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METHOD OF FIG. 2
PROCESSING
PACKED DATA
REARRANGEMENT
CONTROL INDEXES
GENERATION
INSTRUCTION

212
\

RECEIVE PACKED DATA REARRANGEMENT
CONTROL INDEXES GENERATION INSTRUCTION —~- 213
INDICATING FIRST DESTINATION STORAGE LOCATION

\ 4

STORE RESULT IN FIRST DESTINATION STORAGE
LOCATION IN RESPONSE TO PACKED DATA
REARRANGEMENT CONTROL INDEXES GENERATION
INSTRUCTION, RESULT INCLUDING SEQUENCE OF AT [~ 214
LEAST FOUR NON-NEGATIVE INTEGERS WITH PLURALITY
OF DIFFERENT VALUES REPRESENTING PACKED DATA
REARRANGEMENT CONTROL INDEXES

RECEIVE PACKED DATA REARRANGEMENT ‘
INSTRUCTION INDICATING PACKED DATA
REARRANGEMENT CONTROL INDEXES, AT LEAST

ONE SOURCE PACKED DATA, AND SECOND
DESTINATION STORAGE LOCATION ;
b e e e e ———— — -
R S .;

STORE PACKED DATA RESULT IN SECOND !

DESTINATION STORAGE LOCATION IN RESPONSETO |

PACKED DATA REARRANGEMENT INSTRUCTION,

PACKED DATA RESULT INCLUDING DATA ELEMENTS i’\ 216
FROM AT LEAST ONE SOURCE PACKED DATA |
REARRANGED ACCORDING TO PACKED DATA |

REARRANGEMENT CONTROL INDEXES |
wd
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METHOD OF FIG. 3

PROCESSING
PACKED DATA
REARRANGEMENT
CONTROL INDEXES
PRECURSORS
GENERATION
INSTRUCTION

317
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RECEIVE PACKED DATA REARRANGEMENT CONTROL
INDEXES PRECURSORS GENERATION INSTRUCTION |~ 318
INDICATING DESTINATION STORAGE LOCATION

A4

STORE RESULT IN DESTINATION STORAGE LOCATION
IN RESPONSE TO INSTRUCTION, RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON-NEGATIVE
" INTEGERS WITH PLURALITY OF DIFFERENT VALUES [ 379
REPRESENTING PACKED DATA REARRANGEMENT
CONTROL INDEXES PRECURSORS

| EXECUTE AT LEAST ONE ADDITIONAL INSTRUCTIONTO !
{ CONVERT PACKED DATA REARRANGEMENT CONTROL
| INDEXES PRECURSORS INTO PACKED DATA
|

|
I~ 320
REARRANGEMENT CONTROL INDEXES :
L e e e e o - l __________ 4
r--"->"->:-"-""""""F""-F""""—""—""—"""F"—""—""—— -1
: EXECUTE PACKED DATA REARRANGEMENT :
| INSTRUCTION INDICATING PACKED DATA ~ 321
|

REARRANGEMENT CONTROL INDEXES |
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FIG. 5
530
~\

RECEIVE INSTRUCTION THAT IS USEFUL TO
GENERATE CONTROL INDEXES AND INDICATING 531
DESTINATION STORAGE LOCATION

\ 4

STORE RESULT IN DESTINATION STORAGE
LOCATION IN RESPONSE TO INSTRUCTION, RESULT
INCLUDING SQUENCE OF AT LEAST FOUR NON-NEGATIVE
INTEGERS THAT FOLLOW NUMERICAL PATTERN

532
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INSTRUCTION
708A~ DESTINATION
i STORAGE LOCATION
DESTINATION A
OPCODE STORAGE
LOCATION EXECUTION 5 RESULT 728A
7334
133A SEQUENCE OF
734A INTEGERS HAVING
» | NUMERICAL PATTERN
\ / 140A
738
NUMERICAL PATTERN
IS BASED ENTIRELY
ON OPCODE
FIG. 7A
DESTINATION
'NST%C;’ON STORAGE LOCATION
\v 7278
DESTINATION Nm%@gﬁL RESULT 7288
OPCODE Lsggmgﬁ DEFINNG | —EXECUTION SEQUENCE OF
PARAMETER(S) INTEGERS HAVING
7338 NUMERICAL PATTERN
7348 736 7408
/
739
NUMERICAL PATTERN
IS BASED ON OPCODE
AND NUMERICAL PATTERN
DEFINING PARAMETER(S)

FIG. 7B
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FIG. 8
830
~\

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION 831
STORAGE LOCATION

\4

STORE RESULT IN DESTINATION STORAGE LOCATION IN
RESPONSE TO INSTRUCTION, RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR CONSECUTIVE
NON-NEGATIVE INTEGERS IN NUMERICAL ORDER

- 832
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FIG. 10
1030
~\

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION
STORAGE LOCATION

- 1031

A4

STORE RESULT IN DESTINATION STORAGE LOCATION IN
RESPONSE TO INSTRUCTION, RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON-NEGATIVE
INTEGERS IN NUMERICAL ORDER WITH ALL INTEGERS
IN CONSECUTIVE POSITIONS DIFFERING BY A
CONSTANT STRIDE OF AT LEAST TWO

1032

FIG. 11
1130
N

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION
STORAGE LOCATION

- 1131

\ 4

STORE RESULT IN DESTINATION STORAGE LOCATION
IN RESPONSE TO INSTRUCTION, RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON-NEGATIVE SAME
PARITY (e.g., ALL EVEN OR ALL ODD) INTEGERS
IN NUMERICAL ORDER

— 1132




US 9,904,547 B2

Sheet 11 of 32

Feb. 27, 2018

U.S. Patent

V1vQ d3xovd
1Ins3d

SYel — ]

S3X3ANI
TOHINOD

INIWZONYHYYI

Y.1va d3aMovd
ONIAVH V1vd
aMovd
30UNOS QYIHL

AR

cpzL— )

Y1vad a3xovd

304N0S ANOJ3S

zvzL—" "

Y.1va daxdvd
334N0S LSHl4

¢l 9Id

5y

EN|

&

0|

(o1)
a1 |

b1

1

Owi

Twi

ot

[41%)

ewr




U.S. Patent Feb. 27, 2018 Sheet 12 of 32 US 9,904,547 B2

FIG. 13
1330
~\

RECEIVE INSTRUCTION THAT IS USEFUL TO GENERATE
CONTROL INDEXES, THAT INDICATES DESTINATION STORAGE
LOCATION, AND THAT INDICATES INTEGER OFFSET (K)AND [~ 1331
CONSTANT INTEGER STRIDE (N)

Y

STORE RESULT IN DESTINATION STORAGE LOCATION
IN RESPONSE TO INSTRUCTION, RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON-NEGATIVE INTEGERS [ 7332
IN NUMERICAL ORDER, WHERE A SMALLEST OF INTEGERS
DIFFERS FROM ZERO BY INTEGER OFFSET (K), AND WHERE
ALL INTEGERS IN CONSECUTIVE POSITIONS DIFFER FROM
ONE ANOTHER BY THE CONSTANT INTEGERS STRIDE (N)
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FIG. 14

US 9,904,547 B2

RECEIVE FIRST CONTROL INDEXES PRECURSORS
GENERATION INSTRUCTION INDICATING FIRST
DESTINATION STORAGE LOCATION

1431

\4

STORE FIRST RESULT IN FIRST DESTINATION STORAGE
LOCATION IN RESPONSE TO FIRST INSTRUCTION,
FIRST RESULT INCLUDING SEQUENCE OF AT LEAST
FOUR CONSECUTIVE NON-NEGATIVE INTEGERS IN
NUMERICAL ORDER

1432

\ 4

RECEIVE SECOND INSTRUCTION INDICATING
SEQUENCE OF AT LEAST FOUR CONSECUTIVE
NON-NEGATIVE INTEGERS IN NUMERICAL ORDER,
INDICATING SECOND DESTINATION STORAGE
LOCATION, AND INDICATING STRIDE AND OFFSET

1447

Y

STORE SECOND RESULT IN SECOND DESTINATION
STORAGE LOCATION IN RESPONSE TO SECOND
INSTRUCTION, SECOND RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON-NEGATIVE
INTEGERS IN NUMERICAL ORDER WITH ALL INTEGERS
IN CONSECUTIVE POSITIONS DIFFERING BY STRIDE OF
AT LEAST TWO AND WITH SMALLEST INTEGER DIFFERING
FROM ZERO BY OFFSET

1448
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FIG. 18
PACKED DATA
REGISTERS
1803\
512 BITS
Al
4 N
Zmmy ymmg Xmmp
ymmyg Xmmys
%__J
128 BITS
N v
Y
256 BITS
Zmmg4




U.S. Patent Feb. 27, 2018 Sheet 18 of 32 US 9,904,547 B2

ARTICLE OF FIG. 19
MANUFACTURE

1952
\

MACHINE-READABLE
STORAGE MEDIUM

1953

INSTRUCTION(S) USEFUL TO GENERATE
CONTROL INDEXES

1908

CONTROL INDEXES
GENERATION INSTRUCTION(S)

1909

I

! CONTROL INDEXES PRECURSOR(S) i
! GENERATION INSTRUCTION(S) |
| 1910 g
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1
PACKED DATA REARRANGEMENT
CONTROL INDEXES GENERATION
PROCESSORS, METHODS, SYSTEMS AND
INSTRUCTIONS

CROSS-REFERENCE TO RELATED
APPLICATION

This patent application is a U.S. National Phase Applica-
tion under 35 U.S.C. § 371 of International Application No.
PCT/US2011/067000, filed Dec. 22, 2011, entitled
PACKED DATA REARRANGEMENT CONTROL
INDEXES GENERATION PROCESSORS, METHODS,
SYSTEMS, AND INSTRUCTIONS.

BACKGROUND

Field

Embodiments relate to processors. In particular, embodi-
ments relate to processors having instruction sets that
include instructions that use control indexes.

Background Information

Many processors have Single Instruction, Multiple Data
(SIMD) architectures. In SIMD architectures, a packed data
instruction, vector instruction, or SIMD instruction may
operate on multiple data elements or multiple pairs of data
elements simultaneously or in parallel. The processor may
have parallel execution hardware responsive to the packed
data instruction to perform the multiple operations simulta-
neously or in parallel.

Multiple data elements may be packed within one register
or memory location as packed data or vector data. In packed
data, the bits of the register or other storage location may be
logically divided into a sequence of multiple data elements.
For example, a 256-bit wide packed data register may have
four 64-bit wide packed data elements, eight 32-bit wide
packed data elements, sixteen 16-bit wide packed data
elements, etc. Each of the packed data elements may rep-
resent a separate individual piece of data (e.g., a red, green,
blue, or alpha color component of a pixel, or a real or
imaginary component of a complex number, etc.) that may
be operated upon separately or independently of the others.

Some SIMD architectures have instructions to flexibly
rearrange packed data elements within one or more source
packed data according to control indexes. Examples of such
instructions are permute instructions and shuffle instruc-
tions. The control indexes control how the packed data
elements are rearranged by the instructions.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The invention may best be understood by referring to the
following description and accompanying drawings that are
used to illustrate embodiments of the invention. In the
drawings:

FIG. 1 is a block diagram of an example embodiment of
a processor to process instructions useful to generate control
indexes.

FIG. 2 is a block flow diagram of an example embodiment
of a method of processing an example embodiment of a
packed data rearrangement control indexes generation
instruction.

FIG. 3 is a block flow diagram of an example embodiment
of a method of processing an example embodiment of a
packed data rearrangement control indexes precursors gen-
eration instruction.
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FIG. 4 is a block diagram of an example embodiment of
an instruction processing apparatus to process instructions
useful to generate control indexes.

FIG. 5 is a block flow diagram of an example embodiment
of a method of processing an instruction that stores a
sequence of at least four non-negative integers that follow a
numerical pattern.

FIG. 6 is a block diagram of an embodiment of an
instruction format of an instruction useful to generate con-
trol indexes.

FIG. 7A is a block diagram illustrating that in some
embodiments a sequence of integers stored by an instruction
may have a numerical pattern that is based predominantly or
entirely on an opcode of the instruction.

FIG. 7B is a block diagram illustrating that in some
embodiments a sequence of integers stored by an instruction
may have a numerical pattern that is based partly on an
opcode of the instruction and partly on one or more numeri-
cal pattern defining parameters indicated by the instruction.

FIG. 8 is a block flow diagram of an example embodiment
of a method of processing an instruction that stores a
sequence of at least four consecutive non-negative integers
in numerical order.

FIG. 9 is a block diagram illustrating an example embodi-
ment of a packed data rearrangement operation using packed
data rearrangement control indexes having values of offset
consecutive integers in numerical order to extract unaligned
packed data from two aligned packed data to avoid needing
to perform unaligned loads.

FIG. 10 is a block flow diagram of an example embodi-
ment of a method of processing an instruction that stores a
sequence of at least four non-negative integers in numerical
order with all integers in consecutive positions differing by
a constant integer stride of at least two.

FIG. 11 is a block flow diagram of an example embodi-
ment of a method of processing an instruction that stores a
sequence of at least four non-negative same parity (e.g., all
even or all odd) integers in numerical order.

FIG. 12 is a block diagram illustrating an example
embodiment of a packed data rearrangement operation using
packed data rearrangement control indexes having values of
consecutive even integers in increasing numerical order to
separate real numbers (R) from imaginary numbers (IM).

FIG. 13 is a block flow diagram of an example embodi-
ment of a method of processing an instruction that stores a
sequence of at least four integers in numerical order, where
a smallest of the integers is offset from zero by the offset,
and where all of the integers in consecutive positions differ
from one another by the stride.

FIG. 14 is a block flow diagram of an example embodi-
ment of a method of processing a first control indexes
precursors generation instruction to store a sequence of
consecutive non-negative integers in numerical order and a
second instruction that applies a stride and an offset to each
of the integers.

FIG. 15 is a block diagram of a source packed data storing
Red Green Blue Alpha four-tuple data.

FIG. 16 is a block diagram of an example embodiment of
a processor that includes a read-only memory (ROM) stor-
ing one or more sequences of integers.

FIG. 17A is a block diagram illustrating a first example
embodiment of a suitable format for storing control indexes
and control indexes precursors.

FIG. 17B is a block diagram illustrating a second example
embodiment of a suitable format for storing control indexes
and control indexes precursors.
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FIG. 18 is a block diagram of an example embodiment of
a suitable set of packed data registers.

FIG. 19 is a block diagram of an article of manufacture
including a machine-readable storage medium storing an
instruction useful to generate control indexes.

FIG. 20A illustrates an exemplary AVX instruction format
including a VEX prefix, real opcode field, Mod R/M byte,
SIB byte, displacement field, and IMMS.

FIG. 20B illustrates which fields from FIG. 20A make up
a full opcode field and a base operation field. FIG. 20C
illustrates which fields from FIG. 20A make up a register
index field.

FIG. 21A is a block diagram illustrating a generic vector
friendly instruction format and class A instruction templates
thereof according to embodiments of the invention.

FIG. 21B is a block diagram illustrating the generic vector
friendly instruction format and class B instruction templates
thereof according to embodiments of the invention.

FIG. 22A is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention.

FIG. 22B is a block diagram illustrating the fields of the
specific vector friendly instruction format that make up the
full opcode field according to one embodiment of the
invention.

FIG. 22C is a block diagram illustrating the fields of the
specific vector friendly instruction format that make up the
register index field according to one embodiment of the
invention.

FIG. 22D is a block diagram illustrating the fields of the
specific vector friendly instruction format that make up the
augmentation operation field according to one embodiment
of the invention.

FIG. 23 is a block diagram of a register architecture
according to one embodiment of the invention.

FIG. 24A is a block diagram illustrating both an exem-
plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi-
ments of the invention.

FIG. 24B shows processor core including a front end unit
coupled to an execution engine unit, and both are coupled to
a memory unit.

FIG. 25A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
and with its local subset of the Level 2 (L.2) cache, according
to embodiments of the invention.

FIG. 25B is an expanded view of part of the processor
core in FIG. 25A according to embodiments of the inven-
tion.

FIG. 26 is a block diagram of a processor that may have
more than one core, may have an integrated memory con-
troller, and may have integrated graphics according to
embodiments of the invention.

FIG. 27, shown is a block diagram of a system in
accordance with one embodiment of the present invention.

FIG. 28, shown is a block diagram of a first more specific
exemplary system in accordance with an embodiment of the
present invention.

FIG. 29, shown is a block diagram of a second more
specific exemplary system in accordance with an embodi-
ment of the present invention.

FIG. 30, shown is a block diagram of'a SoC in accordance
with an embodiment of the present invention.

FIG. 31 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
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4
DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth (e.g., specific processors, methods, operations,
instructions, numerical patterns, and data formats). How-
ever, it is understood that embodiments of the invention may
be practiced without these specific details. In other
instances, well-known circuits, structures and techniques
have not been shown in detail in order not to obscure the
understanding of this description.

Control indexes for permute instructions and shuffle
instructions are typically built up progressively from scratch
by executing a series of general-purpose instructions that
operate on source packed data operands having source
packed data elements. For example, part of a method of
generating the control indexes may include executing a
series of general-purpose packed data arithmetic instructions
in order to perform a series of packed data arithmetic
operations on source packed data elements to ultimately
convert the source packed data elements into the control
indexes.

One factor that tends to limit the usefulness of permute
and shuffle instructions, as well as other packed data rear-
rangement instructions in general, is the number of instruc-
tions that typically need to be executed in order to generate
the permute control indexes, shuffle control indexes, or other
packed data rearrangement control indexes. Several instruc-
tions (e.g., around 4 to 10, or even more) may be needed to
generate a set of control indexes. Moreover, the number of
instructions needed generally tends to increase as the total
number of packed data elements increases, which tends to be
the case over time, as the bit-width of packed data registers
increases.

Executing these instructions tends to be expensive in
terms of processing time, processor resource utilization, and
power consumption. Moreover, such expense tends to
detract from, or diminish, the overall benefit provided by the
packed data rearrangement instructions. In some cases, after
the control indexes have been generated and used, the
control indexes may be discarded, in which case they may
need to be regenerated from scratch if the need arises. In
other cases, after the control indexes have been generated
and used, the control indexes may be stored in main
memory, and then later retrieved from the main memory
over a system bus when they are needed. This may help to
avoid generating the control indexes from scratch each time
they are needed, although retrieving the control indexes
from main memory also tends to take a significant amount
of time.

Disclosed herein are instructions that are useful to gen-
erate control indexes for other instructions (e.g., permute
instructions, shuffle instructions, other packed data rear-
rangement instructions, and other instructions that use con-
trol indexes). Also disclosed are processors to execute the
instructions, methods performed by the processors when
processing or executing the instructions, and systems incor-
porating one or more processors to process or execute the
instructions. The various processors and systems disclosed
elsewhere herein are suitable. Advantageously, these
instructions, processors, methods, and systems may help to
reduce the amount of processing time and/or the number of
instructions that need to be executed in order to generate the
control indexes.

FIG. 1 is a block diagram of an example embodiment of
a processor 100 to process instructions useful to generate
control indexes. The processor may be any of various
complex instruction set computing (CISC) processors, vari-
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ous reduced instruction set computing (RISC) processors,
various very long instruction word (VLIW) processors,
various hybrids thereof, or other types of processors entirely.
In some embodiments, the processor may be a general-
purpose processor (e.g., a general-purpose microprocessor),
although this is not required. Alternatively, the processor
may be a special-purpose processor. Examples of suitable
special-purpose processors include, but are not limited to,
network processors, communications processors, crypto-
graphic processors, graphics processors, co-processors,
embedded processors, digital signal processors (DSPs), and
controllers (e.g., microcontrollers), to name just a few
examples.

The processor has an instruction set architecture (ISA)
101. The ISA represents a part of the architecture of the
processor related to programming. The ISA commonly
includes the native instructions, architectural registers, data
types, addressing modes, memory architecture, interrupt and
exception handling, and external input and output (I/O) of
the processor. The ISA is distinguished from the microarchi-
tecture, which generally represents the particular processor
design techniques selected to implement the ISA. Processors
with different microarchitectures may share a common ISA.

The ISA includes architecturally-visible or architectural
registers (e.g., an architectural register file) 102. The archi-
tectural registers represent on-processor storage locations.
The architectural registers may also be referred to herein
simply as registers. Unless otherwise specified or clearly
apparent, the phrases architectural register, register file, and
register are used herein to refer to registers that are visible
to the software and/or programmer (e.g., software-visible)
and/or the registers that are specified by general-purpose
macroinstructions to identify operands. These registers are
contrasted to other non-architectural or non-architecturally
visible registers in a given microarchitecture (e.g., tempo-
rary registers used by instructions, reorder buffers, retire-
ment registers, microarchitectural read-only registers used
by microinstructions, etc.). The illustrated architecturally-
visible registers include packed data registers 103. Each of
the packed data registers is operable to store packed data,
vector data, or SIMD data.

The illustrated ISA includes an instruction set 104 that is
supported by the processor. The instructions of the instruc-
tion set represent macroinstructions (e.g., instructions pro-
vided to the processor for execution), as opposed to micro-
instructions or micro-ops (e.g., those which result from a
decoder of the processor decoding macroinstructions). The
processor may include specific or particular logic (e.g.,
circuitry potentially with some firmware or software) to
execute the instructions of the instruction set.

The instruction set includes one or more instructions that
use control indexes 105. As mentioned above, in some
embodiments these may include one or more permute
instructions, shuffle instructions, or other packed data rear-
rangement instructions 106. As another option, as will be
discussed further below, in some embodiments, these may
include one or more gather instructions, or load instructions
107, which are operable to gather or load non-contiguous
data from off-processor memory using the control indexes.

In accordance with embodiments of the invention, the
instruction set also includes one or more instructions that are
each useful to generate the control indexes 108. In some
embodiments, these may include one or more control
indexes generation instructions 109 that are operable to
generate the actual control indexes. Each of the control
indexes generation instructions may be operable to generate
the control indexes entirely within the confines of the
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execution of a single macroinstruction. By contrast, conven-
tionally a series of general-purpose macroinstructions gen-
erally need to be executed in order to gradually or progres-
sively build up the control indexes from scratch.

In some embodiments, the instructions may include one
or more control indexes precursors generation instructions
110, which do not generate the actual control indexes, but
which generate control indexes precursors. Each of the
control indexes precursors generation instructions may be
operable to generate the control indexes precursors entirely
within the confines of the execution of a single macroin-
struction. Rather than needing to generate the actual control
indexes from scratch, the control indexes precursors may
serve as useful starting-point or head-start values that may
be efficiently converted into the actual control indexes by
one or more other instructions. Advantageously, the use of
the precursors may allow the actual control indexes to be
generated more quickly and/or with fewer instructions than
if starting from scratch.

The processor also includes execution logic 111. The
execution logic is operable to execute or process the instruc-
tions of the instruction set.

FIG. 2 is a block flow diagram of an example embodiment
of' a method 212 of processing an example embodiment of
a packed data rearrangement control indexes generation
instruction. The packed data rearrangement control indexes
generation instruction is received, at block 213. The
received instruction specifies or otherwise indicates a first
destination storage location. In some aspects, the first des-
tination storage location may be explicitly specified by bits
or one or more fields of an encoding of the instruction. In
other aspects, the first destination storage location may be
implicit to the instruction.

A result is stored in the first destination storage location,
in response to and/or as a result of the packed data rear-
rangement control indexes generation instruction, at block
214. The result includes a sequence of at least four non-
negative integers representing packed data rearrangement
control indexes. The at least four integers typically have a
plurality of different values (i.e., they are not all the same
integer value). In various embodiments, the sequence may
include at least eight, at least sixteen, at least thirty-two, or
at least sixty-four non-negative integers representing packed
data rearrangement control indexes. The result and/or the
sequence of integers may be any of the results and/or
sequences of integers disclosed elsewhere herein. In some
embodiments, the result and/or the sequence of the integers
may be generated entirely within the confines of the execu-
tion of a single macroinstruction (e.g., values of the integers
may not depend on any previous instructions in the program
flow).

To further illustrate certain concepts, and although the
invention is not limited in this respect, reception of a packed
data rearrangement instruction occurs, at block 215. In
various aspects, this instruction may be a permute instruc-
tion, a shuffle instruction, or another type of packed data
rearrangement instruction operable to rearrange data ele-
ments in one or more source packed data according to the
packed data rearrangement control indexes. The instruction
indicates the packed data rearrangement control indexes
(e.g., specifies the first destination storage location). The
instruction also specifies or otherwise indicates at least one
source packed data having packed data elements and speci-
fies or otherwise indicates a second destination storage
location.

A packed data result is stored in the second destination
storage location, in response to and/or as a result of the
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packed data rearrangement instruction, at block 216. The
packed data result includes data elements from the at least
one source packed data rearranged according to the packed
data rearrangement control indexes. In some embodiments,
as in the case of many permute and shuffle instructions, the
packed data rearrangement control indexes may identify,
select, or otherwise index particular data elements within the
at least one source packed data. The indexed data elements
may be stored in result data elements that correspond in
position to the indexes.

FIG. 3 is a block flow diagram of an example embodiment
of' a method 317 of processing an example embodiment of
a packed data rearrangement control indexes precursors
generation instruction. The packed data rearrangement con-
trol indexes precursors generation instruction is received, at
block 318. The received instruction specifies or otherwise
indicates a destination storage location.

A result is stored in the destination storage location, in
response to and/or as a result of the packed data rearrange-
ment control indexes precursors generation instruction, at
block 319. The result includes a sequence of at least four
non-negative integers representing packed data rearrange-
ment control indexes precursors. The at least four integers
typically have a plurality of different values. In various
embodiments, the sequence may include at least eight, at
least sixteen, at least thirty-two, or at least sixty-four non-
negative integers representing packed data rearrangement
control indexes precursors. The result and/or the sequence of
integers may be any of the results and/or sequences of
integers disclosed elsewhere herein. In some embodiments,
the result and/or the sequence of the integers may be
generated entirely within the confines of the execution of a
single macroinstruction (e.g., values of the integers may not
depend on any previous instructions in the program flow).

To further illustrate certain concepts, and although the
invention is not limited in this respect, execution of at least
one additional instruction (e.g., at least one general-purpose
arithmetic instruction) is performed to convert the packed
data rearrangement control indexes precursors into packed
data rearrangement control indexes, at block 320. A first of
the at least one additional instruction may indicate the
destination storage location as a source of the packed data
rearrangement control indexes precursors.

Then, a packed data rearrangement instruction indicating
the packed data rearrangement control indexes may be
executed, at block 321. The operation of the packed data
rearrangement instruction may be similar to that previously
described.

In FIGS. 2 and 3, the operations at blocks 215, 216, 320,
and 321 have been shown to better illustrate certain con-
cepts. However, it is to be understood that the invention is
not limited to the operations performed at these blocks.
Other embodiments pertain to methods and operations of the
individual packed data rearrangement control indexes gen-
eration instructions, and still other embodiments pertain to
methods and operations of the individual packed data rear-
rangement control indexes precursors generation instruc-
tions, which are not limited to the operations of other
subsequent instructions.

FIG. 4 is a block diagram of an example embodiment of
an instruction processing apparatus 400. The instruction
processing apparatus may be a processor, or may be part of
a processor. For example, in some embodiments, the instruc-
tion processing apparatus may be, or may be part of, the
processor 100 of FIG. 1, or one similar. Alternatively, the
instruction processing apparatus may be included in a dif-
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ferent processor, or electronic system (e.g., one of the other
processors or systems disclosed herein).

The instruction processing apparatus may receive an
instruction 408 that is useful to generate control indexes.
The instruction may represent any of the various embodi-
ments of the instructions useful to generate control indexes
disclosed elsewhere herein. The instruction may represent a
machine instruction, macroinstruction, or like control signal.
The instruction processing apparatus has specific or particu-
lar circuitry or other logic (e.g., hardware potentially com-
bined with firmware and/or software) that is operable to
process the instruction and/or store a result in response to, as
a result of, and/or according to the instruction.

The illustrated instruction processing apparatus includes
an instruction decoder 422. The decoder may receive and
decode higher-level machine instructions or macroinstruc-
tions, and output one or more lower-level micro-operations,
micro-code entry points, microinstructions, or other lower-
level instructions or control signals that reflect and/or are
derived from the original higher-level instruction. The one
or more lower-level instructions or control signals may
implement the operation of the higher-level instruction
through one or more lower-level (e.g., circuit-level or hard-
ware-level) operations. The decoder may be implemented
using various different mechanisms including, but not lim-
ited to, microcode read only memories (ROMs), look-up
tables, hardware implementations, programmable logic
arrays (PLAs), and other mechanisms used to implement
decoders known in the art.

Alternatively, instead of having the decoder 422, in one or
more other embodiments, the apparatus may have an
instruction emulator, translator, morpher, interpreter, or
other instruction conversion logic. Various different types of
instruction conversion logic are known in the arts and may
be implemented in software, hardware, firmware, or a com-
bination thereof. The instruction conversion logic may
receive the instruction, emulate, translate, morph, interpret,
or otherwise convert it into one or more corresponding
derived instructions or control signals. In still other embodi-
ments, the instruction processing apparatus may have both
instruction conversion logic and a decoder. For example, the
instruction processing apparatus may have instruction con-
version logic to convert the received instruction into one or
more intermediate instructions, and a decoder to decode the
one or more intermediate instructions into one or more
lower-level instructions or control signals executable by
native hardware of the instruction processing apparatus.
Some or all of the instruction conversion logic may be
located off-die from the rest of the instruction processing
apparatus, such as on a separate die or in an off-die memory.

Referring again to FIG. 4, the instruction useful to gen-
erate the control indexes 408 explicitly specifies (e.g.,
through one or more fields), or otherwise indicates (e.g.,
implicitly indicates), a destination storage location 427. As
shown, in some embodiments, the destination storage loca-
tion may be within a set of packed data registers 403 of the
instruction processing apparatus. Alternatively, the destina-
tion storage location may be another register or memory
location. The packed data registers are architecturally-vis-
ible on-processor storage locations that may be implemented
in different ways in different microarchitectures, using well
known techniques, and are not limited to any known par-
ticular type of circuit. Various different types of registers are
suitable as long as they are capable of storing and providing
data as described herein. Examples of suitable types of
registers include, but are not limited to, dedicated physical
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registers, dynamically allocated physical registers using
register renaming, and combinations thereof.

The instruction processing apparatus also includes an
execution unit 423. The execution unit is coupled with the
decoder 422 and the destination storage location 427. The
execution unit may receive from the decoder one or more
micro-operations, micro-code entry points, microinstruc-
tions, other instructions, or other control signals, which
reflect, or are derived from, the instruction 408. By way of
example, the execution unit may include an arithmetic logic
unit, a logic unit, an arithmetic unit, a functional unit, or the
like. The execution unit may include specific or particular
hardware logic (e.g., integrated circuitry) potentially with
other logic (e.g., software, firmware, or a combination) that
is operable to execute the instruction (e.g., execute one or
more microinstructions) and/or store a result in response to
the instruction.

The execution unit is operable, in response to the instruc-
tion and/or as a result of the instruction 408, to store a result
428 in the destination storage location 427. As shown, in
embodiments, the result may include a sequence of at least
four integers. In embodiments where the instruction 408 is
a control indexes generation instruction, each of the integers
may represent a control index. In embodiments where the
instruction 408 is a control indexes precursors generation
instruction, each of the integers may represent a control
index precursor.

In some embodiments, the execution unit may include
calculation logic 424 operable to calculate the sequence of
the at least four integers. These may be special-purpose or
particular circuits (e.g., to calculate the integers using a
column sweep approach, iteratively calculate the integers,
etc.). In other embodiments, the execution unit may access
a pre-existing copy of the sequence of the at least four
integers 425 from a memory 426 (e.g., a non-architecturally
visible read only memory (ROM) that is on-die with the
execution unit) responsive to the instruction. See e.g., the
discussion of FIG. 16 below. In either of these embodiments,
the sequence of integers is typically not accessed from
off-die main memory or over a system bus.

In some embodiments, the result may include a sequence
of at least four, at least eight, at least sixteen, at least
thirty-two, or at least sixty-four, non-negative integers that
follow a numerical pattern. In some embodiments, the
integers that follow the numerical pattern may be consecu-
tive non-negative integers in numerical order (e.g., 0, 1, 2,
3,4,5, 6, and 7). In other embodiments, the integers that
follow the numerical pattern may be non-negative integers
in numerical order with all integers in consecutive positions
differing by a constant integer stride of at least two. In some
embodiments, the stride may be equal to two, and the
sequence of integers may be a sequence of consecutive same
parity integers in numerical order. For example, the con-
secutive same parity integers may be consecutive even
integers (e.g., 0, 2, 4, 6, 8, 10, 12, and 14), or consecutive
odd integers (e.g., 1, 3, 5, 7, 9, 11, 13, and 15). In other
embodiments, the stride (N) may be greater than two (e.g.,
the stride may be 3, 4, 8, 16, etc.), and the sequence of
integers may include consecutive integer multiples of the
stride (e.g., 0, N, 2N, 3N, 4N, 5N, 6N, and 7N).

In some embodiments, the instruction may explicitly
specify or otherwise indicate one or more numerical pattern
defining parameters (e.g., an integer offset, a constant inte-
ger stride, an integer rotation amount, an integer offset and
a constant integer stride, etc.). In some embodiments, the
instruction may indicate a positive integer offset (K), and a
smallest of the integers may be offset from zero by the
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integer offset (e.g., in the case of consecutive integers, K,
K+1, K+2, K+3, K+4, K45, K+6, and K+7). In some
embodiments, the instruction may indicate a positive integer
offset (K) and a constant integer stride (N), and the integers
may be consecutive integer multiples of the stride that are
offset from zero (e.g., K, N+K, 2N+K, 3N+K, 4N+K, SN+K,
6N+K, and 7N+K). Alternatively, the result and/or the
sequence of the at least four integers may be any of the
results and/or sequences of at least four integers disclosed
elsewhere herein for the various embodiments of the instruc-
tions useful to generate control indexes. In some embodi-
ments, the numerical pattern is based entirely or at least
predominantly on an opcode, or the opcode and one or more
numerical pattern defining parameters, of the instruction, or
fixed by the opcode, or the opcode and the one or more
numerical pattern defining parameters. It still further
embodiments, the sequence of integers need not follow a
numerical pattern (e.g., they may be seemingly random).

To avoid obscuring the description, a relatively simple
instruction processing apparatus 400 has been shown and
described. In other embodiments, the instruction processing
apparatus may optionally include other well-known compo-
nents, such as, for example, an instruction fetch unit, an
instruction scheduling unit, a branch prediction unit, instruc-
tion and data caches, instruction and data translation looka-
side buffers, prefetch buffers, microinstruction queues,
microinstruction sequencers, bus interface units, second or
higher level caches, a retirement unit, a register renaming
unit, other components included in processors, and various
combinations thereof. Embodiments may have multiple
cores, logical processors, or execution engines. An execu-
tion unit operable to execute an embodiment of an instruc-
tion disclosed herein may be included in at least one, at least
two, most, or all of the cores, logical processors, or execu-
tion engines. It is to be understood that there are literally
numerous different combinations and configurations of com-
ponents in processors, and that the scope of the invention is
not limited to any particular combination or configuration.

FIG. 5 is a block flow diagram of an example embodiment
of a method 530 of processing an instruction useful to
generate control indexes, which stores a sequence of at least
four non-negative integers that follow a numerical pattern.
The instruction is received, at block 531. The instruction
specifies or otherwise indicates a destination storage loca-
tion.

A result is stored in the destination storage location, in
response to the instruction and/or as a result of the instruc-
tion, at block 532. The result includes a sequence of at least
four non-negative integers that follow a numerical pattern.
In various embodiments, the result may include a sequence
of at least eight, at least sixteen, at least thirty-two, at least
sixty-four, or even more non-negative integers that follow
the numerical pattern. The sequence of integers may be any
of the sequences of integers that follow the various numeri-
cal patterns disclosed elsewhere herein. Often, at least two,
at least four, at least half, or even all of the integers may have
a different value (i.e., the integers are typically not all
identical).

FIG. 6 is a block diagram of an embodiment of an
instruction format for an instruction 608 useful to generate
control indexes. The instruction format includes an opcode
633. The opcode may represent a plurality of bits or one or
more fields of the instruction format to identify the instruc-
tion. The instruction format also includes a destination
storage location 634. In the illustrated embodiment, the
instruction format includes a plurality of bits or one or more
fields of the instruction format to explicitly specify the
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destination storage location. Alternatively, the destination
storage location may be implicit to the instruction.

In some embodiments, the instruction format does not
explicitly specity, implicitly indicate, or otherwise indicate,
an architecturally-visible source storage location (e.g., a
packed data register or a main memory location) having
packed data elements to be operated on by the instruction
635. In embodiments of the invention, sequences of integers,
control indexes, and control indexes precursors, which are
stored by instructions disclosed herein, are not calculated or
otherwise derived from packed data elements in an archi-
tecturally-visible source storage location. By contrast, as
discussed in the background section, conventionally per-
mute and shuffle control indexes are typically built up
gradually from scratch by executing a series of general-
purpose instructions (e.g., general-purpose packed data
arithmetic instructions) that do operate on packed data
elements in architecturally-visible source packed data reg-
isters until the packed data elements are ultimately con-
verted into the permute or shuffle control indexes. In
embodiments of the invention, the sequences of integers,
control indexes, and control indexes precursors, which are
stored by instructions disclosed herein, are generated
entirely within the confines of the execution of the single
instruction, and are not based on results of any preceding
instructions in program order.

In some embodiments, the instruction format may have
one or more source operands and/or one or more immediates
to explicitly specify one or more numerical pattern defining
parameters 636. Alternatively, one or more numerical pat-
tern defining parameters may be implicitly indicated by the
instruction (e.g., provided through a register implicitly indi-
cated by the instruction. Each of the one or more pattern
defining parameters may affect a numerical pattern of a
result or sequence of integers stored as a result of the
instruction. Each of the one or more pattern defining param-
eters may affect values of each of the integers in the
sequence or result. Each of the one or more pattern defining
parameters may be used to evaluate a numerical pattern
defining equation or relation that is implicit to the instruc-
tion. A few representative examples of suitable numerical
pattern defining parameters include, but are not limited to,
integer offsets from zero, integer strides, integer rotation
amounts, and combinations thereof (e.g., integer offsets
from zero together with integer strides).

In other embodiments, the instruction may not specify or
otherwise indicate any numerical pattern defining param-
eters. In some embodiments (e.g., in embodiments where the
instruction does not specify or otherwise indicate any
numerical pattern defining parameters), the instruction may
not have (e.g., specify or otherwise indicate) any source
operands 637.

FIG. 7A is a block diagram illustrating that in some
embodiments a sequence of integers 740A in a result 728A
stored in a destination storage location 727A by an instruc-
tion 708A may have a numerical pattern that is based
entirely or at least predominantly 738 on an opcode 733 A of
the instruction. The instruction has the opcode and bits or
one or more fields 734A to specify the destination storage
location 727A. Note that the instruction of this embodiment
does not specify or otherwise indicate any numerical pattern
defining parameters, or any source operands for that matter.
Execution of the instruction causes the result to be stored in
the destination storage location. The result includes the
sequence of integers having the numerical pattern. In these
embodiments, the numerical pattern of the sequence of
integers is based entirely or at least predominantly on the
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opcode of the instruction. In these embodiments, the numeri-
cal pattern of the sequence of integers is fixed or constant for
the opcode of the instruction. For example, a difference
between consecutive integers in the sequence may be based
entirely or at least predominantly on the opcode of the
instruction and/or fixed or constant for the opcode of the
instruction. Upon identifying the opcode, the sequence of
integers and their numerical pattern may be fixed (i.e., may
not depend on any source operands of the instruction). In
some embodiments, the instruction/opcode may only be
capable of storing one particular sequence of integers and/or
one particular numerical pattern. By way of comparison,
when general-purpose arithmetic instructions operate on
source packed data to produce permute or shuffle control
indexes, the permute or shuffle control indexes do not have
a numerical pattern that is based entirely or even predomi-
nantly on the opcode of the general-purpose arithmetic
instructions, rather it is based on the source packed data.

FIG. 7B is a block diagram illustrating that in some
embodiments a sequence of integers 740B in a result 728B
stored in a destination storage location 727B by an instruc-
tion 708B may have a numerical pattern that is based 739
partly on an opcode 733B of the instruction and partly on
one or more numerical pattern defining parameters 736
indicated by the instruction. The numerical pattern is based
entirely or at least predominantly on the opcode and the one
or more numerical pattern defining parameters. The instruc-
tion has the opcode, bits or one or more fields 734B to
specify the destination storage location 727B, and specifies
or otherwise indicates the one or more numerical pattern
defining parameters 736. Execution of the instruction causes
the result to be stored in the destination storage location. The
result includes the sequence of integers having the numerical
pattern. In these embodiments, the numerical pattern of the
sequence of integers is based partly on the opcode of the
instruction and partly on the one or more numerical pattern
defining parameters indicated by the instruction, but is based
entirely or at least predominantly on the opcode and the one
or more numerical pattern defining parameters (i.e., is not
based on source packed data stored as a result by a preceding
instruction).

FIG. 8 is a block flow diagram of an example embodiment
of a method 830 of processing an instruction useful to
generate control indexes, which stores a sequence of at least
four consecutive non-negative integers in numerical order.
The instruction is received, at block 831. The instruction
specifies or otherwise indicates a destination storage loca-
tion.

A result is stored in the destination storage location, in
response to the instruction and/or as a result of the instruc-
tion, at block 832. The result includes a sequence of at least
four consecutive non-negative integers in numerical order.
In some embodiments, the result may include a sequence of
at least eight, at least sixteen, at least thirty-two, at least
sixty-four, or even more, consecutive non-negative integers
in numerical order in the destination storage location. In
various embodiments, the sequence of consecutive integers
may include any of those shown in Tables 1-3.

Table 1 lists example embodiments of sequences of
consecutive non-negative integers in increasing numerical
order for different numbers of integers.
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TABLE 1

NUMBER OF SEQUENCES OF CONSECUTIVE INTEGERS

INTEGERS IN INCREASING NUMERICAL ORDER
4 01,2,3
8 0,1,2,3,4,5,6,7
16 0,1,2,3,4,5,6,7,8,9,10, 11, 12, 13, 14, 15
32 0,1,2,3,4,5,6,7,8,09, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31
64 0,1,2,3,4,5,6,7,8,09, 10, 11, 12, 13, 14, 15, 16,

17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,
31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58,
59, 60, 61, 62, 63

In increasing numerical order, the values of the integers
increase with increasing bit significance of the destination
storage location (e.g., the smallest integer is to be stored
nearest to the lowest-order bit of the register, and the largest
integer is to be stored nearest to a highest-order bit of the
register). In each of these examples, the smallest integer is
zero. In some embodiments, an instruction/opcode may only
be capable of storing a sequent of integers selected from
Table 1 (i.e., it may not be capable of storing other integers),
although this is not required for other embodiments. Such
sequences of consecutive integers in increasing numerical
order are particularly useful for control indexes precursors,
since they may be quickly, efficiently, and versatility, arith-
metically or logically converted with one or a few additional
instructions into a wide range of different sequences of
integers useful for control indexes.

Table 2 lists example embodiments of sequences of
consecutive non-negative integers in decreasing numerical
order for different numbers of integers.

TABLE 2

NUMBER OF SEQUENCES OF CONSECUTIVE INTEGERS

INTEGERS IN DECREASING NUMERICAL ORDER
4 3,2,1,0
8 7,6,5,4,3,2,1,0
16 15, 14,13, 12,11, 10, 9, 8,7, 6, 5,4, 3, 2, 1, 0
32 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18,
17, 16, 15, 14, 13, 12, 11, 10,9, 8, 7, 6, 5,4, 3,2, 1, 0
64 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50,

49, 48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36,
35, 34, 33, 32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22,
21, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7,
6,5,4,3,2,1,0

In the decreasing numerical order, the values of the
integers decrease with increasing bit significance of the
destination storage location. In some embodiments, an
instruction may have one or more bits to indicate whether or
not integers are to be stored in increasing or decreasing
numerical order to allow one instruction/opcode to be used
for either. Such sequences of consecutive integers in
decreasing numerical order are useful for mirroring packed
data rearrangements. In an example mirroring packed data
rearrangement, data elements in a packed data source are
“mirrored” about a center of the packed data source. For
example, a highest-order data element in a source is made a
lowest-order data element in a result, a next-highest-order
data element in the source is made a next-lowest-order data
element in the result, and so on, up to making a next-to-
lowest-order data element in the source a next-to-highest-
order data element in the result, and making a lowest-order
data element in the source a highest-order data element in
the result.
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Table 3 lists example embodiments of sequences of

consecutive non-negative integers in increasing numerical
order, which have a smallest integer offset from zero by an
integer offset (K), for different numbers of integers.

TABLE 3
INTEGER
NUMBER OFFSET  OFFSET SEQUENCES OF
OF FROM ZERO CONSECUTIVE INTEGERS IN
INTEGERS (K) INCREASING NUMERICAL ORDER
4 2 2,3,4,5
4 K K,K+1,K+2,K+3
8 5 5,6,7,8,9,10, 11, 12
8 K K,K+1,K+2,K+3,K+4,K+5,
K+6K+7
16 1 1,2,3,4,5,6,7,8,9, 10, 11, 12, 13, 14,
15,16
16 K K,K+1,K+2,K+3,K+4,K+5,
K+6,K+7,K+8 K+9, K+ 10,
K+11,K+12,K+13, K+ 14, K + 15
32 7 7,8,9,10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38
64 12 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22,

23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44,
45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55,
56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66,
67, 68, 69, 70, 71, 72, 73, 74, 75

As shown, a smallest one of the integers may be offset
from zero by the offset and may have a value of the offset.
By way of example, the integer offset (K) may optionally be
added to each of the integers of the sequences shown in
Table 1. Analogous embodiments are contemplated for con-
secutive non-negative integers in decreasing numerical
order. Such consecutive non-negative integers in numerical
order, which are offset from zero by a variable positive
integer offset (K), are useful to help extract unaligned
packed data from two aligned packed data to avoid needing
to perform unaligned loads (see e.g., the discussion of FIG.
9).

In some embodiments, the instruction may explicitly
specify (e.g., through a source operand or an immediate) or
otherwise indicate (e.g., implicitly indicate a register hav-
ing) the integer offset (K). The offset (K) represents an
example embodiment of a pattern defining parameter, which
affects the values of each of the integers in the numerical
pattern, and which the numerical pattern is based on.

In some embodiments, a result may include rotated con-
secutive non-negative integers in numerical order, which
have been rotated by an integer rotation amount (R). Table
4 lists example embodiments of sequences of consecutive
non-negative integers in increasing numerical order, which
have been rotated by an integer rotation amount (R), for
different numbers of integers.

TABLE 4

INTEGER
NUMBER  ROTATION ROTATED SEQUENCES OF

OF AMOUNT CONSECUTIVE INTEGERS IN
INTEGERS R) INCREASING NUMERICAL ORDER
4 3 1,2,3,0
8 5 3,4,5,6,7,0,1,2
16 2 14,15,0,1,2,3,4,5,6,7,8,9, 10, 11,
12, 13
32 4 28, 29, 30, 31,0, 1, 2, 3,4,5,6,7, 8,9,

10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22, 23, 24, 25, 26, 27
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TABLE 4-continued

INTEGER
NUMBER  ROTATION ROTATED SEQUENCES OF

OF AMOUNT CONSECUTIVE INTEGERS IN
INTEGERS ®R) INCREASING NUMERICAL ORDER
64 1 63,0,1,2,3,4,5,6,7,8,9, 10, 11, 12,

13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,
25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,
37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48,
49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60,
61, 62

As shown, each integer is rotated in the rotation direction,
and when rotated out of one end is rotated into the other end.
In some embodiments, the instruction may explicitly specify
(e.g., through a source operand or an immediate) or other-
wise indicate (e.g., implicitly indicate a register having) the
rotation amount (R). The rotation amount (R) represents an
example embodiment of a pattern defining parameter, which
affects the values of each of the integers in the numerical
pattern, and which the numerical pattern is based on. The
integers may be rotated either to the right or to the left. In
some embodiments, the instruction may also explicitly
specify or implicitly indicate a rotation direction. Analogous
embodiments are contemplated for consecutive non-nega-
tive integers in decreasing numerical order. Such rotated
consecutive integers are useful for rotating packed data
elements. Such rotated consecutive integers are useful for
rotating packed data elements in sequences smaller than the
full vector size.

FIG. 9 is a block diagram illustrating an example embodi-
ment of a packed data rearrangement operation using packed
data rearrangement control indexes having values of offset
consecutive integers in numerical order to extract unaligned
packed data from two aligned packed data to avoid needing
to perform unaligned loads. The operation may be per-
formed in response to a packed data rearrangement instruc-
tion.

The packed data rearrangement instruction may indicate a
first source packed data 942 having eight data elements
A,-A,, a second source packed data 943 having eight data
elements B,-B-, a third source packed data 944 having eight
packed data elements C,-C,, which each include a corre-
sponding one of eight packed data rearrangement control
indexes I,-1,, and a result packed data 945. By way of
example, each of the control indexes I,-I, may be 4-bits
wide and may be included in the least significant 4-bits of
the corresponding packed data element C,-C,, which may
be 8-bits, 16-bits, 32-bits, or 64-bits wide. Other instructions
may use other numbers of data elements and control indexes.

The result packed data 945 is generated and stored in
response to the packed data rearrangement operation/in-
struction. In this embodiment, each of the packed data
rearrangement control indexes corresponds to a result data
element in a corresponding bit position. Each of the control
indexes is operable to select any one of the sixteen data
elements of the first and second source packed data (i.e., any
one of A,-A, or B,-B,) to be stored into the corresponding
result data element. For example, the first control index I is
operable to select any one of Aj-A, or B,-B,, to be stored in
a first result packed data element of the result packed data.
Four bits are sufficient to uniquely select any one of the
sixteen source data elements. According to one possible
convention, a control index has a value of 0 to select A, 1
to select A, 2 to select A,, 3 to select A;, 4 to select A,, 5
to select A, 6 to select Ag, 7 to select A,. A control index
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has a value of 8 to select B, 9 to select B, 10 to select B,
11 to select B;, 12 to select B,, 13 to select Bs, 14 to select
Bg, and 15 to select B..

In this embodiment, the packed data rearrangement con-
trol indexes have values of offset consecutive integers in
numerical order. In particular, the control indexes I, I;, L,,
1;, L, L, I, 1, respectively, have the values 2, 3, 4, 5, 6, 7,
8, and 9. As shown, these control indexes are operable to
select A5, A;, Ay, A, A, A, By, and B, for the eight data
elements of the result packed data. The operation with these
indexes merges A,-A, with By-B,. Rather than needing to
perform unaligned loads to merge A,-A, with B,-B,, such
merging may be performed with the use of the offset
consecutive integers in numerical order as the control
indexes.

Similarly, it may be readily seen how consecutive integers
in decreasing numerical order may be used to perform
mirroring packed data element rearrangements. Moreover, it
may be readily seen how rotated consecutive integers may
be used to rotate packed data elements.

FIG. 10 is a block flow diagram of an example embodi-
ment of a method 1030 of processing an instruction useful
to generate control indexes, which stores a sequence of at
least four non-negative integers in numerical order with all
integers in consecutive positions differing by a constant
integer stride of at least two. The instruction is received, at
block 1031. The instruction specifies or otherwise indicates
a destination storage location.

A result is stored in the destination storage location, in
response to the instruction and/or as a result of the instruc-
tion, at block 1032. The result includes a sequence of at least
four non-negative integers in numerical order with all inte-
gers in consecutive positions differing by a constant integer
stride of at least two. In some embodiments, the result may
include a sequence of at least eight, at least sixteen, at least
thirty-two, at least sixty-four, or even more, non-negative
integers in numerical order with all integers in consecutive
positions differing by a constant integer stride of at least two.

The constant stride represents a constant difference
between values of integers in consecutive positions in the
destination storage location. In various embodiments, the
stride may be two, three, four, or more. Integers separated by
constant strides of two, three, and four are particularly useful
for processing repetitively-arranged paired/two-tuple data
(e.g., pairs of real and imaginary numbers, or other pairs of
data), three-tuple data (e.g., RGB, or other color component
data), and four-tuple data (e.g., RGBA or other color com-
ponent plus transparency/opacity data). Even greater strides
are useful for control indexes for gather instructions that
gather non-contiguous data from memory (e.g., from tables
or other structured data arrangements). In some embodi-
ments, the instruction may only be capable of storing a
sequence of integers in which consecutive integers differ by
a constant stride, although other embodiments are not so
limited.

FIG. 11 is a block flow diagram of an example embodi-
ment of a method 1130 of processing an instruction useful to
generate control indexes, which stores a sequence of at least
four non-negative same parity (e.g., all even or all odd)
integers in numerical order. The instruction is received, at
block 1131. The instruction specifies or otherwise indicates
a destination storage location.

A result is stored in the destination storage location, in
response to the instruction and/or as a result of the instruc-
tion, at block 1132. The result includes a sequence of at least
four non-negative same parity integers in numerical order.
The parity of an integer refers to whether it is even or odd.
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Even integers have a same parity, and odd numbers have a
same parity, which is a different parity than that of the even
numbers. In some embodiments, the result may include a
sequence of at least eight, at least sixteen, at least thirty-two,
at least sixty-four, or even more, even integers (e.g., con-
secutive even integers) in numerical order. In other embodi-
ments, the result may include a sequence of at least eight, at
least sixteen, at least thirty-two, at least sixty-four, or even
more, odd integers (e.g., consecutive odd integers) in
numerical order.

Table 5 lists example embodiments of sequences of
consecutive even integers in increasing numerical order for
different numbers of integers.

TABLE 5
NUMBER
OF SEQUENCES OF CONSECUTIVE EVEN INTEGERS
INTEGERS IN INCREASING NUMERICAL ORDER
4 0,2,4,6
8 0,2,4,6,8 10,12, 14
16 0,2,4,6,8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30
32 0,2,4,6,8, 10, 12, 14, 16, 18, 20, 22, 24, 26,
28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50,
52, 54, 56, 58, 60, 62
64 0,2,4,6,8, 10, 12, 14, 16, 18, 20, 22, 24, 26,

28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52,
54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, T8,
80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102,
104, 106, 108, 110, 112, 114, 116, 118, 120, 122,
124, 126

Table 6 lists example embodiments of sequences of
consecutive odd integers in increasing numerical order for
different numbers of integers.

TABLE 6

NUMBER SEQUENCES OF CONSECUTIVE

OF ODD INTEGERS IN INCREASING
INTEGERS NUMERICAL ORDER
4 1,3,57
8 1,3,57,9, 11, 13, 15
16 1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31
32 1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,
33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 39, 61, 63
64 1,3,5,7,9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31,

33, 35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61,
63, 65, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91,
93, 95, 97, 99, 101, 103, 105, 107, 109, 111, 113, 115,
117, 119, 121, 123, 125, 127

In some embodiments, an instruction/opcode may only be
capable of storing a sequent of integers selected from Tables
5 or 6 (i.e., it may not be capable of storing other integers),
although this is not required for other embodiments. Such
sequences of consecutive even and odd integers are particu-
larly useful for processing repetitively-arranged two-tuple
data, such as, for example, pairs of real and imaginary
numbers representing complex numbers, as well as other
paired data. For example, such sequences of consecutive
even and odd integers may be used to separate, isolate, or
de-interleave one type of paired or two-tuple data from
another (e.g., separate real numbers from imaginary num-
bers). See e.g., the discussion of FIG. 12.

In other embodiments, an integer offset (K) may option-
ally be added to each of the same parity integers. In still
other embodiments, the sequence of same parity integers
may be rotated by an integer rotation amount (R). In still
further embodiments, the same parity integers may be in
decreasing numerical order.
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FIG. 12 is a block diagram illustrating an example
embodiment of a packed data rearrangement operation using
packed data rearrangement control indexes having values of
consecutive even integers in increasing numerical order to
separate real numbers (R) from imaginary numbers (IM).
The operation may be performed in response to a packed
data rearrangement instruction.

The instruction may indicate a first source packed data
1242 having eight data elements Ry, IM,, R, IM,, R,, IM,,
R;, IM;, a second source packed data 1243 having eight data
elements R, IM,, R, IM, Rq, IM, R, IM,, a third source
packed data 1244 having eight data elements C,-C,, each
including a corresponding one of eight packed data rear-
rangement control indexes I,-I,, and a result packed data
1245. In the first and second source packed data, real
numbers (R) and imaginary numbers (IM) are interleaved.
By way of example, each of the control indexes I,-1, may be
4-bits wide and may be included in the least significant
4-bits of the corresponding data element C,-C.,.

The result packed data 1245 is generated and stored in
response to the packed data rearrangement operation/in-
struction. In this embodiment, each of the control indexes
corresponds to a result data element in a corresponding bit
position. In this embodiment, the control indexes have
values of consecutive even integers in increasing numerical
order. In particular, the control indexes I, I;, I,, 15, L, L5, I,
and 1, respectively, have the values 0, 2, 4, 6, 8, 10, 12, and
14. As shown, these control indexes are operable to select
and store the real numbers R, R;, R,, R;, R,, Ry, R, and
R, in the eight data elements of the result packed data. This
essentially de-interleaves or separates the real numbers (R)
from the imaginary numbers (IM).

In an alternate embodiment, a similar packed data rear-
rangement operation may be performed using control
indexes having values of consecutive odd integers in
increasing numerical order to separate the imaginary num-
bers (I) from the real numbers (R). In particular, the control
indexes I, I,, L, 15, 1, L5, I, and L, respectively, may have
the values 1, 3, 5,7, 9, 11, 13, and 15, in order to select and
store the imaginary numbers IM,, IM,, IM,, IM,, IM,,, IM,
1M, and IM,,, in the eight data elements of the result packed
data. Moreover, control indexes having consecutive even or
odd integers in numerical order may also be used to separate
other types of paired or two-tuple data.

In other embodiments, the stride may be greater than two.
Table 7 lists example embodiments of sequences of integers
in numerical order, with integers in consecutive positions
differing by a constant integer stride that is greater than two,
for different numbers of integers.

TABLE 7

SEQUENCES OF INTEGERS
NUMBER CONSTANT IN INCREASING NUMERICAL

OF STRIDE ORDER DIFFERING BY STRIDE
INTEGERS ) GREATER THAN TWO
4 3 0,3,6,9
4 4 0,4,8,12
4 8 0,8, 16, 24
4 N 0, N, 2N, 3N
8 3 0,3,6,9, 12,15, 18, 21
8 4 0, 4, 8, 12, 16, 20, 24, 28
8 8 0, 8, 16, 24, 32, 40, 48, 56
8 N 0, N, 2N, 3N, 4N, 5N, 6N, 7N
16 3 0,3,6,9, 12,15, 18, 21, 24, 27, 30, 33, 36,
39, 42, 45
16 4 0, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44,

48, 52, 56, 60
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TABLE 7-continued TABLE 8
SEQUENCES OF INTEGERS NUMBER CONSTANT SEQUENCES OF INTEGERS
NUMBER CONSTANT IN INCREASING NUMERICAL INTSCI:ERS STRIDE OH;(SET FO*L,LOI?ING FORMULA
OF STRIDE ORDER DIFFERING BY STRIDE ™ © a+K
INTEGERS (N)  GREATER THAN TWO 4 2 1 1,3,5,7
4 3 22,5811
16 8 0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 4 4 2 2,6,10,14
96, 104, 112, 120 4 N K K, N+K,2N+K,3N +K
8 2 2 2,4,6,8,10,12, 14, 16
16 N 0, N, 2N, 3N, 4N, 5N, 6N, 7N, &N, 9N.
P ST T T e P 10 8 3 1 1,4,7,10, 13, 16, 19, 22
10N, 11N, 12N, 13N, 14N, 15N 8 2 3 37111519, 23. 7. 31
8 N K KN+K 2N+K, 3N +K,
4N + K, 5N + K, 6N +K,
These are just a few illustrative examples. For simplicity, IN+XK
. . 16 2 4 4,6,8,10, 12, 14, 16, 18, 20,
examples are only shown for four, eight, or sixteen control . 24 26, 28, 30. 32 36
indexes or control indexes precursors, although other num- 15 16 3 7 7,10, 13, 16, 19, 22, 25, 28,
bers are also contemplated (e.g., 32, 64, etc.). Also, for 31, 34, 37, 40, 43, 46, 49, 52
S . . 16 4 3 3,7,11,15,19, 23, 27, 31,
simplicity, only a few representative examples of strides are 35,30, 43 47 51, 55. 59, 53
shown (i.e., 3, 4, and 8), although other strides are also 16 N K K:N;K:zN’Jr K 31’\1+’K,
possible (e.g., 5, 6, 10, 16, etc.). Still other embodiments are 2 AN + K, 5N + K, 6N + K,

: : : : N + K, 8N + K, ON + K,
contemplated in which the integers of the sequence are in 10N + K 1IN £ K. 1N + K
decreasing numerical order, are offset from zero, and/or are BN+ K, 14N + K, 15N + K.
rotated.

FIG. 13 is a block flow diagram of an example embodi- As discussed above, consecutive non-negative integers in
25

ment of a method 1330 of processing an instruction useful
to generate control indexes, which stores a sequence of at
least four integers in numerical order, where a smallest of the
integers is offset from zero by the offset (K), and where all
of the integers in consecutive positions differ from one
another by the stride (N). The instruction is received, at
block 1331. The instruction specifies or otherwise indicates
a destination storage location.

In some embodiments, the instruction explicitly specifies,
or otherwise indicates, an integer offset (K) and a constant
integer stride (N). In some embodiments, the instruction
may have at least one of a source operand and an immediate
to explicitly specity the offset (K) and/or the stride (N). As
another option, the instruction may implicitly indicate a
register that provides the offset (K) and/or the stride (N). In
some cases, the offset may be zero, or in other cases it may
be a non-zero positive integer. The constant integer stride is
a positive integer of one or more. The instruction may set
each of the offset (K) and the stride (N) to obtain a desired
numerical pattern appropriate for the desired control
indexes.

A result is stored in the destination storage location, in
response to the instruction and/or as a result of the instruc-
tion, at block 1332. The result includes a sequence of at least
four non-negative integers in numerical order in the desti-
nation storage location, where a smallest of the integers is
offset from zero by the offset (K), and where all of the
integers in consecutive positions differ from one another by
the stride (N). The value of an integer at position (i) in the
destination storage location may be equal to the stride (N)
multiplied by the position (i) added to the offset (K).
Mathematically, this may be expressed as integer at position
(1)=(N*i+K), where i ranges from zero to one less than the
total number of integers in the sequence (e.g., i is O for the
first integer, i is 1 for the second integer, etc.).

Table 8 lists example embodiments of sequences of
integers in numerical order, where a smallest of the integers
differs from zero by the offset (K), and where all of the
integers in consecutive positions differ from one another by
the stride (N), for different numbers of integers.

30

40

45

numerical order are useful and versatile for generating a
variety of different integer sequences and/or numerical pat-
terns. In some embodiments, an instruction that stores
consecutive non-negative integers in numerical order may
be used together with an instruction that applies a stride and
an offset to generate one of numerous useful numerical
patterns.

FIG. 14 is a block flow diagram of an example embodi-
ment of a method 1446 of processing a first control indexes
precursors generation instruction to store a sequence of
consecutive non-negative integers in numerical order a
second instruction that applies a stride and an offset to each
of the consecutive non-negative integers in numerical order.

The first control indexes precursors generation instruction
is received, at block 1431. The instruction specifies or
otherwise indicates a first destination storage location.

A first result is stored in the first destination storage
location, in response to the first instruction, at block 1432.
The result includes a sequence of at least four consecutive
non-negative integers in numerical order. In some embodi-
ments, the result may include one of the sequences of
integers shown in Table 1 above.

A second instruction indicating the sequence of the at
least four consecutive integers in numerical order (e.g.,
explicitly specifying the first destination storage location as
a source) is received, at block 1447. The second instruction
indicates a second destination storage location and indicates
a stride (N) and an offset (K). In some embodiments, the
second instruction may have at least one source operand
and/or immediate to explicitly specify the stride and the
offset.

A second result is stored in the second destination storage
location, in response to the second instruction, at block
1448. The second result includes a sequence of at least four
non-negative integers in numerical order, where all integers
in consecutive positions differ from one another by the stride
(N), and where a smallest of the integers is offset from zero
by the offset (K). In some embodiments, each of the at least
four consecutive integers may be multiplied by the stride
(N), and the offset (K) may be added to each of the products.
For example, the stride (N) may be broadcast into a plurality
of values of the stride (N) in a first temporary register, the
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offset (K) may be broadcast into a plurality of values of the
offset (K) in a second temporary register, and each of the at
least four consecutive integers may be multiplied by the first
temporary register and the resulting products may be added
to the second temporary register. The sequence of integers of
the second result may follow the numerical pattern (N*i+K).

FIG. 15 is a block diagram of a source packed data 1542
storing RGBA (i.e., Red Green Blue Alpha) four-tuple data.
The RGBA data represents color component plus transpar-
ency/opacity data. RGBA data is commonly used in com-
puters and other electronic devices having displays/screens.
The particular illustrated packed data operand has sixteen
data elements. In the illustration, the sixteen data elements
respectively store Ry, G, Bg, Ag, Ry, G, B, AL R,, G5, B,
A,, Ry, Gj, B;, A;. In some embodiments, a numerical
pattern or sequence of integers may be operable to perform
useful operations on four-tuple data.

Table 9 lists example embodiments of sequences of
integers to perform various useful operations on RGBA data
or other 4-tuple data. Many of these sequences are useful for
four-tuple data in general.

TABLE 9
NUMBER
OF SEQUENCES OF
INTEGERS INTEGERS EXAMPLE OF USE
16 0,4,8,12,1,5,9,13, 2, 6, Separate each of the R,
10, 14, 3, 7, 11, 15 G, B, and A components
16 3,2,1,0,7,6, 5,4, 11, 10, Reverse or mirror order
9, 8,15, 14, 13, 12 within RGBA four-tuples
16 0,1,2,4,5,6,8,9, 10, 12, Remove A components from
13, 14 RGBA four-tuples
16 0,1,3,2,4,5,7,6,8,9, Swap order of R and G
11, 10, 12, 13, 15, 14 components within RGBA
four-tuples
16 3,0,1,2,7,4,5,6,11, 8, Convert from RGBA to
9,10, 15,12, 13, 14 ARGB
16 2,1,0,3,6,5,4,7,10,9, Convert from RGBA to
8,11, 14, 13, 12, 15 BGRA

>

Notice that these numerical patterns have a repeat unit of
four integers such that the pattern repeats every four inte-
gers. These are just a few examples. Other sequences to
perform other operations are also contemplated.

Still other embodiments need not utilize packed data
rearrangement control indexes with numerical patterns. In
general, any sequence of integers may be used as long as it
is useful for control indexes or control indexes precursors.

The integers may have values appropriate for control
indexes or control indexes precursors. Commonly, packed
data rearrangement instructions use control indexes that are
operable to index or select any one of 4 source packed data
elements, 8 source packed data elements, 16 source packed
data elements, 32 source packed data elements, 64 source
packed data elements, or in some cases 128 source packed
data elements. In embodiments, each of the integers in a
sequence may have a value that ranges from zero to an upper
bound that is one less than the total number of data elements
that the associated packed data rearrangement instruction
indexes among. For example, in various embodiments, the
integer values may all range from O to 127 in order to index
or select any one of 128 source packed data elements, may
range from O to 63 in order to index any one of 64 data
elements, may range from 0 to 31 in order to index any one
of'32 data elements, may range from O to 15 in order to index
any one of 16 data elements, or may range from 0 to 7 in
order to index any one of 8 data elements. In some embodi-
ments, the instruction/opcode may be incapable of storing
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integers outside of these ranges, although this is not required
for other embodiments. Instructions useful to generate con-
trol indexes for gather or load instructions that load non-
contiguous data from memory (e.g., from a table) often have
somewhat greater ranges of integer values.

Various ISAs have one or more instructions that load data
from non-contiguous memory locations or store data to
non-contiguous memory locations. Examples of such
instructions include, but are not limited to gather and scatter
instructions. By way of example, the gather instructions may
gather or load multiple data elements into a result packed
data from multiple non-contiguous memory locations using
a gather index vector provided through a source of the gather
instructions. The scatter instructions may scatter or store
multiple data elements from a source packed data into
multiple non-contiguous memory locations using a scatter
index vector provided through a source of the scatter instruc-
tions. In some embodiments, the control indexes generation
instructions disclosed herein may be used to generate control
indexes for such gather and/or scatter instructions and/or for
other instructions that access non-contiguous locations in
memory. For example, the control indexes generation
instructions disclosed herein may be used to generate gather
index vectors and/or scatter index vectors that may be
indicated as source operands, respectively, by the gather or
scatter instructions.

Gather and scatter instructions are useful for various
different purposes. In some embodiments, the gather and
scatter instructions are used, respectively, to load data from
or store data to, tables or other regularly arranged data
structures. As an example, the gather and scatter instructions
may be used to access a row of a two-dimensional array
when the data is ordered in column-major order. As another
example, the gather and scatter instructions may be used to
access a column of the array when the data is stored in
row-major order. Other examples include accessing data in
multi-dimensional arrays. In such examples, sequences or
control indexes as disclosed herein may be used to generate,
or assist with generating, the gather index vectors and/or
scatter index vectors. Commonly, as in accessing data from
a row in column-major ordered arrays, or as in accessing
data from a column in a row-major ordered array, a constant
stride as disclosed elsewhere herein may be used. Stride
values and offset values as disclosed herein may be used as
previously described to generate the gather index vectors
and/or scatter index vectors. By way of example, the stride
may be based on the row length and/or the column location
within the row. The gather or scatter instruction may then
specify the gather index vectors and/or scatter index vectors
as a source.

Alternatively, in other embodiments, an instruction to
load data from non-contiguous memory locations (e.g., a
gather instruction) or an instruction to store data to non-
contiguous memory locations (e.g., a scatter instruction)
may incorporate control indexes generation capabilities as
described elsewhere herein. For example, in some embodi-
ments, a gather instruction and/or a scatter instruction may
indicate a source having one or more of a stride and an offset
and the gather and/or scatter instruction may be operable to
both use the stride and/or the offset to generate control
indexes and perform the gather and/or scatter operations
within the confines of the execution of the single gather
and/or scatter instruction. The different possibilities for
using the stride and the offset mentioned before may also be
used by these instructions. On possible advantage of such
instructions is that a vector scale-index-base (SIB) may not
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be needed which may allow reclaiming the traditional SIB
and/or a shorter instruction encoding.

Different ways of generating control indexes and/or con-
trol indexes precursors are contemplated. In some embodi-
ments, a sequence of integers may be stored in a memory of
a processor at a time of manufacture (e.g., prior to runtime
execution of application code), and instructions as disclosed
herein (e.g., included in application code at runtime) may be
operable to access the sequence of integers from the memory
when they are executed at runtime.

FIG. 16 is a block diagram of an example embodiment of
a processor 1600. The processor includes decode and execu-
tion units 1623, packed data registers 1603, and a read-only
memory (ROM) 1650. The ROM has multiple non-archi-
tecturally visible storage locations 1651. Each of the storage
locations stores a different sequence of integers. For
example, a first storage location 1651-1 stores a first
sequence of integers (e.g., 0, 1, 2, 3, 4, 5, 6, and 7), an Mth
storage location 1651-M stores an Mth sequence of integers
(e.g., 0, 2, 4, 6, 8 10, 12, and 14), and an Nth storage
location 1651-N stores an Nth sequence of integers (e.g., 1,
3,5,7,9,11, 13, and 15). The sequences of integers stored
in these storage locations represent predetermined
sequences of integers. The storage locations may store any
of the sequences of integers disclosed herein, as well as
other sequences entirely. Typically, one or several (e.g., from
about two to about ten or more) of the more commonly used
sequences of integers and/or sequences of integers that are
relatively more expensive to generate from scratch may be
stored.

The decode and execution units 1623 receive an instruc-
tion 1608 that is useful to generate control indexes. The
instruction indicates a destination storage location 1627,
which in some embodiments may be in the packed data
registers 1603. In some embodiments, the instruction (e.g.,
an opcode of the instruction) may implicitly indicate the
ROM and the instruction may indicate one of the non-
architecturally visible storage locations. In some such
embodiments, the one indicated non-architecturally visible
storage location may be fixed or implicit to the instruction
(e.g., fixed or implicit to an opcode of the instruction). In
other such embodiments, the instruction may have one or
more bits to explicitly specify or select the one non-archi-
tecturally visible storage location. For example, in some
embodiments, the instruction may have one, two, three, four,
or more bits, respectively, to select among two, four, eight,
or sixteen different predetermined sequences of integers.
Advantageously, in this way one instruction/opcode may be
capable of selecting among multiple sequences of integers.

In the illustrated example, the instruction indicates the
Mth non-architecturally visible storage location 1651-M.
Responsive to the instruction, the execution unit may access
the Mth sequence of integers (e.g., 0, 2, 4, 6, 8, 10, 12, and
14), and store them in the destination storage location 1627.
In such embodiments, the Mth sequence of integers does not
need to be generated or calculated, but rather pre-existing/
pre-stored values may merely be accessed from the ROM.
This may allow the sequence of integers to be provided
quickly and efficiently, within the execution of a single
instruction. In some embodiments, the ROM may be on-die
with the processor and/or the decode and execution units,
such that the sequence of integers does not need to be
accessed from an off-die main memory or other source
and/or over a system bus.

Processors commonly include ROM on-die to store vari-
ous different types of information (e.g., processor identifi-
cation information, cryptographic keys, configuration infor-
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mation, etc.). There is often room available in such ROM to
store one or more sequence of integers as disclosed herein.
Alternatively, a dedicated ROM, a read-only register, a
non-architecturally visible register, or another non-architec-
turally visible storage space may be included on-die to store
one or more sequence of integers as disclosed herein. As
another option, one or more sequences of integers may be
burnt into one-time-programmable fuses of a processor or
otherwise pre-stored or pre-provided on-die with a processor
and/or execution unit.

In some embodiments, a column-sweep approach may be
used to generate a numerical pattern of integers in numerical
order. For example, to generate consecutive integers, a value
of 1 may be broadcast across nine elements to give (A).
Then, a copy of the elements with the broadcasted values of
1 may be shifted to the left to give (B). Then (A) and (B)
may be added to give (C). Then (C) may be shifted to the left
by two to give (D). Then (C) and (D) may be added to give
(E). Then (E) may be shifted left by four to give (F). Then
(E) and (F) may be added to give (G), etc.

111111111@A)

11111111(B)

222222221(C)

2222221(D)

444444321 (E)

44321 (F

887654321 (G)

Such column-sweep approaches generally allow for gen-
eration of the sequences of integers quickly, as compared to
purely iterative generation. In still other embodiments, a
sequence of integers as disclosed herein may be generated
iteratively. For example to generate consecutive integers,
each integer may be calculated in turn as the previous integer
calculated plus one.

FIG. 17A is a block diagram illustrating a first example
embodiment of a suitable format for storing control indexes
and control indexes precursors. A packed data operand
1742A includes packed data elements A,-A,. By way of
example, there may be 4, 8, 16, 32, or 64, data elements.
Each of the data elements A,-A, has a different correspond-
ing control index or control index precursor. In particular, a
first data element A has a first control index or precursor I,
a second data element A, has a second control index or
precursor I;, an Nth data element A, has an Nth control
index or precursor I, etc. Each of the control indexes or
precursors is stored in a subset of bits of the corresponding
data element. For example, each of the control indexes or
precursors may be stored in a subset of bits of a lowest order
byte or control byte of the corresponding data element,
although this is not required. In various embodiments, each
of'the control indexes or precursors may be contained within
the lowest order 2-bits, 3-bits, 4-bits, 5-bits, or 6-bits, for
example, of the corresponding data element. Each of the
control indexes or precursors may be an integer often having
a value ranging from 0 to 64. For packed data rearrangement
control indexes/precursors, the maximum integer size, and
the number of bits per control index/precursor, depends on
the number of source data elements indexed among. In
various embodiments, the data elements may be 8-bit bytes,
16-bit words, 32-bit doublewords, or 64-bit quadwords.

FIG. 17B is a block diagram illustrating a second example
embodiment of a suitable format for storing control indexes
and control indexes precursors. A packed data operand
1742B includes data elements A,-A,. Instead of each of the
data elements A,-A, having a different corresponding con-
trol index or precursor, the control indexes or precursors are
grouped together contiguously within a subset of data ele-
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ments of the packed data operand. In the illustrated embodi-
ment, a first data element A, has a first control index or
precursor I, a second control index or precursor I;, and an
Nth control index or precursor 1, etc. Depending upon the
size of the control indexes or precursors, and the size of the
data elements, a subset of two or more data elements may be
used to store all of the control indexes or precursors. Also,
in the case of control indexes precursors, they may be stored
in a general-purpose or integer register and later converted
into packed data format by a subsequent instruction.

FIG. 18 is a block diagram of an example embodiment of
a suitable set of packed data registers 1803 suitable for
storing packed data operands. The illustrated packed data
registers include thirty-two 512-bit wide packed data or
vector registers. These thirty-two 512-bit wide registers are
labeled ZMMO through ZMM31. In the illustrated embodi-
ment, the lower order 256-bits of the lower sixteen of these
registers, namely ZMMO0-ZMM135, are aliased or overlaid on
respective 256-bit wide packed data or vector registers
labeled YMMO0-YMM15, although this is not required. Like-
wise, in the illustrated embodiment, the lower order 128-bits
of YMMO-YMM1S5 are aliased or overlaid on respective
128-bit packed data or vector registers labeled XMMO-
XMM1, although this also is not required. The 512-bit wide
registers ZMMO through ZMM31 are operable to hold
512-bit packed data, 256-bit packed data, or 128-bit packed
data. The 256-bit wide registers YMMO0-YMM15 are oper-
able to hold 256-bit packed data, or 128-bit packed data. The
128-bit wide registers XMMO0-XMM]1 are operable to hold
128-bit packed data. Each of the registers may be used to
store either packed floating-point data or packed integer
data. Different data element sizes are supported including at
least 8-bit byte data, 16-bit word data, 32-bit doubleword or
single precision floating point data, and 64-bit quadword or
double precision floating point data. Alternate embodiments
of packed data registers may include different numbers of
registers, different sizes of registers, and may or may not
alias larger registers on smaller registers.

FIG. 19 is a block diagram of an article of manufacture
(e.g., a computer program product) 1952 including a
machine-readable storage medium 1953. In some embodi-
ments, the machine-readable storage medium may be a
tangible and/or non-transitory machine-readable storage
medium. In various example embodiments, the machine-
readable storage medium may include a floppy diskette, an
optical disk, a CD-ROM, a magnetic disk, a magneto-optical
disk, a read only memory (ROM), a programmable ROM
(PROM), an erasable-and-programmable ROM (EPROM),
an electrically-erasable-and-programmable ROM (EE-
PROM), a random access memory (RAM), a static-RAM
(SRAM), a dynamic-RAM (DRAM), a Flash memory, a
phase-change memory, a semiconductor memory, other
types of memory, or a combinations thereof. In some
embodiments, the medium may include one or more solid
data storage materials, such as, for example, a semiconduc-
tor data storage material, a phase-change data storage mate-
rial, a magnetic data storage material, an optically transpar-
ent solid data storage material, etc.

The machine-readable storage medium stores one or more
instructions useful to generate control indexes 1908. In some
embodiments, these may include one or more control
indexes generation instructions 1910. In some embodiments,
these may include one or more control indexes precursors
generation instructions 1911. Each of the instructions useful
to generate the control indexes, if executed by a machine, is
operable to cause the machine to store a result in a desti-
nation storage location indicated by the instruction. The
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result includes a sequence of integers representing control
indexes or control indexes precursors. Any of the instruc-
tions, results, and sequences of integers disclosed herein, are
suitable. Moreover, other instructions may be stored on the
medium (e.g., packed data rearrangement instructions,
gather instructions, other instructions that use the control
indexes, etc.).

Examples of different types of machines include, but are
not limited to, processors (e.g., general-purpose processors
and special-purpose processors), instruction processing
apparatus, and various electronic devices having one or
more processors or instruction processing apparatus. A few
representative examples of such electronic devices include,
but are not limited to, computer systems, desktops, laptops,
notebooks, servers, network routers, network switches, net-
tops, set-top boxes, cellular phones, video game controllers,
etc.

An instruction set includes one or more instruction for-
mats. A given instruction format defines various fields
(number of bits, location of bits) to specify, among other
things, the operation to be performed (opcode) and the
operand(s) on which that operation is to be performed. Some
instruction formats are further broken down though the
definition of instruction templates (or subformats). For
example, the instruction templates of a given instruction
format may be defined to have different subsets of the
instruction format’s fields (the included fields are typically
in the same order, but at least some have different bit
positions because there are less fields included) and/or
defined to have a given field interpreted differently. Thus,
each instruction of an ISA is expressed using a given
instruction format (and, if defined, in a given one of the
instruction templates of that instruction format) and includes
fields for specifying the operation and the operands. For
example, an exemplary ADD instruction has a specific
opcode and an instruction format that includes an opcode
field to specity that opcode and operand fields to select
operands (sourcel/destination and source2); and an occur-
rence of this ADD instruction in an instruction stream will
have specific contents in the operand fields that select
specific operands. A set of SIMD extensions referred to the
Advanced Vector Extensions (AVX) (AVX1 and AVX2) and
using the Vector Extensions (VEX) coding scheme, has
been, has been released and/or published (e.g., see Intel® 64
and IA-32 Architectures Software Developers Manual,
October 2011; and see Intel® Advanced Vector Extensions
Programming Reference, June 2011).

Exemplary Instruction Formats

Embodiments of the instruction(s) described herein may
be embodied in different formats. Additionally, exemplary
systems, architectures, and pipelines are detailed below.
Embodiments of the instruction(s) may be executed on such
systems, architectures, and pipelines, but are not limited to
those detailed.

VEX Instruction Format

VEX encoding allows instructions to have more than two
operands, and allows SIMD vector registers to be longer
than 128 bits. The use of a VEX prefix provides for
three-operand (or more) syntax. For example, previous
two-operand instructions performed operations such as
A=A+B, which overwrites a source operand. The use of a
VEX prefix enables operands to perform nondestructive
operations such as A=B+C.

FIG. 20A illustrates an exemplary AVX instruction format
including a VEX prefix 2002, real opcode field 2030, Mod
R/M byte 2040, SIB byte 2050, displacement field 2062, and
IMMS 2072. FIG. 20B illustrates which fields from FIG.
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20A make up a full opcode field 2074 and a base operation
field 2042. FIG. 20C illustrates which fields from FIG. 20A
make up a register index field 2044.

VEX Prefix (Bytes 0-2) 2002 is encoded in a three-byte
form. The first byte is the Format Field 2040 (VEX Byte 0,
bits [7:0]), which contains an explicit C4 byte value (the
unique value used for distinguishing the C4 instruction
format). The second-third bytes (VEX Bytes 1-2) include a
number of bit fields providing specific capability. Specifi-
cally, REX field 2005 (VEX Byte 1, bits [7-5]) consists of
a VEX.R bit field (VEX Byte 1, bit [7]-R), VEX X bit field
(VEX byte 1, bit [6]-X), and VEX.B bit field (VEX byte 1,
bit [5]-B). Other fields of the instructions encode the lower
three bits of the register indexes as is known in the art (rrr,
xxx, and bbb), so that Rrrr, Xxxx, and Bbbb may be formed
by adding VEX.R, VEX.X, and VEX.B. Opcode map field
2015 (VEX byte 1, bits [4:0]-mmmmm) includes content to
encode an implied leading opcode byte. W Field 2064 (VEX
byte 2, bit [7]-W)— is represented by the notation VEX. W,
and provides different functions depending on the instruc-
tion. The role of VEX.vvvv 2020 (VEX Byte 2, bits [6:3]-
vvvv) may include the following: 1) VEX.vvvv encodes the
first source register operand, specified in inverted (1s
complement) form and is valid for instructions with 2 or
more source operands; 2) VEX .vvvv encodes the destination
register operand, specified in is complement form for certain
vector shifts; or 3) VEX.vvvv does not encode any operand,
the field is reserved and should contain 1111b. If VEX.L
2068 Size field (VEX byte 2, bit [2]-L)=0, it indicates 128
bit vector; if VEX.L=1, it indicates 256 bit vector. Prefix
encoding field 2025 (VEX byte 2, bits [1:0]-pp) provides
additional bits for the base operation field.

Real Opcode Field 2030 (Byte 3) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 2040 (Byte 4) includes MOD field 2042
(bits [7-6]), Reg field 2044 (bits [5-3]), and R/M field 2046
(bits [2-0]). The role of Reg field 2044 may include the
following: encoding either the destination register operand
or a source register operand (the rrr of Rrrr), or be treated as
an opcode extension and not used to encode any instruction
operand. The role of R/M field 2046 may include the
following: encoding the instruction operand that references
a memory address, or encoding either the destination reg-
ister operand or a source register operand.

Scale, Index, Base (SIB)—The content of Scale field 2050
(Byte 5) includes SS2052 (bits [7-6]), which is used for
memory address generation. The contents of SIB.xxx 2054
(bits [5-3]) and SIB.bbb 2056 (bits [2-0]) have been previ-
ously referred to with regard to the register indexes Xxxx
and Bbbb.

The Displacement Field 2062 and the immediate field
(IMMS) 2072 contain address data.

Generic Vector Friendly Instruction Format

A vector friendly instruction format is an instruction
format that is suited for vector instructions (e.g., there are
certain fields specific to vector operations). While embodi-
ments are described in which both vector and scalar opera-
tions are supported through the vector friendly instruction
format, alternative embodiments use only vector operations
the vector friendly instruction format.

FIGS. 21A-21B are block diagrams illustrating a generic
vector friendly instruction format and instruction templates
thereof according to embodiments of the invention. FIG.
21Ais a block diagram illustrating a generic vector friendly
instruction format and class A instruction templates thereof
according to embodiments of the invention; while FIG. 21B
is a block diagram illustrating the generic vector friendly
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instruction format and class B instruction templates thereof
according to embodiments of the invention. Specifically, a
generic vector friendly instruction format 2100 for which are
defined class A and class B instruction templates, both of
which include no memory access 2105 instruction templates
and memory access 2120 instruction templates. The term
generic in the context of the vector friendly instruction
format refers to the instruction format not being tied to any
specific instruction set.

While embodiments of the invention will be described in
which the vector friendly instruction format supports the
following: a 64 byte vector operand length (or size) with 32
bit (4 byte) or 64 bit (8 byte) data element widths (or sizes)
(and thus, a 64 byte vector consists of either 16 doubleword-
size elements or alternatively, 8 quadword-size elements); a
64 byte vector operand length (or size) with 16 bit (2 byte)
or 8 bit (1 byte) data element widths (or sizes); a 32 byte
vector operand length (or size) with 32 bit (4 byte), 64 bit (8
byte), 16 bit (2 byte), or 8 bit (1 byte) data element widths
(or sizes); and a 16 byte vector operand length (or size) with
32 bit (4 byte), 64 bit (8 byte), 16 bit (2 byte), or 8 bit (1
byte) data element widths (or sizes); alternative embodi-
ments may support more, less and/or different vector oper-
and sizes (e.g., 256 byte vector operands) with more, less, or
different data element widths (e.g., 128 bit (16 byte) data
element widths).

The class A instruction templates in FIG. 21A include: 1)
within the no memory access 2105 instruction templates
there is shown a no memory access, full round control type
operation 2110 instruction template and a no memory
access, data transform type operation 2115 instruction tem-
plate; and 2) within the memory access 2120 instruction
templates there is shown a memory access, temporal 2125
instruction template and a memory access, non-temporal
2130 instruction template. The class B instruction templates
in FIG. 21B include: 1) within the no memory access 2105
instruction templates there is shown a no memory access,
write mask control, partial round control type operation
2112 instruction template and a no memory access, write
mask control, vsize type operation 2117 instruction tem-
plate; and 2) within the memory access 2120 instruction
templates there is shown a memory access, write mask
control 2127 instruction template.

The generic vector friendly instruction format 2100
includes the following fields listed below in the order
illustrated in FIGS. 21A-21B.

Format field 2140—a specific value (an instruction format
identifier value) in this field uniquely identifies the vector
friendly instruction format, and thus occurrences of instruc-
tions in the vector friendly instruction format in instruction
streams. As such, this field is optional in the sense that it is
not needed for an instruction set that has only the generic
vector friendly instruction format.

Base operation field 2142—its content distinguishes dif-
ferent base operations.

Register index field 2144—its content, directly or through
address generation, specifies the locations of the source and
destination operands, be they in registers or in memory.
These include a sufficient number of bits to select N registers
from a PxQ (e.g. 32x512, 16x128, 32x1024, 64x1024)
register file. While in one embodiment N may be up to three
sources and one destination register, alternative embodi-
ments may support more or less sources and destination
registers (e.g., may support up to two sources where one of
these sources also acts as the destination, may support up to
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three sources where one of these sources also acts as the
destination, may support up to two sources and one desti-
nation).

Modifier field 2146—its content distinguishes occur-
rences of instructions in the generic vector instruction for-
mat that specify memory access from those that do not; that
is, between no memory access 2105 instruction templates
and memory access 2120 instruction templates. Memory
access operations read and/or write to the memory hierarchy
(in some cases specifying the source and/or destination
addresses using values in registers), while non-memory
access operations do not (e.g., the source and destinations
are registers). While in one embodiment this field also
selects between three different ways to perform memory
address calculations, alternative embodiments may support
more, less, or different ways to perform memory address
calculations.

Augmentation operation field 2150—its content distin-
guishes which one of a variety of different operations to be
performed in addition to the base operation. This field is
context specific. In one embodiment of the invention, this
field is divided into a class field 2168, an alpha field 2152,
and a beta field 2154. The augmentation operation field 2150
allows common groups of operations to be performed in a
single instruction rather than 2, 3, or 4 instructions.

Scale field 2160—its content allows for the scaling of the
index field’s content for memory address generation (e.g.,
for address generation that uses 2°°“**index+base).

Displacement Field 2162A—its content is used as part of
memory address generation (e.g., for address generation that
uses 2°““**index+base+displacement).

Displacement Factor Field 2162B (note that the juxtapo-
sition of displacement field 2162A directly over displace-
ment factor field 2162B indicates one or the other is used)—
its content is used as part of address generation; it specifies
a displacement factor that is to be scaled by the size of a
memory access (N)—where N is the number of bytes in the
memory access (e.g., for address generation that uses
2sealexindex+base+scaled displacement). Redundant low-
order bits are ignored and hence, the displacement factor
field’s content is multiplied by the memory operands total
size (N) in order to generate the final displacement to be
used in calculating an effective address. The value of N is
determined by the processor hardware at runtime based on
the full opcode field 2174 (described later herein) and the
data manipulation field 2154C. The displacement field
2162A and the displacement factor field 2162B are optional
in the sense that they are not used for the no memory access
2105 instruction templates and/or different embodiments
may implement only one or none of the two.

Data element width field 2164—its content distinguishes
which one of a number of data element widths is to be used
(in some embodiments for all instructions; in other embodi-
ments for only some of the instructions). This field is
optional in the sense that it is not needed if only one data
element width is supported and/or data element widths are
supported using some aspect of the opcodes.

Write mask field 2170—its content controls, on a per data
element position basis, whether that data element position in
the destination vector operand reflects the result of the base
operation and augmentation operation. Class A instruction
templates support merging-writemasking, while class B
instruction templates support both merging- and zeroing-
writemasking. When merging, vector masks allow any set of
elements in the destination to be protected from updates
during the execution of any operation (specified by the base
operation and the augmentation operation); in other one
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embodiment, preserving the old value of each element of the
destination where the corresponding mask bit has a 0. In
contrast, when zeroing vector masks allow any set of ele-
ments in the destination to be zeroed during the execution of
any operation (specified by the base operation and the
augmentation operation); in one embodiment, an element of
the destination is set to 0 when the corresponding mask bit
has a 0 value. A subset of this functionality is the ability to
control the vector length of the operation being performed
(that is, the span of elements being modified, from the first
to the last one); however, it is not necessary that the elements
that are modified be consecutive. Thus, the write mask field
2170 allows for partial vector operations, including loads,
stores, arithmetic, logical, etc. While embodiments of the
invention are described in which the write mask field’s 2170
content selects one of a number of write mask registers that
contains the write mask to be used (and thus the write mask
field’s 2170 content indirectly identifies that masking to be
performed), alternative embodiments instead or additional
allow the mask write field’s 2170 content to directly specify
the masking to be performed.

Immediate field 2172—its content allows for the specifi-
cation of an immediate. This field is optional in the sense
that is it not present in an implementation of the generic
vector friendly format that does not support immediate and
it is not present in instructions that do not use an immediate.

Class field 2168—its content distinguishes between dif-
ferent classes of instructions. With reference to FIGS. 21A-
B, the contents of this field select between class A and class
B instructions. In FIGS. 21A-B, rounded corner squares are
used to indicate a specific value is present in a field (e.g.,
class A 2168A and class B 2168B for the class field 2168
respectively in FIGS. 21A-B).

Instruction Templates of Class A

In the case of the non-memory access 2105 instruction
templates of class A, the alpha field 2152 is interpreted as an
RS field 2152A, whose content distinguishes which one of
the different augmentation operation types are to be per-
formed (e.g., round 2152A.1 and data transform 2152A.2
are respectively specified for the no memory access, round
type operation 2110 and the no memory access, data trans-
form type operation 2115 instruction templates), while the
beta field 2154 distinguishes which of the operations of the
specified type is to be performed. In the no memory access
2105 instruction templates, the scale field 2160, the dis-
placement field 2162A, and the displacement scale filed
2162B are not present.

No-Memory Access Instruction Templates—Full Round
Control Type Operation

In the no memory access full round control type operation
2110 instruction template, the beta field 2154 is interpreted
as a round control field 2154A, whose content(s) provide
static rounding. While in the described embodiments of the
invention the round control field 2154A includes a suppress
all floating point exceptions (SAE) field 2156 and a round
operation control field 2158, alternative embodiments may
support may encode both these concepts into the same field
or only have one or the other of these concepts/fields (e.g.,
may have only the round operation control field 2158).

SAE field 2156—its content distinguishes whether or not
to disable the exception event reporting; when the SAE
field’s 2156 content indicates suppression is enabled, a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler.

Round operation control field 2158—its content distin-
guishes which one of a group of rounding operations to
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perform (e.g., Round-up, Round-down, Round-towards-zero
and Round-to-nearest). Thus, the round operation control
field 2158 allows for the changing of the rounding mode on
a per instruction basis. In one embodiment of the invention
where a processor includes a control register for specifying
rounding modes, the round operation control field’s 2150
content overrides that register value.

No Memory Access Instruction Templates—Data Trans-
form Type Operation

In the no memory access data transform type operation
2115 instruction template, the beta field 2154 is interpreted
as a data transform field 2154B, whose content distinguishes
which one of a number of data transforms is to be performed
(e.g., no data transform, swizzle, broadcast).

In the case of a memory access 2120 instruction template
of class A, the alpha field 2152 is interpreted as an eviction
hint field 2152B, whose content distinguishes which one of
the eviction hints is to be used (in FIG. 21A, temporal
2152B.1 and non-temporal 2152B.2 are respectively speci-
fied for the memory access, temporal 2125 instruction
template and the memory access, non-temporal 2130
instruction template), while the beta field 2154 is interpreted
as a data manipulation field 2154C, whose content distin-
guishes which one of a number of data manipulation opera-
tions (also known as primitives) is to be performed (e.g., no
manipulation; broadcast; up conversion of a source; and
down conversion of a destination). The memory access 2120
instruction templates include the scale field 2160, and
optionally the displacement field 2162 A or the displacement
scale field 2162B.

Vector memory instructions perform vector loads from
and vector stores to memory, with conversion support. As
with regular vector instructions, vector memory instructions
transfer data from/to memory in a data element-wise fash-
ion, with the elements that are actually transferred is dictated
by the contents of the vector mask that is selected as the
write mask.

Memory Access Instruction Templates—Temporal

Temporal data is data likely to be reused soon enough to
benefit from caching. This is, however, a hint, and different
processors may implement it in different ways, including
ignoring the hint entirely.

Memory Access Instruction Templates—Non-Temporal

Non-temporal data is data unlikely to be reused soon
enough to benefit from caching in the 1st-level cache and
should be given priority for eviction. This is, however, a
hint, and different processors may implement it in different
ways, including ignoring the hint entirely.

Instruction Templates of Class B

In the case of the instruction templates of class B, the
alpha field 2152 is interpreted as a write mask control (Z)
field 2152C, whose content distinguishes whether the write
masking controlled by the write mask field 2170 should be
a merging or a zeroing.

In the case of the non-memory access 2105 instruction
templates of class B, part of the beta field 2154 is interpreted
as an RL field 2157A, whose content distinguishes which
one of the different augmentation operation types are to be
performed (e.g., round 2157A.1 and vector length (VSIZE)
2157A.2 are respectively specified for the no memory
access, write mask control, partial round control type opera-
tion 2112 instruction template and the no memory access,
write mask control, VSIZE type operation 2117 instruction
template), while the rest of the beta field 2154 distinguishes
which of the operations of the specified type is to be
performed. In the no memory access 2105 instruction tem-
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plates, the scale field 2160, the displacement field 2162A,
and the displacement scale filed 2162B are not present.

In the no memory access, write mask control, partial
round control type operation 2110 instruction template, the
rest of the beta field 2154 is interpreted as a round operation
field 2159A and exception event reporting is disabled (a
given instruction does not report any kind of floating-point
exception flag and does not raise any floating point excep-
tion handler).

Round operation control field 2159A—just as round
operation control field 2158, its content distinguishes which
one of a group of rounding operations to perform (e.g.,
Round-up, Round-down, Round-towards-zero and Round-
to-nearest). Thus, the round operation control field 2159A
allows for the changing of the rounding mode on a per
instruction basis. In one embodiment of the invention where
a processor includes a control register for specifying round-
ing modes, the round operation control field’s 2150 content
overrides that register value.

In the no memory access, write mask control, VSIZE type
operation 2117 instruction template, the rest of the beta field
2154 is interpreted as a vector length field 2159B, whose
content distinguishes which one of a number of data vector
lengths is to be performed on (e.g., 128, 256, or 512 byte).

In the case of a memory access 2120 instruction template
of class B, part of the beta field 2154 is interpreted as a
broadcast field 2157B, whose content distinguishes whether
or not the broadcast type data manipulation operation is to
be performed, while the rest of the beta field 2154 is
interpreted the vector length field 2159B. The memory
access 2120 instruction templates include the scale field
2160, and optionally the displacement field 2162A or the
displacement scale field 2162B.

With regard to the generic vector friendly instruction
format 2100, a full opcode field 2174 is shown including the
format field 2140, the base operation field 2142, and the data
element width field 2164. While one embodiment is shown
where the full opcode field 2174 includes all of these fields,
the full opcode field 2174 includes less than all of these
fields in embodiments that do not support all of them. The
full opcode field 2174 provides the operation code (opcode).

The augmentation operation field 2150, the data element
width field 2164, and the write mask field 2170 allow these
features to be specified on a per instruction basis in the
generic vector friendly instruction format.

The combination of write mask field and data element
width field create typed instructions in that they allow the
mask to be applied based on different data element widths.

The various instruction templates found within class A
and class B are beneficial in different situations. In some
embodiments of the invention, different processors or dif-
ferent cores within a processor may support only class A,
only class B, or both classes. For instance, a high perfor-
mance general purpose out-of-order core intended for gen-
eral-purpose computing may support only class B, a core
intended primarily for graphics and/or scientific (through-
put) computing may support only class A, and a core
intended for both may support both (of course, a core that
has some mix of templates and instructions from both
classes but not all templates and instructions from both
classes is within the purview of the invention). Also, a single
processor may include multiple cores, all of which support
the same class or in which different cores support different
class. For instance, in a processor with separate graphics and
general purpose cores, one of the graphics cores intended
primarily for graphics and/or scientific computing may
support only class A, while one or more of the general
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purpose cores may be high performance general purpose
cores with out of order execution and register renaming
intended for general-purpose computing that support only
class B. Another processor that does not have a separate
graphics core, may include one more general purpose in-
order or out-of-order cores that support both class A and
class B. Of course, features from one class may also be
implement in the other class in different embodiments of the
invention. Programs written in a high level language would
be put (e.g., just in time compiled or statically compiled)
into an variety of different executable forms, including: 1) a
form having only instructions of the class(es) supported by
the target processor for execution; or 2) a form having
alternative routines written using different combinations of
the instructions of all classes and having control flow code
that selects the routines to execute based on the instructions
supported by the processor which is currently executing the
code.

Exemplary Specific Vector Friendly Instruction Format

FIG. 22 is a block diagram illustrating an exemplary
specific vector friendly instruction format according to
embodiments of the invention. FIG. 22 shows a specific
vector friendly instruction format 2200 that is specific in the
sense that it specifies the location, size, interpretation, and
order of the fields, as well as values for some of those fields.
The specific vector friendly instruction format 2200 may be
used to extend the x86 instruction set, and thus some of the
fields are similar or the same as those used in the existing
x86 instruction set and extension thereof (e.g., AVX). This
format remains consistent with the prefix encoding field, real
opcode byte field, MOD R/M field, SIB field, displacement
field, and immediate fields of the existing x86 instruction set
with extensions. The fields from FIG. 21 into which the
fields from FIG. 22 map are illustrated.

It should be understood that, although embodiments of the
invention are described with reference to the specific vector
friendly instruction format 2200 in the context of the generic
vector friendly instruction format 2100 for illustrative pur-
poses, the invention is not limited to the specific vector
friendly instruction format 2200 except where claimed. For
example, the generic vector friendly instruction format 2100
contemplates a variety of possible sizes for the various
fields, while the specific vector friendly instruction format
2200 is shown as having fields of specific sizes. By way of
specific example, while the data element width field 2164 is
illustrated as a one bit field in the specific vector friendly
instruction format 2200, the invention is not so limited (that
is, the generic vector friendly instruction format 2100 con-
templates other sizes of the data element width field 2164).

The generic vector friendly instruction format 2100
includes the following fields listed below in the order
illustrated in FIG. 22A.

EVEX Prefix (Bytes 0-3) 2202—is encoded in a four-byte
form.

Format Field 2140 (EVEX Byte 0, bits [7:0])—the first
byte (EVEX Byte 0) is the format field 2140 and it contains
0x62 (the unique value used for distinguishing the vector
friendly instruction format in one embodiment of the inven-
tion).

The second-fourth bytes (EVEX Bytes 1-3) include a
number of bit fields providing specific capability.

REX field 2205 (EVEX Byte 1, bits [7-5])—consists of a
EVEXR bit field (EVEX Byte 1, bit [7]-R), EVEX.X bit
field (EVEX byte 1, bit [6]-X), and 2157BEX byte 1, bit
[5]-B). The EVEX.R, EVEX X, and EVEX.B bit fields
provide the same functionality as the corresponding VEX bit
fields, and are encoded using is complement form, i.e.
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ZMMO is encoded as 1111B, ZMM15 is encoded as 0000B.
Other fields of the instructions encode the lower three bits of
the register indexes as is known in the art (rrr, xxx, and bbb),
so that Rrrr, Xxxx, and Bbbb may be formed by adding
EVEXR, EVEX X, and EVEX.B.

REX' field 2110—this is the first part of the REX' field
2110 and is the EVEX.R' bit field (EVEX Byte 1, bit [4]-R")
that is used to encode either the upper 16 or lower 16 of the
extended 32 register set. In one embodiment of the inven-
tion, this bit, along with others as indicated below, is stored
in bit inverted format to distinguish (in the well-known x86
32-bit mode) from the BOUND instruction, whose real
opcode byte is 62, but does not accept in the MOD R/M field
(described below) the value of 11 in the MOD field; alter-
native embodiments of the invention do not store this and the
other indicated bits below in the inverted format. A value of
1 is used to encode the lower 16 registers. In other words,
R'Rrrr is formed by combining EVEX.R', EVEX R, and the
other RRR from other fields.

Opcode map field 2215 (EVEX byte 1, bits [3:0]-
mmmm)—its content encodes an implied leading opcode
byte (OF, OF 38, or OF 3).

Data element width field 2164 (EVEX byte 2, bit [7]-
W)— is represented by the notation EVEX.W. EVEX.W is
used to define the granularity (size) of the datatype (either
32-bit data elements or 64-bit data elements).

EVEX.vvvv 2220 (EVEX Byte 2, bits [6:3]-vvvv)—the
role of EVEX.vvvv may include the following: 1) EVEX.v-
vvv encodes the first source register operand, specified in
inverted (1s complement) form and is valid for instructions
with 2 or more source operands; 2) EVEX.vvvv encodes the
destination register operand, specified in 1s complement
form for certain vector shifts; or 3) EVEX.vvvv does not
encode any operand, the field is reserved and should contain
1111b. Thus, EVEX.vvvv field 2220 encodes the 4 low-
order bits of the first source register specifier stored in
inverted (1s complement) form. Depending on the instruc-
tion, an extra different EVEX bit field is used to extend the
specifier size to 32 registers.

EVEX.U 2168 Class field (EVEX byte 2, bit [2]-U)—If
EVEX.U=0, it indicates class A or EVEX.UO, if
EVEX.U=1, it indicates class B or EVEX.U1. Prefix encod-
ing field 2225 (EVEX byte 2, bits [1:0]-pp)—provides
additional bits for the base operation field. In addition to
providing support for the legacy SSE instructions in the
EVEX prefix format, this also has the benefit of compacting
the SIMD prefix (rather than requiring a byte to express the
SIMD prefix, the EVEX prefix requires only 2 bits). In one
embodiment, to support legacy SSE instructions that use a
SIMD prefix (66H, F2H, F3H) in both the legacy format and
in the EVEX prefix format, these legacy SIMD prefixes are
encoded into the SIMD prefix encoding field; and at runtime
are expanded into the legacy SIMD prefix prior to being
provided to the decoder’s PLA (so the PLA can execute both
the legacy and EVEX format of these legacy instructions
without modification). Although newer instructions could
use the EVEX prefix encoding field’s content directly as an
opcode extension, certain embodiments expand in a similar
fashion for consistency but allow for different meanings to
be specified by these legacy SIMD prefixes. An alternative
embodiment may redesign the PLA to support the 2 bit
SIMD prefix encodings, and thus not require the expansion.

Alpha field 2152 (EVEX byte 3, bit [7]-EH; also known
as EVEX .EH, EVEX.rs, EVEX.RL, EVEX write mask con-
trol, and EVEX.N; also illustrated with a)—as previously
described, this field is context specific.
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Beta field 2154 (EVEX byte 3, bits [6:4]-SSS, also known
as EVEXs,, EVEXr,, EVEXurl, EVEXLLO,

EVEX.LLB; also illustrated with PBpp)—as previously
described, this field is context specific.

REX' field 2110—this is the remainder of the REX' field
and is the EVEX. V' bit field (EVEX Byte 3, bit [3]-V") that
may be used to encode either the upper 16 or lower 16 of the
extended 32 register set. This bit is stored in bit inverted
format. A value of 1 is used to encode the lower 16 registers.
In other words, V'VVVV is formed by combining EVEX. V',
EVEX.vvwv.

Write mask field 2170 (EVEX byte 3, bits [2:0]-kkk)—its
content specifies the index of a register in the write mask
registers as previously described. In one embodiment of the
invention, the specific value EVEX kkk=000 has a special
behavior implying no write mask is used for the particular
instruction (this may be implemented in a variety of ways
including the use of a write mask hardwired to all ones or
hardware that bypasses the masking hardware).

Real Opcode Field 2230 (Byte 4) is also known as the
opcode byte. Part of the opcode is specified in this field.

MOD R/M Field 2240 (Byte 5) includes MOD field 2242,
Reg field 2244, and R/M field 2246. As previously
described, the MOD field’s 2242 content distinguishes
between memory access and non-memory access operations.
The role of Reg field 2244 can be summarized to two
situations: encoding either the destination register operand
or a source register operand, or be treated as an opcode
extension and not used to encode any instruction operand.
The role of R/M field 2246 may include the following:
encoding the instruction operand that references a memory
address, or encoding either the destination register operand
or a source register operand.

Scale, Index, Base (SIB) Byte (Byte 6)—As previously
described, the scale field’s 2150 content is used for memory
address generation. SIB.xxx 2254 and SIB.bbb 2256—the
contents of these fields have been previously referred to with
regard to the register indexes Xxxx and Bbbb.

Displacement field 2162A (Bytes 7-10)—when MOD
field 2242 contains 10, bytes 7-10 are the displacement field
2162A, and it works the same as the legacy 32-bit displace-
ment (disp32) and works at byte granularity.

Displacement factor field 2162B (Byte 7)—when MOD
field 2242 contains 01, byte 7 is the displacement factor field
2162B. The location of this field is that same as that of the
legacy x86 instruction set 8-bit displacement (disp8), which
works at byte granularity. Since disp8 is sign extended, it can
only address between —128 and 127 bytes offsets; in terms
of 64 byte cache lines, disp8 uses 8 bits that can be set to
only four really useful values —128, —64, 0, and 64; since a
greater range is often needed, disp32 is used; however,
disp32 requires 4 bytes. In contrast to disp8 and disp32, the
displacement factor field 2162B is a reinterpretation of
disp8; when using displacement factor field 2162B, the
actual displacement is determined by the content of the
displacement factor field multiplied by the size of the
memory operand access (N). This type of displacement is
referred to as disp8*N. This reduces the average instruction
length (a single byte of used for the displacement but with
a much greater range). Such compressed displacement is
based on the assumption that the effective displacement is
multiple of the granularity of the memory access, and hence,
the redundant low-order bits of the address offset do not
need to be encoded. In other words, the displacement factor
field 2162B substitutes the legacy x86 instruction set 8-bit
displacement. Thus, the displacement factor field 2162B is
encoded the same way as an x86 instruction set 8-bit
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displacement (so no changes in the ModRM/SIB encoding
rules) with the only exception that disp8 is overloaded to
disp8*N. In other words, there are no changes in the
encoding rules or encoding lengths but only in the interpre-
tation of the displacement value by hardware (which needs
to scale the displacement by the size of the memory operand
to obtain a byte-wise address offset).

Immediate field 2172 operates as previously described.
Full Opcode Field

FIG. 22B is a block diagram illustrating the fields of the
specific vector friendly instruction format 2200 that make up
the full opcode field 2174 according to one embodiment of
the invention. Specifically, the full opcode field 2174
includes the format field 2140, the base operation field 2142,
and the data element width (W) field 2164. The base
operation field 2142 includes the prefix encoding field 2225,
the opcode map field 2215, and the real opcode field 2230.
Register Index Field

FIG. 22C is a block diagram illustrating the fields of the
specific vector friendly instruction format 2200 that make up
the register index field 2144 according to one embodiment
of the invention. Specifically, the register index field 2144
includes the REX field 2205, the REX' field 2210, the
MODR/M.reg field 2244, the MODR/M.r/m field 2246, the
VVVV field 2220, xxx field 2254, and the bbb field 2256.
Augmentation Operation Field

FIG. 22D is a block diagram illustrating the fields of the
specific vector friendly instruction format 2200 that make up
the augmentation operation field 2150 according to one
embodiment of the invention. When the class (U) field 2168
contains 0, it signifies EVEX.UO (class A 2168A); when it
contains 1, it signifies EVEX.U1 (class B 2168B). When
U=0 and the MOD field 2242 contains 11 (signifying a no
memory access operation), the alpha field 2152 (EVEX byte
3, bit [7]-EH) is interpreted as the rs field 2152A. When the
rs field 2152 A contains a 1 (round 2152A.1), the beta field
2154 (EVEX byte 3, bits [6:4]-SSS) is interpreted as the
round control field 2154 A. The round control field 2154A
includes a one bit SAE field 2156 and a two bit round
operation field 2158. When the rs field 2152A contains a 0
(data transform 2152 A.2), the beta field 2154 (EVEX byte 3,
bits [6:4]-SSS) is interpreted as a three bit data transform
field 2154B. When U=0 and the MOD field 2242 contains
00, 01, or 10 (signifying a memory access operation), the
alpha field 2152 (EVEX byte 3, bit [7]-EH) is interpreted as
the eviction hint (EH) field 2152B and the beta field 2154
(EVEX byte 3, bits [6:4]-SSS) is interpreted as a three bit
data manipulation field 2154C.

When U=1, the alpha field 2152 (EVEX byte 3, bit
[7]1-EH) is interpreted as the write mask control (Z) field
2152C. When U=1 and the MOD field 2242 contains 11
(signifying a no memory access operation), part of the beta
field 2154 (EVEX byte 3, bit [4]-S,) is interpreted as the RL.
field 2157 A; when it contains a 1 (round 2157A.1) the rest
of the beta field 2154 (EVEX byte 3, bit [6-5]-S,_ ) is
interpreted as the round operation field 2159A, while when
the RL field 2157 A contains a 0 (VSIZE 2157.A2) the rest
of the beta field 2154 (EVEX byte 3, bit [6-5]-S,_ ) is
interpreted as the vector length field 2159B (EVEX byte 3,
bit [6-5]-L, ). When U=1 and the MOD field 2242 contains
00, 01, or 10 (signifying a memory access operation), the
beta field 2154 (EVEX byte 3, bits [6:4]-SSS) is interpreted
as the vector length field 2159B (EVEX byte 3, bit [6-5]-
L, o) and the broadcast field 2157B (EVEX byte 3, bit
[4]-B).
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Exemplary Register Architecture

FIG. 23 is a block diagram of a register architecture 2300
according to one embodiment of the invention. In the
embodiment illustrated, there are 32 vector registers 2310
that are 512 bits wide; these registers are referenced as
zmm0 through zmm31. The lower order 256 bits of the
lower 16 zmm registers are overlaid on registers ymm0-16.
The lower order 128 bits of the lower 16 zmm registers (the
lower order 128 bits of the ymm registers) are overlaid on
registers xmm0-15. The specific vector friendly instruction
format 2200 operates on these overlaid register file as
illustrated in the below tables.

Adjustable Vector

Length Class Operations Registers
Instruction A 2110, 2115, zmm registers (the
Templates that (FIG. 21A; 2125, 2130 vector length is 64
do not include U=0) byte)

the vector B 2112 zmm registers (the
length field (FIG. 21B; vector length is 64
2159B U=1) byte)

Instruction B 2117, 2127 ZIMIM, Y, Or XIm
templates that (FIG. 21B; registers (the vector
do include the U=1) length is 64 byte,
vector length 32 byte, or 16 byte)
fleld 2159B depending on the

vector length field
2159B

In other words, the vector length field 2159B selects
between a maximum length and one or more other shorter
lengths, where each such shorter length is half the length of
the preceding length; and instructions templates without the
vector length field 2159B operate on the maximum vector
length. Further, in one embodiment, the class B instruction
templates of the specific vector friendly instruction format
2200 operate on packed or scalar single/double-precision
floating point data and packed or scalar integer data. Scalar
operations are operations performed on the lowest order data
element position in an zmm/ymn/xmm register; the higher
order data element positions are either left the same as they
were prior to the instruction or zeroed depending on the
embodiment.

Write mask registers 2315—in the embodiment illus-
trated, there are 8 write mask registers (k0 through k7), each
64 bits in size. In an alternate embodiment, the write mask
registers 2315 are 16 bits in size. As previously described, in
one embodiment of the invention, the vector mask register
kO cannot be used as a write mask; when the encoding that
would normally indicate k0 is used for a write mask, it
selects a hardwired write mask of OxFFFF, effectively dis-
abling write masking for that instruction.

General-purpose registers 2325—in the embodiment
illustrated, there are sixteen 64-bit general-purpose registers
that are used along with the existing x86 addressing modes
to address memory operands. These registers are referenced
by the names RAX, RBX, RCX, RDX, RBP, RSI, RDI, RSP,
and R8 through R15.

Scalar floating point stack register file (x87 stack) 2345,
on which is aliased the MMX packed integer flat register file
2350—in the embodiment illustrated, the x87 stack is an
eight-element stack used to perform scalar floating-point
operations on 32/64/80-bit floating point data using the x87
instruction set extension; while the MMX registers are used
to perform operations on 64-bit packed integer data, as well
as to hold operands for some operations performed between
the MMX and XMM registers.
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Alternative embodiments of the invention may use wider
or narrower registers. Additionally, alternative embodiments
of'the invention may use more, less, or different register files
and registers.

Exemplary Core Architectures, Processors, and Computer
Architectures

Processor cores may be implemented in different ways,
for different purposes, and in different processors. For
instance, implementations of such cores may include: 1) a
general purpose in-order core intended for general-purpose
computing; 2) a high performance general purpose out-of-
order core intended for general-purpose computing; 3) a
special purpose core intended primarily for graphics and/or
scientific (throughput) computing. Implementations of dif-
ferent processors may include: 1) a CPU including one or
more general purpose in-order cores intended for general-
purpose computing and/or one or more general purpose
out-of-order cores intended for general-purpose computing;
and 2) a coprocessor including one or more special purpose
cores intended primarily for graphics and/or scientific
(throughput). Such different processors lead to different
computer system architectures, which may include: 1) the
coprocessor on a separate chip from the CPU; 2) the
coprocessor on a separate die in the same package as a CPU;
3) the coprocessor on the same die as a CPU (in which case,
such a coprocessor is sometimes referred to as special
purpose logic, such as integrated graphics and/or scientific
(throughput) logic, or as special purpose cores); and 4) a
system on a chip that may include on the same die the
described CPU (sometimes referred to as the application
core(s) or application processor(s)), the above described
coprocessor, and additional functionality. Exemplary core
architectures are described next, followed by descriptions of
exemplary processors and computer architectures.
Exemplary Core Architectures
In-Order and Out-of-Order Core Block Diagram

FIG. 24A is a block diagram illustrating both an exem-
plary in-order pipeline and an exemplary register renaming,
out-of-order issue/execution pipeline according to embodi-
ments of the invention. FIG. 24B is a block diagram illus-
trating both an exemplary embodiment of an in-order archi-
tecture core and an exemplary register renaming, out-of-
order issue/execution architecture core to be included in a
processor according to embodiments of the invention. The
solid lined boxes in FIGS. 24A-B illustrate the in-order
pipeline and in-order core, while the optional addition of the
dashed lined boxes illustrates the register renaming, out-of-
order issue/execution pipeline and core. Given that the
in-order aspect is a subset of the out-of-order aspect, the
out-of-order aspect will be described.

In FIG. 24A, a processor pipeline 2400 includes a fetch
stage 2402, a length decode stage 2404, a decode stage 2406,
an allocation stage 2408, a renaming stage 2410, a sched-
uling (also known as a dispatch or issue) stage 2412, a
register read/memory read stage 2414, an execute stage
2416, a write back/memory write stage 2418, an exception
handling stage 2422, and a commit stage 2424.

FIG. 24B shows processor core 2490 including a front end
unit 2430 coupled to an execution engine unit 2450, and
both are coupled to a memory unit 2470. The core 2490 may
be a reduced instruction set computing (RISC) core, a
complex instruction set computing (CISC) core, a very long
instruction word (VLIW) core, or a hybrid or alternative
core type. As yet another option, the core 2490 may be a
special-purpose core, such as, for example, a network or
communication core, compression engine, COprocessor core,
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general purpose computing graphics processing unit
(GPGPU) core, graphics core, or the like.

The front end unit 2430 includes a branch prediction unit
2432 coupled to an instruction cache unit 2434, which is
coupled to an instruction translation lookaside buffer (TLB)
2436, which is coupled to an instruction fetch unit 2438,
which is coupled to a decode unit 2440. The decode unit
2440 (or decoder) may decode instructions, and generate as
an output one or more micro-operations, micro-code entry
points, microinstructions, other instructions, or other control
signals, which are decoded from, or which otherwise reflect,
or are derived from, the original instructions. The decode
unit 2440 may be implemented using various different
mechanisms. Examples of suitable mechanisms include, but
are not limited to, look-up tables, hardware implementa-
tions, programmable logic arrays (PLAs), microcode read
only memories (ROMs), etc. In one embodiment, the core
2490 includes a microcode ROM or other medium that
stores microcode for certain macroinstructions (e.g., in
decode unit 2440 or otherwise within the front end unit
2430). The decode unit 2440 is coupled to a rename/
allocator unit 2452 in the execution engine unit 2450.

The execution engine unit 2450 includes the rename/
allocator unit 2452 coupled to a retirement unit 2454 and a
set of one or more scheduler unit(s) 2456. The scheduler
unit(s) 2456 represents any number of different schedulers,
including reservations stations, central instruction window,
etc. The scheduler unit(s) 2456 is coupled to the physical
register file(s) unit(s) 2458. FEach of the physical register
file(s) units 2458 represents one or more physical register
files, different ones of which store one or more different data
types, such as scalar integer, scalar floating point, packed
integer, packed floating point, vector integer, vector floating
point, status (e.g., an instruction pointer that is the address
of the next instruction to be executed), etc. In one embodi-
ment, the physical register file(s) unit 2458 comprises a
vector registers unit, a write mask registers unit, and a scalar
registers unit. These register units may provide architectural
vector registers, vector mask registers, and general purpose
registers. The physical register file(s) unit(s) 2458 is over-
lapped by the retirement unit 2454 to illustrate various ways
in which register renaming and out-of-order execution may
be implemented (e.g., using a reorder buffer(s) and a retire-
ment register file(s); using a future file(s), a history buffer(s),
and a retirement register file(s); using a register maps and a
pool of registers; etc.). The retirement unit 2454 and the
physical register file(s) unit(s) 2458 are coupled to the
execution cluster(s) 2460. The execution cluster(s) 2460
includes a set of one or more execution units 2462 and a set
of one or more memory access units 2464. The execution
units 2462 may perform various operations (e.g., shifts,
addition, subtraction, multiplication) and on various types of
data (e.g., scalar floating point, packed integer, packed
floating point, vector integer, vector floating point). While
some embodiments may include a number of execution units
dedicated to specific functions or sets of functions, other
embodiments may include only one execution unit or mul-
tiple execution units that all perform all functions. The
scheduler unit(s) 2456, physical register file(s) unit(s) 2458,
and execution cluster(s) 2460 are shown as being possibly
plural because certain embodiments create separate pipe-
lines for certain types of data/operations (e.g., a scalar
integer pipeline, a scalar floating point/packed integer/
packed floating point/vector integer/vector floating point
pipeline, and/or a memory access pipeline that each have
their own scheduler unit, physical register file(s) unit, and/or
execution cluster—and in the case of a separate memory

20

35

40

45

55

40

access pipeline, certain embodiments are implemented in
which only the execution cluster of this pipeline has the
memory access unit(s) 2464). It should also be understood
that where separate pipelines are used, one or more of these
pipelines may be out-of-order issue/execution and the rest
in-order.

The set of memory access units 2464 is coupled to the
memory unit 2470, which includes a data TLB unit 2472
coupled to a data cache unit 2474 coupled to a level 2 (L2)
cache unit 2476. In one exemplary embodiment, the memory
access units 2464 may include a load unit, a store address
unit, and a store data unit, each of which is coupled to the
data TLB unit 2472 in the memory unit 2470. The instruc-
tion cache unit 2434 is further coupled to a level 2 (L2)
cache unit 2476 in the memory unit 2470. The [.2 cache unit
2476 is coupled to one or more other levels of cache and
eventually to a main memory.

By way of example, the exemplary register renaming,
out-of-order issue/execution core architecture may imple-
ment the pipeline 2400 as follows: 1) the instruction fetch
2438 performs the fetch and length decoding stages 2402
and 2404; 2) the decode unit 2440 performs the decode stage
2406; 3) the rename/allocator unit 2452 performs the allo-
cation stage 2408 and renaming stage 2410; 4) the scheduler
unit(s) 2456 performs the schedule stage 2412; 5) the
physical register file(s) unit(s) 2458 and the memory unit
2470 perform the register read/memory read stage 2414; the
execution cluster 2460 perform the execute stage 2416; 6)
the memory unit 2470 and the physical register file(s) unit(s)
2458 perform the write back/memory write stage 2418; 7)
various units may be involved in the exception handling
stage 2422; and 8) the retirement unit 2454 and the physical
register file(s) unit(s) 2458 perform the commit stage 2424.

The core 2490 may support one or more instructions sets
(e.g., the x86 instruction set (with some extensions that have
been added with newer versions); the MIPS instruction set
of MIPS Technologies of Sunnyvale, Calif.; the ARM
instruction set (with optional additional extensions such as
NEON) of ARM Holdings of Sunnyvale, Calif.), including
the instruction(s) described herein. In one embodiment, the
core 2490 includes logic to support a packed data instruction
set extension (e.g., AVX1, AVX2), thereby allowing the
operations used by many multimedia applications to be
performed using packed data.

It should be understood that the core may support multi-
threading (executing two or more parallel sets of operations
or threads), and may do so in a variety of ways including
time sliced multithreading, simultaneous multithreading
(where a single physical core provides a logical core for each
of the threads that physical core is simultaneously multi-
threading), or a combination thereof (e.g., time sliced fetch-
ing and decoding and simultaneous multithreading thereat-
ter such as in the Intel® Hyperthreading technology).

While register renaming is described in the context of
out-of-order execution, it should be understood that register
renaming may be used in an in-order architecture. While the
illustrated embodiment of the processor also includes sepa-
rate instruction and data cache units 2434/2474 and a shared
L2 cache unit 2476, alternative embodiments may have a
single internal cache for both instructions and data, such as,
for example, a Level 1 (I.1) internal cache, or multiple levels
of internal cache. In some embodiments, the system may
include a combination of an internal cache and an external
cache that is external to the core and/or the processor.
Alternatively, all of the cache may be external to the core
and/or the processor.
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Specific Exemplary in-Order Core Architecture

FIGS. 25A-B illustrate a block diagram of a more specific
exemplary in-order core architecture, which core would be
one of several logic blocks (including other cores of the
same type and/or different types) in a chip. The logic blocks
communicate through a high-bandwidth interconnect net-
work (e.g., a ring network) with some fixed function logic,
memory [/O interfaces, and other necessary 1/O logic,
depending on the application.

FIG. 25A is a block diagram of a single processor core,
along with its connection to the on-die interconnect network
2502 and with its local subset of the Level 2 (L.2) cache
2504, according to embodiments of the invention. In one
embodiment, an instruction decoder 2500 supports the x86
instruction set with a packed data instruction set extension.
An L1 cache 2506 allows low-latency accesses to cache
memory into the scalar and vector units. While in one
embodiment (to simplify the design), a scalar unit 2508 and
a vector unit 2510 use separate register sets (respectively,
scalar registers 2512 and vector registers 2514) and data
transferred between them is written to memory and then read
back in from a level 1 (LL1)) cache 2506, alternative embodi-
ments of the invention may use a different approach (e.g.,
use a single register set or include a communication path that
allow data to be transferred between the two register files
without being written and read back).

The local subset of the [.2 cache 2504 is part of a global
L2 cache that is divided into separate local subsets, one per
processor core. Each processor core has a direct access path
to its own local subset of the 1.2 cache 2504. Data read by
aprocessor core is stored in its 1.2 cache subset 2504 and can
be accessed quickly, in parallel with other processor cores
accessing their own local L2 cache subsets. Data written by
a processor core is stored in its own L2 cache subset 2504
and is flushed from other subsets, if necessary. The ring
network ensures coherency for shared data. The ring net-
work is bi-directional to allow agents such as processor
cores, .2 caches and other logic blocks to communicate with
each other within the chip. Each ring data-path is 1012-bits
wide per direction.

FIG. 25B is an expanded view of part of the processor
core in FIG. 25A according to embodiments of the inven-
tion. FIG. 25B includes an L1 data cache 2506 A part of the
L1 cache 2504, as well as more detail regarding the vector
unit 2510 and the vector registers 2514. Specifically, the
vector unit 2510 is a 16-wide vector processing unit (VPU)
(see the 16-wide ALU 2528), which executes one or more of
integer, single-precision float, and double-precision float
instructions. The VPU supports swizzling the register inputs
with swizzle unit 2520, numeric conversion with numeric
convert units 2522 A-B, and replication with replication unit
2524 on the memory input. Write mask registers 2526 allow
predicating resulting vector writes.

Processor with Integrated Memory Controller and Graphics

FIG. 26 is a block diagram of a processor 2600 that may
have more than one core, may have an integrated memory
controller, and may have integrated graphics according to
embodiments of the invention. The solid lined boxes in FIG.
26 illustrate a processor 2600 with a single core 2602A, a
system agent 2610, a set of one or more bus controller units
2616, while the optional addition of the dashed lined boxes
illustrates an alternative processor 2600 with multiple cores
2602A-N, a set of one or more integrated memory controller
unit(s) 2614 in the system agent unit 2610, and special
purpose logic 2608.

Thus, different implementations of the processor 2600
may include: 1) a CPU with the special purpose logic 2608
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being integrated graphics and/or scientific (throughput)
logic (which may include one or more cores), and the cores
2602A-N being one or more general purpose cores (e.g.,
general purpose in-order cores, general purpose out-of-order
cores, a combination of the two); 2) a coprocessor with the
cores 2602A-N being a large number of special purpose
cores intended primarily for graphics and/or scientific
(throughput); and 3) a coprocessor with the cores 2602A-N
being a large number of general purpose in-order cores.
Thus, the processor 2600 may be a general-purpose proces-
sor, coprocessor or special-purpose processor, such as, for
example, a network or communication processor, compres-
sion engine, graphics processor, GPGPU (general purpose
graphics processing unit), a high-throughput many inte-
grated core (MIC) coprocessor (including 30 or more cores),
embedded processor, or the like. The processor may be
implemented on one or more chips. The processor 2600 may
be a part of and/or may be implemented on one or more
substrates using any of a number of process technologies,
such as, for example, BICMOS, CMOS, or NMOS.

The memory hierarchy includes one or more levels of
cache within the cores, a set or one or more shared cache
units 2606, and external memory (not shown) coupled to the
set of integrated memory controller units 2614. The set of
shared cache units 2606 may include one or more mid-level
caches, such as level 2 (L2), level 3 (L3), level 4 (L4), or
other levels of cache, a last level cache (LLC), and/or
combinations thereof. While in one embodiment a ring
based interconnect unit 2612 interconnects the integrated
graphics logic 2608, the set of shared cache units 2606, and
the system agent unit 2610/integrated memory controller
unit(s) 2614, alternative embodiments may use any number
of well-known techniques for interconnecting such units. In
one embodiment, coherency is maintained between one or
more cache units 2606 and cores 2602-A-N.

In some embodiments, one or more of the cores 2602A-N
are capable of multi-threading. The system agent 2610
includes those components coordinating and operating cores
2602A-N. The system agent unit 2610 may include for
example a power control unit (PCU) and a display unit. The
PCU may be or include logic and components needed for
regulating the power state of the cores 2602A-N and the
integrated graphics logic 2608. The display unit is for
driving one or more externally connected displays.

The cores 2602A-N may be homogenous or heteroge-
neous in terms of architecture instruction set; that is, two or
more of the cores 2602A-N may be capable of execution the
same instruction set, while others may be capable of execut-
ing only a subset of that instruction set or a different
instruction set.

Exemplary Computer Architectures

FIGS. 27-30 are block diagrams of exemplary computer
architectures. Other system designs and configurations
known in the arts for laptops, desktops, handheld PCs,
personal digital assistants, engineering workstations, serv-
ers, network devices, network hubs, switches, embedded
processors, digital signal processors (DSPs), graphics
devices, video game devices, set-top boxes, micro control-
lers, cell phones, portable media players, hand held devices,
and various other electronic devices, are also suitable. In
general, a huge variety of systems or electronic devices
capable of incorporating a processor and/or other execution
logic as disclosed herein are generally suitable.

Referring now to FIG. 27, shown is a block diagram of a
system 2700 in accordance with one embodiment of the
present invention. The system 2700 may include one or
more processors 2710, 2715, which are coupled to a con-
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troller hub 2720. In one embodiment the controller hub 2720
includes a graphics memory controller hub (GMCH) 2790
and an Input/Output Hub (IOH) 2750 (which may be on
separate chips); the GMCH 2790 includes memory and
graphics controllers to which are coupled memory 2740 and
a coprocessor 2745; the IOH 2750 is couples input/output
(I/O) devices 2760 to the GMCH 2790. Alternatively, one or
both of the memory and graphics controllers are integrated
within the processor (as described herein), the memory 2740
and the coprocessor 2745 are coupled directly to the pro-
cessor 2710, and the controller hub 2720 in a single chip
with the IOH 2750.

The optional nature of additional processors 2715 is
denoted in FIG. 27 with broken lines. Each processor 2710,
2715 may include one or more of the processing cores
described herein and may be some version of the processor
2600.

The memory 2740 may be, for example, dynamic random
access memory (DRAM), phase change memory (PCM), or
a combination of the two. For at least one embodiment, the
controller hub 2720 communicates with the processor(s)
2710, 2715 via a multi-drop bus, such as a frontside bus
(FSB), point-to-point interface such as QuickPath Intercon-
nect (QPI), or similar connection 2795.

In one embodiment, the coprocessor 2745 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like. In one embodiment, controller hub
2720 may include an integrated graphics accelerator.

There can be a variety of differences between the physical
resources 2710, 2715 in terms of a spectrum of metrics of
merit including architectural, microarchitectural, thermal,
power consumption characteristics, and the like.

In one embodiment, the processor 2710 executes instruc-
tions that control data processing operations of a general
type. Embedded within the instructions may be coprocessor
instructions. The processor 2710 recognizes these coproces-
sor instructions as being of a type that should be executed by
the attached coprocessor 2745. Accordingly, the processor
2710 issues these coprocessor instructions (or control sig-
nals representing coprocessor instructions) on a coprocessor
bus or other interconnect, to coprocessor 2745. Coproces-
sor(s) 2745 accept and execute the received coprocessor
instructions.

Referring now to FIG. 28, shown is a block diagram of a
first more specific exemplary system 2800 in accordance
with an embodiment of the present invention. As shown in
FIG. 28, multiprocessor system 2800 is a point-to-point
interconnect system, and includes a first processor 2870 and
a second processor 2880 coupled via a point-to-point inter-
connect 2850. Each of processors 2870 and 2880 may be
some version of the processor 2600. In one embodiment of
the invention, processors 2870 and 2880 are respectively
processors 2710 and 2715, while coprocessor 2838 is copro-
cessor 2745. In another embodiment, processors 2870 and
2880 are respectively processor 2710 coprocessor 2745.

Processors 2870 and 2880 are shown including integrated
memory controller (IMC) units 2872 and 2882, respectively.
Processor 2870 also includes as part of its bus controller
units point-to-point (P-P) interfaces 2876 and 2878; simi-
larly, second processor 2880 includes P-P interfaces 2886
and 2888. Processors 2870, 2880 may exchange information
via a point-to-point (P-P) interface 2850 using P-P interface
circuits 2878, 2888. As shown in FIG. 28, IMCs 2872 and
2882 couple the processors to respective memories, namely
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a memory 2832 and a memory 2834, which may be portions
of main memory locally attached to the respective proces-
SOIS.

Processors 2870, 2880 may each exchange information
with a chipset 2890 via individual P-P interfaces 2852, 2854
using point to point interface circuits 2876, 2894, 2886,
2898. Chipset 2890 may optionally exchange information
with the coprocessor 2838 via a high-performance interface
2839. In one embodiment, the coprocessor 2838 is a special-
purpose processor, such as, for example, a high-throughput
MIC processor, a network or communication processor,
compression engine, graphics processor, GPGPU, embed-
ded processor, or the like.

A shared cache (not shown) may be included in either
processor or outside of both processors, yet connected with
the processors via P-P interconnect, such that either or both
processors’ local cache information may be stored in the
shared cache if a processor is placed into a low power mode.

Chipset 2890 may be coupled to a first bus 2816 via an
interface 2896. In one embodiment, first bus 2816 may be a
Peripheral Component Interconnect (PCI) bus, or a bus such
as a PCI Express bus or another third generation 1/O
interconnect bus, although the scope of the present invention
is not so limited.

As shown in FIG. 28, various /O devices 2814 may be
coupled to first bus 2816, along with a bus bridge 2818
which couples first bus 2816 to a second bus 2820. In one
embodiment, one or more additional processor(s) 2815, such
as coprocessors, high-throughput MIC processors, GPG-
PU’s, accelerators (such as, e.g., graphics accelerators or
digital signal processing (DSP) units), field programmable
gate arrays, or any other processor, are coupled to first bus
2816. In one embodiment, second bus 2820 may be a low
pin count (LPC) bus. Various devices may be coupled to a
second bus 2820 including, for example, a keyboard and/or
mouse 2822, communication devices 2827 and a storage
unit 2828 such as a disk drive or other mass storage device
which may include instructions/code and data 2830, in one
embodiment. Further, an audio I/O 2824 may be coupled to
the second bus 2820. Note that other architectures are
possible. For example, instead of the point-to-point archi-
tecture of FIG. 28, a system may implement a multi-drop bus
or other such architecture.

Referring now to FIG. 29, shown is a block diagram of a
second more specific exemplary system 2900 in accordance
with an embodiment of the present invention. Like elements
in FIGS. 28 and 29 bear like reference numerals, and certain
aspects of FIG. 28 have been omitted from FIG. 29 in order
to avoid obscuring other aspects of FIG. 29.

FIG. 29 illustrates that the processors 2870, 2880 may
include integrated memory and I/O control logic (“CL”)
2872 and 2882, respectively. Thus, the CL 2872, 2882
include integrated memory controller units and include 1/O
control logic. FIG. 29 illustrates that not only are the
memories 2832, 2834 coupled to the CL 2872, 2882, but also
that 1/0O devices 2914 are also coupled to the control logic
2872, 2882. Legacy 1/O devices 2915 are coupled to the
chipset 2890.

Referring now to FIG. 30, shown is a block diagram of a
SoC 3000 in accordance with an embodiment of the present
invention. Similar elements in FIG. 26 bear like reference
numerals. Also, dashed lined boxes are optional features on
more advanced SoCs. In FIG. 30, an interconnect unit(s)
3002 is coupled to: an application processor 3010 which
includes a set of one or more cores 202A-N and shared cache
unit(s) 2606; a system agent unit 2610; a bus controller
unit(s) 2616; an integrated memory controller unit(s) 2614;
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a set or one or more coprocessors 3020 which may include
integrated graphics logic, an image processor, an audio
processor, and a video processor; an static random access
memory (SRAM) unit 3030; a direct memory access (DMA)
unit 3032; and a display unit 3040 for coupling to one or
more external displays. In one embodiment, the coproc-
essor(s) 3020 include a special-purpose processor, such as,
for example, a network or communication processor, com-
pression engine, GPGPU, a high-throughput MIC processor,
embedded processor, or the like.

Embodiments of the mechanisms disclosed herein may be
implemented in hardware, software, firmware, or a combi-
nation of such implementation approaches. Embodiments of
the invention may be implemented as computer programs or
program code executing on programmable systems compris-
ing at least one processor, a storage system (including
volatile and non-volatile memory and/or storage elements),
at least one input device, and at least one output device.

Program code, such as code 2830 illustrated in FIG. 28,
may be applied to input instructions to perform the functions
described herein and generate output information. The out-
put information may be applied to one or more output
devices, in known fashion. For purposes of this application,
a processing system includes any system that has a proces-
sor, such as, for example; a digital signal processor (DSP),
a microcontroller, an application specific integrated circuit
(ASIC), or a microprocessor.

The program code may be implemented in a high level
procedural or object oriented programming language to
communicate with a processing system. The program code
may also be implemented in assembly or machine language,
if desired. In fact, the mechanisms described herein are not
limited in scope to any particular programming language. In
any case, the language may be a compiled or interpreted
language.

One or more aspects of at least one embodiment may be
implemented by representative instructions stored on a
machine-readable medium which represents various logic
within the processor, which when read by a machine causes
the machine to fabricate logic to perform the techniques
described herein. Such representations, known as “IP cores”
may be stored on a tangible, machine readable medium and
supplied to various customers or manufacturing facilities to
load into the fabrication machines that actually make the
logic or processor.

Such machine-readable storage media may include, with-
out limitation, non-transitory, tangible arrangements of
articles manufactured or formed by a machine or device,
including storage media such as hard disks, any other type
of disk including floppy disks, optical disks, compact disk
read-only memories (CD-ROMs), compact disk rewritable’s
(CD-RWs), and magneto-optical disks, semiconductor
devices such as read-only memories (ROMs), random
access memories (RAMs) such as dynamic random access
memories (DRAMs), static random access memories
(SRAMs), erasable programmable read-only memories
(EPROMs), flash memories, electrically erasable program-
mable read-only memories (EEPROMs), phase change
memory (PCM), magnetic or optical cards, or any other type
of media suitable for storing electronic instructions.

Accordingly, embodiments of the invention also include
non-transitory, tangible machine-readable media containing
instructions or containing design data, such as Hardware
Description Language (HDL), which defines structures, cir-
cuits, apparatuses, processors and/or system features
described herein. Such embodiments may also be referred to
as program products.
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Emulation (Including Binary Translation, Code Morphing,
Etc.)

In some cases, an instruction converter may be used to
convert an instruction from a source instruction set to a
target instruction set. For example, the instruction converter
may translate (e.g., using static binary translation, dynamic
binary translation including dynamic compilation), morph,
emulate, or otherwise convert an instruction to one or more
other instructions to be processed by the core. The instruc-
tion converter may be implemented in software, hardware,
firmware, or a combination thereof. The instruction con-
verter may be on processor, off processor, or part on and part
off processor.

FIG. 31 is a block diagram contrasting the use of a
software instruction converter to convert binary instructions
in a source instruction set to binary instructions in a target
instruction set according to embodiments of the invention.
In the illustrated embodiment, the instruction converter is a
software instruction converter, although alternatively the
instruction converter may be implemented in software, firm-
ware, hardware, or various combinations thereof. FIG. 31
shows a program in a high level language 3102 may be
compiled using an x86 compiler 3104 to generate x86 binary
code 3106 that may be natively executed by a processor with
at least one x86 instruction set core 3116. The processor with
at least one x86 instruction set core 3116 represents any
processor that can perform substantially the same functions
as an Intel processor with at least one x86 instruction set
core by compatibly executing or otherwise processing (1) a
substantial portion of the instruction set of the Intel x86
instruction set core or (2) object code versions of applica-
tions or other software targeted to run on an Intel processor
with at least one x86 instruction set core, in order to achieve
substantially the same result as an Intel processor with at
least one x86 instruction set core. The x86 compiler 3104
represents a compiler that is operable to generate x86 binary
code 3106 (e.g., object code) that can, with or without
additional linkage processing, be executed on the processor
with at least one x86 instruction set core 3116. Similarly,
FIG. 31 shows the program in the high level language 3102
may be compiled using an alternative instruction set com-
piler 3108 to generate alternative instruction set binary code
3110 that may be natively executed by a processor without
at least one x86 instruction set core 3114 (e.g., a processor
with cores that execute the MIPS instruction set of MIPS
Technologies of Sunnyvale, Calif. and/or that execute the
ARM instruction set of ARM Holdings of Sunnyvale,
Calif.). The instruction converter 3112 is used to convert the
x86 binary code 3106 into code that may be natively
executed by the processor without an x86 instruction set
core 3114. This converted code is not likely to be the same
as the alternative instruction set binary code 3110 because an
instruction converter capable of this is difficult to make;
however, the converted code will accomplish the general
operation and be made up of instructions from the alterna-
tive instruction set. Thus, the instruction converter 3112
represents software, firmware, hardware, or a combination
thereof that, through emulation, simulation or any other
process, allows a processor or other electronic device that
does not have an x86 instruction set processor or core to
execute the x86 binary code 3106.

While the sequences of numbers disclosed herein are
useful for control indexes, their use is not limited to control
indexes. They may also be used for other purposes (e.g., as
input to other instructions or algorithms). In other embodi-
ments, sequences of other numbers of integers (e.g., 6, 12,
20, 24, 128, etc.) may be stored.
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The methods shown in the block flow diagrams herein
may be performed by general-purpose processors, special-
purpose processors (e.g., a graphics processors or a digital
signal processors), or other types of digital logic devices or
instruction processing apparatus. In various embodiments,
the instructions may be received at the instruction process-
ing apparatus, the processor, or a portion thereof (e.g., a
decoder, instruction converter, etc.). In various aspects, the
instruction may be received at the processor from an off-
processor source (e.g., from a main memory, a disc, or a
bus/interconnect), or from an on-processor source (e.g.,
from an instruction cache, instruction fetch unit, etc.). In
some embodiments, the methods may be performed by the
processor of FIG. 1 and/or the instruction processing appa-
ratus of FIG. 4. Alternatively, the methods may be per-
formed by different embodiments of processors and/or
instruction processing apparatus. Moreover, the processor of
FIG. 1 and/or the instruction processing apparatus of FIG. 4
may perform operations and methods that are either the
same as, similar to, or different than those of the methods
shown in the block flow diagrams.

The methods shown in the block flow diagrams herein
describe operations that are visible from outside a processor
or instruction processing apparatus (e.g., visible from a
software perspective). For example, the instruction is pro-
vided to the processor and a result is stored in an architec-
turally visible storage location in response to the instruction.
In other embodiments, any of these methods may optionally
include one or more other operations occurring internally
within the processor or instruction processing apparatus. By
way of example, the instructions may be fetched, the instruc-
tions may be decoded or otherwise converted into one or
more other instructions or control signals, execution units
may be enabled to perform the operations according to the
instructions, microarchitectural operations to implement the
operations of the instructions may be performed (e.g.,
sequences of integers may be calculated or accessed from a
non-architecturally visible storage location of an on-die
ROM), etc.

The terms “coupled” and “connected,” along with their
derivatives, may be used herein. It should be understood that
these terms are not intended as synonyms for each other.
Rather, in particular embodiments, “connected” may be used
to indicate that two or more elements are in direct physical
or electrical contact with each other. “Coupled” may mean
that two or more elements are in direct physical or electrical
contact. However, “coupled” may also mean that two or
more elements are not in direct contact with each other, but
yet still co-operate or interact with each other. For example,
an execution unit may be coupled with a register through one
or more intervening components. In the figures, arrows are
used to show couplings.

In the description above, for the purposes of explanation,
numerous specific details have been set forth in order to
provide a thorough understanding of the embodiments of the
invention. It will be apparent however, to one skilled in the
art, that one or more other embodiments may be practiced
without some of these specific details. The particular
embodiments described are not provided to limit the inven-
tion but to illustrate it. The scope of the invention is not to
be determined by the specific examples provided above but
only by the claims below. In other instances, well-known
circuits, structures, devices, and operations have been shown
in block diagram form or without detail in order to avoid
obscuring the understanding of the description.

Various operations and methods have been described.
Some of the methods have been described in a basic form in
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the flow diagrams, but operations may optionally be added
to and/or removed from the methods. In addition, a particu-
lar order of the operations may have been described, accord-
ing to example embodiments, it is to be understood that that
particular order is exemplary. Alternate embodiments may
optionally perform the operations in different order, combine
certain operations, overlap certain operations, etc.
Certain operations may be performed by hardware com-
ponents, or may be embodied in machine-executable or
circuit-executable instructions, that may be used to cause, or
at least result in, a circuit or hardware programmed with the
instructions performing the operations. The circuit may
include a general-purpose or special-purpose processor, or
logic circuit, to name just a few examples. The operations
may also optionally be performed by a combination of
hardware and software. An execution unit and/or a processor
may include specific or particular circuitry or other logic
responsive to instructions, microinstructions, or one or more
control signals, derived from a machine instruction to per-
form certain operations.
It should also be appreciated that reference throughout
this specification to “one embodiment”, “an embodiment”,
or “one or more embodiments”, for example, means that a
particular feature may be included in the practice of the
invention. Similarly, it should be appreciated that in the
description various features are sometimes grouped together
in a single embodiment, Figure, or description thereof for
the purpose of streamlining the disclosure and aiding in the
understanding of various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an
intention that the invention requires more features than are
expressly recited in each claim. Rather, as the following
claims reflect, inventive aspects may lie in less than all
features of a single disclosed embodiment. Thus, the claims
following the Detailed Description are hereby expressly
incorporated into this Detailed Description, with each claim
standing on its own as a separate embodiment of the
invention.
What is claimed is:
1. A method comprising:
receiving a packed data rearrangement control indexes
generation instruction, the packed data rearrangement
control indexes generation instruction indicating one or
more numerical pattern defining parameters, and indi-
cating a destination storage location;
using each of the one or more numerical pattern defining
parameters to evaluate a numerical pattern defining
relation that is implicit to the packed data rearrange-
ment control indexes generation instruction; and

storing a result in the destination storage location in
response to the packed data rearrangement control
indexes generation instruction, the result including a
sequence of at least four non-negative integers repre-
senting packed data rearrangement control indexes,
each of the one or more numerical pattern defining
parameters affecting a value of each of the at least four
non-negative integers, at least one of the one or more
numerical pattern defining parameters being used to
generate a value of at least a plurality of the at least four
non-negative integers,

wherein values of the at least four non-negative integers

are not calculated using a result of a preceding instruc-
tion, and

wherein it is implicit to an opcode of the instruction that

the result includes the sequence of integers.

2. The method of claim 1, wherein receiving comprises
receiving the packed data rearrangement control indexes
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generation instruction that does not indicate a source packed
data operand having a plurality of packed data elements in
an architecturally-visible storage location.

3. The method of claim 1, wherein storing the result
comprises storing the sequence of at least eight non-negative
integers having a numerical pattern, and wherein the numeri-
cal pattern is based predominantly on the opcode of the
packed data rearrangement control indexes generation
instruction and the one or more numerical pattern defining
parameters.

4. The method of claim 1, wherein receiving comprises
receiving the packed data rearrangement control indexes
generation instruction indicating an integer offset, and
wherein storing comprises storing the sequence of the at
least four non-negative integers with a smallest of the at least
four non-negative integers differing from zero by the integer
offset.

5. The method of claim 1, wherein receiving comprises
receiving the packed data rearrangement control indexes
generation instruction indicating a constant integer stride,
and wherein storing comprises storing the sequence of the at
least four non-negative integers with all consecutive integers
differing by the constant integer stride.

6. The method of claim 1, wherein storing comprises
storing the sequence of the at least four non-negative inte-
gers with all consecutive integers differing by a constant
stride, and wherein receiving comprises receiving the
instruction having the opcode that fixes that all the consecu-
tive integers differ by the constant stride.

7. The method of claim 1, wherein receiving comprises
receiving the instruction indicating a plurality of numerical
pattern defining parameters.

8. The method of claim 1, wherein storing comprises
storing a result including the sequence of at least thirty-two
non-negative integers representing packed data rearrange-
ment control indexes.

9. The method of claim 1, wherein the one or more
numerical pattern defining parameters comprise a stride.

10. The method of claim 1, further comprising:

receiving a packed data rearrangement instruction
selected from a permute instruction and a shuffle
instruction, the packed data rearrangement instruction
indicating the packed data rearrangement control
indexes, indicating at least one source packed data, and
indicating a second destination storage location; and

storing a packed data result in the second destination
storage location in response to the packed data rear-
rangement instruction, the packed data result including
data elements from the at least one source packed data
rearranged according to the packed data rearrangement
control indexes.

11. An apparatus comprising:

a destination storage location;

a decode unit to decode a packed data rearrangement
control indexes generation instruction that is to indicate
one or more numerical pattern defining parameters, and
is to indicate the destination storage location; and

an execution unit coupled with the destination storage
location, the execution unit, in response to the packed
data rearrangement control indexes generation instruc-
tion being decoded, to store a result in the destination
storage location, the result to include a sequence of at
least four non-negative integers that are to represent
packed data rearrangement control indexes, wherein at
least a plurality of the at least four non-negative inte-
gers of the sequence are to have been generated from
one of the one or more numerical pattern defining
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parameters, and wherein the result is to be stored
without calculating values of the least four non-nega-
tive integers from a result of a preceding instruction,

wherein it is implicit to an opcode of the instruction that
the result is to include the sequence of integers, and

wherein said one of the one or more numerical pattern
defining parameters is not to be provided by an imme-
diate.

12. The apparatus of claim 11, wherein the execution unit
is to store the result responsive to the packed data rearrange-
ment control indexes generation instruction that is not to
indicate a source packed data operand having a plurality of
packed data elements in an architecturally-visible storage
location.

13. The apparatus of claim 11, wherein the execution unit,
in response to the packed data rearrangement control
indexes generation instruction, is to store the sequence of at
least eight non-negative integers that are to have a numerical
pattern, and wherein the numerical pattern is to be based
predominantly on the opcode of the packed data rearrange-
ment control indexes generation instruction and the one or
more numerical pattern defining parameters.

14. The apparatus of claim 11, wherein each of the one or
more numerical pattern defining parameters is to affect a
value of each of the at least four non-negative integers.

15. The apparatus of claim 11, wherein the execution unit,
in response to the packed data rearrangement control
indexes generation instruction, is to store the sequence of at
least eight non-negative integers that are to have a numerical
pattern that is based entirely on the opcode of the packed
data rearrangement control indexes generation instruction
and the one or more numerical pattern defining parameters.

16. The apparatus of claim 11, wherein the packed data
rearrangement control indexes generation instruction is to
indicate an integer offset, and wherein the execution unit, in
response to the packed data rearrangement control indexes
generation instruction, is to store the sequence of the at least
four non-negative integers with a smallest of the at least four
non-negative integers to differ from zero by the integer
offset.

17. The apparatus of claim 11, wherein the execution unit,
in response to the opcode of the packed data rearrangement
control indexes generation instruction, is to store all con-
secutive integers in the sequence of the at least four non-
negative integers to differ by a constant stride.

18. The apparatus of claim 11, wherein the one or more
numerical pattern defining parameters comprise a plurality
of numerical pattern defining parameters.

19. The apparatus of claim 11, wherein the one or more
numerical pattern defining parameters comprise a stride.

20. A system comprising:

an interconnect;

a processor coupled with the interconnect, the processor
including a destination register, the processor, in
response to a packed data rearrangement control
indexes generation instruction that is to indicate one or
more numerical pattern defining parameters and is to
indicate the destination register, to store a result in the
destination register, the result to include a sequence of
at least four non-negative integers that are to represent
packed data rearrangement control indexes, each of the
one or more numerical pattern defining parameters to
affect a value of each of the at least four non-negative
integers, wherein at least a plurality of the at least four
non-negative integers of the sequence are to have been
generated using one of the one or more numerical
pattern defining parameters,
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wherein the processor is to store the result responsive to
the packed data rearrangement control indexes genera-
tion instruction that is not to indicate a source packed
data operand having a plurality of packed data elements
in an architecturally-visible storage location, and
wherein it is to be implicit to an opcode of the instruc-
tion that the result is to include the sequence of inte-
gers, and wherein said one of the one or more numeri-
cal pattern defining parameters is not to be provided in
an immediate; and

a dynamic random access memory (DRAM) coupled with

the interconnect.

21. The system of claim 20, wherein the sequence of the
at least four non-negative integers is to have a numerical
pattern that is based predominantly on the opcode of the
packed data rearrangement control indexes generation
instruction and the one or more numerical pattern defining
parameters that are to be indicated by the packed data
rearrangement control indexes generation instruction.
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