
THAT ARE NOT COUL O TTE US009928127B2

(12) United States Patent
Habermann et al .

(10) Patent No . : US 9 , 928 , 127 B2
(45) Date of Patent : * Mar . 27 , 2018

(54) TESTING A DATA COHERENCY
ALGORITHM

(56) References Cited
U . S . PATENT DOCUMENTS

(71) Applicant : INTERNATIONAL BUSINESS
MACHINES CORPORATION ,
Armonk , NY (US)

7 , 000 , 079 B2
7 , 200 , 721 B1

2 / 2006 Detjens et al .
4 / 2007 Lang et al .

(Continued)

FOREIGN PATENT DOCUMENTS
(72) Inventors : Christian Habermann , Boeblingen

(DE) ; Gerrit Koch , Ammerbuch (DE) ;
Martin Recktenwald , Schoenaich
(DE) ; Ralf Winkelmann , Holzgerlingen
(DE)

DE 10253137 A1 6 / 2003

OTHER PUBLICATIONS
(73) Assignee : INTERNATIONAL BUSINESS

MACHINES CORPORATION ,
Armonk , NY (US)

Habermann , Christian , et al . , “ Testing a Data Coherency Algo
rithm , ” U . S . Appl . No . 15 / 197 , 534 , filed Jun . 29 , 2016 , pp . 1 - 32 .

(Continued) @ (*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 12 days .
This patent is subject to a terminal dis
claimer .

Primary Examiner — Charles Ehne
(74) Attorney , Agent , or Firm - Margaret McNamara ,
Esq . ; Blanche E . Schiller , Esq . ; Heslin Rothenberg Farley
& Mesiti P . C .
(57) (21) Appl . No . : 15 / 010 , 088

(22) Filed : Jan . 29 , 2016
(65) Prior Publication Data

US 2017 / 0220437 A1 Aug . 3 , 2017
(51) Int . CI .

G06F 11 / 00 (2006 . 01)
G06F 11 / 07 (2006 . 01)

(Continued)
(52) U . S . CI .

CPC G06F 11 / 0724 (2013 . 01) ; G06F 11 / 141
(2013 . 01) ; G06F 11 / 1474 (2013 . 01) ;
(Continued)

(58) Field of Classification Search
CPC G06F 11 / 0724 ; G06F 11 / 141 ; G06F

11 / 1474 ; G06F 11 / 263 ; G06F 11 / 0815 ;
G06F 11 / 0897

See application file for complete search history .

ABSTRACT
Testing a data coherency algorithm of a multi - processor
environment . The testing includes implementing a global
time incremented every processor cycle and used for time
stamping ; implementing a transactional execution flag rep
resenting a processor core guaranteeing the atomicity and
coherency of the currently executed instructions ; imple
menting a transactional footprint , which keeps the address of
each cache line that was used by the processor core ; imple
menting a reference model , which operates on every cache
line and keeps a set of timestamps for every cache line ;
implementing a core observed timestamp representing a
global timestamp , which is the oldest construction date of
data used before ; implementing interface events ; and report
ing an error whenever a transaction end event is detected and
any cache line is found in the transactional footprint with an
expiration date that is older than or equal to the core
observed time .

od

20 Claims , 5 Drawing Sheets

500

- - - - - - - - - -

100 Nest Global Time 10
F3 Core obser

time
L2 cache

32 Reference model

X2d F2i
X2

31 F50
30

104 , 106
L1 data cache

104 . 108
L1 instruction cache 120

F1 / F6i F1d
31 Transactional footprint F60 - 31 - 30

Addr = 0xABCD Core 102
Addr - OxEF

28

US 9 , 928 , 127 B2
Page 2

(51) Int . Ci .
G06F 12 / 0808 (2016 . 01)
G06F 12 / 0811 (2016 . 01)
G06F 12 / 0815 (2016 . 01)
G06F 12 / 0842 (2016 . 01)
GO6F 12 / 0875 (2016 . 01)
GOOF 12 / 0891 (2016 . 01)
G06F 12 / 0897 (2016 . 01)
G06F 11 / 22 (2006 . 01)
G06F 11 / 14 (2006 . 01)
G06F 11 / 26 (2006 . 01)
U . S . CI .
CPC G06F 11 / 2242 (2013 . 01) ; G06F 11 / 261

(2013 . 01) ; G06F 12 / 0808 (2013 . 01) ; G06F
12 / 0811 (2013 . 01) ; G06F 12 / 0815 (2013 . 01) ;

G06F 12 / 0842 (2013 . 01) ; G06F 12 / 0875
(2013 . 01) ; G06F 12 / 0891 (2013 . 01) ; GO6F

12 / 0897 (2013 . 01) ; G06F 2212 / 1032
(2013 . 01) ; G06F 2212 / 452 (2013 . 01) ; G06F

2212 / 6042 (2013 . 01) ; G06F 2212 / 621
(2013 . 01)

8 , 095 , 824 B2 * 1 / 2012 Gray GO6F 11 / 141
711 / 154

8 , 108 , 197 B2 1 / 2012 Habermann et al .
8 , 676 , 560 B2 B2 3 / 2014 3 / 2014 Kajitani
8 , 706 , 982 B2 * 4 / 2014 Saha . G06F 9 / 3004

711 / 159
9 , 477 , 481 B2 * 10 / 2016 Gschwind GO6F 9 / 3861
9 , 501 , 408 B2 11 / 2016 Dusanapudi et al .
9 , 658 , 961 B2 * 5 / 2017 Gschwind GO6F 12 / 084

2007 / 0067573 AL 3 / 2007 Bruening
2009 / 0172317 A1 * 7 / 2009 Saha GO6F 9 / 3004

711 / 159
2015 / 0095008 AL 4 / 2015 Wang et al . (52)

OTHER PUBLICATIONS

List of IBM Patents or Patent Applications Treated as Related , Jul .
15 , 2016 , pp . 1 - 2 .
Hudson , John et al . , " A Configurable Random Instruction Sequence
(RIS) Tool for Memory Coherence in Multi - Processor Systems , "
2014 15th International Microprocessor Test and Verification Work
shop , Dec . 2015 , pp . 98 - 101 .
Office Action for U . S . Appl . No . 15 / 197 , 534 dated Aug . 24 , 2017 ,
pp . 1 - 10 . (56) References Cited

U . S . PATENT DOCUMENTS

7 , 774 , 440 B18 / 2010 Bagrodia * cited by examiner

U . S . Patent Mar . 27 , 2018 Sheet 1 of 5 US 9 , 928 , 127 B2

500
- - - - - - -

TUD Nest Global Time

32 F3
Core observed 12 time

110 31 L2 cache

Reference model

IF20 34 F5d X2d F2i - 3 K30
14 104 , 106

L1 data cache
104 , 108
L1 instruction cache

20
120

? Fij F6i 30 F1d
I F631

Transactional footprint 31 - 30
Addr = OxABCD Core 102 102 Core
Addr = 0xEF

L - - - - - - - - - -

Fig . 1

U . S . Patent Mar . 27 , 2018 Sheet 2 of 5 US 9 , 928 , 127 B2

Start
$ 100

Inc global
time 10

S102
No

Fetch
30 from
nest
100

Yes S104
Update constr

date 14 S106

No XI 32
from

nest 100
Yes Update exp

date 20

08

5110 - puolestan 8108
S110

No
start

5114 Yes Set tx exec
flag 26 = T

S112
Clear tx

footprint 28
S116

No No
end
36 S120 $ 118 $ 120 EXP Yes Yes 10L Set by exec ($ 118 Set tx exec

flag 26 = F Error !
5122

Exp
date 20
< = obs
time 12
NO

S122

No Fetch
30 from
L1 104

No S124 5124
Yes Yes Exec

S126 S128 Constr
Add to tx date 14

footprint 28 > obs
time 12

Yes
Update obs

S130 - time 12

No

Fig . 2

U . S . Patent Mar . 27 , 2018 Sheet 3 of 5 US 9 , 928 , 127 B2

500 500
- - -

100 Nest Global Time 10
X1M F3 Core observed

time
110 L2 cache

32 32 Reference model

F 10 10 3
F2i X2d

X21
F20 31 F5d

- 30 L
104 , 106

L1 data cache
16 18 104 , 108

L1 instruction cache
20

120

F11 F6 30
F6c

F1d
- 31 31 - 7 7 . 30

Core 102 Core
J - - - - - - - - - - - -

Fig . 3

U . S . Patent Mar . 27 , 2018 Sheet 4 of 5 US 9 , 928 , 127 B2

Start

- S200
Inc global
time 10

S202
Fetch 30

from
nest 100

S204 Yes Update pot
constr date 16 S206

No XI 32
from

nest 100
S208 Yes Yes L . Update exp Update exp

date 20
S210

com / 522
NO

.

Fetch
30 from
12119 S212
Yes , L2

miss
L2 Yes Update conf Update conf |

constr date 18
S216

Fetch
30 from
L1 104
Yes S218 S222 S220

Exp Conf
constr
date 18

> obs
time 12

Update obs
time 12

date 20
< = obs
time 12

No Yes

Error !

Fig . 4

U . S . Patent Mar . 27 , 2018 Sheet 5 of 5 US 9 , 928 , 127 B2

210

212
Computer System / Server 228

230 Memory 234
216 RAM Storage

System
240 Processing Unit

CPU Cache

218 242
232

222 224

220

Display mo 1 / 0
Interfaces Network Adapter

214 - External
Devices

Fig . 5

US 9 , 928 , 127 B2

25

TESTING A DATA COHERENCY Computer program products and methods relating to one
ALGORITHM or more aspects are also described and may be claimed

herein .
BACKGROUND Additional features and advantages are realized through

5 the techniques described herein . Other embodiments and
One or more aspects of the present invention relate in aspects are described in detail herein and are considered a

general to data processing systems , and in particular , to part of the claimed aspects .
testing a data coherency algorithm of a multi - processor
environment . BRIEF DESCRIPTION OF THE DRAWINGS

In a multi - processor environment where data can be 10
changed by each single processor core it is necessary to Aspects of the present invention together with the above
ensure that a single processor does not use outdated data . mentioned and other objects and advantages may best be
But to reach the best performance in multi - processor sys understood from the following detailed description of the

embodiments , but not restricted to the embodiments , tems it is useful to allow each single processor core to work 15 wherein is shown in : on old data as long as that single processor core has not used FIG . 1 a block diagram of a device under test in a
newer data . Traditionally , this coherency rule was tested on simulated multi - processor environment according to an real hardware . But as the coherency algorithms that are embodiment of the invention ;
implemented in modern processor cores are getting more FIG . 2 a flowchart of an example process of the method
complex , and thus , more error prone , it is important to verify 20 for testing a data coherency algorithm of a multi - processor
those algorithms before building hardware , in order to environment according to the embodiment of FIG . 1 ;
reduce development costs . There are other verification meth FIG . 3 a block diagram of a device under test in the
ods to test coherency algorithms , but they have not satis simulated multi - processor environment according to a fur
factorily solved the problem . ther embodiment of the invention ;

FIG . 4 a flowchart of an example process of the method
SUMMARY for testing a data coherency algorithm of a multi - processor

environment according to the further embodiment of the
Shortcomings of the prior art are overcome and additional invention ; and

advantages are provided through the provision of a computer FIG . 5 an example embodiment of a data processing
system for testing a data coherency algorithm of a multi - 30 system for executing a method according to aspects of the
processor environment , wherein a simulated multi - processor invention .
environment containing a private cache hierarchy and simu
lation drivers for all other components of the multi - proces DETAILED DESCRIPTION
sor environment is provided . The computer system includes
a memory : and a processor in communications with the 35 In the drawings , like elements are referred to with equal
memory , wherein the computer system is configured to reference numerals . The drawings are merely schematic
perform a method . The method includes implementing a representations , not intended to portray specific parameters
global time incremented on a processor cycle and used for of aspects of the invention . Moreover , the drawings are
timestamping ; implementing a transactional execution flag intended to depict only typical embodiments of aspects of
representing a processor core guaranteeing atomicity and 40 the invention , and therefore , should not be considered as
coherency of currently executed instructions ; implementing limiting the scope of aspects of the invention .
a transactional footprint , the transactional footprint keeping The illustrative embodiments described herein provide a
an address of each cache line that was used by the processor method , system , and computer program product for testing
core , while the processor core is guaranteeing the atomicity a data coherency algorithm of a multi - processor environ
and coherency of a transaction ; implementing a reference 45 ment . The illustrative embodiments are sometimes described
model , the reference model operating on a cache line and herein using particular technologies only as an example for
keeping a set of timestamps for the cache line , the set the clarity of the description . The illustrative embodiments
comprising a construction date representing a first global may be used for testing the data coherency algorithm of a
timestamp when new data arrives at the private cache multi - processor environment , wherein a simulated multi
hierarchy , and an expiration date representing a second 50 processor environment containing one single private cache
global timestamp when the private cache hierarchy is hit by hierarchy and simulation drivers for all other components of
a cross - invalidation ; implementing a core observed time - the multi - processor environment is provided .
stamp representing a global timestamp , which is an oldest A multi - processor environment may consist of a commu
construction date of data used before ; implementing inter - nication fabric called nest that embeds several single pro
face events that monitor at least one of : a fetch return from 55 cessor cores . In order to get data , each processor core makes
the simulated multi - processor environment to update the fetch requests to the nest . The smallest data package that
construction date ; a fetch return from an Ll cache to the may be requested is a cache line that contains several bytes
processor core to update the core observed timestamp ; a of data . The same cache line is allowed to be used in several
cross - invalidate from the simulated multi - processor envi - processor cores , as long as it is marked as a read - only copy .
ronment to update the expiration date ; a transaction start 60 If a processor core wants to change a byte in a cache line ,
instruction being executed by the processor core to update it is to get exclusive rights on that cache line . The processor
the transactional execution flag and clear the transactional core sends an exclusive fetch request on the cache line to the
footprint ; or a transaction end instruction being executed by nest . The nest generates read - only cross - invalidates for all
the processor core to perform the checking ; and reporting an other processor cores and informs the requesting processor
error based on detecting a transaction end event and finding 65 core that it is now allowed to change the cache line . The
a cache line in the transactional footprint with an expiration other processor cores can use their old read - only copy of the
date that is older than or equal to a core observed time . cache line as long as it is not observable to the outside world ,

US 9 , 928 , 127 B2

that they have used old data . The usage of an old copy of the Referring to FIG . 1 , the device under test (DUT) com
cache line is not observable as long as that processor core is prises the Ll cache 104 with the L1 data cache 106 and the
only working on cache lines that have not changed their data L1 instruction cache 108 , as well as the L2 cache 110 . Two
after the cache line has been changed . This is true for all relevant operations for an aspect of the inventive method are
cache lines that were already stored within the private cache 5 shown with the arrows . Arrows F1 - F6 show the processing
hierarchy of a single processor core when the processor core of fetch requests 31 and fetch returns 30 . Arrows X1 - X2
has received the read - only cross - invalidate for the cache show the processing of cross - invalidations (XIs) 32 .
line . So the point in time where a processor core is no longer F etch requests 31 are generated by a random simulation
allowed to work with the cache line is not determined by the driver for the single processor core 102 , labelled core in the
read - only cross - invalidate , but by the usage of any other 10 Fig . Operand fetches 31 are issued against the L1 data cache
cache line that was received from the nest after the cross 106 (arrow F1d) , whereas instruction fetches 31 are issued
invalidate for the first cache line was received . This is against the L1 instruction cache 108 (Fli) . If the Ll cache
because that second cache line can contain data that allows 104 contains the requested data , the fetch request 31 can be
the outside world to conclude that the processor core used an directly answered by the fetch return 30 (F6d , F6i) , if not the
old copy of the first cache line . 15 fetch request 31 is passed on to the L2 cache 110 (F2d , F2i) .

According to an aspect of the invention , a method for The nest 100 will answer these fetch requests 31 (F4) and the
testing an implemented sequential consistent cache coher - data will be passed by the fetch returns 30 on to the
ency algorithm of a multi - processor environment is pro - processor core 102 (F5d - > F6d , F5i - > F6i) . In addition , the
posed providing data structures to keep track of a sequence nest 100 is generating random XIs 32 that enter the L2 cache
of instructions as it is guaranteed by transactional execution 20 110 (X1) and are forwarded to the L1 data cache 106 and / or
and to ensure the atomicity of this sequence . This is a feature to the L1 instruction cache 108 , if they contain the line (X2d ,
to improve performance and ease of use for accessing shared X2i) .
data . In a real multi - processor environment , a cross - invalida

In FIG . 1 a block diagram of a device under test in a tion (XI) 32 for a cache line 24 is generated when another
simulated multi - processor environment 500 using a single 25 processor core 102 wants to change data within that cache
processor model according to an embodiment of the inven - line 24 . So , once a processor core 102 receives an XI 32 for
tion is shown , whereas in FIG . 2 a flowchart of an example a cache line 24 (arrow X1) , this cache line 24 might contain
process of the method for testing a data coherency algorithm old data . In one aspect , whenever a cache line 24 is hit by
of a multi - processor environment (FIG . 1) according to the an XI 32 (arrow X1) , the current global time 10 is stored as
embodiment of FIG . 1 is depicted . 30 an expiration date 20 for that cache line 24 in the reference

Referring to FIGS . 1 and 2 , the simulated multi - processor model 120 .
environment is provided containing one single private cache As long as the processor core 102 is not using data that
hierarchy and simulation drivers for all other components of was received after the XI 32 for the cache line 24 , it cannot
the multi - processor environment . According to one aspect , a be detected whether the cache line 24 was used before the XI
global time 10 is implemented , incremented every processor 35 32 was received or after . Therefore , the processor core 102
cycle and used for timestamping . A transactional execution can keep on working with the cache line 24 even though an
flag 26 is implemented , representing the processor core 102 XI 32 for the cache line 24 was already received .
guaranteeing the atomicity and coherency of the currently Whenever data is returned to the processor core 102
executed instructions . A transactional footprint 28 is imple - (arrow F6d or F6i) , the construction date 14 of that data is
mented , which keeps the address of each cache line 24 that 40 used to update the core observed time 12 , if the construction
was used by the processor core 102 , while the processor core date 14 is larger than the core observed time 12 . Thus , the
102 is guaranteeing the atomicity and coherency of a trans - core observed time 12 holds the construction date 14 of the
action . A reference model 120 is implemented , which oper - youngest data that was ever used .
ates on every cache line 24 and keeps a set of timestamps for As stated above , modern multi - processor environments
every cache line 24 , the set comprising : a construction date 45 allow the individual processor core 102 to work with old
14 representing a first global timestamp when new data data as long as it cannot be observed . Having an expiration
arrives at the private cache hierarchy ; and an expiration date date 20 for each cache line 24 that was hit by an XI 32 and
20 representing a second global timestamp when the private a core observed time 12 holding the construction date 14 of
cache hierarchy is hit by a cross - invalidation . A core the youngest ever used cache line 24 it is possible to check
observed timestamp 12 is implemented , representing a 50 that no old data was used after younger data was seen by the
global timestamp , which is the oldest construction date 14 of processor core 102 . An error is reported whenever the
all data used before . Interface events are implemented , that expiration date 20 is older than or equal to the core observed
monitor : any fetch return 30 from the simulated multi - time 12 . The check is done whenever data is returned to the
processor environment 500 to update the construction date processor core 102 (arrow F6) .
14 ; any fetch return 30 from an L1 cache 104 to the 55 The transactional footprint 28 keeps the address of each
processor core 102 to update the global core observed cache line 24 that was used by the processor core 102 .
timestamp 12 ; any cross - invalidate 32 from the simulated The described transactional memory concept ensures that
multi - processor environment 500 to update the expiration a transaction is executed atomically . A transaction is started
date 20 ; any transaction start instruction 34 being executed by the transaction start instruction 34 (FIG . 2) , followed by
by the processor core 102 to update the transactional execu - 60 any number of other instructions and completed by the
tion flag 26 and clear the transactional footprint 28 ; and any transaction end instruction 36 (FIG . 2) . The concept of a
transaction end instruction 36 being executed by the pro - transactional footprint 28 is introduced to track all cache
cessor core 102 to perform the checking . An error is reported lines 24 accessed during the transaction . The footprint 28 in
whenever a transaction end event is detected and any cache combination with core observed time 12 , construction time
line 24 is found in the transactional footprint 28 with an 65 14 and expiration time 20 enables to achieve the atomicity
expiration date 20 , that is older than or equal to the core check . The implementation of the atomicity check is
observed time 12 . described by an algorithm , comprising : If the processor core

US 9 , 928 , 127 B2

102 executes the transaction start instruction 34 , the check - hierarchy ; a confirmed construction date 18 representing a
ing code enters the transactional execution mode by setting second global timestamp confirming usage of new data by
a status flag , like the transactional execution flag 26 , and the processor core ; the expiration date 20 representing a
clears any old transactional footprint 28 . Whenever a cache third global timestamp when the private cache hierarchy is
line 24 is returned from any Ll cache 104 to the processor 5 hit by a cross - invalidation . The core observed timestamp 12
core 102 while in a transaction , this cache line 24 is added is implemented , representing the global timestamp , which is
to the transaction footprint 28 . If the processor core 102 the oldest confirmed construction date of all data used executes the transaction end instruction , the expiration date before . Interface events are implemented , that monitor : any 20 of all cache lines 24 of the transactional footprint 28 is fetch return 30 from the simulated multi - processor environ compared against the latest core observed time 12 . If any 10 ment 500 to update the potential construction date 16 ; any expiration date 20 is less than the current core observed time fetch return 30 from an L2 cache 110 to the L1 cache 104 to 12 , an error is reported , because atomicity has been violated . update the confirmed construction date 18 ; any fetch return The atomicity is violated because the processor core 102
used data which was newer than data already accessed in the 30 from the L1 cache 104 to the processor core 102 to update
transaction which got modified in the meantime by another 15 16 the global core observed timestamp 12 ; any cross - invalidate
processor core . 32 from the simulated multi - processor environment 500 to

Referring to the flowchart in FIG . 2 . a simulation cycle update the expiration date 20 . An error is reported , whenever
starts with step S100 with incrementing the global time 10 . data is used in the processor pipeline with an expiration date
Steps S102 , S106 , S110 , S116 , S122 may be executed 20 that is older than or equal to the core observed time .
independently from each other resulting in a return to step 20 Referring to FIG . 3 , the device under test (DUT) com
S100 for the next simulation cycle . prises the L1 cache 104 with the L1 data cache 106 and the

If a fetch return 30 from the nest 100 delivers the cache L1 instruction cache 108 , as well as the L2 cache 110 . Two
line 24 , step S102 , in step S104 the construction date 14 is relevant operations for an aspect of the inventive method are
updated in the reference model 120 with the current value of shown with the arrows . Arrows F1 - F6 show the processing
the global time 10 ; otherwise , the global time 10 is incre - 25 of fetch requests 31 and fetch returns 30 . Arrows X1 - X2
mented in step S100 again at the end of the simulation cycle . show the processing of cross - invalidations (XIs) 32 .

If an XI 32 is executed from the nest 100 in step S106 , the Arrows F1 - F6 show the processing of fetch requests 31 .
expiration date 20 of the cache line 24 in the reference model Arrows X1 - X2 show the processing of cross - invalidations
120 is updated in step S108 with the current value of the (XIS) 32 .
global time 10 ; otherwise the global time is incremented in 30 Fetch requests 31 are generated by the random simulation
step S100 again at the end of the simulation cycle . driver for a single processor core 102 , labelled core in the

If a fetch return 30 from the L1 cache 104 to the processor Fig . Operand fetches 31 are issued against the L1 data cache
core 102 delivers a cache line 24 in step S122 , the transac - 106 (arrow F1d) , whereas instruction fetches 31 are issued
tional execution flag 26 is checked in step S124 . If this is against the L1 instruction cache 108 (F1i) . If the L1 cache
positive , the address of the cache line 24 is added to the 35 104 contains the requested data , the fetch 31 can be directly
transactional footprint 28 in step S126 . Next , in any case , it answered by the fetch return 30 (F6d , F6i) ; if not , the fetch
is checked in step S128 , if the construction date 14 is request 31 is passed on to the L2 cache 110 (F2d , F2i) . If a
younger than the core observed time 12 . If this is the case , speculative fetch engine is available , then a fetch request 31
the global core observed timestamp 12 is updated with the to the simulation driver of the multi - processor environment
construction date 14 in step S130 . Otherwise , the global time 40 500 , called nest (F3) , will occur independently of the L2
10 is incremented at the end of the simulation cycle . directory state . If the L2 cache 110 contains the data , the L2

If a transaction start instruction 34 is set in step S110 , then fetch request 31 is answered by the fetch return 30 (F5d , F5i)
the transaction execution flag 26 is set to true in step S112 and the nest response (F4) for the speculative request is
and the transactional footprint 28 is cleared in step S114 . dropped . If the L2 cache 110 does not contain the requested
Otherwise , the global time 10 is incremented at the end of 45 data and no speculative request had been issued , a fetch
the simulation cycle . request 31 is passed on to the nest 100 (F3) . The nest 100

If a transaction end instruction 36 is set in step S116 , the will answer these fetch requests 31 (F4) and the data will be
transactional execution flag 26 is set to false in step S118 . passed on to the processor core 102 (F5d > F6d , F5i > F6i) .
Then , in step S120 it is checked if there is any cache line 24 In addition , the nest 100 is generating random XIs 32 that
in the transactional footprint 24 with a construction date 14 50 enter the L2 cache 110 (X1) and are forwarded to the L1 data
being older than or equal to the core observed time 12 . If this cache 106 and / or to the L1 instruction cache 108 if they
is the case , an error is reported . Otherwise , the global time contain the cache line 24 (X2d , X2i) .
10 is incremented at the end of the simulation cycle . In a real multi - processor environment , a cross - invalida

In FIG . 3 , a block diagram of a device under test in the tion (XI) 32 for a cache line 24 is generated when another
simulated multi - processor environment 500 according to a 55 processor core wants to change data within that cache line
further embodiment of the invention is shown , whereas in 24 . Therefore , once a processor core receives an XI 32 for
FIG . 4 , a flowchart of an example process of the method for the cache line 24 (arrow X1) this cache line 24 might contain
testing a data coherency algorithm of a multi - processor old data . In one aspect , whenever a cache line 24 is hit by
environment (FIG . 3) according to the further embodiment an XI 32 (arrow X1) , the current global time 12 is stored as
of FIG . 3 is depicted . 60 an expiration date 20 for that cache line 24 in the reference

According to the embodiment , the global time 10 is model 120 .
implemented , incremented every processor cycle and used As long as the processor core 102 is not using data that
for timestamping . The reference model 120 is implemented , was received after the XI 32 for the cache line 24 , it cannot
which operates on every cache line 24 and keeps the set of be detected whether the cache line 24 was used before the XI
timestamps for every cache line 24 , the set comprising : a 65 32 was received or after . Therefore , the processor core 102
potential construction date 16 representing a first global can keep on working with the cache line 24 even though an
timestamp when new data arrives at the private cache XI 32 for the cache line 24 was already received .

US 9 , 928 , 127 B2

If new data is received from the nest 100 (arrow F4) , the system and is not intended to suggest any limitation as to the
current global time 10 is stored as the potential construction scope of use or functionality of embodiments of the inven
date 16 of that cache line 24 , independently if this was a tion described herein . Regardless , data processing system
speculative request or not . If the nest 100 return data is later 210 is capable of being implemented and / or performing any
passed on to the requesting L1 cache 104 (F5) , the potential 5 of the functionality set forth herein above .
construction date 108 becomes the confirmed construction In data processing system 210 , there is a computer sys
date 18 . If the data is returned from the L2 cache 110 to the tem / server 212 , which is operational with numerous other
requesting unit (F5) , the potential construction date 108 is general purpose or special purpose computing system envi
ignored and the confirmed construction date 18 remains ronments or configurations . Examples of well - known com
unchanged . 10 puting systems , environments , and / or configurations that

Whenever data is returned to the processor core 102 may be suitable for use with computer system / server 212
(arrow F6d or F6i) , the confirmed construction date 18 of include , but are not limited to , personal computer systems ,
that data is used to update the core observed time 12 , if the server computer systems , thin clients , thick clients , handheld
confirmed construction date 18 is newer than the core or laptop devices , multiprocessor systems , microprocessor
observed time 12 . Thus , the core observed time 12 holds the 15 based systems , set top boxes , programmable consumer elec
confirmed construction date 18 of the youngest data that was tronics , network PCs , minicomputer systems , mainframe
ever used . computer systems , and distributed cloud computing envi
As stated above , modern multi - processor environments ronments that include any of the above systems or devices ,

allow the individual processor core 102 to work with old and the like .
data as long as it cannot be observed . Having an expiration 20 Computer system / server 212 may be described in the
date 20 for each cache line 24 that was hit by an XI 32 and general context of computer system executable instructions ,
a core observed time 12 holding the confirmed construction such as program modules , being executed by a computer
date 18 of the youngest ever used cache line 24 , it is possible system . Generally , program modules may include routines ,
to check that no old data was used after younger data was programs , objects , components , logic , data structures , and so
seen by the processor core 102 . 25 on that perform particular tasks or implement particular

The check is , if the expiration date 20 is older than or abstract data types . Computer system / server 212 may be
equal to the core observed time 12 . If this is the case , an error practiced in distributed cloud computing environments
is reported . The check is done whenever data is returned to where tasks are performed by remote processing devices that
the processor core 102 (arrow F6) . are linked through a communications network . In a distrib

Referring to the flowchart in FIG . 4 , a simulation cycle 30 uted cloud computing environment , program modules may
starts with step S200 with incrementing the global time 10 . be located in both local and remote computer system storage
Steps S202 , S206 , S210 , S216 may be executed indepen - media including memory storage devices .
dently from each other resulting in a return to step S200 for As shown in FIG . 5 , computer system / server 212 in data
the next simulation cycle . processing system 210 is shown in the form of a general

If a fetch return 30 from the nest 100 delivers the cache 35 purpose computing device . The components of computer
line 24 , step S202 , in step S204 the potential construction system / server 212 may include , but are not limited to , one or
date 16 is updated in the reference model 120 with the more processors or processing units 216 , a system memory
current value of the global time 10 ; otherwise , the global 228 , and a bus 218 that couples various system components
time is incremented in step S200 again at the end of the including system memory 228 to processor 216 .
simulation cycle . 40 Bus 218 represents one or more of any of several types of

If an XI 32 is executed from the nest 100 in step S206 , the bus structures , including a memory bus or memory control
expiration date 20 of the cache line 24 in the reference model ler , a peripheral bus , an accelerated graphics port , and a
120 is updated in step S208 with the current value of the processor or local bus using any of a variety of bus archi
global time 10 ; otherwise , the global time is incremented in tectures . By way of example , and not limitation , such
step S200 again at the end of the simulation cycle . 45 architectures include Industry Standard Architecture (ISA)

If a fetch return 30 from the L2 cache 110 to the L1 cache bus , Micro Channel Architecture (MCA) bus , Enhanced ISA
104 delivers the cache line 24 in step S210 , first it is checked (EISA) bus , Video Electronics Standards Association
for an L2 miss response in step S212 . If this is the case , the (VESA) local bus , and Peripheral Component Interconnect
confirmed construction date 18 of the cache line 24 is (PCI) bus .
updated in the reference model 120 in step S214 with the 50 Computer system / server 212 typically includes a variety
value from the potential construction date 16 of the cache of computer system readable media . Such media may be any
line 24 . Otherwise , the global time is incremented in step available media that is accessible by computer system / server
S200 again at the end of the simulation cycle . 212 , and it includes both volatile and non - volatile media ,

If a fetch return 30 from the L1 cache 104 to the processor removable and non - removable media .
core 102 delivers a cache line 24 in step S216 , it is then 55 System memory 228 can include computer system read
checked , if the confirmed construction date 18 is newer than able media in the form of volatile memory , such as random
the core observed time 12 . If this is the case , the core access memory (RAM) 230 and / or cache memory 232 .
observed time 12 is updated with the confirmed construction Computer system / server 212 may further include other
time 18 of the cache line 24 . Then , or otherwise , it is removable / non - removable , volatile / non - volatile computer
checked , if the expiration date 20 of the cache line 24 is 60 system storage media . By way of example only , storage
older than or equal to the core observed time 12 . If this is the system 234 can be provided for reading from and writing to
case , an error is reported . Otherwise , the global time is a non - removable , non - volatile magnetic media (not shown
incremented in step S200 again at the end of the simulation and typically called a " hard drive ”) . Although not shown , a
cycle . magnetic disk drive for reading from and writing to a

Referring now to FIG . 5 , a schematic of an example of a 65 removable , non - volatile magnetic disk (e . g . , a “ floppy
data processing system 210 is shown . Data processing disk ”) , and an optical disk drive for reading from or writing
system 210 is only one example of a suitable data processing to a removable , non - volatile optical disk such as a CD

US 9 , 928 , 127 B2
10

ROM , DVD - ROM or other optical media can be provided . execution flag and clear the transactional footprint ; any
In such instances , each can be connected to bus 218 by one transaction end instruction being executed by the processor
or more data media interfaces . As will be further depicted core to perform the checking . An error is reported whenever
and described below , memory 228 may include at least one a transaction end event is detected and any cache line is
program product having a set (e . g . , at least one) of program 5 found in the transactional footprint with an expiration date
modules that are configured to carry out the functions of that is older than or equal to the core observed time .
embodiments of the invention . According to an aspect of the invention a method on top

Program / utility 240 , having a set (at least one) of program of timestamp based coherency checking is provided for
modules 242 , may be stored in memory 228 by way of verification . Cache line based transaction footprint tracking
example , and not limitation , as well as an operating system , 10 and checking against timestamps is added . Atomicity within
one or more application programs , other program modules , a transaction is ensured .
and program data . Each of the operating system , one or more The transactional memory concept guarantees that a trans
application programs , other program modules , and program action is executed atomically . The transaction is started by
data or some combination thereof , may include an imple - the transaction start instruction , followed by any number of
mentation of a networking environment . Program modules 15 other instructions and completed by the transaction end
242 generally carry out the functions and / or methodologies instruction . The concept of the transactional footprint is
of embodiments of the invention as described herein . introduced to track all cache lines accessed during the

Computer system / server 212 may also communicate with transaction . The footprint in combination with the core
one or more external devices 214 such as a keyboard , a observed time , construction time and expiration time
pointing device , a display 224 , etc . ; one or more devices that 20 enables to achieve the atomicity check .
enable a user to interact with computer system / server 212 ; According to an aspect , the implementation of the atomi
and / or any devices (e . g . , network card , modem , etc .) that city check is described by an algorithm , comprising :
enable computer system / server 212 to communicate with If the processor core executes the transaction start instruc
one or more other computing devices . Such communication tion , the checking code enters the transactional execution
can occur via Input / Output (1 / 0) interfaces 222 . Still yet , 25 mode by setting a status flag , like the transactional execution
computer system / server 212 can communicate with one or flag and clears any old transactional footprint . Whenever a
more networks such as a local area network (LAN) , a cache line is returned from any L1 cache to the processor
general wide area network (WAN) , and / or a public network core while in a transaction , this cache line is added to the
(e . g . , the Internet) via network adapter 220 . As depicted , transaction footprint . If the processor core executes the
network adapter 220 communicates with the other compo - 30 transaction end instruction , the expiration date of all cache
nents of computer system / server 212 via bus 218 . It should lines of the transaction footprint is compared against the
be understood that although not shown , other hardware latest core observed time . If any expiration date is less than
and / or software components could be used in conjunction the current core observed time , an ERROR is reported ,
with computer system / server 212 . Examples , include , but because atomicity has been violated . The atomicity is vio
are not limited to : microcode , device drivers , redundant 35 lated , because the processor core used data which was newer
processing units , external disk drive arrays , RAID systems , than data already accessed in the transaction which got
tape drives , and data archival storage systems , etc . modified in the meantime by another processor core .

As described herein , a method is provided for testing a Further , a computer program product is provided for
data coherency algorithm of a multi - processor environment , testing a data coherency algorithm of a multi - processor
wherein a simulated multi - processor environment contain - 40 environment , wherein a simulated multi - processor environ
ing one single private cache hierarchy and simulation drivers ment containing one single private cache hierarchy and
for all other components of the multi - processor environment simulation drivers for all other components of the multi
is provided . The method comprises implementing a global processor environment is provided . The computer program
time incremented every processor cycle and used for time product includes a computer readable storage medium hav
stamping ; implementing a transactional execution flag rep - 45 ing program instructions embodied therewith , the program
resenting a processor core guaranteeing the atomicity and instructions executable by a computer to cause the computer
coherency of the currently executed instructions , and imple - to perform a method comprising : implementing a global
menting a transactional footprint , which keeps the address of time incremented every processor cycle and used for time
each cache line that was used by the processor core , while stamping ; implementing a transactional execution flag rep
the processor core is guaranteeing the atomicity and coher - 50 resenting a processor core guaranteeing the atomicity and
ency of a transaction . A reference model is implemented , coherency of the currently executed instructions ; imple
which operates on every cache line and keeps a set of menting a transactional footprint , which keeps the address of
timestamps for every cache line , the set comprising : a each cache line that was used by the processor core , while
construction date representing a first global timestamp when the processor core is guaranteeing the atomicity and coher
new data arrives at the private cache hierarchy ; and an 55 ency of a transaction ; implementing a reference model ,
expiration date representing a second global timestamp which operates on every cache line and keeps a set of
when the private cache hierarchy is hit by a cross invalida - timestamps for every cache line , the set comprising : a
tion . A core observed timestamp is implemented represent construction date representing a first global timestamp when
ing a global timestamp , which is the oldest construction date new data arrives at the private cache hierarchy ; and an
of all data used before . Interface events are implemented that 60 expiration date representing a second global timestamp
monitor : any fetch return from the simulated multi - processor when the private cache hierarchy is hit by a cross - invalida
environment to update the construction date ; any fetch tion ; implementing a core observed timestamp representing
return from an L1 cache to the processor core to update the a global timestamp , which is the oldest construction date of
global core observed timestamp ; any cross - invalidate from all data used before ; implementing interface events that
the simulated multi - processor environment to update the 65 monitor : any fetch return from the simulated multi - processor
expiration date ; any transaction start instruction being environment to update the construction date ; any fetch
executed by the processor core to update the transactional return from an Ll cache to the processor core to update the

US 9 , 928 , 127 B2
11

global core observed timestamp ; any cross - invalidate from Smalltalk , C + + or the like , and conventional procedural
the simulated multi - processor environment to update the programming languages , such as the “ C ” programming
expiration date ; any transaction start instruction being language or similar programming languages . The computer
executed by the processor core to update the transactional readable program instructions may execute entirely on the
execution flag and clear the transactional footprint ; and any 5 user ' s computer , partly on the user ' s computer , as a stand
transaction end instruction being executed by the processor alone software package , partly on the user ' s computer and
core to perform the checking ; reporting an error whenever a partly on a remote computer or entirely on the remote
transaction end event is detected and any cache line is found computer or server . In the latter scenario , the remote com
in the transactional footprint with an expiration date , that is puter may be connected to the user ' s computer through any
older than or equal to the core observed time . 10 type of network , including a local area network (LAN) or a

Further , a data processing system for execution of a data wide area network (WAN) , or the connection may be made
processing program is provided , comprising computer read to an external computer (for example , through the Internet
able program instructions for performing the method using an Internet Service Provider) . In some embodiments ,
described above . electronic circuitry including , for example , programmable

Aspects of the present invention may be a system , a 15 logic circuitry , field - programmable gate arrays (FPGA) , or
method , and / or a computer program product . The computer programmable logic arrays (PLA) may execute the computer
program product may include a computer readable storage readable program instructions by utilizing state information
medium (or media) having computer readable program of the computer readable program instructions to personalize
instructions thereon for causing a processor to carry out the electronic circuitry , in order to perform aspects of the
aspects of the present invention . 20 present invention .

The computer readable storage medium can be a tangible Aspects of the present invention are described herein with
device that can retain and store instructions for use by an reference to flowchart illustrations and / or block diagrams of
instruction execution device . The computer readable storage methods , apparatus (systems) , and computer program prod
medium may be , for example , but is not limited to , an ucts according to embodiments of the invention . It will be
electronic storage device , a magnetic storage device , an 25 understood that each block of the flowchart illustrations
optical storage device , an electromagnetic storage device , a and / or block diagrams , and combinations of blocks in the
semiconductor storage device , or any suitable combination flowchart illustrations and / or block diagrams , can be imple
of the foregoing . A non - exhaustive list of more specific mented by computer readable program instructions .
examples of the computer readable storage medium includes These computer readable program instructions may be
the following : a portable computer diskette , a hard disk , a 30 provided to a processor of a general purpose computer ,
random access memory (RAM) , a read - only memory special purpose computer , or other programmable data pro
(ROM) , an erasable programmable read - only memory cessing apparatus to produce a machine , such that the
(EPROM or Flash memory) , a static random access memory instructions , which execute via the processor of the com
(SRAM) , a portable compact disc read - only memory (CD puter or other programmable data processing apparatus ,
ROM) , a digital versatile disk (DVD) , a memory stick , a 35 create means for implementing the functions / acts specified
floppy disk , a mechanically encoded device such as punch - in the flowchart and / or block diagram block or blocks . These
cards or raised structures in a groove having instructions computer readable program instructions may also be stored
recorded thereon , and any suitable combination of the fore - in a computer readable storage medium that can direct a
going . A computer readable storage medium , as used herein , computer , a programmable data processing apparatus , and /
is not to be construed as being transitory signals per se , such 40 or other devices to function in a particular manner , such that
as radio waves or other freely propagating electromagnetic the computer readable storage medium having instructions
waves , electromagnetic waves propagating through a wave - stored therein comprises an article of manufacture including
guide or other transmission media (e . g . , light pulses passing instructions which implement aspects of the function / act
through a fiber - optic cable) , or electrical signals transmitted specified in the flowchart and / or block diagram block or
through a wire . 45 blocks .

Computer readable program instructions described herein The computer readable program instructions may also be
can be downloaded to respective computing / processing loaded onto a computer , other programmable data process
devices from a computer readable storage medium or to an ing apparatus , or other device to cause a series of operational
external computer or external storage device via a network , steps to be performed on the computer , other programmable
for example , the Internet , a local area network , a wide area 50 apparatus or other device to produce a computer imple
network and / or a wireless network . The network may com - mented process , such that the instructions which execute on
prise copper transmission cables , optical transmission fibers , the computer , other programmable apparatus , or other
wireless transmission , routers , firewalls , switches , gateway device implement the functions / acts specified in the flow
computers and / or edge servers . A network adapter card or chart and / or block diagram block or blocks .
network interface in each computing / processing device 55 The flowchart and block diagrams in the Figures illustrate
receives computer readable program instructions from the the architecture , functionality , and operation of possible
network and forwards the computer readable program implementations of systems , methods , and computer pro
instructions for storage in a computer readable storage gram products according to various embodiments of the
medium within the respective computing / processing device . present invention . In this regard , each block in the flowchart

Computer readable program instructions for carrying out 60 or block diagrams may represent a module , segment , or
operations of aspects of the present invention may be portion of instructions , which comprises one or more
assembler instructions , instruction - set - architecture (ISA) executable instructions for implementing the specified logi
instructions , machine instructions , machine dependent cal function (s) . In some alternative implementations , the
instructions , microcode , Firmware instructions , state - setting functions noted in the block may occur out of the order noted
data , or either source code or object code written in any 65 in the figures . For example , two blocks shown in succession
combination of one or more programming languages , may , in fact , be executed substantially concurrently , or the
including an object oriented programming language such as blocks may sometimes be executed in the reverse order ,

US 9 , 928 , 127 B2
13 14

depending upon the functionality involved . It will also be footprint with an expiration date that is older than or
noted that each block of the block diagrams and / or flowchart equal to a core observed time .
illustration , and combinations of blocks in the block dia - 2 . The computer system according to claim 1 , wherein the
grams and / or flowchart illustration , can be implemented by set further comprises a potential construction date represent
special purpose hardware - based systems that perform the 5 ing a third global timestamp when new data arrives at the
specified functions or acts or carry out combinations of private cache hierarchy , and a confirmed construction date
special purpose hardware and computer instructions . representing a fourth global timestamp confirming usage of

The descriptions of the various embodiments of the new data by the processor core ; and present invention have been presented for purposes of wherein the interface events further monitor at least one illustration , but are not intended to be exhaustive or limited 10 of : to the embodiments disclosed . Many modifications and a fetch return from the simulated multi - processor envi variations will be apparent to those of ordinary skill in the ronment to update the potential construction date ; or art without departing from the scope and spirit of the
described embodiments . The terminology used herein was a fetch return from an L2 cache to the L1 cache to
chosen to best explain the principles of the embodiments , the 15 update the confirmed construction date .
practical application or technical improvement over tech 3 . The computer system according to claim 2 , wherein the
nologies found in the marketplace , or to enable others of method comprises reporting an error based on data being
ordinary skill in the art to understand the embodiments used with an expiration date that is older than or equal to the
disclosed herein . core observed time .

20 4 . A computer program product for testing a data coher
What is claimed is : ency algorithm of a multi - processor environment , wherein a
1 . A computer system for testing a data coherency algo simulated multi - processor environment containing a private

rithm of a multi - processor environment , wherein a simulated cache hierarchy and simulation drivers for other components
multi - processor environment containing a private cache of the multi - processor environment is provided , the com
hierarchy and simulation drivers for other components of the 25 puter program product comprising :
multi - processor environment is provided , the computer sys a computer readable storage medium readable by a pro
tem comprising : cessing circuit and storing instructions for execution by

a memory ; and the processing circuit for performing a method com
a processor in communications with the memory , wherein prising :

the computer system is configured to perform a 30 implementing a global time incremented on a processor
method , said method comprising : cycle and used for timestamping ;
implementing a global time incremented on a processor implementing a transactional execution flag represent

cycle and used for timestamping ; ing a processor core guaranteeing atomicity and
implementing a transactional execution flag represent coherency of currently executed instructions ;

ing a processor core guaranteeing atomicity and 35 implementing a transactional footprint , the transac
coherency of currently executed instructions ; tional footprint keeping an address of each cache line

implementing a transactional footprint , the transac that was used by the processor core , while the
tional footprint keeping an address of each cache line processor core is guaranteeing the atomicity and
that was used by the processor core , while the coherency of a transaction ;
processor core is guaranteeing the atomicity and 40 implementing a reference model , the reference model
coherency of a transaction ; operating on a cache line and keeping a set of

implementing a reference model , the reference model timestamps for the cache line , the set comprising a
operating on a cache line and keeping a set of construction date representing a first global time
timestamps for the cache line , the set comprising a stamp when new data arrives at the private cache
construction date representing a first global time - 45 hierarchy , and an expiration date representing a
stamp when new data arrives at the private cache second global timestamp when the private cache
hierarchy , and an expiration date representing a hierarchy is hit by a cross - invalidation ;
second global timestamp when the private cache implementing a core observed timestamp representing
hierarchy is hit by a cross - invalidation ; a global timestamp , which is an oldest construction

implementing a core observed timestamp representing 50 date of data used before ;
a global timestamp , which is an oldest construction implementing interface events that monitor at least one
date of data used before ; of :

implementing interface events that monitor at least one a fetch return from the simulated multi - processor
of : environment to update the construction date ;
a fetch return from the simulated multi - processor 55 a fetch return from an L1 cache to the processor core

environment to update the construction date ; to update the core observed timestamp ;
a fetch return from an Ll cache to the processor core a cross - invalidate from the simulated multi - proces

to update the core observed timestamp ; sor environment to update the expiration date ;
a cross - invalidate from the simulated multi - proces a transaction start instruction being executed by the

sor environment to update the expiration date ; 60 processor core to update the transactional execu
a transaction start instruction being executed by the tion flag and clear the transactional footprint ; or
processor core to update the transactional execu a transaction end instruction being executed by the
tion flag and clear the transactional footprint ; or processor core to perform the checking ; and

a transaction end instruction being executed by the reporting an error based on detecting a transaction end
processor core to perform the checking ; and 65 event and finding a cache line in the transactional

reporting an error based on detecting a transaction end footprint with an expiration date that is older than or
event and finding a cache line in the transactional equal to a core observed time .

15

of :

US 9 , 928 , 127 B2
16

5 . The computer program product according to claim 4 , from the simulated multi - processor environment , updating
wherein the set further comprises a potential construction the expiration date in the reference model with the global
date representing a third global timestamp when new data time .
arrives at the private cache hierarchy , and a confirmed 13 . The computer system according to claim 1 , wherein
construction date representing a fourth global timestamp 5 amn 5 the method further comprises based on the transaction end

instruction , setting the transactional execution flag to false . confirming usage of new data by the processor core ; and 14 . The computer program product according to claim 4 ,
wherein the interface events further monitor at least one wherein the method further comprises based on a fetch

return from the simulated multi - processor environment ,
a fetch return from the simulated multi - processor envi - updating the construction date in the reference model with

ronment to update the potential construction date ; or the global time .
a fetch return from an L2 cache to the L1 cache to 15 . The computer program product according to claim 4 ,

update the confirmed construction date . wherein the method further comprises based on a fetch
6 . The computer program product according to claim 5 , return from the Ll cache to the processor core , checking for

wherein the method further comprises reporting an error the transactional execution flag .
based on data being used with an expiration date that is older 16 . The computer program product according to claim 4 ,
than or equal to the core observed time . wherein the method further comprises based on a fetch

7 . The computer program product according to claim 4 , return from the L1 cache to the processor core , adding a
wherein the method further comprises based on the trans cache line to the transactional footprint .

action end instruction , setting the transactional execution 20 17 . The computer program product according to claim 4 ,
“ 20 wherein the method further comprises based on a fetch flag to false . return from the Ll cache to the processor core , updating the 8 . The computer system according to claim 1 , wherein the

core observed timestamp with the construction date . method further comprises based on a fetch return from the 18 . The computer program product according to claim 4 , simulated multi - processor environment , updating the con
struction date in the reference model with the global time . wherein the method further comprises based on a cross

9 . The computer system according to claim 1 , wherein the 25 invalidate from the simulated multi - processor environment ,
method further comprises based on a fetch return from the updating the expiration date in the reference model with the

global time . Ll cache to the processor core , checking for the transac
tional execution flag . 19 . The computer program product according to claim 5 ,

10 . The computer system according to claim 1 , wherein 30 wherein the method further comprises based on the fetch
the method further comprises based on a fetch return from 30 return from the simulated multi - processor environment ,
the L1 cache to the processor core , adding a cache line to the updating the potential construction date in the reference

model with the global time . transactional footprint .
11 . The computer system according to claim 1 , wherein 20 . The computer program product according to claim 5 ,

the method further comprises based on a fetch return from 3 wherein the method further comprises based on a missed
the L1 cache to the processor core , updating the core fetch return from the L2 cache to the L1 cache , updating the

confirmed construction date in the reference model with the observed timestamp with the construction date . potential construction date of the cache line . 12 . The computer system according to claim 1 , wherein
the method further comprises based on a cross - invalidate * * * * *

