is not less than 0.15; and the number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30.

Since the specific polypeptide has an amino acid sequence 15 containing the predetermined numbers of RGD sequences, GFPGER (SEQ ID NO:12) sequences, and GVMGFP (SEQ ID NO:13) sequences, the polypeptide can work as a favorable scaffold that promotes production of the matrix by cartilage cells.

The RGD sequence is known as an integrin-binding site or a sequence (motif) having a cell adhesion function. The number of RGD sequences contained in the specific polypeptide is not less than 0.30 per molecular weight of the specific polypeptide of 10 kDa. In cases in which the number 25 is less than 0.30, the matrix production by cartilage cells cannot be sufficiently promoted. The number of RGD sequences contained in the specific polypeptide may also be not less than 0.35, or may be not less than 0.40. Although the upper limit of the number of RGD sequences contained in 30 the specific polypeptide varies depending on the total length of the specific polypeptide, the number is, for example, preferably not more than 2.0, more preferably not more than 1.0, still more preferably not more than 0.5 per 10 kDa.

In cases in which plural RGD sequences are contained in 35 the specific polypeptide, the number of amino acid residues between the RGD sequences is preferably from 0 to 100, more preferably from 25 to 60, although the number varies depending on the total length of the particular polypeptide. The RGD sequences are preferably unevenly distributed in 40 the specific polypeptide such that the number of amino acid residues therebetween falls within the above ranges.

The GFPGER (SEQ ID NO:12) sequence is known as an $\alpha 2\beta 1$ integrin-binding site or a sequence having a cell adhesion function. The number of GFPGER (SEQ ID 45 NO:12) sequences contained in the specific polypeptide is not less than 0.15 per molecular weight of the specific polypeptide of 10 kDa. In cases in which the number is less than 0.15, the matrix production by cartilage cells cannot be sufficiently promoted. The number of GFPGER (SEQ ID 50 NO:12) sequences contained in the specific polypeptide may also be not less than 0.20, or may be not less than 0.30. Although the upper limit of the number of GFPGER (SEQ ID NO:12) sequences contained in the specific polypeptide varies depending on the total length of the specific polypep- 55 tide, the number is, for example, preferably not more than 1.0, more preferably not more than 0.5 per 10 kDa.

"P" (proline residue) in the GFPGER (SEQ ID NO:12) sequences may also be an oxyproline residue.

The GVMGFP (SEQ ID NO:13) sequence is commonly 60 found among fibrous collagen, and known as a recognition site of DDR-2 (Discoidin domain receptor-2). The GVMGFP (SEQ ID NO:13) sequence is also known to be involved in the proliferation of cells. The number of GVMGFP (SEQ ID NO:13) sequences contained in the 65 specific polypeptide is less than 0.30 per molecular weight of the specific polypeptide of 10 kDa. In cases in which the

number is not less than 0.30, the matrix production by cartilage cells cannot be sufficiently promoted. The number of GVMGFP (SEQ ID NO:13) sequences, if present, contained in the specific polypeptide may also be not more than 0.28, or may be not more than 0.25 per molecular weight of the particular polypeptide of 10 kDa. In terms of the lower limit of the number of GVMGFP (SEQ ID NO:13) sequences contained in the specific polypeptide, the number of the sequences may be, for example, not less than 0.2, or may be zero, per molecular weight of the specific polypeptide of 10 kDa.

From the viewpoint of promotion of the matrix production, the ratio of the number of RGD sequences contained to the total number of GFPGER (SEQ ID NO:12) sequences and GVMGFP (SEQ ID NO:13) sequences contained, that is, [number of RGD sequences contained/(total number of GFPGER (SEQ ID NO:12) sequences and GVMGFP (SEQ ID NO:13) sequences contained)] is preferably from 0.8 to 1.2, more preferably 1.

The positional relationship among the RGD sequences. GFPGER (SEQ ID NO:12) sequences, and GVMGFP (SEQ ID NO:13) sequences in the entire polypeptide is not limited as long as the ratios of these sequences present in the polypeptide satisfy the predetermined conditions described above. For example, a GVMGFP (SEQ ID NO:13) sequence may be placed either in the N-terminal side or C-terminal side of a GFPGER (SEQ ID NO:12) sequence. In cases in which plural RGD sequences are present, all of the RGD sequences may be placed between a GVMGFP (SEQ ID NO:13) sequence and the C-terminus of the polypeptide. In cases in which plural GFPGER (SEQ ID NO:12) sequences are present, all of the RGD sequences may be placed between the GFPGER (SEQ ID NO:12) sequence most close to the N-terminus and the GFPGER (SEQ ID NO:12) sequence most close to the C-terminus. Alternatively, at least one RGD sequence may be placed either in the N-terminal side of the GFPGER (SEQ ID NO:12) sequence most close to the N-terminus or in the C-terminal side of the GFPGER (SEQ ID NO:12) sequence most close to the C-terminus.

The specific polypeptide may contain, in addition to the RGD sequence(s), GFPGER (SEQ ID NO:12) sequence(s), and/or GVMGFP (SEQ ID NO:13) sequence(s), one or more other known sequences (motifs).

For example, the specific polypeptide may have repeats of a sequence(s) represented by Gly-X-Y. In cases in which plural Gly-X-Y sequences are present, the plural Gly-X-Y sequences may be either the same or different. In Glv-X-Y, Gly represents a glycine residue, and each of X and Y represents an arbitrary amino acid residue other than a glycine residue. A large number of imino acid residues, that is, proline residues and/or oxyproline residues, are preferably contained as X and Y. The ratio of the imino acid residues contained in the entire specific polypeptide is preferably from 10% to 45%. The ratio of Gly-X-Y contained in the entire specific polypeptide is preferably not less than 80%, more preferably not less than 95%, still more preferably not less than 99%.

The specific polypeptide may also contain one or more other cell adhesion signals from the viewpoint of biocompatibility. Examples of such cell adhesion signals include sequences such as the LDV sequence, REDV (SEQ ID NO:14)sequence, YIGSR (SEQ ID NO:15) sequence, PDSGR (SEQ ID NO:16) sequence, RYVVLPR (SEQ ID NO:17) sequence, LGTIPG (SEQ ID NO:18) sequence, RNIAEIIKDI (SEQ ID NO:19) sequence, IKVAV (SEQ ID NO:20) sequence, LRE sequence, DGEA (SEQ ID NO:21) sequence, and HAV sequence. Preferred examples of the cell

adhesion signals include YIGSR (SEQ ID NO:15) sequence, PDSGR (SEQ ID NO:16) sequence, LGTIPG (SEQ ID NO:18) sequence, IKVAV (SEQ ID NO:20)sequence, and HAV sequence. These other cell adhesion signals may be used singly, or in combination of two or more kinds thereof. 5

The number of amino acid residues in the entire specific polypeptide is not limited as long as the 3 kinds of sequences described above are contained at the predetermined ratios. The number of amino acid residues in the entire particular polypeptide is preferably from 300 to 1400, more preferably 10 from 400 to 1000, still more preferably from 500 to 800. In cases in which the number of amino acid residues is not less than 300, the effect of promoting the matrix production of cartilage cells tends to be more securely exerted, and, in cases in which the number of amino acid residues is not 15 more than 1400, solubility of the polypeptide in water is not largely deteriorated, and the polypeptide tends to have excellent handling properties.

The molecular weight of the specific polypeptide is preferably from 30 kDa to 80 kDa, more preferably from 40 kDa 20 to 70 kDa. With a molecular weight of not less than 30 kDa, the effect of promoting the matrix production of cartilage cells tends to be more securely exerted, and, with a molecular weight of not more than 80 kDa, solubility of the polypeptide in water is not largely deteriorated, and the 25 polypeptide tends to have excellent handling properties. In the invention, the molecular weight of the specific polypeptide is a value measured by electrospray ionization mass spectrometry (ESI-MS) (Q-TOF PREMIER, manufactured by Waters Corporation) according to an ordinary method.

As long as the specific polypeptide has an amino acid sequence containing the predetermined numbers of RGD sequences, GFPGER sequences, and GVBMGFP sequences, the amino acid sequence of the remaining part is not limited. From the viewpoint of, for example, promotion of proliferation of cartilage cells, the identity to the amino acid sequence of natural form of collagen is preferably not less than 85%, more preferably not less than 90%, still more preferably not less than 98%.

Examples of the natural from of collagen to be used as the standard of identity include type I, type II, type III, type IV, and type V. From the viewpoint of promotion of cartilage matrix production, the identity to the amino acid sequence of natural from of human type II collagen may be preferably not less than 85%, more preferably not less than 90%, still more preferably not less than 98%.

Preferred examples of the origin of the natural from of collagen to be used as the standard of identity include human, horse, pig, mouse and rat. The origin of the natural from of collagen is more preferably human.

The natural from of collagen to be used as the standard of identity is more preferably native human type II collagen. A known example of the sequence of natural from of human type II collagen is the following amino acid sequence of SEQ ID NO:4. The amino acid sequence of natural from of human type II collagen is shown in Table 1. In Table 1, RGD, GFPGER (SEQ ID NO:12), and GVMGFP (SEQ ID NO:13) sequences are indicated in bold.

TABLE 1

Col	lagen II hu	man alpha I	(1487 a.a.) (SEQ ID N	O: 4)
MIRLGAPQTL	VLLTLLVAAV	LRCQGQDVQE	AGSCVQDGQR	YNDKDVWKPE	PCRICVCDTG
TVLCDDIICE	DVKDCLSPEI	PFGECCPICP	TDLATASGQP	GPKGQKGEPG	DIKDIVGPKG
PPGPQGPAGE	QGP rgdrgd K	GEKGAPGPRP	RDGEPGTPGN	PGPPGPPGPP	GPPGLGGNFA
AQMAGGFDEK	AGGAQLGVMQ	GPMGPMGPRG	PPGPAGAPGP	QGFQGNPGEP	GEPGVSGPMG
PRGPPGPPGK	PGDDGEAGKP	GKAGERGPPG	PQGARGFPGT	PGLPGVKGHR	GYPGLDGAKG
EAGAPGVKGE	SGSPGENGSP	GPMGPRGLPG	ERGRTGPAGA	AGARGNDGQP	GPAGPPGPVG
PAGGPGFPGA	PGAKGEAGPT	GARGPEGAQG	PRGEPGTPGS	PGPAGASGNP	GTDGIPGAKG
SAGAPGIAGA	PGFPGPRGPP	GPQGATGPLG	KPGQTGEPGI	AGFKGEQGPK	GEPGPAGPQG
APGPAGEEGK	RGARGEPGGV	GPIGPPGERG	APGNRGFPGQ	DGLAGPKGAP	GERGPSGLAG
PKGANGDPGR	PGEPGLPGAR	GLTGRPGDAG	PQGKVGPSGA	PGEDGRPGPP	gpqgargqp g
VMGFP GPKGA	NGEPGKAGEK	GLPGAPGLRG	LPGKDGETGA	AGPPGPAGPA	GERGEQGAPG
PSGFQGLPGP	PGPPGEGGKP	GDQGVPGEAG	APGLVGPRGE	R gfpger gsp	GAQGLQGPRG
LPGTPGTDGP	KGASGPAGPP	GAQGPPGLQG	MPGERGAAGI	agpkgd <u>rgd</u> V	GEKGPEGAPG
KDGGRGLTGP	IGPPGPAGAN	GEKGEVGPPG	PAGSAGARGA	PGERGETGPP	GPAGFAGPPG
ADGQPGAKGE	QGEAGQKGDA	GAPGPQGPSG	APGPQGPTGV	TGPKGARGAQ	GPPGATGFPG
AAGRVGPPGS	NGNPGPPGPP	GPSGKDGPKG	A <u>RGD</u> SGPPGR	AGEPGLQGPA	GPPGEKGEPG
DDGPSGAEGP	PGPQGLAGQR	GIVGLPGQRG	ERGFPGLPGP	SGEPGKQGAP	GASGDRGPPG
PVGPPGLTGP	AGEPGREGSP	GADGPPGRDG	AAGVKGDRGE	TGAVGAPGAP	GPPGSPGPAG
PTGKQGDRGE	AGAQGPMGPS	GPAGARGIQG	PQGP <u>RGD</u> KGE	AGEPGERGLK	GHRGFTGLQG
LPGPPGPSGD	QGASGPAGPS	GPRGPPGPVG	PSGKDGANGI	PGPIGPPGPR	GRSGETGPAG

TABLE	1	-continued

Collagen II human alpha I (1487 a.a.) (SEQ ID NO: 4)
PPGNPGPPGP PGPPGPGIDM SAFAGLGPRE KGPDPLQYMR ADQAAGGLRQ HDAEVDATLK
SLNNQIESIR SPEGSRKNPA RTCRDLKLCH PEWKSGDYWI DPNQGCTLDA MKVFCNMETG
ETCVYPNPAN VPKKNWWSSK SKEKKHIWFG ETINGGFHFS YGDDNLAPNT ANVQMTFLRL
LSTEGSQNIT YHCKNSIAYL DEAAGNLKKA LLIQGSNDVE IRAEGNSRFT YTALKDGCTK
HTGKWGKTVI EYRSQKTSRL PIIDIAPMDI GGPEQEFGVD IGPVCFL

The isoelectric point (pI) of the specific polypeptide is not limited, and may be, for example, not more than 10.0. The ¹⁵ kDa, and a pI of from 5.0 to 10.0; isoelectric point is preferably not more than 9.2, more preferably not more than 7.0, still more preferably not more than 6.0 from the viewpoint of promotion of proliferation of cartilage cells. In terms of the lower limit of the isoelectric 20 point, the isoelectric point may be, for example, not less than 5.0. The pI of the polypeptide may be adjusted by an ordinary method. For example, the pI can be lowered by increasing the content of neutral amino acid residues (for example, glycine residues and alanine residues) and/or 25 acidic amino acid residues (glutamic acid residues and aspartic acid residues), or by decreasing the content of basic amino acid residues (lysine residues, arginine residues and histidine residues), among the amino acid residues in the amino acid sequence of the polypeptide. In the invention, the pI of the specific polypeptide is a value measured by isoelectric focusing according to an ordinary method.

From the viewpoint of antigenicity of the specific polypeptide, each of a serine residue(s) and/or threonine 35 residue(s) is preferably substituted by other amino acid residue. An example of the other amino acid residue for substitution of a serine residue or threonine residue is a lysine residue. For example, use of a lysine residue instead of a serine residue or threenine residue leads to introduction $_{40}$ of an amino group to the specific polypeptide, which then results in an increased number of cross-linking points. As a result, the polypeptide tends to be more stable and less likely to be decomposed, achieving better properties for formulation. 45

The specific polypeptide is preferably a recombinant polypeptide from the viewpoints of reduction of antigenicity, mass production, safety, and the like. In the present description, the "recombinant peptide" means a polypeptide artificially prepared by a gene recombinant technology using 50 E. coli, yeast, cultured cells, or the like as a host.

The solubility of the specific polypeptide in water is preferably not less than 2% by mass from the viewpoint of properties for formulation. The solubility in water in the invention means the solubility in water under normal pressure at 25° C.

From the viewpoint of the capacity to promote matrix production in cartilage cells, examples of the specific polypeptide include the following:

(1) a polypeptide having an amino acid sequence in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30; the number of GFPGER (SEQ ID NO:12) sequences contained per molecular weight of 10 kDa is not less than 0.15; and the 65 number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30; which

polypeptide has a molecular weight of from 30 kDa to 80

(2) a polypeptide having an amino acid sequence composed of from 300 to 1400 amino acid residues in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30; the number of GFPGER (SEQ ID NO:12) sequences contained per molecular weight of 10 kDa is not less than 0.15; and the number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30; which polypeptide has a pI of from 5.0 to 10.0;

(3) a polypeptide having an amino acid sequence in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30; the number of GFPGER (SEQ ID NO:12) sequences contained per molecular weight of 10 kDa is not less than 0.15; and no GVMGFP (SEQ ID NO:13) sequence is contained; which polypeptide has a molecular weight of from 30 kDa to 80 kDa, and a pI of from 5.0 to 10.0;

(4) a polypeptide having an amino acid sequence in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.35; the number of GFPGER (SEQ ID NO:12) sequences contained per molecular weight of 10 kDa is not less than 0.20; and the number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30; which polypeptide has a molecular weight of from 40 kDa to 70 kDa, and a pI of from 5.0 to 10.0; and

(5) a polypeptide having an amino acid sequence composed of from 300 to 1400 amino acid residues in which the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.35; the number of GFPGER (SEQ ID NO:12)sequences contained per molecular weight of 10 kDa is not less than 0.20; and the number of GVMGFP (SEQ ID NO:13) sequences contained per molecular weight of 10 kDa is less than 0.30; which polypeptide has a pI of from 5.0 to 10.0.

The specific polypeptide in the invention is preferably the polypeptide of SEQ ID NO: 1, 2 or 3 shown below, because of their high capacity to promote GAG production. In each sequence, RGD, GFPGER (SEQ ID NO:12), and GVMGFP (SEQ ID NO:13) sequences are indicated in bold. In SEQ ID NOs:1 to 3, each base corresponding to a serine residue or threonine residue in the amino acid sequence of natural form of human type II collagen is substituted by a glycine residue, alanine residue, lysine residue, or the like.

sequence	Number of residues	SEQ ID No.
GPQGARGQP <u>GVMGFP</u> GPKGANGEPGKAGEKGLPGAPGLRGLPGKDGEAGAAGPPGPAGPAGERGEQ GAPGPPGFQGLPGPPGPPGEGGKPGDQGVPGEAGAPGLVGPRGER <u>GFPGER</u> GAPGAQGLQGPRGLP GAPGPPGPAGANGEKGEVGPPGPAQAGPGLQGMPGERGAAGIAGPKGD <u>RGD</u> VGEKGPEGAPGKDGGRGLGG PIGPPGPAGANGEKGEVGPPGPAGAAGARGAPGERGEAGPPGPAGPAGPAGPAGPAGPAGACGQEAAGQ KGDAGAPGPQGPGGAPGPQGPAGPAGAAGRGAQGPPGAAGGPFGAAGRVGPPGLAQONGGPPGPPA GKOGPKGA <u>RGD</u> AGPPGRAGEPGLQGPAGPGEKGEPGDDGPFGAEGPPGPQGLAAGQRGIVGLPGQRG ERGFPGLPGPAGEPGKQGAPGAAGDRGPPGPVGPPGPAGEPGPGPGAAGGPGAAGPPGRAGAVKGD RGEAGAVGAPGAPGPPGAPGPAGPPGPQGDRGEAGAQQP	506	1
GPQGARGQP GYMGFP GPKGANGEPGKAGEKGLPGAPGLRGLPGKDGEAGAAGPPGPAGPAGERGEQ GAPGPPGFQCLPGPPGPPGEGGKPGDQGVPGEAGAPCLVGPRGER GFPGER GKPGAQGLQGPRGLP GAPGKDGPKGAAGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGD RGD VGEKGPEGAPGKDGGRGLGG PIGPPGPAGANGEKGEVGPPGPAGAAGARGAPGERGEKGPPGPAGFAGPPGADQOPGAKGEQGEAGQ KGDAGAPGPQGPKGAPGPQGPAGVAGPKGARGAQGPPGAAGGPPGAAGRVGPPGPPGPA GKDGPKGA RGD AGPPGRAGEPGLQGPAGPAGPGEKGEPGDDGPPGAAGGPPGPAQGLAQQRCIVGLPQQRG ERGFPGLPGPKGEPGKQGAPGAKGDRGPPGPVGPPGPAGEGPGBGEGGPGADGPPGRDGAAGVKGD RGEKGAVGAPGAPGPAGPAGPPGPQGDRGEAGAQGP	506	2
MGFPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGEAGAAGPPGPAGPAGERGEQGAPGPGFQGLP GPPGPGEGGKPGDQGVPGEAGAPGLVGPRGER GFPGER GKPGAQGLQGPRGLPGAPGKDGPKGAA GPAGPPGAQGPPGLQGMPGERGAAGIAGPKGD <u>RGD</u> VGEKGPEGAPGKDGGRGLGGPIGPPGPAGAAG EKGEVGPPGPAGAAGARGAQGPEGAAGFPGAAGRVGPPGLQGNPGPPGPAGKDGPKGABGDA GPPGRAGEPGLQGPAGPGEKGEPGDDGPPGAEGPPGPQGLAGQRGIVGLPGQPGERGFPGLPGPKG EPGKQGAPGAKGDRGPFGPVGPPGLAGPAGEPGFQGLAGQPFGRDGAAGVKDRGERGAPGAPG PGPPGAPGPAGPPGPQGDRGEAGAQGPMGFPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGERGAVGAPKA GPPGPAGPGQQAPGGPAGPGFQGLPGPPGPQGEGGKPGDQGVPGEAGAPGLCGPRGERG <u>FPGER</u> GKPGAQGPAGPAGPAGPAGPAGPCGKDGERGAPGAPGF CKGAPGACGAPGACGPCGACGPFGFQGLPGPGPGPGFGCGCKPGDQGVPGEAGAPGLVGPRGERG <u>FPGER</u> GKPGAQGLQGPRGLPGAPGFCGCFGAQGPPGLQG	644	3

TABLE 2

The polypeptide of the invention is preferably (A) a polypeptide having the amino acid sequence of SEQ ID NO:1, 2, or 3; (B) a polypeptide having the same amino acid sequence as the amino acid sequence of SEQ ID NO:1, 2, or 3 except that one or several amino acids are deleted, 35substituted and/or added, which polypeptide has a capacity to promote GAG production; or (C) a polypeptide having an amino acid sequence with a sequence identity of not less than 80% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG $_{40}$ production. The polypeptide of (C) is more preferably a polypeptide having an amino acid sequence with a sequence identity of not less than 90% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG production; still more preferably a polypep- 45 tide having an amino acid sequence with a sequence identity of not less than 95% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG production.

11

Further, the polypeptide of the invention is preferably 50 (A1) a polypeptide composed of the amino acid sequence of SEQ ID NO:1, 2, or 3; (B1) a polypeptide composed of the same amino acid sequence as the amino acid sequence of SEQ ID NO:1, 2, or 3 except that one or several amino acids are deleted, substituted and/or added, which polypeptide has 55 a capacity to promote GAG production; or (C1) a polypeptide composed of an amino acid sequence with a sequence identity of not less than 80% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG production. The polypeptide of (C1) is more 60 preferably a polypeptide composed of an amino acid sequence with a sequence identity of not less than 90% to the amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG production; still more preferably a polypeptide composed of an amino acid sequence with a sequence identity of not less than 95% to the 65 amino acid sequence of SEQ ID NO:1, 2, or 3, which polypeptide has a capacity to promote GAG production.

In the amino acid sequence of each of the polypeptide of (B) and the polypeptide of (B1), 1 or several amino acid residues may be deleted, substituted and/or added. Although the number of the amino acid residues to be deleted, substituted and/or added varies depending on the total number of amino acid residues in the particular polypeptide, the number may be from 2 to 15, preferably from 2 to 5.

The specific polypeptide can be produced by a gene recombinant technology known to those skilled in the art. Examples of the method which may be used for producing the polypeptide include the methods described in EP 0926543 A1, EP 1014176 A2, U.S. Pat. No. 6,992,172, WO 01/34646, WO 2004/85473, and WO 2008/103041. More specifically, a gene encoding the amino acid sequence of the polypeptide of interest is obtained, and the gene is then incorporated into an expression vector to prepare a recombinant expression vector. The prepared recombinant expression vector is introduced into an appropriate host to prepare a transformant. By culturing the obtained transformant in an appropriate medium, the polypeptide of interest is produced. By recovering the produced polypeptide from the culture, the particular polypeptide according to the invention can be obtained.

The capacity to promote GAG production can be evaluated by bringing the polypeptide into contact with cartilage cells, and then measuring the GAG production after a predetermined period of time.

Specific examples of the evaluation method include the following method.

The subject polypeptide is dissolved in water for injection (for dissolving polypeptide) such that the polypeptide is contained in a predetermined amount, for example, 0 µg/ml, 0.2 µg/ml, or 20 µg/ml, to prepare sample liquids. To each well of a 24-well plate (24 WELL NON-TRATED PLATE, BD Company), 625 µl of each of the obtained sample liquids is placed. The samples are fixed in the wells by air-drying at 25° C. to provide a test plate.

To the test plate, cartilage cells derived from Japanese white rabbits are seeded at 20,000 cells/well, and culture is

3

performed at 37° C. under 5% (v/v) $\rm CO_2$. The culture supernatant is collected at Hour 2, Day 1, Day 2, Day 3, and Day 7 for quantification of GAG in the culture supernatant.

The quantification of GAG is carried out using a "SUL-FATED GLYCOSAMINOGLYCAN QUANTIFICATION ⁵ KIT" (trade name, Seikagaku Biobusiness Corporation).

In the quantification, the medium in the wells of the test plate is discarded, and washing is carried out once using 1 ml/well of phosphate buffered saline (PBS). To each well after washing, 150 µl of the protease liquid included the kit is added, and the liquid is then stirred using a plate shaker. Thereafter, treatment is carried out at 50° C. for 2 hours, and then at 100° C. for 10 minutes. To 50 µl of each sample, 50 µl of the reaction buffer II included in the kit is added, and the resulting mixture is mixed, followed by addition of 150 µl of a DMMB (dimethylmethylene blue) dye solution thereto. The same operations are carried out for GAG standard solutions. After 5 minutes of the reaction, the absorbance is measured at a wavelength of 530 nm using a 20 plate reader to perform quantification of GAG. The same operations are carried out for natural form of type II collagen. The amount of GAG in the case in which the subject polypeptide was used is compared with the amount of GAG in the case in which natural form of type II collagen was 25 used, and, when the amount of GAG in the case in which the subject polypeptide was used is larger than the amount of GAG in the case in which natural form of type II collagen was used, the subject polypeptide is evaluated as having a capacity to promote GAG production. The quantification of 30 GAG can also be carried out using a product equivalent to the above quantification kit, and examples of the equivalent product include the BLYSCAN GLYCOSAMINOGLYCAN ASSAY KIT (120 assays) (trade name, Biocolor Ltd., B1000). 35

[Scaffold Composition]

The scaffold composition according to the invention contains the specific polypeptide described above. As described above, the specific polypeptide contained in the scaffold composition can promote production of the matrix by cartilage cells when the polypeptide is brought into contact with the cartilage cells. Thus, the scaffold composition can promote the matrix production by cartilage cells.

The scaffold composition may contain, in addition to the specific polypeptide, one or more of other factors and the 45 like that are known to promote the matrix production. Examples of such other factors include basic fibroblast growth factor (bFGF), parathyroid hormone, transforming growth factor β (TGF β), insulin-like growth factor I (IGF-I), and insulin-like growth factor II (IGF-II). These other fac- 50 tors may be used singly, or in combination of two or more kinds thereof.

[Composition for Promoting GAG Production]

The composition for promoting GAG production according to the invention comprises the specific polypeptide 55 described above. As described above, the specific polypeptide can promote production of GAG by cells when the polypeptide is brought into contact with the cells. Thus, the specific polypeptide can be preferably employed as a composition for promoting GAG production for uses in which 60 promotion of GAG production is demanded.

Examples of the cells whose production of GAG is promoted by the composition for promoting GAG production according to the invention include cartilage cells, vascular endothelial cells, and corneal endothelial cells. The 65 composition for promoting GAG production is particularly preferably used for cartilage cells. 14

The composition for promoting GAG production may contain, in addition to the specific polypeptide, one or more of other factors and the like that are known to promote the matrix production. Examples of such other factors include bFGF, parathyroid hormone, TGF μ , IGF-I, and IGF-II. These other factors may be used singly, or in combination of two or more kinds thereof

[Composition for Cartilage Tissue Restoration and Composition for Cartilage Cell Culture]

As described above, the specific polypeptide, scaffold composition, and composition for promoting GAG production according to the invention promote production of a specific matrix by cells when the polypeptide or composition is brought into contact with the cells. Thus, the polypeptide and compositions can be applied to various uses. Examples of such uses include restoration or regeneration of damaged tissue, for example, damaged cartilage.

That is, the invention also includes a composition for cartilage tissue restoration and a composition for cartilage cell culture, containing the specific polypeptide. Examples of the cartilage in such a case include articular cartilage (in the knee, shoulder or hip joint), vertebral cartilage, auricular cartilage, and nasal septal cartilage. The composition for cartilage tissue restoration and the composition for cartilage cell culture, containing the specific polypeptide are particularly preferably used as compositions for restoration or regeneration of damaged cartilage in joints. Such use allows proliferation of cartilage cells and/or favorable repair of a cartilage tissue. The invention also includes a method for restoration or regeneration of damaged cartilage, comprising administering the composition for cartilage tissue restoration to the damaged area of cartilage.

[Other Uses]

The invention also includes uses of the specific matrixproducing polypeptide for production of a scaffold composition, composition for cartilage tissue restoration, composition for cartilage cell culture, or composition for promoting glycosaminoglycan production.

Further, the GAG production-promoting polypeptide, scaffold composition, and/or composition for promoting GAG production can be used for analyzing functions or properties of cells having a GAG production capacity, for example, cartilage cells, or for carrying out a test or study utilizing the functions or properties of these cells.

EXAMPLES

The invention is described in detail by way of Examples. However, the invention is not limited to the Examples.

Examples 1 to 3

In order to produce GAG production-promoting polypeptides RCP #4 to RCP #6, which have the amino acid sequences of SEQ ID NO:1 to SEQ ID NO:3, polynucleotides (SEQ ID NO:5 to SEQ ID NO:7) having base sequences corresponding to the amino acid sequences of SEQ ID NO:1 to SEQ ID NO:3 were synthesized by an ordinary method. The obtained polynucleotides were amplified by polymerase chain reaction (PCR), and each of the resulting amplification products was introduced into pPICZ α A (Invitrogen), which is a plasmid containing the a-factor signal for protein secretion and the Zeocin resistance gene for selection, using an IN-FUSION HD CLON-ING KIT (Clontech Inc.).

Pichia pastoris cells were transformed with the obtained plasmid by electroporation, and transformed yeast strains were selected based on the resistance to an antibiotic Zeocin.

Polypeptides were produced based on the introduced polynucleotides according to the methods disclosed in EP- ⁵ A-0926543, EP-A-1014176, and WO 01/34646.

More specifically, the yeast strains obtained as described above were grown using the YNB (Yeast Nitrogen Base w/o amino acids) medium (BD Corporation), and then cultured in 3-L jar fermenters (B.E. Marubishi Co., Ltd.). More specifically, each yeast strain was first grown in a medium containing glycerol as a carbon source, and, from 1 hour before completion of the addition of glycerol, methanol was added as a carbon source to perform culture. After 96 hours of the culture, the culture supernatant was collected, and SDS-PAGE was carried out using the collected culture supernatant in order to confirm expression of the polypeptide of interest.

Culture supernatants for which expression of the polypeptides of interest could be confirmed were subjected to ²⁰ purification with a cation-exchange chromatography CAPTO-S (trade name, GE Healthcare) and an anionexchange chromatography CAPTO-Q: (trade name, GE Healthcare) using an AKTA EXPLORER (trade name, GE Healthcare), to obtain polypeptides of interest RCP #4 to ²⁵ RCP #6.

Properties of the polypeptides are show in Table 4. Each isoelectric point (pI) is a calculated value. The molecular weight was measured by ESI-MS (Q-TOF PREMIER, manufactured by Waters Corporation). The solubility of each polypeptide in water was not less than 2% by mass under normal pressure at 25° C.

In Table 4, "normal" as described for the amount of lysine means that each residue corresponding to a serine residue or threonine residue in the amino acid sequence of natural form³⁵ of human type II collagen is substituted by a glycine residue or alanine residue, and "high" means that each residue corresponding to a serine residue or threonine residue in the amino acid sequence of natural form of human type II collagen is substituted by a lysine residue.

Each identity indicates the identity to the amino acid sequence of natural form of human type II collagen. The symbol "*" in Table 4 indicates that, in cases in which the polypeptide contained repeated sequences, the identity (%) was determined for the corresponding portions in the polypeptide sequence after exclusion of the repeated portion.

Comparative Examples 1 to 4

As polypeptides for comparison, polypeptides RCP #7 and RCP #2, R-II collagen, and natural form of human type II collagen were prepared (Comparative Examples 1 to 4).

As shown in Table 3 and Table 4, the polypeptide RCP #7 (SEQ ID NO:8) has an amino acid sequence in which not less than 0.3 GVMGFP (SEQ ID NO:13) sequences are contained per 10 kDa. As shown in Table 3 and 4, the polypeptide RCP #2 (SEQ ID NO:9) has an amino acid sequence containing no GFPGER (SEQ ID NO:12)sequence. Each of the R-II collagen and the natural form of human type II collagen (SEQ ID NO:4) contains an amino acid sequence in which not more than 0.15 GFPGER (SEQ ID NO:12) sequences are contained per 10 kDa.

The polypeptides RCP #7 and RCP #2 were obtained in the similar manner as in Examples 1 to 3 except that the corresponding polynucleotides (SEQ ID NOs:10 and 11) were used.

The R-II collagen was obtained in the similar manner as in Examples 1 to 3 except that a polynucleotide having a base sequence corresponding to the amino acid sequence of SEQ ID NO:4 was provided. The serine residues and threonine residues were not substituted by other amino acid residues, and the identity to natural form of human type II collagen was 100%.

Properties of the polypeptides are shown in Table 3 and Table 4. In Table 4, "R-II" indicates the R-II collagen. The symbol "*" in Table 4 indicates that, in cases in which the polypeptide contained repeated sequences, the identity (%) was determined for the corresponding portions in the polypeptide sequence after exclusion of the repeated portion. In Table 4, "Natural Form of type II collagen" means natural form of human type II collagen.

TABLE 3

	sequence	Number of residues	SEQ ID No.
RCP#7	GPQGARGQPGVMGPPGPKGANGEPGKAGEKGLPGAPGLRGLPGKDGEAGAAGPPGPAGPAGERGEQG APGPPGPQGLPGPPGPGEGGKPGDQGVPGEAGAPGLVGPRGERGFPGERGLPGAQGLQGPRGLPGA PGKDGPKGAAGPAGPPGAQGPPGLQGMPGERGAAGIAGPKGDRGDVGEKGPEGAPGKDGGRGLGGPI GPPGPAGANGEKGEVGPPGPAGAAGARGAPGERGEKGPPGPAGFAGPPGADGQPGAKGEQGEAQKG DAGAPGPQGPKGAPGPQGPAGVAGPKGARGAQGPPGAAGFPGAAGRVGPPGQLQGNPGPPGPPGAGK DGPKGARGDAGPPGRAGEPGLQGPAGPAGEKGEPGDDGPPGAEGPPGPQGLAQNPGPPGPAGAK GFPGLPGFKGEPGKQAPGAKGDRGPPGPVGPPGLAGFAGEPGREGGPGADGPPGRDGAAGVKGDRG EKGAVGAPGAPGPPGAPGPAGPPGPQGDRGEAGAQGPGPQGARGQPGVMGFPGPKGANGEPGKAGEK GLPGAPGLRGLPGKKDGEAGAAGPPGPAGPAGPAGERGEQGAPGPPGPQGLPGPPGEGGKPGDQGVPG EAGAPGLVGPRGERGFPGERGKPGAQGLQGPRGLPGAPGKDGPKGAAGPPGAQGPPGLQG	666	8
RCP#2	PGERGAAGIAGPKGDRGDVGEKGPEGAPGKDGGRGLGGPIGPPGPAGANGEKGEVGPPGPAGAAGAR GAPGERGEKGPPGPAGPAGPPGADGQPGAKGEQGEAGQKGDAGAPGPQGPKGAPGQQPAGVAGPKG ARGAQGPPGAAGFPGAAGRVGPPGLQGNPGPPGPPGPAGKDGPKGARGDAGPPGRAGEPGLQGPAGP PGEKGEPGDDGPPGAEGPPGPQGKAGQRGIVGLPGQRGERGFPGLPGPKGEPGKQGAPGAKGDRGPP GPVGPPGLAGPAGEPGREGGPGADGPPGRDGAAGVKGDRGEKGAVGAPGAPGPGPQG DRGEAGAQGPPGERGAAGIAGPKGDRGDVGEKGPEGAPGKDGGRGLGGPIGPPGPAGANGEKGEVGP PGPAGAAGARGAPGERGEKGPPGAPGFPGAPGADGQPGAKGEQGEAGQKGDAGAPGPQGPGG GPAGVAGPKGARGAQGPPGAAGPPGAAGPPGAQGNGDVGEKGPEGAPGPGPGPGPGAGANGEKGEVGP GPAGVAGPKGARGAQGPPGAAGPPGAAGPGPQGLAGQRGIVGLPGPGPGPAGANGEKGAPGPQ GPAGVAGPKGARGAQGPPGAAGPPGAAGPGPGPGQCLAGQRGIVGLPGQRGERGFPGLPGPKGEPGKQGA PGAKGDRGPPGPVGPPGLAGPAGEPGREGGPGADGPPGRDGAAGVKGDRGEKGAVGAPGAPGPPGPA GPAGPGPGQDRGEAGAQGP	690	9

<Evaluation>

The obtained polypeptides were evaluated as follows for their capacity to promote proliferation of cartilage cells, and their capacity to promote production of the extracellular matrix. Before the evaluation, test plates were prepared as 5 follows.

17

(1) Preparation of Plates Coated with GAG Productionpromoting Polypeptide

Each of the polypeptides RCP #4 to #6, corresponding to Examples of the invention; and RCP #7, RCP #2, R-II collagen and natural form of human type II collagen, corresponding to Comparative Examples of the invention; was dissolved in a solution for dissolving RCP #4 to #7 and #2, and R-II collagen (water for injection), or in a solution for dissolving natural form of human type II collagen (acidic 15 solution prepared by adjusting the pH of distilled water to 3 with 1 M HCl) such that the polypeptide was contained at $0.2 \,\mu\text{g/ml}$, $2 \,\mu\text{g/ml}$, or $20 \,\mu\text{g/ml}$, to prepare sample solutions. To each well of 24-well plates (24 well non-treated plate, BD Company), 625 ul of each of the obtained sample solutions 20 was placed. The samples were fixed in the wells by airdrying at 25° C. to prepare test plates.

(2) Evaluation of Proliferation of Cartilage cells For the evaluation of proliferation of cartilage cells, CHONDROCYTE CULTURE KIT (Code: CHC02) pur- 25 chased from Primary Cell Co., Ltd. was used.

To the test plates prepared as described above, cartilage cells derived from Japanese white rabbits, included in the kit, were seeded at 20,000 cells/well, and culture was performed at 37° C. under 5% (v/v) CO_2 . For the culture, the 30 "differentiation medium" (RPMI1640, serum, ascorbic acid, etc.) included in the kit was used. Cartilage cells in each well were collected at Hour 2, Day 1, Day 2, Day 3, and Day 7 after the beginning of the culture, and the number of cartilage cells was quantified.

More specifically, the medium in the test plates was discarded, and washing was carried out once using 1 ml/well of PBS, followed by adding 150 µl of trypsin-EDTA to each well and leaving the plates to stand for 1 minute, thereby detaching the cells attached to the test plates. Into each well, 40 150 µl of the medium described above was added to prepare a cell suspension, and trypan blue was added thereto, followed by counting the number of live cells using a hemacytometer. The capacity to promote proliferation of cartilage cells was evaluated as follows based on the number 45 of obtained live cells. The results are shown in Table 4. In Table 4, "-" in the column showing the evaluation of proliferation of cartilage cells means that the evaluation was not carried out.

S: The number of cells was more than 125% with respect 50 to the number of cells obtained by the culture after addition of natural form of human type II collagen.

A: The number of cells was from more than 100% to 125% with respect to the number of cells obtained by the culture after addition of natural form of human type II collagen.

B: The number of cells was from more than 75% to 100% with respect to the number of cells obtained by the culture after addition of natural form of human type II collagen.

C: The number of cells was not more than 75% with respect to the number of cells obtained by the culture after addition of natural form of human type II collagen.

(3) Evaluation of Cartilage Matrix Production

In the similar manner as in the (2) described above, cartilage cells derived from Japanese white rabbits were cultured with each polypeptide in each test plate prepared in the (1) described above. GAG as a matrix was quantified at Hour 2, Day 1, Day 2, Day 3, and Day 7 after the beginning of the culture. The quantification of GAG was carried out using a "SULFATED GLYCOSAMINOGLYCAN QUAN-TIFICATION KIT" (Seikagaku Biobusiness Corporation).

More specifically, the medium in the wells of the test plates was discarded, and washing was carried out once using 1 ml/well of PBS, followed by adding 150 µl of the protease liquid included the kit to each well and stirring the liquid using a plate shaker. Subsequently, the reaction was allowed to proceed at 50° C. for 2 hours, and then at 100° C. for 10 minutes. To 50 µl of each sample, 50 µl of the reaction buffer II included in the kit was added, and the resulting mixture was mixed, followed by addition of 150 µl of a DMMB dye solution thereto. The same operations were carried out for the GAG standard solutions included in the kit. After 5 minutes of the reaction, the absorbance was measured at a wavelength of 530 nm using a plate reader (Sunrise (trade name) SUNRISE RAINBOW THERMO RC [model number], manufactured by TECAN Ltd.) to perform quantification of GAG. The results are shown in FIG. 1. The capacity to promote cartilage matrix production was evaluated as follows based on the amount of GAG. The results are shown in Table 4.

S: The amount of GAG produced was more than 125% with respect to the amount of GAG produced by the culture after addition of natural form of human type II collagen.

A: The amount of GAG produced was from more than 100% to 125% with respect to the amount of GAG produced by the culture after addition of natural form of human type II collagen.

B: The amount of GAG produced was from more than 75% to 100% with respect to the amount of GAG produced by the culture after addition of natural form of human type II collagen.

C: The amount of GAG produced was not more than 75% with respect to the amount of GAG produced by the culture after addition of natural form of human type II collagen

ΤA	BL	Æ	4

			Num-			Number of sequences contained RGD(A) GFPGER(B) GVMGFP(
	A-		ber of		Num- ber/	Num- ber/	Num- ber/	Num- ber/	Num- ber/	Num- ber/			Evalua	ation	-
	mount of ly- sine	pI	amino acid resi- dues	Molec- ular weight (kDa)	total length (se- quences)	10 kDa (se- quences)	total length (se- quences)	10 kDa (se- quences)	total length (se- quences)	10 kDa (se- quences)	[(B) +		Ma- trix produc- tion	Cell pro- lifer- ation	SEQ ID No.
RCP#4 RCP#5 RCP#6	normal high high	5.48 9.14 9.14	506 506 644	45.0 45.3 57.8	2.00 2.00 2.00	0.44 0.44 0.35	1.00 1.00 2.00	0.22 0.22 0.35	1.00 1.00 0.00	0.22 0.22 0.00	1.00 1.00 1.00	94.9 94.9 94.7*	S S S	A B B	1 2 3

						TABI	LE 4-con	tinued									
		Num-		RG	Nu D(A)	umber of se GFPGI		ontained GVMC	FP(C)								
	A-	ber A- of		A-			Num- ber/	Num- ber/	Num- ber/	Num- ber/	Num- ber/	Num- ber/			Evalua	ation	-
	mount of ly- sine	pI	amino acid resi- dues	Molec- ular weight (kDa)	total length (se- quences)	10 kDa (se- quences)	total length (se- quences)	10 kDa (se- quences)	total length (se- quences)	10 kDa (se- quences)	(A)/ [(B) + (C)]		Ma- trix produc- tion	Cell pro- lifer- ation	SEC ID No		
RCP#7	high	9.34	666	59.8	2.00	0.33	2.00	0.33	2.00	0.33	0.50	94.9*	А	В	8		
RCP#2	high	8.62	690	61.4	4.00	0.65	0	0.00	0.00	0.00		94.2*	Α	в	9		
R-II		9.27	1014	90.5	3.00	033	1.00	0.11	1.00	0.11	1.50	100	С		4		
Natural form of type II collagen	_	9.27	1014	90.5	3.00	0.33	1.00	0.11	1.00	0.11	1.50	100	А	Α	4		

As shown in Table 4 and FIG. 1, it was found that any of the polypeptides of the invention, RCP #4 to #6, promoted the GAG production significantly more efficiently than the natural form of human type II collagen. Moreover, any of the polypeptides of the invention, RCP #4 to #6, could promote the proliferation of cartilage cells equally to, or more efficiently than, the polypeptides of Comparative Examples 1 to 3.

Thus, the polypeptides RCP #4 to #6 were found to be scaffold compositions that are excellent in promotion of cartilage matrix production as well as in promotion of $_{30}$ proliferation of cartilage cells.

It was also found that the cell proliferation capacity further increases when the pI is not more than 6.0 (see the result on RCP #4).

It was also found that, since the polypeptides RCP #4 to #6 were excellent in production of glycosaminoglycan and allowed proliferation of cartilage cells, these polypeptides

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 21
<210> SEQ ID NO 1
<211> LENGTH: 506
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: RCP#4
<400> SEOUENCE: 1
Gly Pro Gln Gly Ala Arg Gly Gln Pro Gly Val Met Gly Phe Pro Gly
              5
                                   10
Pro Lys Gly Ala Asn Gly Glu Pro Gly Lys Ala Gly Glu Lys Gly Leu
20 25 30
Pro Gly Ala Pro Gly Leu Arg Gly Leu Pro Gly Lys Asp Gly Glu Ala
35 40 45
Gly Ala Ala Gly Pro Pro Gly Pro Ala Gly Pro Ala Gly Glu Arg Gly
                55
                                           60
Glu Gln Gly Ala Pro Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro
                    70
Pro Gly Pro Pro Gly Glu Gly Gly Lys Pro Gly Asp Gln Gly Val Pro
                85
                                   90
Gly Glu Ala Gly Ala Pro Gly Leu Val Gly Pro Arg Gly Glu Arg Gly
          100
                             105
                                                   110
```

can be used as compositions for cartilage tissue restoration, composition for cartilage cell culture, or composition for promoting glycosaminoglycan production

20

Thus, the invention can provide a scaffold composition excellent in promotion of extracellular-matrix production by cartilage cells, a composition for cartilage tissue restoration, a composition for promoting glycosaminoglycan production, and a composition for cartilage cell culture, and a material therefor.

The disclosure of Japanese Patent Application No. 2012-213110, filed on Sep. 26, 2012, is hereby incorporated by reference in its entirety.

All the literatures, patent applications and technical standards described in the present description are hereby incorporated by reference to the same extent as in cases in which each literature, patent application or technical standard is concretely and individually described to be incorporated by reference.

-cont	inued
COILC	LIIUCU

Phe	Pro	Gly 115	Glu	Arg	Gly	Ala	Pro 120	Gly	Ala	Gln	Gly	Leu 125	Gln	Gly	Pro
Arg	Gly 130	Leu	Pro	Gly	Ala	Pro 135	Gly	Pro	Asp	Gly	Pro 140	Lys	Gly	Ala	Ala
Gly 145	Pro	Ala	Gly	Pro	Pro 150	Gly	Ala	Gln	Gly	Pro 155	Pro	Gly	Leu	Gln	Gly 160
Met	Pro	Gly	Glu	Arg 165	Gly	Ala	Ala	Gly	Ile 170	Ala	Gly	Pro	Lys	Gly 175	Asp
Arg	Gly	Asp	Val 180	Gly	Glu	ГЛа	Gly	Pro 185	Glu	Gly	Ala	Pro	Gly 190	Lys	Asp
Gly	Gly	Arg 195	Gly	Leu	Gly	Gly	Pro 200	Ile	Gly	Pro	Pro	Gly 205	Pro	Ala	Gly
Ala	Asn 210	Gly	Glu	ГЛа	Gly	Glu 215	Val	Gly	Pro	Pro	Gly 220	Pro	Ala	Gly	Ala
Ala 225	Gly	Ala	Arg	Gly	Ala 230	Pro	Gly	Glu	Arg	Gly 235	Glu	Ala	Gly	Pro	Pro 240
Gly	Pro	Ala	Gly	Phe 245	Ala	Gly	Pro	Pro	Gly 250	Ala	Asp	Gly	Gln	Pro 255	Gly
Ala	Lys	Gly	Glu 260	Gln	Gly	Glu	Ala	Gly 265	Gln	Lys	Gly	Asp	Ala 270	Gly	Ala
Pro	Gly	Pro 275	Gln	Gly	Pro	Gly	Gly 280	Ala	Pro	Gly	Pro	Gln 285	Gly	Pro	Ala
Gly	Val 290	Ala	Gly	Pro	ГЛа	Gly 295	Ala	Arg	Gly	Ala	Gln 300	Gly	Pro	Pro	Gly
Ala 305	Ala	Gly	Phe	Pro	Gly 310	Ala	Ala	Gly	Arg	Val 315	Gly	Pro	Pro	Gly	Leu 320
Gln	Gly	Asn	Pro	Gly 325	Pro	Pro	Gly	Pro	Pro 330	Gly	Pro	Ala	Gly	Lys 335	Asp
Gly	Pro	Lys	Gly 340	Ala	Arg	Gly	Asp	Ala 345	Gly	Pro	Pro	Gly	Arg 350	Ala	Gly
Glu	Pro	Gly 355	Leu	Gln	Gly	Pro	Ala 360	Gly	Pro	Pro	Gly	Glu 365	Lys	Gly	Glu
Pro	Gly 370	Asp	Asp	Gly	Pro	Pro 375	Gly	Ala	Glu	Gly	Pro 380	Pro	Gly	Pro	Gln
Gly 385	Leu	Ala	Gly	Gln	Arg 390	Gly	Ile	Val	Gly	Leu 395	Pro	Gly	Gln	Arg	Gly 400
Glu	Arg	Gly	Phe	Pro 405	Gly	Leu	Pro	Gly	Pro 410	Ala	Gly	Glu	Pro	Gly 415	Lys
Gln	Gly	Ala	Pro 420	Gly	Ala	Ala	Gly	Asp 425	Arg	Gly	Pro	Pro	Gly 430	Pro	Val
Gly	Pro	Pro 435	Gly	Leu	Ala	Gly	Pro 440	Ala	Gly	Glu	Pro	Gly 445	Arg	Glu	Gly
Gly	Pro 450	Gly	Ala	Asp	Gly	Pro 455	Pro	Gly	Arg	Asp	Gly 460	Ala	Ala	Gly	Val
Lys 465	Gly	Asp	Arg	Gly	Glu 470	Ala	Gly	Ala	Val	Gly 475	Ala	Pro	Gly	Ala	Pro 480
Gly	Pro	Pro	Gly	Ala 485	Pro	Gly	Pro	Ala	Gly 490	Pro	Pro	Gly	Pro	Gln 495	Gly
Asp	Arg	Gly	Glu 500	Ala	Gly	Ala	Gln	Gly 505	Pro						

<210> SEQ ID NO 2 <211> LENGTH: 506

<pre><212> TYPE: PRT <213> ORGANISM: Artificial Sequence</pre>															
	<220> FEATURE: <223> OTHER INFORMATION: RCP#5														
<400)> SI	RODEI	NCE :	2											
Gly 1	Pro	Gln	Gly	Ala 5	Arg	Gly	Gln	Pro	Gly 10	Val	Met	Gly	Phe	Pro 15	Gly
Pro	Гла	Gly	Ala 20	Asn	Gly	Glu	Pro	Gly 25	ГЛЗ	Ala	Gly	Glu	Lys 30	Gly	Leu
Pro	Gly	Ala 35	Pro	Gly	Leu	Arg	Gly 40	Leu	Pro	Gly	ГЛа	Asp 45	Gly	Glu	Ala
Gly	Ala 50	Ala	Gly	Pro	Pro	Gly 55	Pro	Ala	Gly	Pro	Ala 60	Gly	Glu	Arg	Gly
Glu 65	Gln	Gly	Ala	Pro	Gly 70	Pro	Pro	Gly	Phe	Gln 75	Gly	Leu	Pro	Gly	Pro 80
Pro	Gly	Pro	Pro	Gly 85	Glu	Gly	Gly	Lys	Pro 90	Gly	Asp	Gln	Gly	Val 95	Pro
Gly	Glu	Ala	Gly 100	Ala	Pro	Gly	Leu	Val 105	Gly	Pro	Arg	Gly	Glu 110	Arg	Gly
Phe	Pro	Gly 115	Glu	Arg	Gly	Lys	Pro 120	Gly	Ala	Gln	Gly	Leu 125	Gln	Gly	Pro
Arg	Gly 130	Leu	Pro	Gly	Ala	Pro 135	Gly	Lys	Asp	Gly	Pro 140	Lys	Gly	Ala	Ala
Gly 145	Pro	Ala	Gly	Pro	Pro 150	Gly	Ala	Gln	Gly	Pro 155	Pro	Gly	Leu	Gln	Gly 160
Met	Pro	Gly	Glu	Arg 165	Gly	Ala	Ala	Gly	Ile 170	Ala	Gly	Pro	Lys	Gly 175	Asp
Arg	Gly	Asp	Val 180	Gly	Glu	Lys	Gly	Pro 185	Glu	Gly	Ala	Pro	Gly 190	Lys	Asp
Gly	Gly	Arg 195	Gly	Leu	Gly	Gly	Pro 200	Ile	Gly	Pro	Pro	Gly 205	Pro	Ala	Gly
Ala	Asn 210	Gly	Glu	ГЛа	Gly	Glu 215	Val	Gly	Pro	Pro	Gly 220	Pro	Ala	Gly	Ala
Ala 225	Gly	Ala	Arg	Gly	Ala 230	Pro	Gly	Glu	Arg	Gly 235	Glu	ГЛа	Gly	Pro	Pro 240
Gly	Pro	Ala	Gly	Phe 245	Ala	Gly	Pro	Pro	Gly 250	Ala	Asp	Gly	Gln	Pro 255	Gly
Ala	Гла	Gly	Glu 260	Gln	Gly	Glu	Ala	Gly 265	Gln	Lys	Gly	Asp	Ala 270	Gly	Ala
Pro	Gly	Pro 275	Gln	Gly	Pro	ГЛа	Gly 280	Ala	Pro	Gly	Pro	Gln 285	Gly	Pro	Ala
Gly	Val 290	Ala	Gly	Pro	ГЛа	Gly 295	Ala	Arg	Gly	Ala	Gln 300	Gly	Pro	Pro	Gly
Ala 305	Ala	Gly	Phe	Pro	Gly 310	Ala	Ala	Gly	Arg	Val 315	Gly	Pro	Pro	Gly	Leu 320
Gln	Gly	Asn	Pro	Gly 325	Pro	Pro	Gly	Pro	Pro 330	Gly	Pro	Ala	Gly	Lys 335	Asp
Gly	Pro	Lys	Gly 340	Ala	Arg	Gly	Asp	Ala 345	Gly	Pro	Pro	Gly	Arg 350	Ala	Gly
Glu	Pro	Gly 355	Leu	Gln	Gly	Pro	Ala 360	Gly	Pro	Pro	Gly	Glu 365	Lys	Gly	Glu
Pro	Gly 370	Asp	Asp	Gly	Pro	Pro 375	Gly	Ala	Glu	Gly	Pro 380	Pro	Gly	Pro	Gln

-continued

_												con	tin	ued	
Gly 385	Leu	Ala	Gly	Gln	Arg 390	Gly	Ile	Val	Gly	Leu 395	Pro	Gly	Gln	Arg	Gly 400
Glu	Arg	Gly	Phe	Pro 405	Gly	Leu	Pro	Gly	Pro 410	Lys	Gly	Glu	Pro	Gly 415	Lys
Gln	Gly	Ala	Pro 420	Gly	Ala	Lys	Gly	Asp 425	Arg	Gly	Pro	Pro	Gly 430	Pro	Val
Gly	Pro	Pro 435	Gly	Leu	Ala	Gly	Pro 440	Ala	Gly	Glu	Pro	Gly 445	Arg	Glu	Gly
Gly	Pro 450	Gly	Ala	Asp	Gly	Pro 455	Pro	Gly	Arg	Asp	Gly 460	Ala	Ala	Gly	Val
Lys 465	Gly	Asp	Arg	Gly	Glu 470	Lys	Gly	Ala	Val	Gly 475	Ala	Pro	Gly	Ala	Pro 480
Gly	Pro	Pro	Gly	Ala 485	Pro	Gly	Pro	Ala	Gly 490	Pro	Pro	Gly	Pro	Gln 495	Gly
Asp	Arg	Gly	Glu 500	Ala	Gly	Ala	Gln	Gly 505	Pro						
<213 <220 <223 <400	3 > OF) > FE 3 > OT) > SE	EATUR THER EQUEN	ISM: RE: INFO NCE:	ORMA' 3	ific: TION Pro	: RC	- P#6		Asn	Glv	Glu	Pro	Glv	Lvs	Ala
1	-			5	Pro	-	-		10	-			-	15	
-		-	20			-		25	-		-	-	30		-
-	-	35			Gly		40	-			-	45		-	
	50		-	-	Glu	55	-			-	60		-		
65			-		Pro 70	-			-	75	-	-	-		80
-		-		85	Gly			_	90		-			95	
			100		Phe			105					110		
		115			Arg		120					125			
	130				Gly	135					140				
145					Met 150					155					160
-		-	-	165	Arg	-			170		-	-		175	-
Ala	Pro	Gly	Lys 180	Asp	Gly	Gly	Arg	Gly 185	Leu	Gly	Gly	Pro	Ile 190	Gly	Pro
Pro	Gly	Pro 195	Ala	Gly	Ala	Asn	Gly 200	Glu	ГÀа	Gly	Glu	Val 205	Gly	Pro	Pro
Gly	Pro 210	Ala	Gly	Ala	Ala	Gly 215	Ala	Arg	Gly	Ala	Pro 220	Gly	Glu	Arg	Gly
Glu 225	Lys	Gly	Pro	Pro	Gly 230	Pro	Ala	Gly	Phe	Ala 235	Gly	Pro	Pro	Gly	Ala 240

26

28

Asp	Gly	Gln	Pro	Gly 245	Ala	Lys	Gly	Glu	Gln 250	Gly	Glu	Ala	Gly	Gln 255	Lys
Gly	Asp	Ala	Gly 260	Ala	Pro	Gly	Pro	Gln 265	Gly	Pro	Lys	Gly	Ala 270	Pro	Gly
Pro	Gln	Gly 275	Pro	Ala	Gly	Val	Ala 280	Gly	Pro	Lys	Gly	Ala 285	Arg	Gly	Ala
Gln	Gly 290	Pro	Pro	Gly	Ala	Ala 295	Gly	Phe	Pro	Gly	Ala 300	Ala	Gly	Arg	Val
Gly 305	Pro	Pro	Gly	Leu	Gln 310	Gly	Asn	Pro	Gly	Pro 315	Pro	Gly	Pro	Pro	Gly 320
Pro	Ala	Gly	Lys	Asp 325	Gly	Pro	Lys	Gly	Ala 330	Arg	Gly	Asp	Ala	Gly 335	Pro
Pro	Gly	Arg	Ala 340	Gly	Glu	Pro	Gly	Leu 345	Gln	Gly	Pro	Ala	Gly 350	Pro	Pro
Gly	Glu	Lys 355	Gly	Glu	Pro	Gly	Asp 360	Asp	Gly	Pro	Pro	Gly 365	Ala	Glu	Gly
Pro	Pro 370	Gly	Pro	Gln	Gly	Leu 375	Ala	Gly	Gln	Arg	Gly 380	Ile	Val	Gly	Leu
Pro 385	Gly	Gln	Arg	Gly	Glu 390	Arg	Gly	Phe	Pro	Gly 395	Leu	Pro	Gly	Pro	Lys 400
Gly	Glu	Pro	Gly	Lys 405	Gln	Gly	Ala	Pro	Gly 410	Ala	LÀa	Gly	Aab	Arg 415	Gly
Pro	Pro	Gly	Pro 420	Val	Gly	Pro	Pro	Gly 425	Leu	Ala	Gly	Pro	Ala 430	Gly	Glu
Pro	Gly	Arg 435	Glu	Gly	Gly	Pro	Gly 440	Ala	Asp	Gly	Pro	Pro 445	Gly	Arg	Asp
Gly	Ala 450	Ala	Gly	Val	Lys	Gly 455	Asp	Arg	Gly	Glu	Lys 460	Gly	Ala	Val	Gly
Ala 465	Pro	Gly	Ala	Pro	Gly 470	Pro	Pro	Gly	Ala	Pro 475	Gly	Pro	Ala	Gly	Pro 480
Pro	Gly	Pro	Gln	Gly 485	Asp	Arg	Gly	Glu	Ala 490	Gly	Ala	Gln	Gly	Pro 495	Met
Gly	Phe	Pro	Gly 500	Pro	Lys	Gly	Ala	Asn 505	Gly	Glu	Pro	Gly	Lys 510	Ala	Gly
Glu	Гла	Gly 515	Leu	Pro	Gly	Ala	Pro 520	Gly	Leu	Arg	Gly	Leu 525	Pro	Gly	Lys
Asp	Gly 530	Glu	Ala	Gly	Ala	Ala 535	Gly	Pro	Pro	Gly	Pro 540	Ala	Gly	Pro	Ala
Gly 545	Glu	Arg	Gly	Glu	Gln 550	Gly	Ala	Pro	Gly	Pro 555	Pro	Gly	Phe	Gln	Gly 560
Leu	Pro	Gly	Pro	Pro 565	Gly	Pro	Pro	Gly	Glu 570	Gly	Gly	ГЛа	Pro	Gly 575	Asp
Gln	Gly	Val	Pro 580	Gly	Glu	Ala	Gly	Ala 585	Pro	Gly	Leu	Val	Gly 590	Pro	Arg
Gly	Glu	Arg 595	Gly	Phe	Pro	Gly	Glu 600	Arg	Gly	Lys	Pro	Gly 605	Ala	Gln	Gly
Leu	Gln 610	Gly	Pro	Arg	Gly	Leu 615	Pro	Gly	Ala	Pro	Gly 620	Lys	Asp	Gly	Pro
Lys 625	Gly	Ala	Ala	Gly	Pro 630	Ala	Gly	Pro	Pro	Gly 635	Ala	Gln	Gly	Pro	Pro 640
Glv	Leu	Gln	Glv												

Gly Leu Gln Gly

<210> SEQ ID NO 4

<21	L> LI	ENGTH	H: 14	487											
<212> TYPE: PRT <213> ORGANISM: Homo sapiens															
<400)> SI	EQUEI	NCE :	4											
Met 1	Ile	Arg	Leu	Gly 5	Ala	Pro	Gln	Thr	Leu 10	Val	Leu	Leu	Thr	Leu 15	Leu
Val	Ala	Ala	Val 20	Leu	Arg	Суз	Gln	Gly 25	Gln	Asp	Val	Gln	Glu 30	Ala	Gly
Ser	Cys	Val 35	Gln	Asp	Gly	Gln	Arg 40	Tyr	Asn	Asp	ГЛЗ	Asp 45	Val	Trp	Lys
Pro	Glu 50	Pro	Суз	Arg	Ile	Cys 55	Val	Суз	Asp	Thr	Gly 60	Thr	Val	Leu	Cys
Asp 65	Asp	Ile	Ile	Суз	Glu 70	Asp	Val	Lys	Asp	Суз 75	Leu	Ser	Pro	Glu	Ile 80
Pro	Phe	Gly	Glu	Суа 85	Сүз	Pro	Ile	Сув	Pro 90	Thr	Asp	Leu	Ala	Thr 95	Ala
Ser	Gly	Gln	Pro 100	Gly	Pro	Lys	Gly	Gln 105	Lys	Gly	Glu	Pro	Gly 110	Asp	Ile
Lys	Asp	Ile 115	Val	Gly	Pro	Lys	Gly 120	Pro	Pro	Gly	Pro	Gln 125	Gly	Pro	Ala
Gly	Glu 130	Gln	Gly	Pro	Arg	Gly 135	Asp	Arg	Gly	Asp	Lys 140	Gly	Glu	Lys	Gly
Ala 145	Pro	Gly	Pro	Arg	Gly 150	Arg	Asp	Gly	Glu	Pro 155	Gly	Thr	Pro	Gly	Asn 160
Pro	Gly	Pro	Pro	Gly 165	Pro	Pro	Gly	Pro	Pro 170	Gly	Pro	Pro	Gly	Leu 175	Gly
Gly	Asn	Phe	Ala 180	Ala	Gln	Met	Ala	Gly 185	Gly	Phe	Asp	Glu	Lys 190	Ala	Gly
Gly	Ala	Gln 195	Leu	Gly	Val	Met	Gln 200	Gly	Pro	Met	Gly	Pro 205	Met	Gly	Pro
Arg	Gly 210	Pro	Pro	Gly	Pro	Ala 215	Gly	Ala	Pro	Gly	Pro 220	Gln	Gly	Phe	Gln
Gly 225	Asn	Pro	Gly	Glu	Pro 230	Gly	Glu	Pro	Gly	Val 235	Ser	Gly	Pro	Met	Gly 240
Pro	Arg	Gly	Pro	Pro 245	Gly	Pro	Pro	Gly	Lys 250	Pro	Gly	Asp	Asp	Gly 255	Glu
Ala	Gly		Pro 260		Lys	Ala		Glu 265		Gly	Pro		Gly 270		Gln
Gly	Ala	Arg 275	Gly	Phe	Pro	Gly	Thr 280	Pro	Gly	Leu	Pro	Gly 285	Val	Lys	Gly
His	Arg 290	Gly	Tyr	Pro	Gly	Leu 295	Asp	Gly	Ala	Lys	Gly 300	Glu	Ala	Gly	Ala
Pro 305	Gly	Val	Lys	Gly	Glu 310	Ser	Gly	Ser	Pro	Gly 315	Glu	Asn	Gly	Ser	Pro 320
Gly	Pro	Met	Gly	Pro 325	Arg	Gly	Leu	Pro	Gly 330	Glu	Arg	Gly	Arg	Thr 335	Gly
Pro	Ala	Gly	Ala 340	Ala	Gly	Ala	Arg	Gly 345	Asn	Asp	Gly	Gln	Pro 350	Gly	Pro
Ala	Gly	Pro 355	Pro	Gly	Pro	Val	Gly 360	Pro	Ala	Gly	Gly	Pro 365	Gly	Phe	Pro
Gly	Ala 370	Pro	Gly	Ala	LÀa	Gly 375	Glu	Ala	Gly	Pro	Thr 380	Gly	Ala	Arg	Gly
Pro	Glu	Gly	Ala	Gln	Gly	Pro	Arg	Gly	Glu	Pro	Gly	Thr	Pro	Gly	Ser

												0011	CIII	ucu	
385					390					395					400
Pro	Gly	Pro	Ala	Gly 405	Ala	Ser	Gly	Asn	Pro 410	Gly	Thr	Asp	Gly	Ile 415	Pro
Gly	Ala	Lys	Gly 420	Ser	Ala	Gly	Ala	Pro 425	Gly	Ile	Ala	Gly	Ala 430	Pro	Gly
Phe	Pro	Gly 435	Pro	Arg	Gly	Pro	Pro 440	Gly	Pro	Gln	Gly	Ala 445	Thr	Gly	Pro
Leu	Gly 450	Pro	Lys	Gly	Gln	Thr 455	Gly	Glu	Pro	Gly	Ile 460	Ala	Gly	Phe	Lys
Gly 465	Glu	Gln	Gly	Pro	Lys 470	Gly	Glu	Pro	Gly	Pro 475	Ala	Gly	Pro	Gln	Gly 480
Ala	Pro	Gly	Pro	Ala 485	Gly	Glu	Glu	Gly	Lys 490	Arg	Gly	Ala	Arg	Gly 495	Glu
Pro	Gly	Gly	Val 500	Gly	Pro	Ile	Gly	Pro 505	Pro	Gly	Glu	Arg	Gly 510	Ala	Pro
Gly	Asn	Arg 515		Phe	Pro	Gly	Gln 520	Asp	Gly	Leu	Ala	Gly 525	Pro	Lys	Gly
Ala	Pro 530	Gly	Glu	Arg	Gly	Pro 535	Ser	Gly	Leu	Ala	Gly 540	Pro	Гла	Gly	Ala
Asn 545	Gly	Aab	Pro	Gly	Arg 550		Gly	Glu	Pro	Gly 555		Pro	Gly	Ala	Arg 560
	Leu	Thr	Gly	Arg 565		Gly	Asp	Ala	Gly 570		Gln	Gly	Lys	Val 575	
Pro	Ser	Gly	Ala 580		Gly	Glu	Asp	Gly 585		Pro	Gly	Pro	Pro 590		Pro
Gln	Gly	Ala 595		Gly	Gln	Pro	Gly 600		Met	Gly	Phe	Pro 605		Pro	Lys
Gly	Ala 610		Gly	Glu	Pro	Gly 615		Ala	Gly	Glu	Lys 620		Leu	Pro	Gly
Ala 625	Pro	Gly	Leu	Arg	Gly 630		Pro	Gly	Гла	Asp 635		Glu	Thr	Gly	Ala 640
	Gly	Pro	Pro	Gly 645		Ala	Gly	Pro	Ala 650		Glu	Arg	Gly	Glu 655	
Gly	Ala	Pro			Ser	Gly	Phe			Leu	Pro	Gly			Gly
Pro	Pro												670 Pro	Gly	Glu
Ala	Gly	675 Ala		Gly		Val		Pro			Glu		Gly	Phe	Pro
Gly	690 Glu	Arg	Gly	Ser	Pro	695 Gly	Ala	Gln	Gly	Leu	700 Gln	Gly	Pro	Arg	Gly
705 Leu	Pro	Gly	Thr	Pro	710 Gly	Thr	Asp	Gly	Pro	715 Lys	Gly	Ala	Ser	Gly	720 Pro
	Gly	-		725	-		-	-	730	-	-			735	
	-		740	-			-	745		-			750		
Gly	Glu	Arg 755	Gly	Ala	Ala	Gly	Ile 760	Ala	Gly	Pro	гла	Gly 765	Asb	Arg	GIY
Asp	Val 770	Gly	Glu	ГЛа	Gly	Pro 775	Glu	Gly	Ala	Pro	Gly 780	ГЛа	Asp	Gly	Gly
Arg 785	Gly	Leu	Thr	Gly	Pro 790	Ile	Gly	Pro	Pro	Gly 795	Pro	Ala	Gly	Ala	Asn 800
Gly	Glu	Lys	Gly	Glu 805	Val	Gly	Pro	Pro	Gly 810	Pro	Ala	Gly	Ser	Ala 815	Gly

Ala Arg Gly Ala Pro Gly Glu Arg Gly Glu Thr Gly Pro Pro Gly Pro 820 825 830
Ala Gly Phe Ala Gly Pro Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys 835 840 845
Gly Glu Gln Gly Glu Ala Gly Gln Lys Gly Asp Ala Gly Ala Pro Gly 850 855 860
Pro Gln Gly Pro Ser Gly Ala Pro Gly Pro Gln Gly Pro Thr Gly Val865870875880
Thr Gly Pro Lys Gly Ala Arg Gly Ala Gln Gly Pro Pro Gly Ala Thr 885 890 895
Gly Phe Pro Gly Ala Ala Gly Arg Val Gly Pro Pro Gly Ser Asn Gly 900 905 910
Asn Pro Gly Pro Pro Gly Pro Pro Gly Pro Ser Gly Lys Asp Gly Pro 915 920 925
Lys Gly Ala Arg Gly Asp Ser Gly Pro Pro Gly Arg Ala Gly Glu Pro 930 935 940
Gly Leu Gln Gly Pro Ala Gly Pro Pro Gly Glu Lys Gly Glu Pro Gly 945 950 955 960
Asp Asp Gly Pro Ser Gly Ala Glu Gly Pro Pro Gly Pro Gln Gly Leu 965 970 975
Ala Gly Gln Arg Gly Ile Val Gly Leu Pro Gly Gln Arg Gly Glu Arg 980 985 990
Gly Phe Pro Gly Leu Pro Gly Pro Ser Gly Glu Pro Gly Lys Gln Gly 995 1000 1005
Ala Pro Gly Ala Ser Gly Asp Arg Gly Pro Pro Gly Pro Val Gly 1010 1015 1020
Pro Pro Gly Leu Thr Gly Pro Ala Gly Glu Pro Gly Arg Glu Gly 1025 1030 1035
Ser Pro Gly Ala Asp Gly Pro Pro Gly Arg Asp Gly Ala Ala Gly 1040 1045 1050
Val Lys Gly Asp Arg Gly Glu Thr Gly Ala Val Gly Ala Pro Gly 1055 1060 1065
Ala Pro Gly Pro Pro Gly Ser Pro Gly Pro Ala Gly Pro Thr Gly 1070 1075 1080
Lys Gln Gly Asp Arg Gly Glu Ala Gly Ala Gln Gly Pro Met Gly 1085 1090 1095
Pro Ser Gly Pro Ala Gly Ala Arg Gly Ile Gln Gly Pro Gln Gly 1100 1105 1110
Pro Arg Gly Asp Lys Gly Glu Ala Gly Glu Pro Gly Glu Arg Gly 1115 1120 1125
Leu Lys Gly His Arg Gly Phe Thr Gly Leu Gln Gly Leu Pro Gly 1130 1135 1140
Pro Pro Gly Pro Ser Gly Asp Gln Gly Ala Ser Gly Pro Ala Gly 1145 1150 1155
Pro Ser Gly Pro Arg Gly Pro Pro Gly Pro Val Gly Pro Ser Gly 1160 1165 1170
Lys Asp Gly Ala Asn Gly Ile Pro Gly Pro Ile Gly Pro Pro Gly 1175 1180 1185
Pro Arg Gly Arg Ser Gly Glu Thr Gly Pro Ala Gly Pro Pro Gly 1190 1195 1200
Asn Pro Gly Pro Pro Gly Pro Pro Gly Pro Gly Ile
1205 1210 1215

Asp Met Ser Ala 1220	Phe Ala Gly Le 1225		Glu Lys Gly Pro 1230	
Asp Pro Leu Gln 1235	Tyr Met Arg Al 1240	-	Ala Gly Gly Leu 1245	
Arg Gln His Asp 1250	Ala Glu Val As 1255		Lys Ser Leu Asn 1260	
Asn Gln Ile Glu 1265	Ser Ile Arg Se 1270		Ser Arg Lys Asn 1275	
Pro Ala Arg Thr 1280	Cys Arg Asp Le 1285		His Pro Glu Trp 1290	
Lys Ser Gly Asp 1295	Tyr Trp Ile As 1300		Gly Cys Thr Leu 1305	
Asp Ala Met Lys 1310	Val Phe Cys As 1315		Gly Glu Thr Cys 1320	
Val Tyr Pro Asn 1325	Pro Ala Asn Va 1330		Asn Trp Trp Ser 1335	
Ser Lys Ser Lys 1340	Glu Lys Lys Hi 1345	-	Gly Glu Thr Ile 1350	
Asn Gly Gly Phe 1355	His Phe Ser Ty 1360		Asn Leu Ala Pro 1365	
Asn Thr Ala Asn 1370	Val Gln Met Th 1375	0	Leu Leu Ser Thr 1380	
Glu Gly Ser Gln 1385	Asn Ile Thr Ty 1390		Asn Ser Ile Ala 1395	
Tyr Leu Asp Glu 1400	Ala Ala Gly As 1405		Ala Leu Leu Ile 1410	
Gln Gly Ser Asn 1415	Asp Val Glu Il 1420	-	Gly Asn Ser Arg 1425	
Phe Thr Tyr Thr 1430	Ala Leu Lys As 1435		Lys His Thr Gly 1440	
Lys Trp Gly Lys 1445	Thr Val Ile Gl 1450		Gln Lys Thr Ser 1455	
Arg Leu Pro Ile 1460	Ile Asp Ile Al 1465	-	Ile Gly Gly Pro 1470	
Glu Gln Glu Phe 1475	Gly Val Asp Il 1480	-	Cys Phe Leu 1485	
<pre><210> SEQ ID NO 5 <211> LENGTH: 155 <212> TYPE: DNA <213> ORGANISM: A <220> FEATURE: <223> OTHER INFOR <400> SEQUENCE: 5</pre>	3 Artificial Seque MATION: polynuc			
ctcgagaaaa gagagg		caaggtgcaa gaq	ggccaacc aggtgtaa	tg 60
ggttttcctg gtccca	laagg agccaatggt	gaacccggaa ag	getggega gaaaggae	tg 120
cctggtgctc caggat	tgag agggcttcca	ggtaaagacg gto	gaggetgg tgeegeag	ga 180
ccaccaggtc ccgccg	gccc tgctggagaa	agaggcgaac aa	ggegetee gggeeeac	ecc 240
ggtttccagg ggctgc	cagg acctcctggc	ccaccagggg aa	ggagggaa gccaggtg	ac 300
caaggtgttc cagggg	aagc tggtgcccct	ggcttagtcg gto	ccaagagg agaaaggg	
tttcctggag agcgag				
ggageteeeg gaccag	acgg tccaaagggt	gctgccggtc cto	getggtee acegggte	ca 480

US 9,932,557 B2

37

caaggacete caggeettea gggeatgeet ggtgagagag gtgeegetgg aatageegga

-continued

540

cccaagggcg	atagagggga	tgttggcgaa	aagggtcctg	aaggagctcc	cggcaaagat	600
ggtggacgtg	gtctaggcgg	acctattggg	cctccaggac	ccgccggagc	taacggtgag	660
aaaggcgaag	taggaccacc	tggaccggcc	ggtgctgctg	gtgctcgtgg	tgcacccgga	720
gagagaggtg	aagctggtcc	accgggtcca	gctggctttg	ctggtccgcc	cggagcagat	780
ggacaaccag	gagccaaggg	tgaacaagga	gaagcaggcc	aaaagggtga	tgctggtgca	840
ccaggacccc	aaggtcctgg	aggtgctcca	ggtcctcagg	gacctgcagg	tgttgcaggc	900
cctaaaggag	cacgtggtgc	acagggacca	ccaggtgctg	ctggattccc	tggagcagct	960
ggtagagtcg	gaccacctgg	tctacagggt	aaccctggtc	caccaggacc	gcctggtcca	1020
gctggaaagg	acgggcccaa	gggtgcaaga	ggggatgccg	gtcctccagg	tagagccggt	1080
gagcctggtt	tgcaaggtcc	cgctggtcca	cctggtgaga	agggtgaacc	aggtgatgac	1140
gggceteetg	gagccgaagg	accgccaggt	ccccagggac	ttgctggaca	gcgtggtatc	1200
gtgggattgc	ctgggcaaag	aggtgaaagg	ggtttccctg	gtttacctgg	gccagctgga	1260
gagccaggga	aacaaggagc	acccggtgca	gccggggata	gaggaccacc	gggtcctgtt	1320
ggteeteeeg	gtttggctgg	tcctgccgga	gagcetggea	gagagggtgg	accgggtgct	1380
gacggcccac	caggtcgaga	tggggctgcc	ggagtgaaag	gtgatagggg	tgaggctgga	1440
gctgttggcg	ctccaggagc	cccaggtcca	ccaggagete	cgggacctgc	tggaccacct	1500
ggaccacaag	gggacagggg	cgaagcagga	gctcaagggc	cttaagcggc	cgc	1553
<220> FEATU	: DNA NISM: Artifi JRE: R INFORMATIC	_				
		agatagagag				
	gagaggetga			agaatassaa	aggagtaatg	60
ggettteeeg	agaataaaaa			ggggtcaacc		60
aceaatacta	ggcctaaagg	ggctaatggt	gagcctggaa	aagctggtga	gaagggactt	120
	caggtttgag	ggctaatggt agggctcccc	gagcctggaa ggaaaagatg	aagctggtga gggaagctgg	gaagggactt tgccgcagga	120 180
ccgccaggac	caggtttgag cagccggccc	ggctaatggt agggctcccc cgcagggggag	gagcctggaa ggaaaagatg agaggtgaac	aagctggtga gggaagctgg agggtgctcc	gaagggactt tgccgcagga aggtccgcca	120 180 240
ccgccaggac ggtttccagg	caggtttgag cagccggccc gtttacccgg	ggctaatggt agggctcccc cgcagggggag ccctccagga	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg	aagctggtga gggaagctgg agggtgctcc aaggtggtaa	gaagggactt tgccgcagga aggtccgcca gccaggagat	120 180 240 300
ccgccaggac ggtttccagg cagggagttc	caggtttgag cagceggeee gtttaceegg caggtgaage	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct	gagcetggaa ggaaaagatg agaggtgaac ceteegggtg ggtttggttg	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt	120 180 240 300 360
ccgccaggac ggtttccagg cagggagttc tttccgggcg	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa	ggctaatggt agggctcccc cgcagggggag ccctccagga tggagctcct gccaggcgct	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc	120 180 240 300 360 420
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa gaaaagacgg	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac gccgctggac	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca	120 180 240 300 360 420 480
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa gaaaagacgg ctggtctaca	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac gccgctggac ggagagagagag	aagctggtga gggaagctgg agggtgtccc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt	120 180 240 300 360 420 480 540
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc cctaaaggtg	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa gaaaagacgg ctggtctaca acagagggga	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg tgtgggtgag	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac gccgctggac ggagagagag aagggaccag	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg aaggcgctcc	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt aggcaaggat	120 180 240 300 360 420 480 540 600
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc cctaaaggtg ggcggtagag	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa gaaaagacgg ctggtctaca acagagggga gtttgggagg	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg tgtgggtgag acctattggt	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac ggcgctggac ggagagagag aagggaccag cctccgggtc	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg aaggcgctcc ccgctggagc	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt aggcaaggat taacggtgag	120 180 240 300 360 420 480 540 600 660
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc cctaaaggtg ggcggtagag aagggcgaag	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagagggaaa gaaaagacgg ctggtctaca acagagggga gtttgggagg tgggaccacc	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg tgtgggtgag acctattggt	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac gccgctggac ggagagagag aagggaccag cctccgggtc ggagcagctg	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg aaggcgctcc ccgctggagc gtgctagagg	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt aggcaaggat taacggtgag tgcaccaggt	120 180 240 300 420 480 540 600 660 720
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc cctaaaggtg ggcggtagag aagggcgaag gaaaggggag	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa gaaaagacgg ctggtctaca acagagggga gtttgggagg tgggaccacc aaaagggtcc	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg tgtgggtgag acctattggt tgggccggcc tcctgggcca	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac gccgctggac ggagagagaga aagggaccag cctccgggtc ggagcagctg gcaggctttg	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg aaggcgctcc ccgctggagc gtgctagagg ctggaccacc	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt aggcaaggat taacggtgag tgcaccaggt	120 180 240 300 420 480 540 600 660 720 780
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc cctaaaggtg ggcggtagag aagggcgaag gaaaggggag	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagagggaaa gaaaagacgg ctggtctaca acagagggga gtttgggagg tgggaccacc	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg tgtgggtgag acctattggt tgggccggcc tcctgggcca	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac gccgctggac ggagagagaga aagggaccag cctccgggtc ggagcagctg gcaggctttg	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg aaggcgctcc ccgctggagc gtgctagagg ctggaccacc	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt aggcaaggat taacggtgag tgcaccaggt	120 180 240 300 420 480 540 600 660 720
ccgccaggac ggtttccagg cagggagttc tttccgggcg ggtgctcctg caaggccctc cctaaaggtg ggcggtagag aagggcgaag gaaaggggag ggccaaccag	caggtttgag cagccggccc gtttacccgg caggtgaagc aaagaggaaa gaaaagacgg ctggtctaca acagagggga gtttgggagg tgggaccacc aaaagggtcc	ggctaatggt agggctcccc cgcaggggag ccctccagga tggagctcct gccaggcgct cccaaaaggt gggaatgccg tgtgggtgag acctattggt tgggccggcc tcctgggcca tgaacaagga	gagcctggaa ggaaaagatg agaggtgaac cctccgggtg ggtttggttg cagggtctac ggagagagaga aagggaccag cctccgggtc ggagcagctg gcaggctttg gaagccggtc	aagctggtga gggaagctgg agggtgctcc aaggtggtaa gtcctagagg aaggtcctcg ccgctggtcc gagctgccgg aaggcgctcc ccgctggagc gtgctagagg ctggaccacc agaaaggtga	gaagggactt tgccgcagga aggtccgcca gccaggagat cgaacgaggt tggactgccc acccggagca tatagctggt aggcaaggat taacggtgag tgcaccaggt cggcgctgac tgccggagca	120 180 240 300 420 480 540 600 660 720 780

US 9,932,557 B2

40

39

-continued

ggtagagtcg	gaccacctgg	tttgcaagga	aacccagggc	cgcctggtcc	acctggacct	1020	
gctggaaaag	acggtcctaa	gggtgcaaga	ggagatgcag	gaccaccagg	aagagcaggg	1080	
gaaccaggtc	tgcagggtcc	tgctggacca	ccaggagaaa	agggagagcc	tggtgacgac	1140	
ggaccaccag	gagcagaggg	tccacccggt	ccccaaggac	ttgctggcca	aagaggcatc	1200	
gttggtttac	cgggtcaaag	gggcgagcgt	ggtttccctg	gtttgccagg	ccccaaaggt	1260	
gaacccggga	aacagggagc	tcctggagct	aagggtgatc	gtggaccacc	aggtccagtc	1320	
ggtccaccag	gtcttgctgg	tcctgccggt	gaaccgggaa	gggagggtgg	accaggtgcc	1380	
gacggtcctc	caggtcgaga	tggtgctgcc	ggggtaaaag	gtgatagagg	cgagaaagga	1440	
gctgttggag	cccctggagc	cccaggtcct	cccggtgcac	ctggtcctgc	cgggcctccc	1500	
ggtcctcaag	gagatcgtgg	agaggctgga	gcccaagggc	cttaagcggc	cgc	1553	
<220> FEATU	TH: 1967 : DNA NISM: Artif: JRE: R INFORMATIC	icial Seque DN: polynuc:					
ctcgagaaaa	gagaggctga	agctatgggc	tttcctggac	ctaagggtgc	aaacggagaa	60	
ccgggaaagg	caggcgagaa	agggetteet	ggagetecag	ggttgcgtgg	tttgcccggt	120	
aaggacggag	aagctggtgc	cgccgggcct	ccgggtcctg	ctggcccagc	tggagaacgt	180	
ggtgaacagg	gtgccccagg	acctcctgga	tttcaggggt	tacccggccc	accagggcca	240	
cccggtgaag	gaggtaaacc	tggcgatcaa	ggagtccccg	gtgaggctgg	agctccaggt	300	
ttagtcggtc	ctaggggaga	gagaggtttc	cctggagaaa	gaggtaaacc	aggagcccaa	360	
ggcttgcagg	ggccacgtgg	acttccaggc	gcacctggta	aagatggacc	caaaggagct	420	
gctggtccag	ccggtcctcc	gggtgcacaa	ggtccaccag	gactgcaagg	catgcccgga	480	
gaaagaggtg	ccgctggtat	agctggacct	aagggtgatc	gaggggacgt	cggtgaaaag	540	
ggaccagaag	gtgccccagg	gaaagatgga	ggaagaggtt	tgggaggccc	aattggccct	600	
cccgggcccg	ctggagccaa	tggtgaaaag	ggtgaggtag	gtcctcctgg	tccggccggt	660	
gctgccggtg	caagaggtgc	acctggtgag	agaggcgaga	agggtccgcc	cggcccagct	720	
ggattcgctg	gtccacccgg	tgcagacggc	caaccaggtg	caaagggaga	gcagggtgag	780	
gctggccaga	aaggtgatgc	tggtgcacca	ggtccacaag	gtccaaaagg	agctccaggt	840	
cctcaaggac	cagccggtgt	agctggacca	aagggcgcta	gaggtgctca	gggteeteet	900	
ggggctgctg	gattcccagg	tgctgctgga	agagttggcc	caccaggttt	gcaaggtaac	960	
ccagggcctc	cagggcctcc	cggccccgct	ggtaaggacg	gtcctaaagg	tgctagaggt	1020	
gacgctggtc	cgcctggtag	agcaggagaa	cctggattac	agggaccagc	cgggcctcca	1080	
ggcgagaagg	gtgaaccagg	agatgatggt	cctcccggcg	ctgagggacc	accaggacca	1140	
caagggctag	ctggtcaaag	aggtatcgtg	ggattgcctg	gacagagagg	tgaaaggggt	1200	
tttccaggac	tgccgggtcc	taaaggagaa	ccaggaaaac	aaggtgcccc	tggtgcaaag	1260	
ggtgacaggg	gaccgccagg	accggttggt	cccccaggtc	ttgctggtcc	tgctggtgag	1320	
cctggaagag	aaggtggacc	aggagctgat	ggaccgccag	gcagagatgg	agctgccgga	1380	
gttaaaggtg	accgagggga	gaagggtgcc	gttggggccc	ctggtgcacc	tggtccacca	1440	
						1500	

ggcgcaccag gccccgctgg acctccggga ccccaaggtg atagaggtga agctggtgcc 1500

-continued

caaggcccca	tgggatttcc	aggaccaaag	ggagctaatg	gagaacccgg	caaggccggt	1560
gagaaaggtt	tgccaggtgc	tcctggactt	aggggactgc	cgggaaagga	tggcgaagcc	1620
ggagctgccg	gtccaccagg	tcctgctgga	cccgcagggg	agagaggcga	acaaggagca	1680
cccggtcctc	ctggattcca	aggtttacca	ggccctcccg	gaccacctgg	tgaaggaggt	1740
aaacctggcg	accagggagt	tcctggtgaa	gccggtgctc	ctgggttggt	gggcccacga	1800
ggggagcgtg	ggtttccagg	agagcgtggt	aagcctggtg	cacaaggttt	gcaaggccca	1860
agaggtctgc	caggagcacc	aggaaaggat	ggacctaaag	gtgcagctgg	tccagctggg	1920
cctcctggtg	cacagggtcc	tccaggacta	caggggtaag	cggccgc		1967
<210> SEQ I <211> LENGI <212> TYPE: <213> ORGAN	TH: 666 PRT	icial Seque	nce			

<211> LENGTH: 666 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: RCP#7 <400> SEQUENCE: 8 Gly Pro Gln Gly Ala Arg Gly Gln Pro Gly Val Met Gly Phe Pro Gly 1 5 10 15 Pro Lys Gly Ala Asn Gly Glu Pro Gly Lys Ala Gly Glu Lys Gly Leu 20 25 30 Pro Gly Ala Pro Gly Leu Arg Gly Leu Pro Gly Lys Asp Gly Glu Ala Gly Ala Ala Gly Pro Pro Gly Pro Ala Gly Pro Ala Gly Glu Arg Gly Glu Gln Gly Ala Pro Gly Pro Pro Gly Phe Gln Gly Leu Pro Gly Pro Pro Gly Pro Pro Gly Glu Gly Gly Lys Pro Gly Asp Gln Gly Val Pro Gly Glu Ala Gly Ala Pro Gly Leu Val Gly Pro Arg Gly Glu Arg Gly Phe Pro Gly Glu Arg Gly Lys Pro Gly Ala Gln Gly Leu Gln Gly Pro

Arg Gly Leu Pro Gly Ala Pro Gly Lys Asp Gly Pro Lys Gly Ala Ala Gly Pro Ala Gly Pro Pro Gly Ala Gln Gly Pro Pro Gly Leu Gln Gly Met Pro Gly Glu Arg Gly Ala Ala Gly Ile Ala Gly Pro Lys Gly Asp 165 170 175 Arg Gly Asp Val Gly Glu Lys Gly Pro Glu Gly Ala Pro Gly Lys Asp Gly Gly Arg Gly Leu Gly Gly Pro Ile Gly Pro Pro Gly Pro Ala Gly Ala Asn Gly Glu Lys Gly Glu Val Gly Pro Pro Gly Pro Ala Gly Ala Ala Gly Ala Arg Gly Ala Pro Gly Glu Arg Gly Glu Lys Gly Pro Pro Gly Pro Ala Gly Phe Ala Gly Pro Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Glu Gln Gly Glu Ala Gly Gln Lys Gly Asp Ala Gly Ala

Pro Gly Pro Gln Gly Pro Lys Gly Ala Pro Gly Pro Gln Gly Pro Ala

_	_	275	_	_	_	_	280	_	_	_	_	285	_	_	_
Gly	Val 290	Ala	Gly	Pro	Lys	Gly 295	Ala	Arg	Gly	Ala	Gln 300	Gly	Pro	Pro	Gly
Ala 305	Ala	Gly	Phe	Pro	Gly 310		Ala	Gly	Arg	Val 315	Gly	Pro	Pro	Gly	Leu 320
Gln	Gly	Asn	Pro	Gly 325	Pro	Pro	Gly	Pro	Pro 330	Gly	Pro	Ala	Gly	Lys 335	Asp
Gly	Pro	Lys	Gly 340	Ala	Arg	Gly	Asp	Ala 345	Gly	Pro	Pro	Gly	Arg 350	Ala	Gly
Glu	Pro	Gly 355	Leu	Gln	Gly	Pro	Ala 360	Gly	Pro	Pro	Gly	Glu 365	Lys	Gly	Glu
Pro	Gly 370	Asp	Asp	Gly	Pro	Pro 375	Gly	Ala	Glu	Gly	Pro 380	Pro	Gly	Pro	Gln
Gly 385	Leu	Ala	Gly	Gln	Arg 390	Gly	Ile	Val	Gly	Leu 395	Pro	Gly	Gln	Arg	Gly 400
Glu	Arg	Gly	Phe	Pro 405	Gly	Leu	Pro	Gly	Pro 410	Lys	Gly	Glu	Pro	Gly 415	Lys
Gln	Gly	Ala	Pro 420	Gly	Ala	Lys	Gly	Asp 425	Arg	Gly	Pro	Pro	Gly 430	Pro	Val
Gly	Pro	Pro 435	Gly	Leu	Ala	Gly	Pro 440	Ala	Gly	Glu	Pro	Gly 445	Arg	Glu	Gly
Gly	Pro 450	Gly	Ala	Asp	Gly	Pro 455	Pro	Gly	Arg	Asp	Gly 460	Ala	Ala	Gly	Val
Lys 465	Gly	Asp	Arg	Gly	Glu 470	Lys	Gly	Ala	Val	Gly 475	Ala	Pro	Gly	Ala	Pro 480
Gly	Pro	Pro	Gly	Ala 485	Pro	Gly	Pro	Ala	Gly 490	Pro	Pro	Gly	Pro	Gln 495	Gly
Asp	Arg	Gly	Glu 500	Ala	Gly	Ala	Gln	Gly 505	Pro	Gly	Pro	Gln	Gly 510	Ala	Arg
Gly	Gln	Pro 515	Gly	Val	Met	Gly	Phe 520	Pro	Gly	Pro	Lys	Gly 525	Ala	Asn	Gly
Glu	Pro 530	Gly	Lys	Ala	Gly	Glu 535	Lys	Gly	Leu	Pro	Gly 540	Ala	Pro	Gly	Leu
Arg 545	Gly	Leu	Pro	Gly	Lys 550		Gly	Glu	Ala	Gly 555	Ala	Ala	Gly	Pro	Pro 560
Gly	Pro	Ala	Gly	Pro 565	Ala	Gly	Glu	Arg	Gly 570		Gln	Gly	Ala	Pro 575	Gly
Pro	Pro	Gly	Phe 580	Gln	Gly	Leu	Pro	Gly 585	Pro	Pro	Gly	Pro	Pro 590	Gly	Glu
Gly	Gly	Lys 595	Pro	Gly	Asp	Gln	Gly 600	Val	Pro	Gly	Glu	Ala 605	Gly	Ala	Pro
Gly	Leu 610	Val	Gly	Pro	Arg	Gly 615	Glu	Arg	Gly	Phe	Pro 620	Gly	Glu	Arg	Gly
Lys 625	Pro	Gly	Ala	Gln	Gly 630	Leu	Gln	Gly	Pro	Arg 635	Gly	Leu	Pro	Gly	Ala 640
Pro	Gly	Lys	Asp	Gly 645	Pro	Lys	Gly	Ala	Ala 650	Gly	Pro	Ala	Gly	Pro 655	Pro
Gly	Ala	Gln	Gly 660		Pro	Gly	Leu	Gln 665							

<210> SEQ ID NO 9 <211> LENGTH: 690 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence

<pre><220> FEATURE: <223> OTHER INFORMATION: RCP#2</pre>															
<400)> SH	EQUEI	ICE :	9											
Pro 1	Gly	Glu	Arg	Gly 5	Ala	Ala	Gly	Ile	Ala 10	Gly	Pro	Lys	Gly	Asp 15	Arg
Gly	Asp	Val	Gly 20	Glu	Lys	Gly	Pro	Glu 25	Gly	Ala	Pro	Gly	Lys 30	Asp	Gly
Gly	Arg	Gly 35	Leu	Gly	Gly	Pro	Ile 40	Gly	Pro	Pro	Gly	Pro 45	Ala	Gly	Ala
Asn	Gly 50	Glu	Lys	Gly	Glu	Val 55	Gly	Pro	Pro	Gly	Pro 60	Ala	Gly	Ala	Ala
Gly 65	Ala	Arg	Gly	Ala	Pro 70	Gly	Glu	Arg	Gly	Glu 75	Lys	Gly	Pro	Pro	Gly 80
Pro	Ala	Gly	Phe	Ala 85	Gly	Pro	Pro	Gly	Ala 90	Asp	Gly	Gln	Pro	Gly 95	Ala
ГЛа	Gly	Glu	Gln 100	Gly	Glu	Ala	Gly	Gln 105	Lys	Gly	Asp	Ala	Gly 110	Ala	Pro
Gly	Pro	Gln 115	Gly	Pro	ГЛа	Gly	Ala 120	Pro	Gly	Pro	Gln	Gly 125	Pro	Ala	Gly
Val	Ala 130	Gly	Pro	Lys	Gly	Ala 135	Arg	Gly	Ala	Gln	Gly 140	Pro	Pro	Gly	Ala
Ala 145	Gly	Phe	Pro	Gly	Ala 150	Ala	Gly	Arg	Val	Gly 155	Pro	Pro	Gly	Leu	Gln 160
Gly	Asn	Pro	Gly	Pro 165	Pro	Gly	Pro	Pro	Gly 170	Pro	Ala	Gly	Lys	Asp 175	Gly
Pro	Lys	Gly	Ala 180	Arg	Gly	Asp	Ala	Gly 185	Pro	Pro	Gly	Arg	Ala 190	Gly	Glu
Pro	Gly	Leu 195	Gln	Gly	Pro	Ala	Gly 200	Pro	Pro	Gly	Glu	Lys 205	Gly	Glu	Pro
Gly	Asp 210	Asp	Gly	Pro	Pro	Gly 215	Ala	Glu	Gly	Pro	Pro 220	Gly	Pro	Gln	Gly
Leu 225	Ala	Gly	Gln	Arg	Gly 230	Ile	Val	Gly	Leu	Pro 235	Gly	Gln	Arg	Gly	Glu 240
Arg	Gly	Phe	Pro	Gly 245	Leu	Pro	Gly	Pro	Lys 250	Gly	Glu	Pro	Gly	Lys 255	Gln
Gly	Ala	Pro	Gly 260	Ala	Lys	Gly	Asp	Arg 265	Gly	Pro	Pro	Gly	Pro 270	Val	Gly
Pro	Pro	Gly 275	Leu	Ala	Gly	Pro	Ala 280	Gly	Glu	Pro	Gly	Arg 285	Glu	Gly	Gly
Pro	Gly 290	Ala	Asp	Gly	Pro	Pro 295	Gly	Arg	Asp	Gly	Ala 300	Ala	Gly	Val	Lys
Gly 305	Asp	Arg	Gly	Glu	Lys 310	Gly	Ala	Val	Gly	Ala 315	Pro	Gly	Ala	Pro	Gly 320
Pro	Pro	Gly	Ala	Pro 325	Gly	Pro	Ala	Gly	Pro 330	Pro	Gly	Pro	Gln	Gly 335	Asp
Arg	Gly	Glu	Ala 340	Gly	Ala	Gln	Gly	Pro 345	Pro	Gly	Glu	Arg	Gly 350	Ala	Ala
Gly	Ile	Ala 355	Gly	Pro	ГЛа	Gly	Asp 360	Arg	Gly	Asp	Val	Gly 365	Glu	Lys	Gly
Pro	Glu 370	Gly	Ala	Pro	Gly	Lys 375	Asp	Gly	Gly	Arg	Gly 380	Leu	Gly	Gly	Pro
Ile 385	Gly	Pro	Pro	Gly	Pro 390	Ala	Gly	Ala	Asn	Gly 395	Glu	Lys	Gly	Glu	Val 400

Gly Pro Pro Gly Pro Ala Gly Ala Ala Gly Ala Arg Gly Ala Pro Gly 405 410 415

Glu Arg Gly Glu Lys Gly Pro Pro Gly Pro Ala Gly Phe Ala Gly Pro 420 425 430											
Pro Gly Ala Asp Gly Gln Pro Gly Ala Lys Gly Glu Gln Gly Glu Ala											
Gly Gln Lys Gly Asp Ala Gly Ala Pro Gly Pro Gln Gly Pro Lys Gly											
450 455 460 Ala Pro Gly Pro Gln Gly Pro Ala Gly Val Ala Gly Pro Lys Gly Ala											
465 470 475 480 Arg Gly Ala Gln Gly Pro Pro Gly Ala Ala Gly Phe Pro Gly Ala Ala											
485 490 495											
Gly Arg Val Gly Pro Pro Gly Leu Gln Gly Asn Pro Gly Pro Pro Gly 500 505 510											
Pro Pro Gly Pro Ala Gly Lys Asp Gly Pro Lys Gly Ala Arg Gly Asp 515 520 525											
Ala Gly Pro Pro Gly Arg Ala Gly Glu Pro Gly Leu Gln Gly Pro Ala 530 535 540											
Gly Pro Pro Gly Glu Lys Gly Glu Pro Gly Asp Asp Gly Pro Pro Gly545550555560											
Ala Glu Gly Pro Pro Gly Pro Gln Gly Leu Ala Gly Gln Arg Gly Ile 565 570 575											
Val Gly Leu Pro Gly Gln Arg Gly Glu Arg Gly Phe Pro Gly Leu Pro 580 585 590											
Gly Pro Lys Gly Glu Pro Gly Lys Gln Gly Ala Pro Gly Ala Lys Gly 595 600 605											
Asp Arg Gly Pro Pro Gly Pro Val Gly Pro Pro Gly Leu Ala Gly Pro 610 615 620											
Ala Gly Glu Pro Gly Arg Glu Gly Gly Pro Gly Ala Asp Gly Pro Pro 625 630 635 640											
Gly Arg Asp Gly Ala Ala Gly Val Lys Gly Asp Arg Gly Glu Lys Gly 645 650 655											
Ala Val Gly Ala Pro Gly Ala Pro Gly Pro Pro Gly Ala Pro Gly Pro 660 665 670											
Ala Gly Pro Pro Gly Pro Gln Gly Asp Arg Gly Glu Ala Gly Ala Gln 675 680 685											
Gly Pro 690											
<210> SEQ ID NO 10 <211> LENGTH: 2033 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: polynucleotide #7											
<400> SEQUENCE: 10											
ctcgagaaaa gagaggctga agctggcccg caaggggcca ggggtcagcc aggtgttatg ggtttccccg gtcctaaggg cgctaacggg gagccaggta aagcaggcga gaagggactt											
cctggagcac caggtctaag aggattgcca gggaaggatg gcgaggcagg cgctgccggg											
cctcctggtc ccgctggccc tgctggagaa agaggtgaac aaggagctcc tggacctccc											
ggttttcagg gacttccggg accacccggc cctcctggtg aaggtggtaa accaggtgac											
caaggogtac caggogaggo oggagoacog ggaottgtog gaccaagagg ogagogagga											

US 9,932,557 B2

49

ttccccggtg agcgaggtaa	gccgggagct	caaggattgc	aaggtccacg	aggtctgcca	420				
ggagcacctg ggaaagatgg	accaaaagga	gctgctggtc	ctgctgggcc	tccaggtgct	480				
caaggtccac cgggtttgca	gggcatgcct	ggagaaaggg	gcgctgctgg	tatagctggt	540				
cccaaaggtg accgtggtga	tgttggtgaa	aagggtccag	aaggtgctcc	cggtaaggac	600				
ggaggtagag ggttaggcgg	accaattggc	cctccagggc	ctgcaggtgc	caatggagag	660				
aagggagaag tgggtccacc	gggcccagcc	ggcgctgctg	gtgctagagg	tgcccctggg	720				
gagaggggtg agaagggacc	gccaggacca	gctggatttg	caggacctcc	cggagcagat	780				
ggccagccag gtgcaaaggg	tgaacaaggg	gaagctggac	agaagggaga	tgccggcgca	840				
cccggaccac aaggtccaaa	aggagcccca	ggtccacagg	gtccagctgg	tgtcgcaggc	900				
cctaaaggtg ctagaggcgc	tcaaggccct	ccaggagctg	ccggtttccc	tggtgctgct	960				
ggcagagtag gcccaccagg	tttacaagga	aatccagggc	ctcctggtcc	accaggacct	1020				
gcaggaaaag atggtcccaa	aggagcaaga	ggtgacgcag	gacctccagg	aagagctggg	1080				
gagccagggc ttcaaggtcc	ggccggtccg	ccgggtgaga	agggagaacc	aggtgacgac	1140				
ggtccaccag gggctgaggg	tcctcctggt	cctcaggggc	tagctggtca	aagaggtatc	1200				
gttggactgc caggtcagcg	tggtgaacgt	ggtttccctg	gtttgcctgg	tcctaaaggg	1260				
gaacctggta aacaaggcgc	cccgggagct	aagggcgata	ggggacctcc	tggaccggtt	1320				
ggtccaccag gtctggccgg	tcctgctgga	gaaccaggtc	gtgaaggagg	acccggtgct	1380				
gacggaccac caggtagaga	tggtgcagcc	ggggttaaag	gagacagagg	tgaaaaggga	1440				
getgtgggeg etecegggge	cccaggacca	ccaggcgcac	caggacccgc	tggtcccccc	1500				
ggtccccaag gtgatagagg	tgaagccggt	gctcaaggac	ctggtcctca	aggagccaga	1560				
ggacagcctg gtgtgatggg	atttcctgga	cctaaaggtg	caaacggaga	gcctggaaaa	1620				
gccggagaga agggtttacc	aggagctccc	gggttgagag	gattgcccgg	taaagatgga	1680				
gaagetggtg etgetggeee	accaggtcca	gccggacctg	caggcgagag	gggtgaacag	1740				
ggagetecag gaeeteetgg	gtttcaagga	ttgcctggcc	ctccgggtcc	accaggagag	1800				
ggtggtaagc cagggggatca	gggcgttcca	ggtgaagctg	gtgcacccgg	tttggtcggt	1860				
cctagagggg aaagaggatt	tcccggggaa	cgtggaaagc	caggtgccca	aggtctgcaa	1920				
ggtccaagag gtttaccagg	tgctcccgga	aaggatggac	ctaagggtgc	cgccggtccc	1980				
gctggtcctc ctggagcaca	gggaccacct	ggtttgcaag	gataagcggc	cgc	2033				
<210> SEQ ID NO 11 <211> LENGTH: 2105 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: polynucleotide #2									
<400> SEQUENCE: 11									
ctcgagaaaa gagaggctga	ageteetggt	gagcgtggcg	ctgctggcat	tgccggtcct	60				
aaaggcgata gaggcgatgt	cggagagaag	ggccctgaag	gtgcacccgg	caaagacgga	120				
ggaagaggac tgggtggtcc	aataggtccg	ccaggtccag	caggagccaa	tggcgagaaa	180				
ggagaggttg gtccaccagg	tcctgctggt	gctgccggtg	ctcgtggagc	ccctggagaa	240				
cgaggtgaaa agggtccgcc	aggaccagca	ggctttgccg	gaccaccagg	agccgacggt	300				
caacctggag caaagggtga	acagggtgaa	gctggtcaga	agggtgatgc	tggagctcca	360				

US 9,932,557 B2

51

-continued

			-contir	nued		
ggaccgcaag ggccaaaagg	tgctcctggc	ccacaaggtc	cagctggtgt	cgcaggacct	420	
aaaggtgcta ggggagccca	aggtcctcca	ggggctgccg	ggtttcctgg	cgctgctggg	480	
agagtagggc ctccaggcct	ccaaggtaac	cctgggccac	ctggtccacc	tggccctgct	540	
gggaaggacg gaccaaaagg	agccagaggt	gatgctggtc	cacctggtag	agctggtgaa	600	
ccaggacttc aagggcccgc	tggtcctccc	ggagagaagg	gagaacccgg	agatgatggt	660	
cctcctggtg cagaaggacc	tccagggccc	caagggctag	caggccagag	aggaatcgtg	720	
ggattgccag gacaacgtgg	tgagagggga	ttccccggtt	tacccggtcc	gaaaggggaa	780	
cccggaaagc agggtgctcc	aggcgccaaa	ggagacagag	gtccgcctgg	gcctgttgga	840	
ccacccggtt tggctggtcc	ggcaggagag	ccaggtcgag	aaggtggccc	aggtgccgat	900	
ggteeteeag gtagagatgg	cgctgccggt	gtgaagggag	acagaggaga	gaagggagca	960	
gttggtgctc caggtgctcc	tggaccgccc	ggtgcacctg	gtcctgctgg	accaccagga	1020	
ccacagggag acagaggtga	agctggtgca	caaggtcccc	ctggtgagcg	tggcgctgct	1080	
ggcattgccg gtcctaaagg	cgatagaggc	gatgtcggag	agaagggccc	tgaaggtgca	1140	
cccggcaaag acggaggaag	aggactgggt	ggtccaatag	gtccgccagg	tccagcagga	1200	
gccaatggcg agaaaggaga	ggttggtcca	ccaggtcctg	ctggtgctgc	cggtgctcgt	1260	
ggagcccctg gagaacgagg	tgaaaagggt	ccgccaggac	cagcaggctt	tgccggacca	1320	
ccaggagccg acggtcaacc	tggagcaaag	ggtgaacagg	gtgaagctgg	tcagaagggt	1380	
gatgctggag ctccaggacc	gcaagggcca	aaaggtgctc	ctggcccaca	aggtccagct	1440	
ggtgtcgcag gacctaaagg	tgctagggga	gcccaaggtc	ctccaggggc	tgccgggttt	1500	
cctggcgctg ctgggagagt	agggcctcca	ggcctccaag	gtaaccctgg	gccacctggt	1560	
ccacctggcc ctgctgggaa	ggacggacca	aaaggagcca	gaggtgatgc	tggtccacct	1620	
ggtagagctg gtgaaccagg	acttcaaggg	cccgctggtc	ctcccggaga	gaagggagaa	1680	
cccggagatg atggtcctcc	tggtgcagaa	ggacctccag	ggccccaagg	gctagcaggc	1740	
cagagaggaa tcgtgggatt	gccaggacaa	cgtggtgaga	ggggattccc	cggtttaccc	1800	
ggtccgaaag gggaacccgg	aaagcagggt	gctccaggcg	ccaaaggaga	cagaggtccg	1860	
cctgggcctg ttggaccacc	cggtttggct	ggtccggcag	gagagccagg	tcgagaaggt	1920	
ggcccaggtg ccgatggtcc	tccaggtaga	gatggcgctg	ccggtgtgaa	gggagacaga	1980	
ggagagaagg gagcagttgg	tgetecaggt	gctcctggac	cgcccggtgc	acctggtcct	2040	
gctggaccac caggaccaca	gggagacaga	ggtgaagctg	gtgcacaagg	tccctaagcg	2100	
gccgc					2105	
<210> SEQ ID NO 12 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artifi <220> FEATURE: <223> OTHER INFORMATIC	_	nce				
<400> SEQUENCE: 12						
Gly Phe Pro Gly Glu Ar 1 5	g					
<210> SEQ ID NO 13 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artifi <220> FEATURE:	cial Sequer.	nce				

52

<223> OTHER INFORMATION: GVMGFP <400> SEQUENCE: 13 Gly Val Met Gly Phe Pro 5 1 <210> SEQ ID NO 14 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: REDV <400> SEQUENCE: 14 Arg Glu Asp Val 1 <210> SEQ ID NO 15 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: YIGSR <400> SEQUENCE: 15 Tyr Ile Gly Ser Arg 1 5 <210> SEQ ID NO 16 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: PDSG R <400> SEQUENCE: 16 Pro Asp Ser Gly Arg 1 <210> SEQ ID NO 17 <211> LENGTH: 7 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: RYVVLPR <400> SEQUENCE: 17 Arg Tyr Val Val Leu Pro Arg 1 5 <210> SEQ ID NO 18 <211> LENGTH: 6 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: LGTIPG <400> SEQUENCE: 18 Leu Gly Thr Ile Pro Gly 1 5 <210> SEQ ID NO 19 <211> LENGTH: 10 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE:

<220> FEATURE: <223> OTHER INFORMATION: RNIAEIIKDI

45

<400> SEQUENCE: 19 Arg Asn Ile Ala Glu Ile Ile Lys Asp Ile 1 5 <210> SEQ ID NO 20 <211> LENGTH: 5 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: IKVAV <400> SEQUENCE: 20 Ile Lys Val Ala Val 1 <210> SEQ ID NO 21 <211> LENGTH: 4 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: DGEA <400> SEQUENCE: 21

Asp Gly Glu Ala

The invention claimed is:

1. polypeptide which is

- (1) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1;
- (2) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 1, except that 1 to 15 amino acids are ³⁵ deleted, substituted and/or added, wherein said polypeptide has a capacity to promote glycosaminoglycan production;
- (3) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 2;
- (4) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 2, except that 1 to 15 amino acids are deleted, substituted and/or added, wherein said polypeptide has a capacity to promote glycosaminoglycan production;
- (5) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 3; or
- (6) a polypeptide consisting of the amino acid sequence of SEQ ID NO: 3, except that 1 to 15 amino acids are deleted, substituted and/or added, wherein said poly-⁵⁰ peptide has a capacity to promote glycosaminoglycan production;
- wherein in the polypeptides of (1)-(6), the number of RGD sequences contained per molecular weight of 10 kDa is not less than 0.30, the number of GFPGER ⁵⁵ sequences contained per molecular weight of 10 kDa is not less than 0.15, and the number of GVMGFP sequences contained per molecular weight of 10 kDa is less than 0.30.

2. A scaffold composition comprising the polypeptide according to claim 1.

3. A composition for cartilage tissue restoration, comprising the polypeptide according to claim **1**.

4. A composition for cartilage cell culture, comprising the polypeptide according to claim 1.

5. A composition for promoting glycosaminoglycan production, comprising the polypeptide according to claim **1**.

 A method for regeneration or restoration of cartilage comprising administering to a damage area of the cartilage
 the polypeptide according to claim 1.

7. A method for performing a cartilage cell culture comprising administering to said culture the polypeptide according to claim 1.

8. A method for promoting a cellular production of glycosaminoglycans in an extracellular matrix comprising administering to said matrix the polypeptide according to claim **1**.

9. The polypeptide according to claim **1**, having an isoelectric point (pI) of not more than 6.0.

10. The polypeptide according to claim 1, wherein the solubility of the polypeptide in water is at least 2% by mass.

11. The polypeptide according to claim 1, which consists of the amino acid sequence of SEQ ID NO:1, 2, or 3 except that 1 to 5 amino acids are deleted, substituted and/or added, wherein said polypeptide has a capacity to promote gly-cosaminoglycan production.

12. The polypeptide according to claim **1**, which consists of the amino acid sequence of SEQ ID NO:1, 2, or 3.

* * * * *