
THULLULT T WITTER US009904547B2

(12) United States Patent
Ould - Ahmed - Vall et al .

(10) Patent No . : US 9 , 904 , 547 B2
(45) Date of Patent : * Feb . 27 , 2018

(54) PACKED DATA REARRANGEMENT
CONTROL INDEXES GENERATION
PROCESSORS , METHODS , SYSTEMS AND
INSTRUCTIONS

(58) Field of Classification Search
None
See application file for complete search history .

(56) References Cited
U . S . PATENT DOCUMENTS (75) Inventors : Elmoustapha Ould - Ahmed - Vall ,

Chandler , AZ (US) ; Seth Abraham ,
Tempe , AZ (US) ; Robert Valentine ,
Kiryat Tivon (IL) ; Zeev Sperber ,
Zichron Yackov (IL) ; Amit Gradstein ,
Binyamina (IL)

7 , 370 , 180 B2
7 , 529 , 918 B2 *

7 , 865 , 693 B2 *

5 / 2008 Nancekievill et al .
5 / 2009 Taunton G06F 9 / 30018

712 / 220
1 / 2011 Eichenberger G06F 9 / 30025

712 / 2

(Continued) (73) Assignee : Intel Corporation , Santa Clara , CA
(US) FOREIGN PATENT DOCUMENTS

CN
CN

1508674 A 6 / 2004
102109977 A 6 / 2011

(Continued)

OTHER PUBLICATIONS

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 546 days .
This patent is subject to a terminal dis
claimer .

(21) Appl . No . : 13 / 977 , 217
(22) PCT Filed : Dec . 22 , 2011
(86) PCT No . : PCT / US2011 / 067000

$ 371 (c) (1) ,
(2) , (4) Date : Jun . 28 , 2013

(87) PCT Pub . No . : W02013 / 095555
PCT Pub . Date : Jun . 27 , 2013

Nuzman et al . , Auto - Vectorization of Interleaved Data for SIMD ;
Jun . 2006 ; ACM . *

(Continued)
Primary Examiner — Corey S Faherty
(74) Attorney , Agent , or Firm — Nicholson , DeVos ,
Webster and Elliott , LLP
(57) ABSTRACT
A method of an aspect includes receiving a packed data
rearrangement control indexes generation instruction . The
packed data rearrangement control indexes generation
instruction indicates a destination storage location . A result
is stored in the destination storage location in response to the
packed data rearrangement control indexes generation
instruction . The result includes a sequence of at least four
non - negative integers representing packed data rearrange
ment control indexes . In an aspect , values of the at least four
non - negative integers are not calculated using a result of a
preceding instruction . Other methods , apparatus , systems ,
and instructions are disclosed .

21 Claims , 32 Drawing Sheets

(65) Prior Publication Data
US 2013 / 0283018 A1 Oct . 24 , 2013

(51) Int . Ci .
GO6F 9 / 30 (2006 . 01)

(52) U . S . CI .
CPC GO6F 9 / 30043 (2013 . 01) ; G06F 9 / 30032

(2013 . 01) ; G06F 9 / 30036 (2013 . 01) ; G06F
9 / 30163 (2013 . 01) ; G06F 9 / 30167 (2013 . 01)

1030

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION

STORAGE LOCATION
1031

h 1032
STORE RESULT IN DESTINATION STORAGE LOCATION IN

RESPONSE TO INSTRUCTION , RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON - NEGATIVE

INTEGERS IN NUMERICAL ORDER WITH ALL INTEGERS
IN CONSECUTIVE POSITIONS DIFFERING BYA

CONSTANT STRIDE OF AT LEAST TWO

US 9 , 904 , 547 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

7 , 900 , 025 B2 * 3 / 2011 Gschwind GO6F 9 / 30036
712 / 22

2005 / 0198474 AL 9 / 2005 Nancekievill et al .
2010 / 0095097 A1 * 4 / 2010 Gschwind GO6F 9 / 30036

712 / 222
2011 / 0258418 A14 / 2011 Roussel
2011 / 0153997 A1 6 / 2011 Loktyukhin et al .

Patterson et al . , Computer Architecture : A Quantitative Approach ;
1996 ; Morgan Kaufmann . *
International Preliminary Report on Patentability with Written
Opinion received for PCT application No . PCT / US2011 / 067000
dated Jul . 3 , 2014 .
Office Action for Taiwan Patent Application No . 101145985 , dated
Nov . 11 , 2014 , 7 pages of English Translation and 4 pages of Taiwan
Office Action .
International Search Report and Written Opinion for PCT Patent
Application No . PCT / US2011 / 067000 , dated Aug . 24 , 2012 , 5
pages .
Office Action for Chinese Patent Application No . 2011
80075695 . 4 , dated Aug . 16 , 2016 , 8 pages of Chinese Office Action
only .
Office Action for Chinese Patent Application No . 201180075695 . 4 ,
dated Aug . 16 , 2016 , 18 pages of Chinese Office Action including
10 pages of English Translation .
Office Action for Chinese Patent Application No . 20118
0075695 . 4 , dated Mar . 22 , 2017 , 16 pages of Chinese Office Action
including 9 pages of English Translation .

FOREIGN PATENT DOCUMENTS
TW
WO

1283353 B
2013 / 095555 Al

7 / 2007
6 / 2013

OTHER PUBLICATIONS

Ren et al . , Optimizing Data Permutations for SIMD Devices ; Jun .
2006 ; ACM . *
Shen et al . , Modern Processor Design : Fundamentals of Superscalar
Processors ; 2002 ; McGraw - Hill . * * cited by examiner

PROCESSOR 100

U . S . Patent

INSTRUCTION SET ARCHITECTURE 101

INSTRUCTION SET 104

ARCHITECTURAL REGISTERS 102

Feb . 27 , 2018

INSTRUCTION (S) THAT USE CONTROL INDEXES 105

PACKED DATA REGISTERS 103

1067

PACKED DATA REARRANGEMENT
INSTRUCTION (S)
(e . g . , PERMUTE , SHUFFLE , ETC .)

- -

-

-

+

+

1

I

II
-

-

-

It
F

-

-

11

-

II

E

11

GATHER INSTRUCTION (S)

Sheet 1 of 32

-

???? ?? INSTRUCTION (S) USEFUL TO GENERATE CONTROL INDEXES 108

EXECUTION LOGIC

1097

CONTROL INDEXES
GENERATION INSTRUCTION (S)

r - www

111

mm

11

-

1

CONTROL INDEXES PRECURSORS
GENERATION INSTRUCTION (S)

- -

US 9 , 904 , 547 B2

FIG . 1

U . S . Patent Feb . 27 , 2018 Sheet 2 of 32 US 9 , 904 , 547 B2

FIG . 2 METHOD OF
PROCESSING
PACKED DATA

REARRANGEMENT
CONTROL INDEXES

GENERATION
INSTRUCTION

212 m

RECEIVE PACKED DATA REARRANGEMENT
CONTROL INDEXES GENERATION INSTRUCTION

INDICATING FIRST DESTINATION STORAGE LOCATION
- 213

STORE RESULT IN FIRST DESTINATION STORAGE
LOCATION IN RESPONSE TO PACKED DATA

REARRANGEMENT CONTROL INDEXES GENERATION
INSTRUCTION , RESULT INCLUDING SEQUENCE OF AT

LEAST FOUR NON - NEGATIVE INTEGERS WITH PLURALITY
OF DIFFERENT VALUES REPRESENTING PACKED DATA

REARRANGEMENT CONTROL INDEXES

- 214

- - - - - I - - - - -
-

men mere

- - - - men som semen - - - - - - - -
-
RECEIVE PACKED DATA REARRANGEMENT
INSTRUCTION INDICATING PACKED DATA

REARRANGEMENT CONTROL INDEXES , AT LEAST
ONE SOURCE PACKED DATA , AND SECOND

DESTINATION STORAGE LOCATION
- - - - - - - - - - - - - - -

sement comment meaning and

h 215
pre more mamme -

1 . P 1 my

ver maneres med
a -

STORE PACKED DATA RESULT IN SECOND
I DESTINATION STORAGE LOCATION IN RESPONSE TO

PACKED DATA REARRANGEMENT INSTRUCTION ,
PACKED DATA RESULT INCLUDING DATA ELEMENTS

FROM AT LEAST ONE SOURCE PACKED DATA
REARRANGED ACCORDING TO PACKED DATA

REARRANGEMENT CONTROL INDEXES
home movement e converteren e n vrouwen aan wees en de ve om vem even more commune -

1216
w

-

U . S . Patent Feb . 27 , 2018 Sheet 3 of 32 US 9 , 904 , 547 B2

FIG . 3 METHOD OF
PROCESSING
PACKED DATA

REARRANGEMENT
CONTROL INDEXES
PRECURSORS
GENERATION
INSTRUCTION

317 -

RECEIVE PACKED DATA REARRANGEMENT CONTROL
INDEXES PRECURSORS GENERATION INSTRUCTION
INDICATING DESTINATION STORAGE LOCATION

318

STORE RESULT IN DESTINATION STORAGE LOCATION
IN RESPONSE TO INSTRUCTION , RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON - NEGATIVE

INTEGERS WITH PLURALITY OF DIFFERENT VALUES
REPRESENTING PACKED DATA REARRANGEMENT

CONTROL INDEXES PRECURSORS

1 319

- - -

L

-

-

- - - - - - - - -
-

EXECUTE AT LEAST ONE ADDITIONAL INSTRUCTION TO !
CONVERT PACKED DATA REARRANGEMENT CONTROL !

INDEXES PRECURSORS INTO PACKED DATA 1320
REARRANGEMENT CONTROL INDEXES

- mument

-

-

- - - I I I - - - - - - - L - - - -

- - - - - - - - - - - - - - - - -
-

-
EXECUTE PACKED DATA REARRANGEMENT
INSTRUCTION INDICATING PACKED DATA
REARRANGEMENT CONTROL INDEXES

- 321
-

- - - - - - - - - - - - - - - - - -

INSTRUCTION PROCESSING APPARATUS 400 -

U . S . Patent

PACKED DATA REGISTERS 403

INSTRUCTION USEFUL TO GENERATE CONTROL INDEXES 408

EXECUTION UNIT 423

DESTINATION STORAGE LOCATION 427

Feb . 27 , 2018

DECODER 422

LOGIC TO CALCULATE SEQUENCE OF INEGERS 424

RESULT 428

SEQUENCE OF AT LEAST FOUR INTEGERS REPRESENTING CONTROL INDEXES OR CONTROL INDEXES PRECURSORS

Sheet 4 of 32

w

wwwwwwww

www www

me

MEMORY 426
- -

FIG . 4

SEQUENCE OF INEGERS
- -

425

US 9 , 904 , 547 B2

L
-

-

-

www

U . S . Patent Feb . 27 , 2018 Sheet 5 of 32 US 9 , 904 , 547 B2

FIG . 5
530

RECEIVE INSTRUCTION THAT IS USEFUL TO
GENERATE CONTROL INDEXES AND INDICATING

DESTINATION STORAGE LOCATION
- 531

STORE RESULT IN DESTINATION STORAGE
LOCATION IN RESPONSE TO INSTRUCTION , RESULT

INCLUDING SQUENCE OF AT LEAST FOUR NON - NEGATIVE
INTEGERS THAT FOLLOW NUMERICAL PATTERN

608

U . S . Patent

memel www meme

OPCODE

DESTINATION STORAGE LOCATION

www

NO ARCHITECTURALLY VISIBLE SOURCE STORAGE LOCATION HAVING PACKED DATA ELEMENTS TO BE OPERATED ON BY INSTRUCTION (e . g . , CONVERTED INTO RESULTS)

635 635

NUMERICAL PATTERN DEFINING PARAMETERISI le . g . , OFFSET , STRIDE , ROTATION

AMOUNT , OFFSET AND STRIDE) (OPTIONAL)

Feb . 27 , 2018

633

634

han whose who are www www

636

AL

kome more

mom

mom wana anam ann

an

own aw

www
car

son

annen men man medias

Sheet 6 of 32

637 IN SOME CASES NO SOURCE OPERANDS

FIG . 6

US 9 , 904 , 547 B2

U . S . Patent Feb . 27 , 2018 Sheet 7 of 32 US 9 , 904 , 547 B2

INSTRUCTION
708A DESTINATION

STORAGE LOCATION
727A

OPCODE
DESTINATION
STORAGE
LOCATION EXECUTION RESULT 728A

733A
734A SEQUENCE OF

INTEGERS HAVING
NUMERICAL PATTERN

740A

738 -
NUMERICAL PATTERN
IS BASED ENTIRELY

ON OPCODE

FIG . 7A

INSTRUCTION
708B

DESTINATION
STORAGE LOCATION

727B

RESULT 728B Ear OPCODE
DESTINATION
STORAGE
LOCATION

NUMERICAL
PATTERN
DEFINING

PARAMETER (S)
EXECUTION

733B
SEQUENCE OF

INTEGERS HAVING
NUMERICAL PATTERN

740B 734B 736

739 -
NUMERICAL PATTERN
IS BASED ON OPCODE

AND NUMERICAL PATTERN
DEFINING PARAMETER (S)

FIG . 7B

U . S . Patent Feb . 27 , 2018 Sheet 8 of 32 US 9 , 904 , 547 B2

FIG . 8
830

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION

STORAGE LOCATION
h 831

STORE RESULT IN DESTINATION STORAGE LOCATION IN
RESPONSE TO INSTRUCTION , RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR CONSECUTIVE

NON - NEGATIVE INTEGERS IN NUMERICAL ORDER
1832

- | | - | - | - | - | - | * *

FIRST SOURCE PACKED DATA

U . S . Patent

Az

A6

A5

A4

/

A3

A2

L

A1

AO

or 942 SECOND SOURCE PACKED DATA - 90

By | Be | Bs | Ba | B3 | Ba | B? | Bo C7 çocs (4 ¢ ¢ ¢ ço

Feb . 27 , 2018

1

59

C G

Gü

3

10 944 (2) SOURCE PACKED
DATA HAVING PACKED DATA REARRANGEMENT CONTROL INDEXES

Sheet 9 of 32

|

?0 BO

A3

A2

* 945 RESULT PACKED DATA

US 9 , 904 , 547 B2

FIG . 9

U . S . Patent Feb . 27 , 2018 Sheet 10 of 32 US 9 , 904 , 547 B2

FIG . 10
1030

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION

STORAGE LOCATION
h 1031

1032

STORE RESULT IN DESTINATION STORAGE LOCATION IN
RESPONSE TO INSTRUCTION , RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON - NEGATIVE

INTEGERS IN NUMERICAL ORDER WITH ALL INTEGERS
IN CONSECUTIVE POSITIONS DIFFERING BY A

CONSTANT STRIDE OF AT LEAST TWO

FIG . 11
1130

RECEIVE INSTRUCTION USEFUL TO GENERATE
CONTROL INDEXES AND INDICATING DESTINATION

STORAGE LOCATION
- 1131

STORE RESULT IN DESTINATION STORAGE LOCATION
IN RESPONSE TO INSTRUCTION , RESULT INCLUDING
SEQUENCE OF AT LEAST FOUR NON - NEGATIVE SAME

PARITY (e . g . , ALL EVEN OR ALL ODD) INTEGERS
IN NUMERICAL ORDER

- 1132

FIRST SOURCE PACKED DATA - 1242

Im3

R3

Im2

R2

|

Im1
|

R1

Imo

RO

atent

- - | | - | - - - | - *

| 1 | - | - | - | ' | Map

SECOND SOURCE PACKED DATA kur 1243

I7

/

Ry

|

16

|

RC

15

R5

14

R4

Feb . 27 , 2018

©

¢

¢

¢

¢

¢

¢

ço

I

2 1244 THIRD SOURCE PACKED DATA HAVING PACKED DATA REARRANGEMENT CONTROL INDEXES
Sheet 11 of 32

RA

R3 | R6 | Rs | R4 | R3 | Ra | R1 | Ro

-
1245 RESULT PACKED DATA

US 9 , 904 , 547 B2

FIG . 12

U . S . Patent Feb . 27 , 2018 Sheet 12 of 32 US 9 , 904 , 547 B2

FIG . 13
13307

RECEIVE INSTRUCTION THAT IS USEFUL TO GENERATE
CONTROL INDEXES , THAT INDICATES DESTINATION STORAGE
LOCATION , AND THAT INDICATES INTEGER OFFSET (K) AND

CONSTANT INTEGER STRIDE (N)
- 1331

- 1332
STORE RESULT IN DESTINATION STORAGE LOCATION
IN RESPONSE TO INSTRUCTION , RESULT INCLUDING

SEQUENCE OF AT LEAST FOUR NON - NEGATIVE INTEGERS
IN NUMERICAL ORDER , WHERE A SMALLEST OF INTEGERS
DIFFERS FROM ZERO BY INTEGER OFFSET (K) , AND WHERE
ALL INTEGERS IN CONSECUTIVE POSITIONS DIFFER FROM
ONE ANOTHER BY THE CONSTANT INTEGERS STRIDE (N)

U . S . Patent Feb . 27 , 2018 Sheet 13 of 32 US 9 , 904 , 547 B2

FIG . 14
1446

RECEIVE FIRST CONTROL INDEXES PRECURSORS
GENERATION INSTRUCTION INDICATING FIRST

DESTINATION STORAGE LOCATION
h 1431

STORE FIRST RESULT IN FIRST DESTINATION STORAGE
LOCATION IN RESPONSE TO FIRST INSTRUCTION ,
FIRST RESULT INCLUDING SEQUENCE OF AT LEAST
FOUR CONSECUTIVE NON - NEGATIVE INTEGERS IN

NUMERICAL ORDER

h 1432

RECEIVE SECOND INSTRUCTION INDICATING
SEQUENCE OF AT LEAST FOUR CONSECUTIVE

NON - NEGATIVE INTEGERS IN NUMERICAL ORDER ,
INDICATING SECOND DESTINATION STORAGE

LOCATION , AND INDICATING STRIDE AND OFFSET

1447

STORE SECOND RESULT IN SECOND DESTINATION
STORAGE LOCATION IN RESPONSE TO SECOND
INSTRUCTION , SECOND RESULT INCLUDING

SEQUENCE OF AT LEAST FOUR NON - NEGATIVE
INTEGERS IN NUMERICAL ORDER WITH ALL INTEGERS
IN CONSECUTIVE POSITIONS DIFFERING BY STRIDE OF

AT LEAST TWO AND WITH SMALLEST INTEGER DIFFERING
FROM ZERO BY OFFSET

- 1448

U . S . Patent

SOURCE PACKED DATA * 1542

Feb . 27 , 2018

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

- - * * | 10 | -

Wh

Sheet 14 of 32

FIG . 15

US 9 , 904 , 547 B2

PROCESSOR 1600

READ - ONLY MEMORY 1650

FIRST SEQUENCE OF INTEGERS 1640 - 1

U . S . Patent

INSTRUCTION INDICATING ONE OF
NON - ARCHITECTURALLY VISIBLE STORAGE LOCATIONS 1608

FIRST

NON - ARCHITECTURALLY
VISIBLE STORAGE LOCATION

1651 - 14

0 , 1 , 2 , 3 , 4 , 5 , 6 , 7

DECODE

Feb . 27 , 2018

AND EXECUTION UNITS

Mth SEQUENCE OF INTEGERS 1640 - M

1623

Mth

NON - ARCHITECTURALLY
VISIBLE STORAGE LOCATION

1651 - M

0 , 2 , 4 , 6 , 8 , 10 , 12 , 14

Sheet 15 of 32

PACKED DATA REGISTERS 1603

Nth SEQUENCE OF INTEGERS 1640 - N

Nth

NON - ARCHITECTURALLY
VISIBLE STORAGE LOCATION

1651 - N

1640 - M

DESTINATION STORAGE LOCATION

1 , 3 , 5 , 7 , 9 , 11 , 13 , 15

1627

0 , 2 , 4 , 6 , 8 , 10 , 12 , 14

US 9 , 904 , 547 B2

FIG . 16

U . S . Patent Feb . 27 , 2018 Sheet 16 of 32 US 9 , 904 , 547 B2

DATA
ELEMENT

AN en onde DATA
ELEMENT

DATA
ELEMENT

A1 AD PACKED
DATA

OPERAND
1742A

www 1
- -

FIG . 17A

DATA
ELEMENT
AN

DATA
ELEMENT
A1

DATA
ELEMENT
An PACKED

DATA
OPERAND
1742B

In . . . 11nllo

1 1
L .

U . S . Patent Feb . 27 , 2018 Sheet 17 of 32 US 9 , 904 , 547 B2

FIG . 18

PACKED DATA
REGISTERS

1803

512 BITS

zmmo ymmo Xmmo

ymm 15 xmm 15

128 BITS

256 BITS

zmm31

U . S . Patent Feb . 27 , 2018 Sheet 18 of 32 US 9 , 904 , 547 B2

FIG . 19 ARTICLE OF
MANUFACTURE

1952

MACHINE - READABLE
STORAGE MEDIUM

1953

INSTRUCTION (S) USEFUL TO GENERATE
CONTROL INDEXES

1908
-

CONTROL INDEXES
GENERATION INSTRUCTION (S)

1909
-

-

CONTROL INDEXES PRECURSOR (S)
GENERATION INSTRUCTION (S)

1910

FIG . 20A

VEX PREFIX 2002

*

H
MOD R / M BYTE
Z 65 32

MOD REGR / M 2042 2044 2046

H

U . S . Patent

SIB BYTE
7 65 32
SS XXX BBB 2052 2054 2056

W FIELD 2064

SIZE FIELD 2068

DISPLACEMENT FIELD 2062

?? ?? ???????????? ?????????

YYYYYYYY MOD RIM | SIB
! REAL OPCODE FIELD ! 2040 ! 2056

52TMME
TMM8 2072

o

FORMAT FIELD 2040

REX 2005 OPCODE ! WW FIELD 2020
MAP 2015

PREFIX ENCODING FIELD 2025

Feb . 27 , 2018

FIG . 20B

FULL OPCODE FIELD 2074 OPCODE MAP 2015

FIG . 20C

FORMAT FIELD 2040

Sheet 19 of 32

DATA ELEMENT WIDTH FIELD 2064

REGISTER INDEX FIELD 2044
REGR / M TV Xxx | BBB

an
2044 2046 WW FIELD 2020 2054 2056

REX 2005

Tá PPMMMM W YYYYYYYY
PREFIX

ENCODING BASE OPERATION FIELD DACE OPERATION FIELD 2042

FIELD 2025

REAL OPCODE FIELD 2030

US 9 , 904 , 547 B2

FIG . 21

T

BASE REGISTERLO
MODIFIER

FIELD
FORMAT OPERATIONS INDEX

FIELD

2140

FIELD FIELD

2146

2144

2142

FULL OPCODE FIELD 2174 AUGMENTATION OPERATION FIELD 2150

CLASS FIELD
| ALPHA

BETA FIELD 2154

orrent meaning

DISP . F . DATA WRITE SCALEI 2162A _ ELEMENT MASKIMMEDIATEI
FIELD TISD FEL WIDTH FIELDIFIELD 2172 ,

12162B1 FIELD
2170

2164

U . S . Patent

12160 DISP . EF WIDTH

FIELD 2152

2168

- -

-

-

-

7

-

NO MEMORY

ACCESS NO MEMORY ACCESS , FULL | 2105 ROUND CNTRL TYPE OP 2110 ,

GENERIC VECTOR FRIENDLY INSTRUCTION FORMAT 2100

-

| RS FIELD I 1 21524 1

1

-

ROUND 2152A . 1

W BASE REGISTER NO

FIELD

OPERATION INDEX MEMORY CLASS FIELD FIELD | ACCESS JA 21684

2140

2144 | 2146A

NO MEMORY ACCESS , DT TYPE OPERATION 2115

ROUND CONTROL FIELD 2154A SAET ROUND FIELD OPERATION 2156 | FIELD 2158

DATA WRITE ELEMENT MASK JIMMEDIATE
WIDTH FIELD FIELD 2172 ,

FIELD
2170

2164

Feb . 27 , 2018

12142
JELD

FORMATO

BASE REGISTER NO A OPERATION INDEX MEMORY CLASS 5

DATA TRANSFOR DA
DATA TRANSFORM

2140

FIELD FIELD

FIELD 2154B

2142 2144 2146A

DATA WRITE ! ELEMENT MASKLIMMEDIATE WIDTH FIELD

FIELD FIELD 2172
1 2170

2164

ACCESS A 2168AM 2152A . 2

- - - - - -

Sheet 20 of 32

2160 DISP . EEL WIDTH

MEMORY

EVICTION !

ACCESS MEMORY ACCESS ,

| HINT (EH) !

2120 TEMPORAL 2125 1

FIELD 2152B

FORMATI
· BASE REGISTERI

MEMORY

DATA

OPERATION INDEX
FIELD

CLASS TEMPORAL
ACCESS

| MANIPULATION

FIELD

|

2140

FIELD

JA 2168A

2146B

2152B . 1

2142

FIELD 2154C

2144
MEMORY ACCESS , NONTEMPORAL 2130 FORMAT . BASE REGISTER

MEMORY

| NON

OPERATION INDEX

DATA

FIELD OF

ACCESS
CLASS
ADO TEMPORAL MANIPULATION

2140

FIELD FIELD

2146B

JA 2160A 21528 . 2

FIELD 2154C

2142 2144

DISPE DATA WRITE

FIELDS
OCALE 2162A ELEMENTI MASKLIMMEDIATEL
| FIELD FIELD 21721

12162B
FIELD 2164

2170

- - - -

DISP . F . T DATA WRITE

FIELD

SCALE 2162A _ JELEMENTIMASKUIMMEDIATEL
2160 PISA

DISP . E . F . I WIDTH FIELD FIELD 21721

2162B ' FIELD

2170

US 9 , 904 , 547 B2

2

MANIPULATION (2760 DISPÉES F . FIELD " 2170 | FIELD
2164

U . S . Patent

FIG . 21

FORMATIODERATIONI INDEX

12157A1 FULL OPCODE FIELD 2174 2174

BASE REGISTER?M

AUGMENTATION OPERATION FIELD 2150

L

MODIFIERL .

] DISP . F . T DATA WRITEL

FIELD

FIELD CLASS

FIELD

LALEL 2162A _ ELEMENTI MASKLIMMEDIATEL
FIELD

FIELD

DISP . F . F . WIDTH FIET

ALPHA

2140

2146 FIELD

BETA FIELD 2154

[FIELD FIELD 2172

2142 2144

FIELD 2152

21601 o

2168

'

2162B

FIELD
| 2170

2164

- - !

NO MEMORY

RL

GENERIC VECTOR FRIENDLY

ACCESS ,

INSTRUCTION FORMAT 2100

165 NO MEM . ACC . , W . M . C . . PART . !

FIELD

RND . CNTRL . TYPE OP . 2112 | W BASE REGISTER NO

I FIELD OPERATIONI INDEX IMEMORY CLASS WRITE MASKI RND | ROUND

DATA WRITE ! ELEMENT MASK IMMEDIATEI

| FIELD

BI CONTROL 12157A . OPERATION

ACCESS B 2168B1E

FIELD

2140

B 2160B FIELD 2152C

2142

WIDTH [FIELD FIELD 2172 ,

2146A
2144

1 FIELD 2159A

2164

- - -

NO MEM . ACC . , W . M . C . , VSIZE TYPE OP . 2117 BASE REGISTERN

CICIS OPERATIONI INDEX MEMORY CLASS WRITE MASKI VSIZEI VECTOR

DATA WRITE

FIELD

FORMATINDERATIONI INDEX MEMORYL CLASS

I CONTROL 12157A . LENGTH

ELEMENTI MASK IMMEDIATEI

2140

FIELD | FIELD ACCESS B 2160BIFIELD 2152012 FIELD 2159B

2142

WIDTH TFIELD FIELD 21721

1 2144

FIELD

2146A

2170

2164

Feb . 27 , 2018

FIELD 1 2170

NO

- - -

Sheet 21 of 32

-

- -

!

- - - -

- -

1

MEMORY

ACCESS MEM . ACC , W . M . C . ,

I

2120

2127
-

FORMAT

BASE REGISTERI

1 DISP . F . T DATA TWDUTTI

MEMORY use WRITE MASKIDUALI VECTOR SCALEI 2162A ELEMENTIN

OPERATION INDEX
FIELD

VMASK IMMEDIATE

FIELD

ACCESS
FIELD

FIELDI

2140

2146B B2168B FIELD 21520)

FIELD

2144

2142

47 FIELD 2159B 216 2162B

2170

2164

- - -

B 2168RI CONTROL

CAST

US 9 , 904 , 547 B2

DEFT WIDTH FIELD FIELD 2172 ,

FIG . 22A man

MOD R / M BYTE
Z _ 65 _ 32 _

MOD REGR / M 2242 2244 2246

EVEX PREFIX 2202

DATA ELEMENT

CLASS

WIDTH FIELD 2164

FIELD 2168 REX ' 2210

REX ' 2210

) BETA FIELD 2154

U . S . Patent

SIB BYTE 1 65 _ 32 _ SSXXX BBB
2252 2254

2256

1

DISPLACEMENT FIELD 2162A ? (DISP32 WHEN MOD = 10)

2205

12112

FORMAT

Feb . 27 , 2018

2215

VVVVU ÜPPAB BBIVTKIKKYYYYYYYYY MOD RIM SIB YOTDTDD TMM8 !

LJ

Mche ILLY - - and

Tage 1
OPCODE | WV FIELD 2220

REAL OPCODE FIELD I Saisone ironia

MAP

ALPHA FIELD

2230

FIELD 2140

2152 WRITE MASK

DISPLACEMENT FACTOR FIELD 2162B (DISP8 * N

PREFIX

FIELD

WHEN MOD = 01) . REFERRED TO AS DISP8 * N , BUT

ENCODING

2170

HOLDS ONLY THE DISPLACEMENT FACTOR

FIELD 2225

WHICH IS MULTIPLIED BYN

SPECIFIC VECTOR FRIENDLY INSTRUCTION FORMAT 2200

FIG . 22B FULL OPCODE FIELD 2174
OPCODE MAP 2215

FIG . 22C

FORMAT

REGISTER INDEX FIELD 2144

FIELD 2140

DATA ELEMENT

| R | XBR) V

REGRIMMVVV XXX BBB

WIDTH FIELD 2164

BBB

Sheet 22 of 32

.

224
2246

REX 2205

REX 2210

WW FIELD

2256

2220

10x62 : PP MMMM WYYYYYYYM
PREFIX ENCODING FIELD 2225

BASE OPERATION FIELD 2142

REAL OPCODE FIELD 2230

US 9 , 904 , 547 B2

U . S . Patent Feb . 27 , 2018 Sheet 23 of 32 US 9 , 904 , 547 B2

RS .
RS TO LIB / B] FIELD 2152A TTT

SAE FIELOLITA LETO FIELD 215297

FIG . 22D CLASS FIELD ALPHA FIELD BETA FIELD 2154 2168 2168 2 152 2152
AUGMENTATION OPERATION FIELD 2150 Kula BBB

MOD FIELD 2242 FIELD2152A TWIB B B7 MOD1212242 - Talblllll FIELD 2152A
RS

ROUND 2152A . 1
r1 | ro 10 s2 s1 so SAE FIELD

2156 DATA
TRANSFORM ROUND OPERATION FIELD 2158 | 2152A . 2 DATA TRANSFORM

ROUND CONTROL FIELD 2154A FIELD 2154B U = 0
MOD FIELD 2242

al BBB 01 OR 10
" ??? 21624

EVICTION S2 S1 So 11 HINT FIELD
2152B 2250 2162B

DATA MANIPULATION FIELD 21540
MOD FIELD 2242

BBBARL 11] BB BRL TTT FIELD L TTT FIELD
WRITE Li 21574 iii 2157A
MASK

CONTROL 2 ROUND VSIZE
* 2157A . 1 J FIELD 2157A . 2

21520 ROUND
OPERATION I VECTOR LENGTH FIELD
FIELD 2159A 2159B

MERGING U = 1 MOD FIELD 2242
00 OR 01 OR 10 ZEROING 2162A

11110 0 VSIZE

LO B LEVEREDE 225 / 27628 2250
VECTOR LENGTH
FIELD 2159B

2162B
BROADCAST FIELD 2157B

REGISTER ARCHITECTURE 2300

FIG . 23

SCALAR FP STACK REGISTER FILE 2345 (X87FP) 80 BITS

U . S . Patent

General Purpose Registers 2325 16 X 64 BITS

ALIASED

Vector Registers 2310
512 BITS

Feb . 27 , 2018

64 BITS MMX PACKED INT FLAT REGISTER FILE 2350

zmmo

ymmo

xmmo

Write Mask Registers 2315 64 BITS

??

Sheet 24 of 32

ymm15

xmm 15 128 BITS ,

256 BITS

zmm31

US 9 , 904 , 547 B2

per

moment manaman

mawar

pune
sorte

rode steny stories

PIPELINE 2400

FIG . 24A

T - I

REGISTER

LENGTH DECODING

DECODE ALLOC . RENAMING SCHEDULE READI
2406 24081 2410 2412 MEMORY READ

2404

2414

FETCH 2402

IWRITE BACK
MEXCEPTION

EXECUTE STAGE MEMORY
2416

2418

U . S . Patent

935 WRITE

HANDLING COMMITI
2424 1

2422

como

en este sementes e

n maten

under a

are not

BRANCH PREDICTION UNIT 2432

1 INSTRUCTION CACHE UNIT 2434 INSTRUCTION TLB UNIT 2436

CORE 2490

INSTRUCTION FETCH 2438

Feb . 27 , 2018

FRONT END UNIT 2430

DECODE UNIT 2440

EXECUTION ENGINE UNIT 2450

- RENAME I ALLOCATOR -
- - - - _ UNIT 2452 - - - - - - -

SCHEDULER UNIT (S) 2456
men mannen sommeren mannen anderen mensen en eventualment a n

| RETIREMENT UNIT 2454

woooteretetetstestwestorowodowotworowotwortet weten

FIG . 24B

someone

w

Sheet 25 of 32

wat

PHYSICAL REGISTER FILES UNIT (S) 2458

La seman

passada amesema amesema

wamen
EXECUTION

MEMORY ACCESS
UNIT (S)

UNIT (S)

2462

2464

EXECUTION CLUSTER (S) 2460 A

DATA TLB UNIT

MEMORY

2472
UNIT 2470 DATA CACHE UNIT

2474

CACHE UNIT 2476

US 9 , 904 , 547 B2

FIG . 25A

FIG . 25B

U . S . Patent

INSTRUCTION DECODE 2500

WRITE MASK REGISTERS 2526 we Mage REMITARE
SO
16 . MIDE VECTOR ALU

SCALAR UNIT 2508

VECTOR UNIT 2510

16 - WIDE VECTOR ALU 2528

Feb . 27 , 2018

SCALAR REGISTERS 2512
VECTOR REGISTERS 2514

REPLICATE 2524
SWIZZLE 2520

com - - - . . .

L1 CACHE 2506

VECTOR REGISTERS 2514

Sheet 26 of 32

LOCAL SUBSET OF THE L2 CACHE 2504

NUMERIC CONVERT 2522A
NUMERIC CONVERT 2522B

RING NETWORK 2502

L1 DATA CACHE 2506A LA DATACACHE '

US 9 , 904 , 547 B2

U . S . Patent

PROCESSOR 2600

Feb . 27 , 2018

-

-

-

-

I

SPECIAL

SYSTEM AGENT UNIT 2610

-

| PURPOSE | LOGIC 2608

| CORE 2602A | CACHE UNIT (S) 2604A

| CORE 2602N
| CACHE I | UNIT (S) 1 | 2604N I

FIG . 26

BUS CONTROLLER UNIT (S) 2616

HEH
-

LES -
. .

SHARED CACHE UNIT (S) 2606

Hi " MEMORY I INTEGRATED MEMORY CONTROLLER UNIT (S) 2614

!

-

-

-

-

-

-

-

Sheet 27 of 32

- - - - - - RING 2612 _ - - - -

US 9 , 904 , 547 B2

U . S . Patent Feb . 27 , 2018 Sheet 28 of 32 US 9 , 904 , 547 B2

2700 2700 2715 - mm - 2710

PROCESSOR w moment my
2795

2745 2740 2745
CONTROLLER
HUB 2720
GMCH 2790

MEMORY PROCESSOR
La mummon

2760 mm

JOH 2750

FIG , 27

2800

PROCESSOR

PROCESSORI COPROCESSOR

U . S . Patent

MEMORY 2832

MEMORY 2834 30
IMC

IMC

22872

2882

2850

28762878

Feb . 27 , 2018

2870

P - PL

P - P

P - P P - P

2888 2886 P - P 2880

2880

7

mmmme 2854
P - P - 2898

2854

2852 2894

CHIPSET 2890

P - P

COPROCESSOR 28397
2838

PPPP VF

- 2892

2896

2816

or any noen

(COPROCESOR 21587 ne t here the

reason nogen

Sheet 29 of 32

of
moeten

BUS BRIDGE 2818

I / O DEVICES
2814

AUDIO I / O 2824

PROCESSOR 2815
L 2820

DATA STORAGE

KEYBOARD / MOUSE

- 2822

COMM DEVICES

- 2827

2830 -

CODE AND DATA

FIG . 28

US 9 , 904 , 547 B2

2828

I / O DEVICES
2914

U . S . Patent

2900 -

1 PROCESSOR

PROCESSOR

MEMORY 2832

2

MEMORY 2834

CL

CL

Feb . 27 , 2018

2872

28825

2850

2876

2878
78 -

28882886
2880

2870

P - P1

PP

P - P

P - P

A

2852 2852

1

- 2854 2854

Sheet 30 of 32

P - P

2894

P - P

2898

CHIPSET 2896
IF

2890

LEGACY I / O
2915

FIG . 29

US 9 , 904 , 547 B2

U . S . Patent

SYSTEM ON A CHIP 3000

APPLICATION PROCESSOR 3010
CORE 2602A

i CORE 2602N

CACHE

CACHE

UNIT (S)

II UNIT (S) !

2604A

| 2604N I

SYSTEM AGENT UNIT 2610

FIG . 30

Feb . 27 , 2018

SHARED CACHE UNIT (S) 2606

COPROCESSOR (S) 3020

INTERCONNECT UNIT (S) 3002

BUS CONTROLLER UNIT (S) 2616

Sheet 31 of 32

INTEGRATED MEMORY CONTROLLER UNIT (S) 2614

SRAM UNIT 3030

DMA UNIT 3032

DISPLAY UNIT 3040

US 9 , 904 , 547 B2

U . S . Patent

. . . .

PROCESSOR WITHOUT AN X86 INSTRUCTION SET CORE 3114

PROCESSOR WITH AT LEAST ONE X86 INSTRUCTION SET CORE 3116

Feb . 27 , 2018

* - www

HARDWARE SOFTWARE w wwwwwwwwwwwwwwwwwwwwwwwwww

www them w wie w

* Wat

* wwwwwwwww

wwwwwwwwwww

ALTERNATIVE INSTRUCTION SET BINARY CODE 3110

FIG . 31

INSTRUCTION CONVERTER 3112

Sheet 32 of 32

X86 BINARY CODE 3106

ALTERNATIVE INSTRUCTION SET COMPILER 3108

X86 COMPILER 3104

(HIGH LEVEL LANGUAGE 3102)

US 9 , 904 , 547 B2

US 9 , 904 , 547 B2

15

PACKED DATA REARRANGEMENT FIG . 4 is a block diagram of an example embodiment of
CONTROL INDEXES GENERATION an instruction processing apparatus to process instructions

PROCESSORS , METHODS , SYSTEMS AND useful to generate control indexes .
INSTRUCTIONS FIG . 5 is a block flow diagram of an example embodiment

5 of a method of processing an instruction that stores a
CROSS - REFERENCE TO RELATED sequence of at least four non - negative integers that follow a

APPLICATION numerical pattern .
FIG . 6 is a block diagram of an embodiment of an

This patent application is a U . S . National Phase Applica instruction format of an instruction useful to generate con
tion under 35 U . S . C . § 371 of International Application No . 10 trol indexes .
PCT / US2011 / 067000 , filed Dec . 22 , 2011 , entitled FIG . 7A is a block diagram illustrating that in some
PACKED DATA REARRANGEMENT CONTROL embodiments a sequence of integers stored by an instruction
INDEXES GENERATION PROCESSORS , METHODS , may have a numerical pattern that is based predominantly or
SYSTEMS , AND INSTRUCTIONS . entirely on an opcode of the instruction .

BACKGROUND FIG . 7B is a block diagram illustrating that in some
embodiments a sequence of integers stored by an instruction

Field may have a numerical pattern that is based partly on an
Embodiments relate to processors . In particular , embodi opcode of the instruction and partly on one or more numeri

ments relate to processors having instruction sets that 20 cal pattern defining parameters indicated by the instruction .
include instructions that use control indexes . FIG . 8 is a block flow diagram of an example embodiment
Background Information of a method of processing an instruction that stores a
Many processors have Single Instruction , Multiple Data sequence of at least four consecutive non - negative integers

(SIMD) architectures . In SIMD architectures , a packed data in numerical order .
instruction , vector instruction , or SIMD instruction may 25 FIG . 9 is a block diagram illustrating an example embodi
operate on multiple data elements or multiple pairs of data ment of a packed data rearrangement operation using packed
elements simultaneously or in parallel . The processor may data rearrangement control indexes having values of offset
have parallel execution hardware responsive to the packed consecutive integers in numerical order to extract unaligned
data instruction to perform the multiple operations simulta - packed data from two aligned packed data to avoid needing
neously or in parallel . 30 to perform unaligned loads .

Multiple data elements may be packed within one register FIG . 10 is a block flow diagram of an example embodi
or memory location as packed data or vector data . In packed ment of a method of processing an instruction that stores a
data , the bits of the register or other storage location may be sequence of at least four non - negative integers in numerical
logically divided into a sequence of multiple data elements . order with all integers in consecutive positions differing by
For example , a 256 - bit wide packed data register may have 35 a constant integer stride of at least two .
four 64 - bit wide packed data elements , eight 32 - bit wide FIG . 11 is a block flow diagram of an example embodi
packed data elements , sixteen 16 - bit wide packed data ment of a method of processing an instruction that stores a
elements , etc . Each of the packed data elements may rep sequence of at least four non - negative same parity (e . g . , all
resent a separate individual piece of data (e . g . , a red , green , even or all odd) integers in numerical order .
blue , or alpha color component of a pixel , or a real or 40 FIG . 12 is a block diagram illustrating an example
imaginary component of a complex number , etc .) that may embodiment of a packed data rearrangement operation using
be operated upon separately or independently of the others . packed data rearrangement control indexes having values of

Some SIMD architectures have instructions to flexibly consecutive even integers in increasing numerical order to
rearrange packed data elements within one or more source separate real numbers (R) from imaginary numbers (IM) .
packed data according to control indexes . Examples of such 45 FIG . 13 is a block flow diagram of an example embodi
instructions are permute instructions and shuffle instruc - ment of a method of processing an instruction that stores a
tions . The control indexes control how the packed data sequence of at least four integers in numerical order , where
elements are rearranged by the instructions . a smallest of the integers is offset from zero by the offset ,

and where all of the integers in consecutive positions differ
BRIEF DESCRIPTION OF THE SEVERAL 50 from one another by the stride .

VIEWS OF THE DRAWINGS FIG . 14 is a block flow diagram of an example embodi
ment of a method of processing a first control indexes

The invention may best be understood by referring to the precursors generation instruction to store a sequence of
following description and accompanying drawings that are consecutive non - negative integers in numerical order and a
used to illustrate embodiments of the invention . In the 55 second instruction that applies a stride and an offset to each
drawings : of the integers .

FIG . 1 is a block diagram of an example embodiment of FIG . 15 is a block diagram of a source packed data storing
a processor to process instructions useful to generate control Red Green Blue Alpha four - tuple data .
indexes . FIG . 16 is a block diagram of an example embodiment of

FIG . 2 is a block flow diagram of an example embodiment 60 a processor that includes a read - only memory (ROM) stor
of a method of processing an example embodiment of a ing one or more sequences of integers .
packed data rearrangement control indexes generation FIG . 17A is a block diagram illustrating a first example
instruction . embodiment of a suitable format for storing control indexes

FIG . 3 is a block flow diagram of an example embodiment and control indexes precursors .
of a method of processing an example embodiment of a 65 FIG . 17B is a block diagram illustrating a second example
packed data rearrangement control indexes precursors gen - embodiment of a suitable format for storing control indexes
eration instruction . and control indexes precursors .

US 9 , 904 , 547 B2

FIG . 18 is a block diagram of an example embodiment of DETAILED DESCRIPTION
a suitable set of packed data registers .

FIG . 19 is a block diagram of an article of manufacture In the following description , numerous specific details are
including a machine - readable storage medium storing an set forth (e . g . , specific processors , methods , operations ,
instruction useful to generate control indexes . 5 instructions , numerical patterns , and data formats) . How

FIG . 20A illustrates an exemplary AVX instruction format ever , it is understood that embodiments of the invention may
including a VEX prefix , real opcode field , Mod R / M byte , be practiced without these specific details . In other
SIB byte , displacement field , and IMM8 . instances , well - known circuits , structures and techniques

FIG . 20B illustrates which fields from FIG . 20A make up have not been shown in detail in order not to obscure the
a full opcode field and a base operation field . FIG . 20C 10 understanding of this description .
illustrates which fields from FIG . 20A make up a register Control indexes for permute instructions and shuffle
index field . instructions are typically built up progressively from scratch

FIG . 21A is a block diagram illustrating a generic vector by executing a series of general - purpose instructions that
friendly instruction format and class A instruction templates operate on source packed data operands having source
thereof according to embodiments of the invention . 15 packed data elements . For example , part of a method of

FIG . 21B is a block diagram illustrating the generic vector generating the control indexes may include executing a
friendly instruction format and class B instruction templates series of general - purpose packed data arithmetic instructions
thereof according to embodiments of the invention . in order to perform a series of packed data arithmetic

FIG . 22A is a block diagram illustrating an exemplary operations on source packed data elements to ultimately
specific vector friendly instruction format according to 20 convert the source packed data elements into the control
embodiments of the invention . indexes .

FIG . 22B is a block diagram illustrating the fields of the One factor that tends to limit the usefulness of permute
specific vector friendly instruction format that make up the and shuffle instructions , as well as other packed data rear
full opcode field according to one embodiment of the rangement instructions in general , is the number of instruc
invention . 25 tions that typically need to be executed in order to generate

FIG . 22C is a block diagram illustrating the fields of the the permute control indexes , shuffle control indexes , or other
specific vector friendly instruction format that make up the packed data rearrangement control indexes . Several instruc
register index field according to one embodiment of the tions (e . g . , around 4 to 10 , or even more) may be needed to
invention . generate a set of control indexes . Moreover , the number of

FIG . 22D is a block diagram illustrating the fields of the 30 instructions needed generally tends to increase as the total
specific vector friendly instruction format that make up the number of packed data elements increases , which tends to be
augmentation operation field according to one embodiment the case over time , as the bit - width of packed data registers
of the invention . increases .

FIG . 23 is a block diagram of a register architecture Executing these instructions tends to be expensive in
according to one embodiment of the invention . 35 terms of processing time , processor resource utilization , and

FIG . 24A is a block diagram illustrating both an exem - power consumption . Moreover , such expense tends to
plary in - order pipeline and an exemplary register renaming , detract from , or diminish , the overall benefit provided by the
out - of - order issue / execution pipeline according to embodi packed data rearrangement instructions . In some cases , after
ments of the invention . the control indexes have been generated and used , the

FIG . 24B shows processor core including a front end unit 40 control indexes may be discarded , in which case they may
coupled to an execution engine unit , and both are coupled to need to be regenerated from scratch if the need arises . In
a memory unit . other cases , after the control indexes have been generated

FIG . 25A is a block diagram of a single processor core , and used , the control indexes may be stored in main
along with its connection to the on - die interconnect network memory , and then later retrieved from the main memory
and with its local subset of the Level 2 (L2) cache , according 45 over a system bus when they are needed . This may help to
to embodiments of the invention . avoid generating the control indexes from scratch each time

FIG . 25B is an expanded view of part of the processor they are needed , although retrieving the control indexes
core in FIG . 25A according to embodiments of the inven - from main memory also tends to take a significant amount
tion . of time .

FIG . 26 is a block diagram of a processor that may have 50 Disclosed herein are instructions that are useful to gen
more than one core , may have an integrated memory con - erate control indexes for other instructions (e . g . , permute
troller , and may have integrated graphics according to instructions , shuffle instructions , other packed data rear
embodiments of the invention . rangement instructions , and other instructions that use con

FIG . 27 , shown is a block diagram of a system in trol indexes) . Also disclosed are processors to execute the
accordance with one embodiment of the present invention . 55 instructions , methods performed by the processors when

FIG . 28 , shown is a block diagram of a first more specific processing or executing the instructions , and systems incor
exemplary system in accordance with an embodiment of the porating one or more processors to process or execute the
present invention . instructions . The various processors and systems disclosed

FIG . 29 , shown is a block diagram of a second more elsewhere herein are suitable . Advantageously , these
specific exemplary system in accordance with an embodi - 60 instructions , processors , methods , and systems may help to
ment of the present invention . reduce the amount of processing time and / or the number of

FIG . 30 , shown is a block diagram of a SoC in accordance instructions that need to be executed in order to generate the
with an embodiment of the present invention . control indexes .

FIG . 31 is a block diagram contrasting the use of a FIG . 1 is a block diagram of an example embodiment of
software instruction converter to convert binary instructions 65 a processor 100 to process instructions useful to generate
in a source instruction set to binary instructions in a target control indexes . The processor may be any of various
instruction set according to embodiments of the invention . complex instruction set computing (CISC) processors , vari

US 9 , 904 , 547 B2
in

ous reduced instruction set computing (RISC) processors , execution of a single macroinstruction . By contrast , conven
various very long instruction word (VLIW) processors , tionally a series of general - purpose macroinstructions gen
various hybrids thereof , or other types of processors entirely . erally need to be executed in order to gradually or progres
In some embodiments , the processor may be a general sively build up the control indexes from scratch .
purpose processor (e . g . , a general - purpose microprocessor) , 5 In some embodiments , the instructions may include one
although this is not required . Alternatively , the processor or more control indexes precursors generation instructions
may be a special - purpose processor . Examples of suitable 110 , which do not generate the actual control indexes , but
special - purpose processors include , but are not limited to , which generate control indexes precursors . Each of the
network processors , communications processors , crypto control indexes precursors generation instructions may be
graphic processors , graphics processors , co - processors , 10 Operable to generate the control indexes precursors entirely
embedded processors , digital signal processors (DSPs) , and within the confines of the execution of a single macroin
controllers (e . g . , microcontrollers) , to name just a few struction . Rather than needing to generate the actual control
examples . indexes from scratch , the control indexes precursors may

The processor has an instruction set architecture (ISA) serve as useful starting - point or head - start values that may
101 . The ISA represents a part of the architecture of the 15 be efficiently converted into the actual control indexes by
processor related to programming . The ISA commonly one or more other instructions . Advantageously , the use of
includes the native instructions , architectural registers , data the precursors may allow the actual control indexes to be
types , addressing modes , memory architecture , interrupt and generated more quickly and / or with fewer instructions than
exception handling , and external input and output (1 / 0) of if starting from scratch .
the processor . The ISA is distinguished from the microarchi - 20 The processor also includes execution logic 111 . The
tecture , which generally represents the particular processor execution logic is operable to execute or process the instruc
design techniques selected to implement the ISA . Processors tions of the instruction set .
with different microarchitectures may share a common ISA . FIG . 2 is a block flow diagram of an example embodiment

The ISA includes architecturally - visible or architectural of a method 212 of processing an example embodiment of
registers (e . g . , an architectural register file) 102 . The archi - 25 a packed data rearrangement control indexes generation
tectural registers represent on - processor storage locations . instruction . The packed data rearrangement control indexes
The architectural registers may also be referred to herein generation instruction is received , at block 213 . The
simply as registers . Unless otherwise specified or clearly received instruction specifies or otherwise indicates a first
apparent , the phrases architectural register , register file , and destination storage location . In some aspects , the first des
register are used herein to refer to registers that are visible 30 tination storage location may be explicitly specified by bits
to the software and / or programmer (e . g . , software - visible) or one or more fields of an encoding of the instruction . In
and / or the registers that are specified by general - purpose other aspects , the first destination storage location may be
macroinstructions to identify operands . These registers are implicit to the instruction .
contrasted to other non - architectural or non - architecturally A result is stored in the first destination storage location ,
visible registers in a given microarchitecture (e . g . , tempo - 35 in response to and / or as a result of the packed data rear
rary registers used by instructions , reorder buffers , retire rangement control indexes generation instruction , at block
ment registers , microarchitectural read - only registers used 214 . The result includes a sequence of at least four non
by microinstructions , etc .) . The illustrated architecturally - negative integers representing packed data rearrangement
visible registers include packed data registers 103 . Each of control indexes . The at least four integers typically have a
the packed data registers is operable to store packed data , 40 plurality of different values (i . e . , they are not all the same
vector data , or SIMD data . integer value) . In various embodiments , the sequence may

The illustrated ISA includes an instruction set 104 that is include at least eight , at least sixteen , at least thirty - two , or
supported by the processor . The instructions of the instruc - at least sixty - four non - negative integers representing packed
tion set represent macroinstructions (e . g . , instructions pro data rearrangement control indexes . The result and / or the
vided to the processor for execution) , as opposed to micro - 45 sequence of integers may be any of the results and / or
instructions or micro - ops (e . g . , those which result from a sequences of integers disclosed elsewhere herein . In some
decoder of the processor decoding macroinstructions) . The embodiments , the result and / or the sequence of the integers
processor may include specific or particular logic (e . g . , may be generated entirely within the confines of the execu
circuitry potentially with some firmware or software) to tion of a single macroinstruction (e . g . , values of the integers
execute the instructions of the instruction set . 50 may not depend on any previous instructions in the program

The instruction set includes one or more instructions that flow) .
use control indexes 105 . As mentioned above , in some To further illustrate certain concepts , and although the
embodiments these may include one or more permute invention is not limited in this respect , reception of a packed
instructions , shuffle instructions , or other packed data rear - data rearrangement instruction occurs , at block 215 . In
rangement instructions 106 . As another option , as will be 55 various aspects , this instruction may be a permute instruc
discussed further below , in some embodiments , these may tion , a shuffle instruction , or another type of packed data
include one or more gather instructions , or load instructions rearrangement instruction operable to rearrange data ele
107 , which are operable to gather or load non - contiguous ments in one or more source packed data according to the
data from off - processor memory using the control indexes . packed data rearrangement control indexes . The instruction

In accordance with embodiments of the invention , the 60 indicates the packed data rearrangement control indexes
instruction set also includes one or more instructions that are (e . g . , specifies the first destination storage location) . The
each useful to generate the control indexes 108 . In some instruction also specifies or otherwise indicates at least one
embodiments , these may include one or more control source packed data having packed data elements and speci
indexes generation instructions 109 that are operable to fies or otherwise indicates a second destination storage
generate the actual control indexes . Each of the control 65 location .
indexes generation instructions may be operable to generate A packed data result is stored in the second destination
the control indexes entirely within the confines of the storage location , in response to and / or as a result of the

US 9 , 904 , 547 B2

packed data rearrangement instruction , at block 216 . The ferent processor , or electronic system (e . g . , one of the other
packed data result includes data elements from the at least processors or systems disclosed herein) .
one source packed data rearranged according to the packed The instruction processing apparatus may receive an
data rearrangement control indexes . In some embodiments , instruction 408 that is useful to generate control indexes .
as in the case of many permute and shuffle instructions , the 5 The instruction may represent any of the various embodi
packed data rearrangement control indexes may identify , ments of the instructions useful to generate control indexes
select , or otherwise index particular data elements within the disclosed elsewhere herein . The instruction may represent a
at least one source packed data . The indexed data elements machine instruction , macroinstruction , or like control signal .
may be stored in result data elements that correspond in The instruction processing apparatus has specific or particu
position to the indexes . 10 lar circuitry or other logic (e . g . , hardware potentially com

FIG . 3 is a block flow diagram of an example embodiment bined with firmware and / or software) that is operable to
of a method 317 of processing an example embodiment of process the instruction and / or store a result in response to , as
a packed data rearrangement control indexes precursors a result of , and / or according to the instruction .
generation instruction . The packed data rearrangement con - 16 The illustrated instruction processing apparatus includes
trol indexes precursors generation instruction is received , at an instruction decoder 422 . The decoder may receive and
block 318 . The received instruction specifies or otherwise decode higher - level machine instructions or macroinstruc
indicates a destination storage location . tions , and output one or more lower - level micro - operations ,

A result is stored in the destination storage location , in micro - code entry points , microinstructions , or other lower
response to and / or as a result of the packed data rearrange - 20 level instructions or control signals that reflect and / or are
ment control indexes precursors generation instruction , at derived from the original higher - level instruction . The one
block 319 . The result includes a sequence of at least four or more lower - level instructions or control signals may
non - negative integers representing packed data rearrange - implement the operation of the higher - level instruction
ment control indexes precursors . The at least four integers through one or more lower - level (e . g . , circuit - level or hard
typically have a plurality of different values . In various 25 ware - level) operations . The decoder may be implemented
embodiments , the sequence may include at least eight , at using various different mechanisms including , but not lim
least sixteen , at least thirty - two , or at least sixty - four non - ited to , microcode read only memories (ROMs) , look - up
negative integers representing packed data rearrangement tables , hardware implementations , programmable logic
control indexes precursors . The result and / or the sequence of arrays (PLAs) , and other mechanisms used to implement
integers may be any of the results and / or sequences of 30 decoders known in the art .
integers disclosed elsewhere herein . In some embodiments , Alternatively , instead of having the decoder 422 , in one or
the result and / or the sequence of the integers may be more other embodiments , the apparatus may have an
generated entirely within the confines of the execution of a instruction emulator , translator , morpher , interpreter , or
single macroinstruction (e . g . , values of the integers may not other instruction conversion logic . Various different types of
depend on any previous instructions in the program flow) . 35 instruction conversion logic are known in the arts and may

To further illustrate certain concepts , and although the be implemented in software , hardware , firmware , or a com
invention is not limited in this respect , execution of at least bination thereof . The instruction conversion logic may
one additional instruction (e . g . , at least one general - purpose receive the instruction , emulate , translate , morph , interpret ,
arithmetic instruction) is performed to convert the packed or otherwise convert it into one or more corresponding
data rearrangement control indexes precursors into packed 40 derived instructions or control signals . In still other embodi
data rearrangement control indexes , at block 320 . A first of ments , the instruction processing apparatus may have both
the at least one additional instruction may indicate the instruction conversion logic and a decoder . For example , the
destination storage location as a source of the packed data instruction processing apparatus may have instruction con
rearrangement control indexes precursors . version logic to convert the received instruction into one or

Then , a packed data rearrangement instruction indicating 45 more intermediate instructions , and a decoder to decode the
the packed data rearrangement control indexes may be one or more intermediate instructions into one or more
executed , at block 321 . The operation of the packed data lower - level instructions or control signals executable by
rearrangement instruction may be similar to that previously native hardware of the instruction processing apparatus .
described Some or all of the instruction conversion logic may be

In FIGS . 2 and 3 , the operations at blocks 215 , 216 , 320 , 50 located off - die from the rest of the instruction processing
and 321 have been shown to better illustrate certain con - apparatus , such as on a separate die or in an off - die memory .
cepts . However , it is to be understood that the invention is Referring again to FIG . 4 , the instruction useful to gen
not limited to the operations performed at these blocks . erate the control indexes 408 explicitly specifies (e . g . ,
Other embodiments pertain to methods and operations of the through one or more fields) , or otherwise indicates (e . g . ,
individual packed data rearrangement control indexes gen - 55 implicitly indicates) , a destination storage location 427 . As
eration instructions , and still other embodiments pertain to shown , in some embodiments , the destination storage loca
methods and operations of the individual packed data rear tion may be within a set of packed data registers 403 of the
rangement control indexes precursors generation instruc - instruction processing apparatus . Alternatively , the destina
tions , which are not limited to the operations of other tion storage location may be another register or memory
subsequent instructions . 60 location . The packed data registers are architecturally - vis

FIG . 4 is a block diagram of an example embodiment of ible on - processor storage locations that may be implemented
an instruction processing apparatus 400 . The instruction in different ways in different microarchitectures , using well
processing apparatus may be a processor , or may be part of known techniques , and are not limited to any known par
a processor . For example , in some embodiments , the instruc - ticular type of circuit . Various different types of registers are
tion processing apparatus may be , or may be part of , the 65 suitable as long as they are capable of storing and providing
processor 100 of FIG . 1 , or one similar . Alternatively , the data as described herein . Examples of suitable types of
instruction processing apparatus may be included in a dif - registers include , but are not limited to , dedicated physical

US 9 , 904 , 547 B2

registers , dynamically allocated physical registers using integer offset (e . g . , in the case of consecutive integers , K ,
register renaming , and combinations thereof . K + 1 , K + 2 , K + 3 , K + , K + 5 , K + 6 , and K + 7) . In some

The instruction processing apparatus also includes an embodiments , the instruction may indicate a positive integer
execution unit 423 . The execution unit is coupled with the offset (K) and a constant integer stride (N) , and the integers
decoder 422 and the destination storage location 427 . The 5 may be consecutive integer multiples of the stride that are
execution unit may receive from the decoder one or more offset from zero (e . g . , K , N + K , 2N + K , 3N + K , 4N + K , 5N + K ,
micro - operations , micro - code entry points , microinstruc - 6N + K , and 7N + K) . Alternatively , the result and / or the
tions , other instructions , or other control signals , which sequence of the at least four integers may be any of the
reflect , or are derived from , the instruction 408 . By way of results and / or sequences of at least four integers disclosed
example , the execution unit may include an arithmetic logic 10 elsewhere herein for the various embodiments of the instruc
unit , a logic unit , an arithmetic unit , a functional unit , or the tions useful to generate control indexes . In some embodi
like . The execution unit may include specific or particular m ents , the numerical pattern is based entirely or at least
hardware logic (e . g . , integrated circuitry) potentially with predominantly on an opcode , or the opcode and one or more
other logic (e . g . , software , firmware , or a combination) that numerical pattern defining parameters , of the instruction , or
is operable to execute the instruction (e . g . , execute one or 15 fixed by the opcode , or the opcode and the one or more
more microinstructions) and / or store a result in response to numerical pattern defining parameters . It still further
the instruction . embodiments , the sequence of integers need not follow a

The execution unit is operable , in response to the instruc - numerical pattern (e . g . , they may be seemingly random) .
tion and / or as a result of the instruction 408 , to store a result To avoid obscuring the description , a relatively simple
428 in the destination storage location 427 . As shown , in 20 instruction processing apparatus 400 has been shown and
embodiments , the result may include a sequence of at least described . In other embodiments , the instruction processing
four integers . In embodiments where the instruction 408 is apparatus may optionally include other well - known compo
a control indexes generation instruction , each of the integers n ents , such as , for example , an instruction fetch unit , an
may represent a control index . In embodiments where the instruction scheduling unit , a branch prediction unit , instruc
instruction 408 is a control indexes precursors generation 25 tion and data caches , instruction and data translation looka
instruction , each of the integers may represent a control side buffers , prefetch buffers , microinstruction queues ,
index precursor . microinstruction sequencers , bus interface units , second or

In some embodiments , the execution unit may include higher level caches , a retirement unit , a register renaming
calculation logic 424 operable to calculate the sequence of unit , other components included in processors , and various
the at least four integers . These may be special - purpose or 30 combinations thereof . Embodiments may have multiple
particular circuits (e . g . , to calculate the integers using a cores , logical processors , or execution engines . An execu
column sweep approach , iteratively calculate the integers , tion unit operable to execute an embodiment of an instruc
etc .) . In other embodiments , the execution unit may access tion disclosed herein may be included in at least one , at least
a pre - existing copy of the sequence of the at least four two , most , or all of the cores , logical processors , or execu
integers 425 from a memory 426 (e . g . , a non - architecturally 35 tion engines . It is to be understood that there are literally
visible read only memory (ROM) that is on - die with the numerous different combinations and configurations of com
execution unit) responsive to the instruction . See e . g . , the ponents in processors , and that the scope of the invention is
discussion of FIG . 16 below . In either of these embodiments , not limited to any particular combination or configuration .
the sequence of integers is typically not accessed from FIG . 5 is a block flow diagram of an example embodiment
off - die main memory or over a system bus . 40 of a method 530 of processing an instruction useful to

In some embodiments , the result may include a sequence generate control indexes , which stores a sequence of at least
of at least four , at least eight , at least sixteen , at least four non - negative integers that follow a numerical pattern .
thirty - two , or at least sixty - four , non - negative integers that The instruction is received , at block 531 . The instruction
follow a numerical pattern . In some embodiments , the specifies or otherwise indicates a destination storage loca
integers that follow the numerical pattern may be consecu - 45 tion .
tive non - negative integers in numerical order (e . g . , 0 , 1 , 2 , result is stored in the destination storage location , in
3 , 4 , 5 , 6 , and 7) . In other embodiments , the integers that response to the instruction and / or as a result of the instruc
follow the numerical pattern may be non - negative integers t ion , at block 532 . The result includes a sequence of at least
in numerical order with all integers in consecutive positions four non - negative integers that follow a numerical pattern .
differing by a constant integer stride of at least two . In some 50 In various embodiments , the result may include a sequence
embodiments , the stride may be equal to two , and the of at least eight , at least sixteen , at least thirty - two , at least
sequence of integers may be a sequence of consecutive same sixty - four , or even more non - negative integers that follow
parity integers in numerical order . For example , the con - the numerical pattern . The sequence of integers may be any
secutive same parity integers may be consecutive even of the sequences of integers that follow the various numeri
integers (e . g . , 0 , 2 , 4 , 6 , 8 , 10 , 12 , and 14) , or consecutive 55 cal patterns disclosed elsewhere herein . Often , at least two ,
odd integers (e . g . , 1 , 3 , 5 , 7 , 9 , 11 , 13 , and 15) . In other at least four , at least half , or even all of the integers may have
embodiments , the stride (N) may be greater than two (e . g . , a different value (i . e . , the integers are typically not all
the stride may be 3 , 4 , 8 , 16 , etc .) , and the sequence of identical) .
integers may include consecutive integer multiples of the FIG . 6 is a block diagram of an embodiment of an
stride (e . g . , O , N , 2N , 3N , 4N , 5N , 6N , and 7N) . 60 instruction format for an instruction 608 useful to generate

In some embodiments , the instruction may explicitly control indexes . The instruction format includes an opcode
specify or otherwise indicate one or more numerical pattern 633 . The opcode may represent a plurality of bits or one or
defining parameters (e . g . , an integer offset , a constant inte - more fields of the instruction format to identify the instruc
ger stride , an integer rotation amount , an integer offset and tion . The instruction format also includes a destination
a constant integer stride , etc .) . In some embodiments , the 65 storage location 634 . In the illustrated embodiment , the
instruction may indicate a positive integer offset (K) , and a instruction format includes a plurality of bits or one or more
smallest of the integers may be offset from zero by the fields of the instruction format to explicitly specify the

US 9 , 904 , 547 B2
12

destination storage location . Alternatively , the destination opcode of the instruction . In these embodiments , the numeri
storage location may be implicit to the instruction . cal pattern of the sequence of integers is fixed or constant for

In some embodiments , the instruction format does not the opcode of the instruction . For example , a difference explicitly specify , implicitly indicate , or otherwise indicate ,
an architecturally - visible source storage location (e . g . , a 5 between consecutive integers in the sequence may be based
packed data register or a main memory location) having entirely or at least predominantly on the opcode of the
packed data elements to be operated on by the instruction instruction and / or fixed or constant for the opcode of the 635 . In embodiments of the invention , sequences of integers ,
control indexes , and control indexes precursors , which are instruction . Upon identifying the opcode , the sequence of
stored by instructions disclosed herein , are not calculated or 10 integers and their numerical pattern may be fixed (i . e . , may
otherwise derived from packed data elements in an archi not depend on any source operands of the instruction) . In
tecturally - visible source storage location . By contrast , as some embodiments , the instruction / opcode may only be discussed in the background section , conventionally per
mute and shuffle control indexes are typically built up capable of storing one particular sequence of integers and / or
gradually from scratch by executing a series of general - 15 one particular numerical pattern . By way of comparison ,
purpose instructions (e . g . , general - purpose packed data when general - purpose arithmetic instructions operate on
arithmetic instructions) that do operate on packed data source packed data to produce permute or shuffle control elements in architecturally - visible source packed data reg indexes , the permute or shuffle control indexes do not have isters until the packed data elements are ultimately con
verted into the permute or shuffle control indexes . In 20 a numerical pattern that is based entirely or even predomi
embodiments of the invention , the sequences of integers , nantly on the opcode of the general - purpose arithmetic
control indexes , and control indexes precursors , which are instructions , rather it is based on the source packed data .
stored by instructions disclosed herein , are generated FIG . 7B is a block diagram illustrating that in some entirely within the confines of the execution of the single
instruction , and are not based on results of any preceding 25 embodiments a sequence of integers 740B in a result 728B

stored in a destination storage location 727B by an instruc instructions in program order .
In some embodiments , the instruction format may have tion 708B may have a numerical pattern that is based 739

one or more source operands and / or one or more immediates partly on an opcode 733B of the instruction and partly on
to explicitly specify one or more numerical pattern defining one or more numerical pattern defining parameters 736
parameters 636 . Alternatively , one or more numerical pat - 30 indicated by the instruction . The numerical pattern is based
tern defining parameters may be implicitly indicated by the entirely or at least predominantly on the opcode and the one
instruction (e . g . , provided through a register implicitly indi - or more numerical pattern defining parameters . The instruc
cated by the instruction . Each of the one or more pattern tion has the opcode , bits or one or more fields 734B to
defining parameters may affect a numerical pattern of a specify the destination storage location 727B , and specifies
result or sequence of integers stored as a result of the 35 or otherwise indicates the one or more numerical pattern
instruction . Each of the one or more pattern defining param defining parameters 736 . Execution of the instruction causes
eters may affect values of each of the integers in the the result to be stored in the destination storage location . The
sequence or result . Each of the one or more pattern defining result includes the sequence of integers having the numerical
parameters may be used to evaluate a numerical pattern pattern . In these embodiments , the numerical pattern of the
defining equation or relation that is implicit to the instruc - 40 40 sequence of integers is based partly on the opcode of the
tion . A few representative examples of suitable numerical instruction and partly on the one or more numerical pattern pattern defining parameters include , but are not limited to , defining parameters indicated by the instruction , but is based integer offsets from zero , integer strides , integer rotation entirely or at least predominantly on the opcode and the one amounts , and combinations thereof (e . g . , integer offsets or more numerical pattern defining parameters (i . e . , is not from zero together with integer strides) . 45

In other embodiments , the instruction may not specify or based on source packed data stored as a result by a preceding
instruction) otherwise indicate any numerical pattern defining param FIG . 8 is a block flow diagram of an example embodiment eters . In some embodiments (e . g . , in embodiments where the

instruction does not specify or otherwise indicate any of a method 830 of processing an instruction useful to
numerical pattern defining parameters) , the instruction may 50 generate control indexes , which stores a sequence of at least
not have (e . g . , specify or otherwise indicate) any source four consecutive non - negative integers in numerical order .
operands 637 . The instruction is received , at block 831 . The instruction

FIG . 7A is a block diagram illustrating that in some specifies or otherwise indicates a destination storage loca
embodiments a sequence of integers 740A in a result 728A tion .
stored in a destination storage location 727A by an instruc - 55 A result is stored in the destination storage location , in
tion 708A may have a numerical pattern that is based response to the instruction and / or as a result of the instruc
entirely or at least predominantly 738 on an opcode 733A of tion , at block 832 . The result includes a sequence of at least
the instruction . The instruction has the opcode and bits or four consecutive non - negative integers in numerical order .
one or more fields 734A to specify the destination storage In some embodiments , the result may include a sequence of
location 727A . Note that the instruction of this embodiment 60 at least eight , at least sixteen , at least thirty - two , at least
does not specify or otherwise indicate any numerical pattern sixty - four , or even more , consecutive non - negative integers
defining parameters , or any source operands for that matter . in numerical order in the destination storage location . In
Execution of the instruction causes the result to be stored in various embodiments , the sequence of consecutive integers
the destination storage location . The result includes the may include any of those shown in Tables 1 - 3 .
sequence of integers having the numerical pattern . In these 65 Table 1 lists example embodiments of sequences of
embodiments , the numerical pattern of the sequence of consecutive non - negative integers in increasing numerical
integers is based entirely or at least predominantly on the order for different numbers of integers .

13

5 to
??? ??? ??

UN

30 Trom zo

US 9 , 904 , 547 B2
14

TABLE 1 Table 3 lists example embodiments of sequences of
consecutive non - negative integers in increasing numerical

NUMBER OF SEQUENCES OF CONSECUTIVE INTEGERS order , which have a smallest integer offset from zero by an INTEGERS IN INCREASING NUMERICAL ORDER integer offset (K) , for different numbers of integers .
01 , 2 , 3
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 TABLE 3 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15
0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , INTEGER 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 NUMBER OFFSET OFFSET SEQUENCES OF 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , OF FROM ZERO CONSECUTIVE INTEGERS IN 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 10 INTEGERS INCREASING NUMERICAL ORDER 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 ,
45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 2 , 3 , 4 , 5 59 , 60 , 61 , 62 , 63 K , K + 1 , K + 2 , K + 3

5 , 6 , 7 , 8 , 9 , 10 , 11 , 12
K , K + 1 , K + 2 , K + 3 , K + 4 , K + 5 , In increasing numerical order , the values of the integers 15 K + 6 , K + 7

increase with increasing bit significance of the destination 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 ,
storage location (e . g . , the smallest integer is to be stored 15 , 16

K , K + 1 , K + 2 , K + 3 , K + 4 , K + 5 , nearest to the lowest - order bit of the register , and the largest K + 6 , K + 7 , K + 8 , K + 9 , K + 10 ,
integer is to be stored nearest to a highest - order bit of the K + 11 , K + 12 , K + 13 , K + 14 , K + 15
register) . In each of these examples , the smallest integer is 20 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 ,

18 , 19 , 20 , 21 , 22 , 23 , 24 , 25 , 26 , 27 , zero . In some embodiments , an instruction / opcode may only 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 37 , 38
be capable of storing a sequent of integers selected from 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 ,
Table 1 (i . e . , it may not be capable of storing other integers) , 23 , 24 , 25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 ,

34 , 35 , 36 , 37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , although this is not required for other embodiments . Such 45 , 46 , 47 , 48 , 49 , 50 , 51 , 52 , 53 , 54 , 55 , sequences of consecutive integers in increasing numerical 25 56 , 57 , 58 , 59 , 60 , 61 , 62 , 63 , 64 , 65 , 66 ,
order are particularly useful for control indexes precursors , 67 , 68 , 69 , 70 , 71 , 72 , 73 , 74 , 75
since they may be quickly , efficiently , and versatility , arith
metically or logically converted with one or a few additional As shown , a smallest one of the integers may be offset
instructions into a wide range of different sequences of from zero by the offset and may have a value of the offset .
integers useful for control indexes . By way of example , the integer offset (K) may optionally be

Table 2 lists example embodiments of sequences of added to each of the integers of the sequences shown in
consecutive non - negative integers in decreasing numerical Table 1 . Analogous embodiments are contemplated for con
order for different numbers of integers . secutive non - negative integers in decreasing numerical

order . Such consecutive non - negative integers in numerical
TABLE 2 order , which are offset from zero by a variable positive

integer offset (K) , are useful to help extract unaligned NUMBER OF SEQUENCES OF CONSECUTIVE INTEGERS
INTEGERS IN DECREASING NUMERICAL ORDER packed data from two aligned packed data to avoid needing

to perform unaligned loads (see e . g . , the discussion of FIG .
3 , 2 , 1 , 0
7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 In some embodiments , the instruction may explicitly 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0
31 , 30 , 29 , 28 , 27 , 26 , 25 , 24 , 23 , 22 , 21 , 20 , 19 , 18 , specify (e . g . , through a source operand or an immediate) or
17 , 16 , 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , 6 , 5 , 4 , 3 , 2 , 1 , 0 otherwise indicate (e . g . , implicitly indicate a register hav
63 , 62 , 61 , 60 , 59 , 58 , 57 , 56 , 55 , 54 , 53 , 52 , 51 , 50 , ing) the integer offset (K) . The offset (K) represents an
49 , 48 , 47 , 46 , 45 , 44 , 43 , 42 , 41 , 40 , 39 , 38 , 37 , 36 , us example embodiment of a pattern defining parameter , which 35 , 34 , 33 , 32 , 31 , 30 , 29 , 28 , 27 , 26 , 25 , 24 , 23 , 22 ,
21 , 20 , 19 , 18 , 17 , 16 , 15 , 14 , 13 , 12 , 11 , 10 , 9 , 8 , 7 , affects the values of each of the integers in the numerical
6 , 5 , 4 , 3 , 2 , 1 , 0 pattern , and which the numerical pattern is based on .

In some embodiments , a result may include rotated con
In the decreasing numerical order , the values of the secutive non - negative integers in numerical order , which

integers decrease with increasing bit significance of the 50 have been rotated by an integer rotation amount (R) . Table 4 lists example embodiments of sequences of consecutive destination storage location . In some embodiments , an
instruction may have one or more bits to indicate whether or non - negative integers in increasing numerical order , which

have been rotated by an integer rotation amount (R) , for not integers are to be stored in increasing or decreasing
numerical order to allow one instruction / opcode to be used different numbers of integers .
for either . Such sequences of consecutive integers in 55 TABLE 4 decreasing numerical order are useful for mirroring packed
data rearrangements . In an example mirroring packed data INTEGER
rearrangement , data elements in a packed data source are NUMBER ROTATION ROTATED SEQUENCES OF
“ mirrored ” about a center of the packed data source . For OF AMOUNT CONSECUTIVE INTEGERS IN
example , a highest - order data element in a source is made a 60 INTEGERS (R) INCREASING NUMERICAL ORDER
lowest - order data element in a result , a next - highest - order 1 , 2 , 3 , 0
data element in the source is made a next - lowest - order data 3 , 4 , 5 , 6 , 7 , 0 , 1 , 2
element in the result , and so on , up to making a next - to 14 , 15 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 ,
lowest - order data element in the source a next - to - highest 12 , 13

324 28 , 29 , 30 , 31 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , order data element in the result , and making a lowest - order 65 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 ,
data element in the source a highest - order data element in 21 , 22 , 23 , 24 , 25 , 26 , 27
the result .

409) .
G

?? ??

sã cop ?

?

OF

64

US 9 , 904 , 547 B2
15 16

TABLE 4 - continued has a value of 8 to select B . , 9 to select B1 , 10 to select B2 ,
11 to select Bz , 12 to select B4 , 13 to select Bs , 14 to select

INTEGER B6 , and 15 to select B7 . NUMBER ROTATION ROTATED SEQUENCES OF
AMOUNT CONSECUTIVE INTEGERS IN In this embodiment , the packed data rearrangement con

INTEGERS INCREASING NUMERICAL ORDER 5 trol indexes have values of offset consecutive integers in
numerical order . In particular , the control indexes Io , 1 , , 1 ,

1 63 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 , 13 , 14 , 15 , 16 , 17 , respectively , have the values 2 , 3 , 4 , 5 , 6 , 7 , 13 , 14 , 15 , 16 , 17 , 18 , 19 , 20 , 21 , 22 , 23 , 24 ,
25 , 26 , 27 , 28 , 29 , 30 , 31 , 32 , 33 , 34 , 35 , 36 , 8 , and 9 . As shown , these control indexes are operable to
37 , 38 , 39 , 40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 48 , select A2 , A3 , A4 , A5 , A6 , A7 , B . , and B1 , for the eight data
49 , 50 , 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 60 , 10 elements of the result packed data . The operation with these
61 , 62 indexes merges A2 - A , with B - B , . Rather than needing to

perform unaligned loads to merge A2 - A , with B . - B1 , such
As shown , each integer is rotated in the rotation direction , merging may be performed with the use of the offset

and when rotated out of one end is rotated into the other end . consecutive integers in numerical order as the control
In some embodiments , the instruction may explicitly specify 15 indexes .
(e . g . , through a source operand or an immediate) or other Similarly , it may be readily seen how consecutive integers
wise indicate (e . g . , implicitly indicate a register having) the in decreasing numerical order may be used to perform
rotation amount (R) . The rotation amount (R) represents an mirroring packed data element rearrangements . Moreover , it

example embodiment of a pattern defining parameter , which may be readily seen how rotated consecutive integers may
20 be used to rotate packed data elements . affects the values of each of the integers in the numerical FIG . 10 is a block flow diagram of an example embodi pattern , and which the numerical pattern is based on . The ment of a method 1030 of processing an instruction useful integers may be rotated either to the right or to the left . In to generate control indexes , which stores a sequence of at

some embodiments , the instruction may also explicitly least four non - negative integers in numerical order with all leas
specify or implicitly indicate a rotation direction . Analogous 25 integers in consecutive positions differing by a constant
embodiments are contemplated for consecutive non - nega integer stride of at least two . The instruction is received , at
tive integers in decreasing numerical order . Such rotated block 1031 . The instruction specifies or otherwise indicates
consecutive integers are useful for rotating packed data a destination storage location .
elements . Such rotated consecutive integers are useful for A result is stored in the destination storage location , in
rotating packed data elements in sequences smaller than the 30 response to the instruction and / or as a result of the instruc
full vector size . tion , at block 1032 . The result includes a sequence of at least

FIG . 9 is a block diagram illustrating an example embodi - four non - negative integers in numerical order with all inte
ment of a packed data rearrangement operation using packed gers in consecutive positions differing by a constant integer
data rearrangement control indexes having values of offset stride of at least two . In some embodiments , the result may
consecutive integers in numerical order to extract unaligned 35 include a sequence of at least eight , at least sixteen , at least
packed data from two aligned packed data to avoid needing thirty - two , at least sixty - four , or even more , non - negative
to perform unaligned loads . The operation may be per - integers in numerical order with all integers in consecutive
formed in response to a packed data rearrangement instruc positions differing by a constant integer stride of at least two .
tion . The constant stride represents a constant difference

The packed data rearrangement instruction may indicate a 40 between values of integers in consecutive positions in the
first source packed data 942 having eight data elements destination storage location . In various embodiments , the
Ap - A7 , a second source packed data 943 having eight data stride may be two , three , four , or more . Integers separated by
elements B . - B , a third source packed data 944 having eight constant strides of two , three , and four are particularly useful
packed data elements Co - C7 , which each include a corre for processing repetitively - arranged paired / two - tuple data
sponding one of eight packed data rearrangement control 45 (e . g . , pairs of real and imaginary numbers , or other pairs of
indexes I . - In , and a result packed data 945 . By way of data) , three - tuple data (e . g . , RGB , or other color component
example , each of the control indexes 1 , - 1 , may be 4 - bits data) , and four - tuple data (e . g . , RGBA or other color com
wide and may be included in the least significant 4 - bits of ponent plus transparency / opacity data) . Even greater strides
the corresponding packed data element Co - C7 , which may are useful for control indexes for gather instructions that
be 8 - bits , 16 - bits , 32 - bits , or 64 - bits wide . Other instructions 50 gather non - contiguous data from memory (e . g . , from tables
may use other numbers of data elements and control indexes . or other structured data arrangements) . In some embodi

The result packed data 945 is generated and stored in ments , the instruction may only be capable of storing a
response to the packed data rearrangement operation / in - sequence of integers in which consecutive integers differ by
struction . In this embodiment , each of the packed data a constant stride , although other embodiments are not so
rearrangement control indexes corresponds to a result data 55 limited .
element in a corresponding bit position . Each of the control FIG . 11 is a block flow diagram of an example embodi
indexes is operable to select any one of the sixteen data ment of a method 1130 of processing an instruction useful to
elements of the first and second source packed data (i . e . , any generate control indexes , which stores a sequence of at least
one of A . - A , or B . - B -) to be stored into the corresponding four non - negative same parity (e . g . , all even or all odd)
result data element . For example , the first control index lois 60 integers in numerical order . The instruction is received , at
operable to select any one of A . - A , or B - B , to be stored in block 1131 . The instruction specifies or otherwise indicates
a first result packed data element of the result packed data . a destination storage location .
Four bits are sufficient to uniquely select any one of the A result is stored in the destination storage location , in
sixteen source data elements . According to one possible response to the instruction and / or as a result of the instruc
convention , a control index has a value of 0 to select A0 , 1 65 tion , at block 1132 . The result includes a sequence of at least
to select A , 2 to select A , , 3 to select A2 , 4 to select A4 , 5 four non - negative same parity integers in numerical order .
to select A5 , 6 to select Ag , 7 to select Az . A control index The parity of an integer refers to whether it is even or odd .

? Öcope

@ 25

US 9 , 904 , 547 B2
17 18

Even integers have a same parity , and odd numbers have a FIG . 12 is a block diagram illustrating an example
same parity , which is a different parity than that of the even embodiment of a packed data rearrangement operation using
numbers . In some embodiments , the result may include a packed data rearrangement control indexes having values of
sequence of at least eight , at least sixteen , at least thirty - two , consecutive even integers in increasing numerical order to
at least sixty - four , or even more , even integers (e . g . , con - 5 separate real numbers (R) from imaginary numbers (IM) . secutive even integers) in numerical order . In other embodi
ments , the result may include a sequence of at least eight , at The operation may be performed in response to a packed
least sixteen , at least thirty - two , at least sixty - four , or even data rearrangement instruction .
more , odd integers (e . g . , consecutive odd integers) in The instruction may indicate a first source packed data
numerical order . 1242 having eight data elements Ro , IMO , R1 , IM1 , R2 , IM2 ,

Table 5 lists example embodiments of sequences of " R3 , IM3 , a second source packed data 1243 having eight data
consecutive even integers in increasing numerical order for elements R2 , IM , R , IM , R . , IM , R7 , IM , , a third source
different numbers of integers . packed data 1244 having eight data elements Co - C7 , each

including a corresponding one of eight packed data rear
TABLE 5 rangement control indexes 10 - 17 , and a result packed data

1245 . In the first and second source packed data , real NUMBER
OF numbers (R) and imaginary numbers (IM) are interleaved . SEQUENCES OF CONSECUTIVE EVEN INTEGERS

INTEGERS IN INCREASING NUMERICAL ORDER By way of example , each of the control indexes I . - I , may be
4 - bits wide and may be included in the least significant

0 , 2 , 4 , 6 4 - bits of the corresponding data element Co - Cz . 0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 20
0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , The result packed data 1245 is generated and stored in
28 , 30 response to the packed data rearrangement operation / in
0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , struction . In this embodiment , each of the control indexes 28 , 30 , 32 , 34 , 36 , 38 , 40 , 42 , 44 , 46 , 48 , 50 , corresponds to a result data element in a corresponding bit 52 , 54 , 56 , 58 , 60 , 62
0 , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , 22 , 24 , 26 , position . In this embodiment , the control indexes have
28 , 30 , 32 , 34 , 36 , 38 , 40 , 42 , 44 , 46 , 48 , 50 , 52 , values of consecutive even integers in increasing numerical
54 , 56 , 58 , 60 , 62 , 64 , 66 , 68 , 70 , 72 , 74 , 76 , 78 , order . In particular , the control indexes 10 , 11 , 12 , 13 , 14 , 15 , 16 ,
80 , 82 , 84 , 86 , 88 , 90 , 92 , 94 , 96 , 98 , 100 , 102 , and 17 , respectively , have the values 0 , 2 , 4 , 6 , 8 , 10 , 12 , and 104 , 106 , 108 , 110 , 112 , 114 , 116 , 118 , 120 , 122 ,
124 , 126 14 . As shown , these control indexes are operable to select

and store the real numbers R , R1 , R2 , Rz , R4 , R5 , Ro , and
Table 6 lists example embodiments of sequences of R7 , in the eight data elements of the result packed data . This

essentially de - interleaves or separates the real numbers (R) consecutive odd integers in increasing numerical order for from the imaginary numbers (IM) . different numbers of integers . In an alternate embodiment , a similar packed data rear
TABLE 6 rangement operation may be performed using control

indexes having values of consecutive odd integers in
NUMBER SEQUENCES OF CONSECUTIVE increasing numerical order to separate the imaginary num

OF ODD INTEGERS IN INCREASING bers (I) from the real numbers (R) . In particular , the control
INTEGERS NUMERICAL ORDER indexes 10 , 11 , 12 , 13 , 14 , 15 , 16 , and I , , respectively , may have

4 1 , 3 , 5 , 7 the values 1 , 3 , 5 , 7 , 9 , 11 , 13 , and 15 , in order to select and 40
1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 store the imaginary numbers IMO , IM1 , IM2 , IM3 , IM4 , IM5 ,
1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 , 21 , 23 , 25 , 27 , 29 , 31 IM? , and IM , , in the eight data elements of the result packed
1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 , 21 , 23 , 25 , 27 , 29 , 31 , data . Moreover , control indexes having consecutive even or 33 , 35 , 37 , 39 , 41 , 43 , 45 , 47 , 49 , 51 , 53 , 55 , 57 , 59 , 61 , 63 odd integers in numerical order may also be used to separate 1 , 3 , 5 , 7 , 9 , 11 , 13 , 15 , 17 , 19 , 21 , 23 , 25 , 27 , 29 , 31 ,
33 , 35 , 37 , 39 , 41 , 43 , 45 , 47 , 49 , 51 , 53 , 55 , 57 , 59 , 61 , 15 other types of paired or two - tuple data .
63 , 65 , 67 , 69 , 71 , 73 , 75 , 77 , 79 , 81 , 83 , 85 , 87 , 89 , 91 , In other embodiments , the stride may be greater than two .
93 , 95 , 97 , 99 , 101 , 103 , 105 , 107 , 109 , 111 , 113 , 115 , Table 7 lists example embodiments of sequences of integers 117 , 119 , 121 , 123 , 125 , 127 in numerical order , with integers in consecutive positions

differing by a constant integer stride that is greater than two ,
In some embodiments , an instruction / opcode may only be liments , an instruction / opcode may only be for different numbers of integers .

capable of storing a sequent of integers selected from Tables 50
5 or 6 (i . e . , it may not be capable of storing other integers) , TABLE 7 although this is not required for other embodiments . Such
sequences of consecutive even and odd integers are particu SEQUENCES OF INTEGERS
larly useful for processing repetitively - arranged two - tuple NUMBER CONSTANT IN INCREASING NUMERICAL
data , such as , for example , pairs of real and imaginary 55 STRIDE ORDER DIFFERING BY STRIDE

INTEGERS numbers representing complex numbers , as well as other GREATER THAN TWO
paired data . For example , such sequences of consecutive 0 , 3 , 6 , 9
even and odd integers may be used to separate , isolate , or 0 , 4 , 8 , 12
de - interleave one type of paired or two - tuple data from 0 , 8 , 16 , 24

0 , N , 2N , 3N another (e . g . , separate real numbers from imaginary num - 60 0 , 3 , 6 , 9 , 12 , 15 , 18 , 21
bers) . See e . g . , the discussion of FIG . 12 . 0 , 4 , 8 , 12 , 16 , 20 , 24 , 28

In other embodiments , an integer offset (K) may option 0 , 8 , 16 , 24 , 32 , 40 , 48 , 56
ally be added to each of the same parity integers . In still 0 , N , 2N , 3N , 4N , 5N , 6N , 7N
other embodiments , the sequence of same parity integers 0 , 3 , 6 , 9 , 12 , 15 , 18 , 21 , 24 , 27 , 30 , 33 , 36 ,

39 , 42 , 45 may be rotated by an integer rotation amount (R) . In still 65 16 0 , 4 , 8 , 12 , 16 , 20 , 24 , 28 , 32 , 36 , 40 , 44 ,
further embodiments , the same parity integers may be in 48 , 52 , 56 , 60
decreasing numerical order .

35

1 % - 2 , - 39

85 x

3

OF
(N)

tttt 0000
AWZ A W

OOO
W Z

A

US 9 , 904 , 547 B2
19

TABLE 7 - continued
20

TABLE 8

OF

6

tttt 0 0 0 Z AWN ZAWN WANANNA N ?

7

w N

16

16 w

Z

SEQUENCES OF INTEGERS NUMBER CONSTANT SEQUENCES OF INTEGERS
NUMBER CONSTANT IN INCREASING NUMERICAL OF STRIDE OFFSET FOLLOWING FORMULA

INTEGERS (N) (K) (N * i + K) STRIDE ORDER DIFFERING BY STRIDE
INTEGERS (N) GREATER THAN TWO 1 , 3 , 5 , 7

2 , 5 , 8 , 11
0 , 8 , 16 , 24 , 32 , 40 , 48 , 56 , 64 , 72 , 80 , 88 , 2 , 6 , 10 , 14
96 , 104 , 112 , 120 K , N + K , 2N + K , 3N + K
0 , N , 2N , 3N , 4N , 5N , 6N , 7N , 8N , 9N , 2 , 4 , 6 , 8 , 10 , 12 , 14 , 16

10 8 1 , 4 , 7 , 10 , 13 , 16 , 19 , 22 10N , 11N , 12N , 13N , 14N , 15N 3 , 7 , 11 , 15 , 19 , 23 , 27 , 31
K , N + K , 2N + K , 3N + K ,
4N + K , 5N + K , 6N + K ,

These are just a few illustrative examples . For simplicity , 7N + K
16 4 , 6 , 8 , 10 , 12 , 14 , 16 , 18 , 20 , examples are only shown for four , eight , or sixteen control 22 , 24 , 26 , 28 , 30 , 32 , 36 indexes or control indexes precursors , although other num - 15 7 , 10 , 13 , 16 , 19 , 22 , 25 , 28 ,

bers are also contemplated (e . g . , 32 , 64 , etc .) . Also , for 31 , 34 , 37 , 40 , 43 , 46 , 49 , 52
3 , 7 , 11 , 15 , 19 , 23 , 27 , 31 , simplicity , only a few representative examples of strides are 35 , 39 , 43 , 47 , 51 , 55 , 59 , 63

shown (i . e . , 3 , 4 , and 8) , although other strides are also K , N + K , 2N + K , 3N + K ,
possible (e . g . , 5 , 6 , 10 , 16 , etc .) . Still other embodiments are a 4N + K , 5N + K , 6N + K ,
contemplated in which the integers of the sequence are in 7N + K , 8N + K , 9N + K ,

10N + K , 11N + K , 12N + K , decreasing numerical order , are offset from zero , and / or are 13N + K , 14N + K , 15N + K
rotated .

FIG . 13 is a block flow diagram of an example embodi flow diagram of an example embodi - As discussed above , consecutive non - negative integers in
ment of a method 1330 of processing an instruction useful 25 numerical order are useful and versatile for generating a
to generate control indexes , which stores a sequence of at variety of different integer sequences and / or numerical pat
least four integers in numerical order , where a smallest of the terns . In some embodiments , an instruction that stores
integers is offset from zero by the offset (K) , and where all consecutive non - negative integers in numerical order may
of the integers in consecutive positions differ from one be used together with an instruction that applies a stride and
another by the stride (N) . The instruction is received , at an offset to generate one of numerous useful numerical
block 1331 . The instruction specifies or otherwise indicates patterns .
a destination storage location . FIG . 14 is a block flow diagram of an example embodi

In some embodiments , the instruction explicitly specifies , ment of a method 1446 of processing a first control indexes
or otherwise indicates , an integer offset (K) and a constant 35 precursors generation instruction to store a sequence of
integer stride (N) . In some embodiments , the instruction consecutive non - negative integers in numerical order a
may have at least one of a source operand and an immediate second instruction that applies a stride and an offset to each
to explicitly specify the offset (K) and / or the stride (N) . As of the consecutive non - negative integers in numerical order .
another option , the instruction may implicitly indicate a The first control indexes precursors generation instruction
register that provides the offset (K) and / or the stride (N) . In 40 is received , at block 1431 . The instruction specifies or
some cases , the offset may be zero , or in other cases it may otherwise indicates a first destination storage location .
be a non - zero positive integer . The constant integer stride is A first result is stored in the first destination storage
a positive integer of one or more . The instruction may set location , in response to the first instruction , at block 1432 .
each of the offset (K) and the stride (N) to obtain a desired The result includes a sequence of at least four consecutive
numerical pattern appropriate for the desired control 45 control 45 non - negative integers in numerical order . In some embodi
indexes . ments , the result may include one of the sequences of

integers shown in Table 1 above .
A result is stored in the destination storage location , in A second instruction indicating the sequence of the at

response to the instruction and / or as a result of the instruc - least four consecutive integers in numerical order (e . g . ,
tion , at block 1332 . The result includes a sequence of at least 50 explicitly specifying the first destination storage location as
four non - negative integers in numerical order in the desti - a source) is received , at block 1447 . The second instruction
nation storage location , where a smallest of the integers is indicates a second destination storage location and indicates
offset from zero by the offset (K) , and where all of the a stride (N) and an offset (K) . In some embodiments , the
integers in consecutive positions differ from one another by second instruction may have at least one source operand
the stride (N) . The value of an integer at position (i) in the 55 and / or immediate to explicitly specify the stride and the
destination storage location may be equal to the stride (N) offset .
multiplied by the position (i) added to the offset (K) . A second result is stored in the second destination storage
Mathematically , this may be expressed as integer at position location , in response to the second instruction , at block

(i) = (N * i + K) , where i ranges from zero to one less than the 1448 . The second result includes a sequence of at least four
total number of integers in the sequence (eg iis o for the 60 non - negative integers in numerical order , where all integers
first integer , i is 1 for the second integer , etc .) . in consecutive positions differ from one another by the stride

(N) , and where a smallest of the integers is offset from zero
Table 8 lists example embodiments of sequences of by the offset (K) . In some embodiments , each of the at least

integers in numerical order , where a smallest of the integers four consecutive integers may be multiplied by the stride
differs from zero by the offset (K) , and where all of the 65 (N) , and the offset (K) may be added to each of the products .
integers in consecutive positions differ from one another by For example , the stride (N) may be broadcast into a plurality
the stride (N) , for different numbers of integers . of values of the stride (N) in a first temporary register , the

US 9 , 904 , 547 B2
22 .

0

0

0 3

offset (K) may be broadcast into a plurality of values of the integers outside of these ranges , although this is not required
offset (K) in a second temporary register , and each of the at for other embodiments . Instructions useful to generate con
least four consecutive integers may be multiplied by the first trol indexes for gather or load instructions that load non
temporary register and the resulting products may be added contiguous data from memory (e . g . , from a table) often have
to the second temporary register . The sequence of integers of 5 somewhat greater ranges of integer values .
the second result may follow the numerical pattern (N * i + K) . Various ISAs have one or more instructions that load data

FIG . 15 is a block diagram of a source packed data 1542 from non - contiguous memory locations or store data to
storing RGBA (i . e . , Red Green Blue Alpha) four - tuple data . non - contiguous memory locations . Examples of such
The RGBA data represents color component plus transpar instructions include , but are not limited to gather and scatter
ency / opacity data . RGBA data is commonly used in com - 10 instructions . By way of example , the gather instructions may
puters and other electronic devices having displays / screens . gather or load multiple data elements into a result packed The particular illustrated packed data operand has sixteen data from multiple non - contiguous memory locations using
data elements . In the illustration , the sixteen data elements a gather index vector provided through a source of the gather
respectively store Ro , G . , B . , A0 , R1 , G1 , B1 , A1 , R2 , G2 , B2 , 15 instructions . The scatter instructions may scatter or store A2 , R3 , G3 , B3 , Az . In some embodiments , a numerical 15 multiple data elements from a source packed data into pattern or sequence of integers may be operable to perform
useful operations on four - tuple data . multiple non - contiguous memory locations using a scatter

Table 9 lists example embodiments of sequences of index vector provided through a source of the scatter instruc
integers to perform various useful operations on RGBA data tions . In some embodiments , the control indexes generation
or other 4 - tuple data . Many of these sequences are useful for 20 instructions disclosed herein may be used to generate control
four - tuple data in general . indexes for such gather and / or scatter instructions and / or for

other instructions that access non - contiguous locations in
TABLE 9 memory . For example , the control indexes generation

instructions disclosed herein may be used to generate gather
NUMBER 25 index vectors and / or scatter index vectors that may be

OF SEQUENCES OF indicated as source operands , respectively , by the gather or INTEGERS INTEGERS EXAMPLE OF USE
scatter instructions .

0 , 4 , 8 , 12 , 1 , 5 , 9 , 13 , 2 , 6 , Separate each of the R , Gather and scatter instructions are useful for various
10 , 14 , 3 , 7 , 11 , 15 G , B , and A components different purposes . In some embodiments , the gather and
3 , 2 , 1 , 0 , 7 , 6 , 5 , 4 , 11 , 10 , Reverse or mirror order 30 scatter instructions are used , respectively , to load data from 9 , 8 , 15 , 14 , 13 , 12 within RGBA four - tuples
0 , 1 , 2 , 4 , 5 , 6 , 8 , 9 , 10 , 12 , Remove A components from or store data to , tables or other regularly arranged data
13 , 14 RGBA four - tuples structures . As an example , the gather and scatter instructions
0 , 1 , 3 , 2 , 4 , 5 , 7 , 6 , 8 , 9 , Swap order of R and G may be used to access a row of a two - dimensional array 11 , 10 , 12 , 13 , 15 , 14 components within RGBA when the data is ordered in column - major order . As another four - tuples
3 , 0 , 1 , 2 , 7 , 4 , 5 , 6 , 11 , 8 , Convert from RGBA to 35 example , the gather and scatter instructions may be used to
9 , 10 , 15 , 12 , 13 , 14 ARGB access a column of the array when the data is stored in
2 , 1 , 0 , 3 , 6 , 5 , 4 , 7 , 10 , 9 , Convert from RGBA to row - major order . Other examples include accessing data in
8 , 11 , 14 , 13 , 12 , 15 BGRA multi - dimensional arrays . In such examples , sequences or

control indexes as disclosed herein may be used to generate ,
Notice that these numerical patterns have a repeat unit of 40 or assist with generating , the gather index vectors and / or

four integers such that the pattern repeats every four inte - scatter index vectors . Commonly , as in accessing data from
gers . These are just a few examples . Other sequences to a row in column - major ordered arrays , or as in accessing
perform other operations are also contemplated . data from a column in a row - major ordered array , a constant

Still other embodiments need not utilize packed data stride as disclosed elsewhere herein may be used . Stride
rearrangement control indexes with numerical patterns . In 45 values and offset values as disclosed herein may be used as
general , any sequence of integers may be used as long as it previously described to generate the gather index vectors
is useful for control indexes or control indexes precursors . and / or scatter index vectors . By way of example , the stride

The integers may have values appropriate for control may be based on the row length and / or the column location
indexes or control indexes precursors . Commonly , packed within the row . The gather or scatter instruction may then
data rearrangement instructions use control indexes that are 50 specify the gather index vectors and / or scatter index vectors
operable to index or select any one of 4 source packed data as a source .
elements , 8 source packed data elements , 16 source packed Alternatively , in other embodiments , an instruction to
data elements , 32 source packed data elements , 64 source load data from non - contiguous memory locations (e . g . , a
packed data elements , or in some cases 128 source packed gather instruction) or an instruction to store data to non
data elements . In embodiments , each of the integers in a 55 contiguous memory locations (e . g . , a scatter instruction)
sequence may have a value that ranges from zero to an upper may incorporate control indexes generation capabilities as
bound that is one less than the total number of data elements described elsewhere herein . For example , in some embodi
that the associated packed data rearrangement instruction ments , a gather instruction and / or a scatter instruction may
indexes among . For example , in various embodiments , the indicate a source having one or more of a stride and an offset
integer values may all range from 0 to 127 in order to index 60 and the gather and / or scatter instruction may be operable to
or select any one of 128 source packed data elements , may both use the stride and / or the offset to generate control
range from 0 to 63 in order to index any one of 64 data indexes and perform the gather and / or scatter operations
elements , may range from 0 to 31 in order to index any one within the confines of the execution of the single gather
of 32 data elements , may range from 0 to 15 in order to index and / or scatter instruction . The different possibilities for
any one of 16 data elements , or may range from 0 to 7 in 65 using the stride and the offset mentioned before may also be
order to index any one of 8 data elements . In some embodi - used by these instructions . On possible advantage of such
ments , the instruction / opcode may be incapable of storing instructions is that a vector scale - index - base (SIB) may not

9

US 9 , 904 , 547 B2
23 24

be needed which may allow reclaiming the traditional SIB mation , etc .) . There is often room available in such ROM to
and / or a shorter instruction encoding . store one or more sequence of integers as disclosed herein .

Different ways of generating control indexes and / or con - Alternatively , a dedicated ROM , a read - only register , a
trol indexes precursors are contemplated . In some embodi non - architecturally visible register , or another non - architec
ments , a sequence of integers may be stored in a memory of 5 turally visible storage space may be included on - die to store
a processor at a time of manufacture (e . g . , prior to runtime one or more sequence of integers as disclosed herein . As
execution of application code) , and instructions as disclosed another option , one or more sequences of integers may be
herein (e . g . , included in application code at runtime) may be burnt into one - time - programmable fuses of a processor or
operable to access the sequence of integers from the memory otherwise pre - stored or pre - provided on - die with a processor
when they are executed at runtime . 10 and / or execution unit .

FIG . 16 is a block diagram of an example embodiment of In some embodiments , a column - sweep approach may be
a processor 1600 . The processor includes decode and execu - used to generate a numerical pattern of integers in numerical
tion units 1623 , packed data registers 1603 , and a read - only order . For example , to generate consecutive integers , a value
memory (ROM) 1650 . The ROM has multiple non - archi - of 1 may be broadcast across nine elements to give (A) .
tecturally visible storage locations 1651 . Each of the storage 15 Then , a copy of the elements with the broadcasted values of
locations stores a different sequence of integers . For 1 may be shifted to the left to give (B) . Then (A) and (B)
example , a first storage location 1651 - 1 stores a first may be added to give (C) . Then (C) may be shifted to the left
sequence of integers (e . g . , 0 , 1 , 2 , 3 , 4 , 5 , 6 , and 7) , an Mth by two to give (D) . Then (C) and (D) may be added to give
storage location 1651 - M stores an Mth sequence of integers (E) . Then (E) may be shifted left by four to give (F) . Then
(e . g . , 0 , 2 , 4 , 6 , 8 , 10 , 12 , and 14) , and an Nth storage 20 (E) and (F) may be added to give (G) , etc .
location 1651 - N stores an Nth sequence of integers (e . g . , 1 , 1 1 1 1 1 1 1 1 1 (A)
3 , 5 , 7 , 9 , 11 , 13 , and 15) . The sequences of integers stored 1 1 1 1 1 1 1 1 (B)
in these storage locations represent predetermined 2 2 2 2 2 2 2 2 1 (C)
sequences of integers . The storage locations may store any 2 2 2 2 2 2 1 (D)
of the sequences of integers disclosed herein , as well as 25 4 4 4 4 4 4 3 2 1 (E)
other sequences entirely . Typically , one or several (e . g . , from 4 4 3 2 1 (F)
about two to about ten or more) of the more commonly used 8 8 7 6 5 4 3 2 1 (G)
sequences of integers and / or sequences of integers that are Such column - sweep approaches generally allow for gen
relatively more expensive to generate from scratch may be eration of the sequences of integers quickly , as compared to
stored . 30 purely iterative generation . In still other embodiments , a

The decode and execution units 1623 receive an instruc - sequence of integers as disclosed herein may be generated
tion 1608 that is useful to generate control indexes . The iteratively . For example to generate consecutive integers ,
instruction indicates a destination storage location 1627 , each integer may be calculated in turn as the previous integer
which in some embodiments may be in the packed data calculated plus one .
registers 1603 . In some embodiments , the instruction (e . g . , 35 FIG . 17A is a block diagram illustrating a first example
an opcode of the instruction) may implicitly indicate the embodiment of a suitable format for storing control indexes
ROM and the instruction may indicate one of the non - and control indexes precursors . A packed data operand
architecturally visible storage locations . In some such 1742A includes packed data elements Ag - Ay . By way of
embodiments , the one indicated non - architecturally visible example , there may be 4 , 8 , 16 , 32 , or 64 , data elements .
storage location may be fixed or implicit to the instruction 40 Each of the data elements A - Ay has a different correspond
(e . g . , fixed or implicit to an opcode of the instruction) . In ing control index or control index precursor . In particular , a
other such embodiments , the instruction may have one or first data element A , has a first control index or precursor 10 ,
more bits to explicitly specify or select the one non - archi - a second data element A , has a second control index or
tecturally visible storage location . For example , in some precursor 1 , , an Nth data element Ay has an Nth control
embodiments , the instruction may have one , two , three , four , 45 index or precursor In , etc . Each of the control indexes or
or more bits , respectively , to select among two , four , eight , precursors is stored in a subset of bits of the corresponding
or sixteen different predetermined sequences of integers . data element . For example , each of the control indexes or
Advantageously , in this way one instruction / opcode may be precursors may be stored in a subset of bits of a lowest order
capable of selecting among multiple sequences of integers . byte or control byte of the corresponding data element ,

In the illustrated example , the instruction indicates the 50 although this is not required . In various embodiments , each
Mth non - architecturally visible storage location 1651 - M . of the control indexes or precursors may be contained within
Responsive to the instruction , the execution unit may access the lowest order 2 - bits , 3 - bits , 4 - bits , 5 - bits , or 6 - bits , for
the Mth sequence of integers (e . g . , 0 , 2 , 4 , 6 , 8 , 10 , 12 , and example , of the corresponding data element . Each of the
14) , and store them in the destination storage location 1627 . control indexes or precursors may be an integer often having
In such embodiments , the Mth sequence of integers does not 55 a value ranging from 0 to 64 . For packed data rearrangement
need to be generated or calculated , but rather pre - existing control indexes / precursors , the maximum integer size , and
pre - stored values may merely be accessed from the ROM . the number of bits per control index / precursor , depends on
This may allow the sequence of integers to be provided the number of source data elements indexed among . In
quickly and efficiently , within the execution of a single various embodiments , the data elements may be 8 - bit bytes ,
instruction . In some embodiments , the ROM may be on - die 60 16 - bit words , 32 - bit doublewords , or 64 - bit quadwords .
with the processor and / or the decode and execution units , FIG . 17B is a block diagram illustrating a second example
such that the sequence of integers does not need to be embodiment of a suitable format for storing control indexes
accessed from an off - die main memory or other source and control indexes precursors . A packed data operand
and / or over a system bus . 1742B includes data elements A . - Ay . Instead of each of the

Processors commonly include ROM on - die to store vari - 65 data elements A . - Ay having a different corresponding con
ous different types of information (e . g . , processor identifi trol index or precursor , the control indexes or precursors are
cation information , cryptographic keys , configuration infor grouped together contiguously within a subset of data ele

US 9 , 904 , 547 B2
25 26

ments of the packed data operand . In the illustrated embodi result includes a sequence of integers representing control
ment , a first data element A , has a first control index or indexes or control indexes precursors . Any of the instruc
precursor lo , a second control index or precursor 1 , , and an tions , results , and sequences of integers disclosed herein , are
Nth control index or precursor In , etc . Depending upon the suitable . Moreover , other instructions may be stored on the
size of the control indexes or precursors , and the size of the 5 medium (e . g . , packed data rearrangement instructions ,
data elements , a subset of two or more data elements may be gather instructions , other instructions that use the control
used to store all of the control indexes or precursors . Also , indexes , etc .) .
in the case of control indexes precursors , they may be stored Examples of different types of machines include , but are
in a general - purpose or integer register and later converted not limited to , processors (e . g . , general - purpose processors
into packed data format by a subsequent instruction . 10 and special - purpose processors) , instruction processing

FIG . 18 is a block diagram of an example embodiment of apparatus , and various electronic devices having one or
a suitable set of packed data registers 1803 suitable for more processors or instruction processing apparatus . A few
storing packed data operands . The illustrated packed data representative examples of such electronic devices include ,
registers include thirty - two 512 - bit wide packed data or but are not limited to , computer systems , desktops , laptops ,
vector registers . These thirty - two 512 - bit wide registers are 15 notebooks , servers , network routers , network switches , net
labeled ZMMO through ZMM31 . In the illustrated embodi - tops , set - top boxes , cellular phones , video game controllers ,
ment , the lower order 256 - bits of the lower sixteen of these etc .
registers , namely ZMMO - ZMM15 , are aliased or overlaid on An instruction set includes one or more instruction for
respective 256 - bit wide packed data or vector registers mats . A given instruction format defines various fields
labeled YMMO - YMM15 , although this is not required . Like - 20 (number of bits , location of bits) to specify , among other
wise , in the illustrated embodiment , the lower order 128 - bits things , the operation to be performed (opcode) and the
of YMMO - YMM15 are aliased or overlaid on respective operand (s) on which that operation is to be performed . Some
128 - bit packed data or vector registers labeled XMMO - instruction formats are further broken down though the
XMM1 , although this also is not required . The 512 - bit wide definition of instruction templates (or subformats) . For
registers ZMMO through ZMM31 are operable to hold 25 example , the instruction templates of a given instruction
512 - bit packed data , 256 - bit packed data , or 128 - bit packed format may be defined to have different subsets of the
data . The 256 - bit wide registers YMMO - YMM15 are oper - instruction format ' s fields (the included fields are typically
able to hold 256 - bit packed data , or 128 - bit packed data . The in the same order , but at least some have different bit
128 - bit wide registers XMMO - XMM1 are operable to hold positions because there are less fields included) and / or
128 - bit packed data . Each of the registers may be used to 30 defined to have a given field interpreted differently . Thus ,
store either packed floating - point data or packed integer each instruction of an ISA is expressed using a given
data . Different data element sizes are supported including at instruction format (and , if defined , in a given one of the
least 8 - bit byte data , 16 - bit word data , 32 - bit doubleword or instruction templates of that instruction format) and includes
single precision floating point data , and 64 - bit quadword or fields for specifying the operation and the operands . For
double precision floating point data . Alternate embodiments 35 example , an exemplary ADD instruction has a specific
of packed data registers may include different numbers of opcode and an instruction format that includes an opcode
registers , different sizes of registers , and may or may not field to specify that opcode and operand fields to select
alias larger registers on smaller registers . operands (source1 / destination and source2) ; and an occur

FIG . 19 is a block diagram of an article of manufacture r ence of this ADD instruction in an instruction stream will
(e . g . , a computer program product) 1952 including a 40 have specific contents in the operand fields that select
machine - readable storage medium 1953 . In some embodi - specific operands . A set of SIMD extensions referred to the
ments , the machine - readable storage medium may be a Advanced Vector Extensions (AVX) (AVX1 and AVX2) and
tangible and / or non - transitory machine - readable storage using the Vector Extensions (VEX) coding scheme , has
medium . In various example embodiments , the machine been , has been released and / or published (e . g . , see Intel® 64
readable storage medium may include a floppy diskette , an 45 and IA - 32 Architectures Software Developers Manual ,
optical disk , a CD - ROM , a magnetic disk , a magneto - optical October 2011 ; and see Intel® Advanced Vector Extensions
disk , a read only memory (ROM) , a programmable ROM Programming Reference , June 2011) .
(PROM) , an erasable - and - programmable ROM (EPROM) , Exemplary Instruction Formats
an electrically - erasable - and - programmable ROM (EE - Embodiments of the instruction (s) described herein may
PROM) , a random access memory (RAM) , a static - RAM 50 be embodied in different formats . Additionally , exemplary
(SRAM) , a dynamic - RAM (DRAM) , a Flash memory , a systems , architectures , and pipelines are detailed below .
phase - change memory , a semiconductor memory , other Embodiments of the instruction (s) may be executed on such
types of memory , or a combinations thereof . In some systems , architectures , and pipelines , but are not limited to
embodiments , the medium may include one or more solid those detailed .
data storage materials , such as , for example , a semiconduc - 55 VEX Instruction Format
tor data storage material , a phase - change data storage mate VEX encoding allows instructions to have more than two
rial , a magnetic data storage material , an optically transpar - operands , and allows SIMD vector registers to be longer
ent solid data storage material , etc . than 128 bits . The use of a VEX prefix provides for

The machine - readable storage medium stores one or more three - operand (or more) syntax . For example , previous
instructions useful to generate control indexes 1908 . In some 60 two - operand instructions performed operations such as
embodiments , these may include one or more control A = A + B , which overwrites a source operand . The use of a
indexes generation instructions 1910 . In some embodiments , VEX prefix enables operands to perform nondestructive
these may include one or more control indexes precursors operations such as A = B + C .
generation instructions 1911 . Each of the instructions useful FIG . 20A illustrates an exemplary AVX instruction format
to generate the control indexes , if executed by a machine , is 65 including a VEX prefix 2002 , real opcode field 2030 , Mod
operable to cause the machine to store a result in a desti - R / M byte 2040 , SIB byte 2050 , displacement field 2062 , and
nation storage location indicated by the instruction . The IMM8 2072 . FIG . 20B illustrates which fields from FIG .

US 9 , 904 , 547 B2
28

20A make up a full opcode field 2074 and a base operation instruction format and class B instruction templates thereof
field 2042 . FIG . 20C illustrates which fields from FIG . 20A according to embodiments of the invention . Specifically , a
make up a register index field 2044 . generic vector friendly instruction format 2100 for which are

VEX Prefix (Bytes 0 - 2) 2002 is encoded in a three - byte defined class A and class B instruction templates , both of
form . The first byte is the Format Field 2040 (VEX Byte 0 , 5 which include no memory access 2105 instruction templates
bits [7 : 0]) , which contains an explicit C4 byte value (the and memory access 2120 instruction templates . The term
unique value used for distinguishing the C4 instruction generic in the context of the vector friendly instruction
format) . The second - third bytes (VEX Bytes 1 - 2) include a format refers to the instruction format not being tied to any number of bit fields providing specific capability . Specifi specific instruction set . cally , REX field 2005 (VEX Byte 1 , bits [7 - 5]) consists of 10 While embodiments of the invention will be described in a VEX . R bit field (VEX Byte 1 , bit [7] - R) , VEX . X bit field which the vector friendly instruction format supports the (VEX byte 1 , bit [6] - X) , and VEX . B bit field (VEX byte 1 , following : a 64 byte vector operand length (or size) with 32 bit [5] - B) . Other fields of the instructions encode the lower bit (4 byte) or 64 bit (8 byte) data element widths (or sizes) three bits of the register indexes as is known in the art (rrr ,
Xxx . and bbb) . so that Rrrr Xxxx . and Bbbb may be formed 15 (and thus , a 64 byte vector consists of either 16 doubleword
by adding VEX . R , VEX . X , and VEX . B . Opcode map field size elements or alternatively , 8 quadword - size elements) ; a

2015 (VEX byte 1 , bits [4 : 0] - mmmmm) includes content to 64 byte vector operand length (or size) with 16 bit (2 byte)
encode an implied leading opcode byte . W Field 2064 (VEX or 8 bit (1 byte) data element widths (or sizes) ; a 32 byte
byte 2 . bit 171 - W) is represented by the notation VEX . W . vector operand length (or size) with 32 bit (4 byte) , 64 bit (8
and provides different functions depending on the instruc - 20 byte) , 16 bit (2 byte) , or 8 bit (1 byte) data element widths
tion . The role of VEX . vvv 2020 (VEX Byte 2 , bits [6 : 3] - (or sizes) ; and a 16 byte vector operand length (or size) with
VVVV) may include the following : 1) VEX . vvvv encodes the 32 bit (4 byte) , 64 bit (8 byte) , 16 bit (2 byte) , or 8 bit (1
first source register operand , specified in inverted (1s byte) data element widths (or sizes) ; alternative embodi
complement) form and is valid for instructions with 2 or ments may support more , less and / or different vector oper
more source operands ; 2) VEX . vvvv encodes the destination 25 and sizes (e . g . , 256 byte vector operands) with more , less , or
register operand , specified in is complement form for certain different data element widths (e . g . , 128 bit (16 byte) data
vector shifts ; or 3) VEX . vvvv does not encode any operand , element widths) .
the field is reserved and should contain 1111b . If VEX . L The class A instruction templates in FIG . 21A include : 1) 2068 Size field (VEX byte 2 , bit [2] - L) = 0 , it indicates 128 within the no memory access 2105 instruction templates
bit vector ; if VEX . L = 1 , it indicates 256 bit vector . Prefix 30 there is shown a no memory access , full round control type encoding field 2025 (VEX byte 2 , bits [1 : 0) - pp) provides operation 2110 instruction template and a no memory additional bits for the base operation field . access , data transform type operation 2115 instruction tem Real Opcode Field 2030 (Byte 3) is also known as the plate ; and 2) within the memory access 2120 instruction opcode byte . Part of the opcode is specified in this field .
MOD R / M Field 2040 (Byte 4) includes MOD field 2042 35 templates there is shown a memory access , temporal 2125

(bits [7 - 6]) , Reg field 2044 (bits [5 - 3]) , and R / M field 2046 instruction template and a memory access , non - temporal
(bits [2 - 0]) . The role of Reg field 2044 may include the 2130 instruction template . The class B instruction templates
following : encoding either the destination register operand in FIG . 21B include : 1) within the no memory access 2105
or a source register operand (the rrr of Rrrr) , or be treated as instruction templates there is shown a no memory access ,
an opcode extension and not used to encode any instruction 40 write mask control , partial round control type operation
operand . The role of RM field 2046 may include the 2112 instruction template and a no memory access , write
following : encoding the instruction operand that references mask control , vsize type operation 2017 instruction tem
a memory address , or encoding either the destination reg - plate ; and 2) within the memory access 2120 instruction
ister operand or a source register operand . templates there is shown a memory access , write mask

Scale , Index , Base (SIB) - The content of Scale field 2050 45 control 2127 instruction template .
(Byte 5) includes SS2052 (bits [7 - 6]) , which is used for The generic vector friendly instruction format 2100
memory address generation . The contents of SIB . xxx 2054 includes the following fields listed below in the order
(bits [5 - 3]) and SIB . bbb 2056 (bits [2 - 0]) have been previ illustrated in FIGS . 21A - 21B .
ously referred to with regard to the register indexes Xxxx Format field 2140 - a specific value (an instruction format
and Bbbb . 50 identifier value) in this field uniquely identifies the vector

The Displacement Field 2062 and the immediate field friendly instruction format , and thus occurrences of instruc
(IMM8) 2072 contain address data . tions in the vector friendly instruction format in instruction
Generic Vector Friendly Instruction Format streams . As such , this field is optional in the sense that it is

A vector friendly instruction format is an instruction not needed for an instruction set that has only the generic
format that is suited for vector instructions (e . g . , there are 55 vector friendly instruction format .
certain fields specific to vector operations) . While embodi Base operation field 2142 — its content distinguishes dif
ments are described in which both vector and scalar opera - ferent base operations .
tions are supported through the vector friendly instruction Register index field 2144 — its content , directly or through
format , alternative embodiments use only vector operations address generation , specifies the locations of the source and
the vector friendly instruction format . 60 destination operands , be they in registers or in memory .

FIGS . 21A - 21B are block diagrams illustrating a generic These include a sufficient number of bits to select N registers
vector friendly instruction format and instruction templates from a PxQ (e . g . 32x512 , 16x128 , 32x1024 , 64x1024)
thereof according to embodiments of the invention . FIG . register file . While in one embodiment N may be up to three
21A is a block diagram illustrating a generic vector friendly sources and one destination register , alternative embodi
instruction format and class A instruction templates thereof 65 ments may support more or less sources and destination
according to embodiments of the invention ; while FIG . 21B registers (e . g . , may support up to two sources where one of
is a block diagram illustrating the generic vector friendly these sources also acts as the destination , may support up to

US 9 , 904 , 547 B2
29 30

three sources where one of these sources also acts as the embodiment , preserving the old value of each element of the
destination , may support up to two sources and one desti destination where the corresponding mask bit has a 0 . In
nation) . contrast , when zeroing vector masks allow any set of ele
Modifier field 2146 its content distinguishes occur ments in the destination to be zeroed during the execution of

rences of instructions in the generic vector instruction for - 5 any operation specified by the base operation and the
mat that specify memory access from those that do not ; that augmentation operation) ; in one embodiment , an element of
is , between no memory access 2105 instruction templates the destination is set to o when the corresponding mask bit
and memory access 2120 instruction templates . Memory has a 0 value . A subset of this functionality is the ability to
access operations read and / or write to the memory hierarchy control the vector length of the operation being performed
(in some cases specifying the source and / or destination 10 (that is , the span of elements being modified , from the first
addresses using values in registers) , while non - memory to the last one) ; however , it is not necessary that the elements
access operations do not (e . g . , the source and destinations that are modified be consecutive . Thus , the write mask field
are registers) . While in one embodiment this field also 2170 allows for partial vector operations , including loads ,
selects between three different ways to perform memory stores , arithmetic , logical , etc . While embodiments of the
address calculations , alternative embodiments may support 15 invention are described in which the write mask field ' s 2170
more , less , or different ways to perform memory address content selects one of a number of write mask registers that
calculations . contains the write mask to be used (and thus the write mask

Augmentation operation field 2150 — its content distin - field ' s 2170 content indirectly identifies that masking to be
guishes which one of a variety of different operations to be performed) , alternative embodiments instead or additional
performed in addition to the base operation . This field is 20 allow the mask write field ' s 2170 content to directly specify
context specific . In one embodiment of the invention , this the masking to be performed .
field is divided into a class field 2168 , an alpha field 2152 , Immediate field 2172 — its content allows for the specifi
and a beta field 2154 . The augmentation operation field 2150 c ation of an immediate . This field is optional in the sense
allows common groups of operations to be performed in a that is it not present in an implementation of the generic
single instruction rather than 2 , 3 , or 4 instructions . 25 vector friendly format that does not support immediate and

Scale field 2160 — its content allows for the scaling of the it is not present in instructions that do not use an immediate .
index field ' s content for memory address generation (e . g . , Class field 2168 — its content distinguishes between dif
for address generation that uses 2scale * index + base) . ferent classes of instructions . With reference to FIGS . 21A

Displacement Field 2162A its content is used as part of B , the contents of this field select between class A and class
memory address generation (e . g . , for address generation that 30 B instructions . In FIGS . 21A - B , rounded corner squares are
uses 2scale * index + base + displacement) . used to indicate a specific value is present in a field (e . g . ,

Displacement Factor Field 2162B (note that the juxtapo - class A 2168A and class B 2168B for the class field 2168
sition of displacement field 2162A directly over displace - respectively in FIGS . 21A - B) .
ment factor field 2162B indicates one or the other is used) — Instruction Templates of Class A
its content is used as part of address generation ; it specifies 35 In the case of the non - memory access 2105 instruction
a displacement factor that is to be scaled by the size of a templates of class A , the alpha field 2152 is interpreted as an
memory access (N) — where N is the number of bytes in the RS field 2152A , whose content distinguishes which one of
memory access (e . g . , for address generation that uses the different augmentation operation types are to be per
2 scale * index + base + scaled displacement) . Redundant low - formed (e . g . , round 2152A . 1 and data transform 2152A . 2
order bits are ignored and hence , the displacement factor 40 are respectively specified for the no memory access , round
field ' s content is multiplied by the memory operands total type operation 2110 and the no memory access , data trans
size (N) in order to generate the final displacement to be form type operation 2115 instruction templates) , while the
used in calculating an effective address . The value of N is beta field 2154 distinguishes which of the operations of the
determined by the processor hardware at runtime based on specified type is to be performed . In the no memory access
the full opcode field 2174 (described later herein) and the 45 2105 instruction templates , the scale field 2160 , the dis
data manipulation field 2154C . The displacement field placement field 2162A , and the displacement scale filed
2162A and the displacement factor field 2162B are optional 2162B are not present .
in the sense that they are not used for the no memory access No - Memory Access Instruction Templates Full Round
2105 instruction templates and / or different embodiments Control Type Operation
may implement only one or none of the two . 50 In the no memory access full round control type operation

Data element width field 2164 — its content distinguishes 2110 instruction template , the beta field 2154 is interpreted
which one of a number of data element widths is to be used as a round control field 2154A , whose content (s) provide
(in some embodiments for all instructions ; in other embodi - static rounding . While in the described embodiments of the
ments for only some of the instructions) . This field is invention the round control field 2154A includes a suppress
optional in the sense that it is not needed if only one data 55 all floating point exceptions (SAE) field 2156 and a round
element width is supported and / or data element widths are operation control field 2158 , alternative embodiments may
supported using some aspect of the opcodes . support may encode both these concepts into the same field

Write mask field 2170 — its content controls , on a per data or only have one or the other of these concepts / fields (e . g . ,
element position basis , whether that data element position in may have only the round operation control field 2158) .
the destination vector operand reflects the result of the base 60 SAE field 2156 — its content distinguishes whether or not
operation and augmentation operation . Class A instruction to disable the exception event reporting ; when the SAE
templates support merging - writemasking , while class B field ' s 2156 content indicates suppression is enabled , a
instruction templates support both merging - and zeroing given instruction does not report any kind of floating - point
writemasking . When merging , vector masks allow any set of exception flag and does not raise any floating point excep
elements in the destination to be protected from updates 65 tion handler .
during the execution of any operation (specified by the base Round operation control field 2158 its content distin
operation and the augmentation operation) ; in other one guishes which one of a group of rounding operations to

US 9 , 904 , 547 B2
31 32

perform (e . g . , Round - up , Round - down , Round - towards - zero plates , the scale field 2160 , the displacement field 2162A ,
and Round - to - nearest) . Thus , the round operation control and the displacement scale filed 2162B are not present .
field 2158 allows for the changing of the rounding mode on In the no memory access , write mask control , partial
a per instruction basis . In one embodiment of the invention round control type operation 2110 instruction template , the
where a processor includes a control register for specifying 5 rest of the beta field 2154 is interpreted as a round operation
rounding modes , the round operation control field ' s 2150 field 2159A and exception event reporting is disabled (a
content overrides that register value . given instruction does not report any kind of floating - point
No Memory Access Instruction Templates — Data Trans exception flag and does not raise any floating point excep

tion handler) . form Type Operation
In the no memory access data transform type operation 10 Round operation control field 2159A — just as round

2115 instruction template , the beta field 2154 is interpreted operation control field 2158 , its content distinguishes which
one of a group of rounding operations to perform (e . g . , as a data transform field 2154B , whose content distinguishes Round - up , Round - down , Round - towards - zero and Round which one of a number of data transforms is to be performed to - nearest) . Thus , the round operation control field 2159A

(e . g . , no data transform , swizzle , broadcast) . 15 allows for the changing of the rounding mode on a per
In the case of a memory access 2120 instruction template instruction basis . In one embodiment of the invention where

of class A , the alpha field 2152 is interpreted as an eviction a processor includes a control register for specifying round
hint field 2152B , whose content distinguishes which one of ing modes , the round operation control field ' s 2150 content
the eviction hints is to be used in FIG . 21A , temporal
2152B . 1 and non - temporal 2152B . 2 are respectively speci - 20 In the no memory access , write mask control , VSIZE type
fied for the memory access , temporal 2125 instruction operation 2117 instruction template , the rest of the beta field
template and the memory access , non - temporal 2130 2154 is interpreted as a vector length field 2159B , whose
instruction template) , while the beta field 2154 is interpreted content distinguishes which one of a number of data vector
as a data manipulation field 2154C , whose content distin - lengths is to be performed on (e . g . , 128 , 256 , or 512 byte) .
guishes which one of a number of data manipulation opera - 25 In the case of a memory access 2120 instruction template
tions (also known as primitives) is to be performed (e . g . , no of class B , part of the beta field 2154 is interpreted as a
manipulation ; broadcast ; up conversion of a source ; and broadcast field 2157B , whose content distinguishes whether
down conversion of a destination) . The memory access 2120 or not the broadcast type data manipulation operation is to
instruction templates include the scale field 2160 , and be performed , while the rest of the beta field 2154 is
optionally the displacement field 2162A or the displacement 30 interpreted the vector length field 2159B . The memory
scale field 2162B . access 2120 instruction templates include the scale field

Vector memory instructions perform vector loads from 2160 , and optionally the displacement field 2162A or the
and vector stores to memory , with conversion support . As displacement scale field 2162B .
with regular vector instructions , vector memory instructions with regard to the generic vector friendly instruction
transfer data from / to memory in a data element - wise fash - 35 format 2100 , a full opcode field 2174 is shown including the
ion , with the elements that are actually transferred is dictated format field 2140 , the base operation field 2142 , and the data
by the contents of the vector mask that is selected as the element width field 2164 . While one embodiment is shown
write mask . where the full opcode field 2174 includes all of these fields ,
Memory Access Instruction Templates — Temporal the full opcode field 2174 includes less than all of these
Temporal data is data likely to be reused soon enough to 40 fields in embodiments that do not support all of them . The

benefit from caching . This is , however , a hint , and different full opcode field 2174 provides the operation code (opcode) .
processors may implement it in different ways , including The augmentation operation field 2150 , the data element
ignoring the hint entirely . width field 2164 , and the write mask field 2170 allow these
Memory Access Instruction Templates — Non - Temporal features to be specified on a per instruction basis in the
Non - temporal data is data unlikely to be reused soon 45 generic vector friendly instruction format .

enough to benefit from caching in the 1st - level cache and The combination of write mask field and data element
should be given priority for eviction . This is , however , a width field create typed instructions in that they allow the
hint , and different processors may implement it in different mask to be applied based on different data element widths .
ways , including ignoring the hint entirely . The various instruction templates found within class A
Instruction Templates of Class B 50 and class B are beneficial in different situations . In some

In the case of the instruction templates of class B , the embodiments of the invention , different processors or dif
alpha field 2152 is interpreted as a write mask control (Z) ferent cores within a processor may support only class A ,
field 2152C , whose content distinguishes whether the write only class B , or both classes . For instance , a high perfor
masking controlled by the write mask field 2170 should be mance general purpose out - of - order core intended for gen
a merging or a zeroing . 55 eral - purpose computing may support only class B , a core

In the case of the non - memory access 2105 instruction intended primarily for graphics and / or scientific (through
templates of class B , part of the beta field 2154 is interpreted put) computing may support only class A , and a core
as an RL field 2157A , whose content distinguishes which intended for both may support both (of course , a core that
one of the different augmentation operation types are to be has some mix of templates and instructions from both
performed (e . g . , round 2157A . 1 and vector length (VSIZE) 60 classes but not all templates and instructions from both
2157A . 2 are respectively specified for the no memory classes is within the purview of the invention) . Also , a single
access , write mask control , partial round control type opera - processor may include multiple cores , all of which support
tion 2112 instruction template and the no memory access , the same class or in which different cores support different
write mask control , VSIZE type operation 2117 instruction class . For instance , in a processor with separate graphics and
template) , while the rest of the beta field 2154 distinguishes 65 general purpose cores , one of the graphics cores intended
which of the operations of the specified type is to be primarily for graphics and / or scientific computing may
performed . In the no memory access 2105 instruction tem support only class A , while one or more of the general

US 9 , 904 , 547 B2
33 34

purpose cores may be high performance general purpose ZMMO is encoded as 1111B , ZMM15 is encoded as 0000B .
cores with out of order execution and register renaming Other fields of the instructions encode the lower three bits of
intended for general - purpose computing that support only the register indexes as is known in the art (rrr , xxx , and bbb) ,
class B . Another processor that does not have a separate so that Rrrr , Xxxx , and Bbbb may be formed by adding
graphics core , may include one more general purpose in - 5 EVEX . R . EVEX . X , and EVEX . B .
order or out - of - order cores that support both class A and REX ' field 2110 — this is the first part of the REX ' field
class B . Of course , features from one class may also be 2110 and is the EVEX . R ' bit field (EVEX Byte 1 , bit [4] - R ') implement in the other class in different embodiments of the that is used to encode either the upper 16 or lower 16 of the invention . Programs written in a high level language would extended 32 register set . In one embodiment of the inven be put (e . g . , just in time compiled or statically compiled) 10 tion , this bit , along with others as indicated below , is stored into an variety of different executable forms , including : 1) a in bit inverted format to distinguish (in the well - known x86 form having only instructions of the class (es) supported by 32 - bit mode) from the BOUND instruction , whose real the target processor for execution ; or 2) a form having
alternative routines written using different combinations of opcode byte is 62 , but does not accept in the MOD R / M field
the instructions of all classes and having control flow code 15 (de : code 15 (described below) the value of 11 in the MOD field ; alter
that selects the routines to execute based on the instructions native embodiments of the invention do not store this and the
supported by the processor which is currently executing the other indicated bits below in the inverted format . A value of
code . 1 is used to encode the lower 16 registers . In other words ,
Exemplary Specific Vector Friendly Instruction Format R ' Rrrr is formed by combining EVEX . R ' , EVEX . R , and the

FIG . 22 is a block diagram illustrating an exemplary 20 other RRR from other fields .
specific vector friendly instruction format according to Opcode map field 2215 (EVEX byte 1 , bits [3 : 01
embodiments of the invention . FIG . 22 shows a specific mmmm) — its content encodes an implied leading opcode
vector friendly instruction format 2200 that is specific in the byte (OF , OF 38 , or OF 3) .
sense that it specifies the location , size , interpretation , and Data element width field 2164 (EVEX byte 2 , bit [71
order of the fields , as well as values for some of those fields . 25 W) — is represented by the notation EVEX . W . EVEX . W is
The specific vector friendly instruction format 2200 may be used to define the granularity (size) of the datatype (either
used to extend the x86 instruction set , and thus some of the 32 - bit data elements or 64 - bit data elements) .
fields are similar or the same as those used in the existing EVEX . vvvv 2220 (EVEX Byte 2 , bits [6 : 31 - vvvv) — the
x86 instruction set and extension thereof (e . g . , AVX) . This role of EVEX . vvvv may include the following : 1) EVEX . v
format remains consistent with the prefix encoding field , real 30 VVV encodes the first source register operand , specified in
opcode byte field , MOD R / M field , SIB field , displacement inverted (1s complement) form and is valid for instructions
field , and immediate fields of the existing x86 instruction set with 2 or more source operands ; 2) EVEX . vvw encodes the
with extensions . The fields from FIG . 21 into which the destination register operand , specified in 1s complement
fields from FIG . 22 map are illustrated . form for certain vector shifts ; or 3) EVEX . vvvv does not

It should be understood that , although embodiments of the 35 encode any operand , the field is reserved and should contain
invention are described with reference to the specific vector 1111b . Thus , EVEX . vvv field 2220 encodes the 4 low
friendly instruction format 2200 in the context of the generic order bits of the first source register specifier stored in
vector friendly instruction format 2100 for illustrative pur - inverted (1s complement) form . Depending on the instruc
poses , the invention is not limited to the specific vector t ion , an extra different EVEX bit field is used to extend the
friendly instruction format 2200 except where claimed . For 40 specifier size to 32 registers .
example , the generic vector friendly instruction format 2100 EVEX . U 2168 Class field (EVEX byte 2 , bit [2] - U) If
contemplates a variety of possible sizes for the various EVEX . U = 0 , it indicates class A or EVEX . U0 ; if
fields , while the specific vector friendly instruction format EVEX . U = 1 , it indicates class B or EVEX . U1 . Prefix encod
2200 is shown as having fields of specific sizes . By way of ing field 2225 (EVEX byte 2 , bits [1 : 0] - pp) - provides
specific example , while the data element width field 2164 is 45 additional bits for the base operation field . In addition to
illustrated as a one bit field in the specific vector friendly providing support for the legacy SSE instructions in the
instruction format 2200 , the invention is not so limited (that EVEX prefix format , this also has the benefit of compacting
is , the generic vector friendly instruction format 2100 con the SIMD prefix (rather than requiring a byte to express the
templates other sizes of the data element width field 2164) . SIMD prefix , the EVEX prefix requires only 2 bits) . In one

The generic vector friendly instruction format 2100 50 embodiment , to support legacy SSE instructions that use a
includes the following fields listed below in the order SIMD prefix (66H , F2H , F3H) in both the legacy format and
illustrated in FIG . 22A . in the EVEX prefix format , these legacy SIMD prefixes are
EVEX Prefix (Bytes 0 - 3) 2202 — is encoded in a four - byte encoded into the SIMD prefix encoding field ; and at runtime

form . are expanded into the legacy SIMD prefix prior to being
Format Field 2140 (EVEX Byte 0 , bits [7 : 0]) — the first 55 provided to the decoder ' s PLA (so the PLA can execute both

byte (EVEX Byte 0) is the format field 2140 and it contains the legacy and EVEX format of these legacy instructions
Ox62 (the unique value used for distinguishing the vector without modification) . Although newer instructions could
friendly instruction format in one embodiment of the inven - use the EVEX prefix encoding field ' s content directly as an
tion) . opcode extension , certain embodiments expand in a similar

The second - fourth bytes (EVEX Bytes 1 - 3) include a 60 fashion for consistency but allow for different meanings to
number of bit fields providing specific capability . be specified by these legacy SIMD prefixes . An alternative
REX field 2205 (EVEX Byte 1 , bits [7 - 51) — consists of a embodiment may redesign the PLA to support the 2 bit

EVEX . R bit field (EVEX Byte 1 , bit [7] - R) , EVEX . X bit SIMD prefix encodings , and thus not require the expansion .
field (EVEX byte 1 , bit [6] - X) , and 2157BEX byte 1 , bit Alpha field 2152 (EVEX byte 3 , bit [7] - EH ; also known
[51 - B) . The EVEX . R , EVEX . X , and EVEX . B bit fields 65 as EVEX . EH , EVEX . rs , EVEX . RL , EVEX . write mask con
provide the same functionality as the corresponding VEX bit trol , and EVEX . N ; also illustrated with a) - as previously
fields , and are encoded using is complement form , i . e . described , this field is context specific .

nu

US 9 , 904 , 547 B2
35 36

Beta field 2154 (EVEX byte 3 , bits [6 : 4] - SSS , also known displacement (so no changes in the ModRM / SIB encoding
as EVEX . S2 . 0 , EVEX . r7 . 0 , EVEX . rr1 , EVEX . LLO , rules) with the only exception that disp8 is overloaded to
EVEX . LLB ; also illustrated with BBB) — as previously disp8 * N . In other words , there are no changes in the
described , this field is context specific . encoding rules or encoding lengths but only in the interpre
REX ' field 2110 — this is the remainder of the REX ' field 5 tation of the displacement value by hardware (which needs

and is the EVEX . V ' bit field (EVEX Byte 3 , bit [3] - V ') that to scale the displacement by the size of the memory operand
may be used to encode either the upper 16 or lower 16 of the to obtain a byte - wise address offset) . extended 32 register set . This bit is stored in bit inverted Immediate field 2172 operates as previously described . format . A value of 1 is used to encode the lower 16 registers . Full Opcode Field In other words , VVVVV is formed by combining EVEX . V ' , 10 FIG . 22B is a block diagram illustrating the fields of the EVEX . vvvv . specific vector friendly instruction format 2200 that make up Write mask field 2170 (EVEX byte 3 , bits [2 : 0] - kkk) — its the full opcode field 2174 according to one embodiment of content specifies the index of a register in the write mask the invention . Specifically , the full opcode field 2174 registers as previously described . In one embodiment of the
invention , the specific value EVEX kkk = 000 has a special 15 inch includes the format field 2140 , the base operation field 2142 ,
behavior implying no write mask is used for the particular and the data element width (W) field 2164 . The base
instruction (this may be implemented in a variety of ways operation field 2142 includes the prefix encoding field 2225 ,
including the use of a write mask hardwired to all ones or the opcode map field 2215 , and the real opcode field 2230 .
hardware that bypasses the masking hardware) . Register Index Field

Real Opcode Field 2230 (Byte 4) is also known as the 20 FIG . 22C is a block diagram illustrating the fields of the
opcode byte . Part of the opcode is specified in this field . specific vector friendly instruction format 2200 that make up
MOD R / M Field 2240 (Byte 5) includes MOD field 2242 , the register index field 2144 according to one embodiment

Reg field 2244 , and R / M field 2246 . As previously of the invention . Specifically , the register index field 2144
described , the MOD field ' s 2242 content distinguishes includes the REX field 2205 , the REX ' field 2210 , the
between memory access and non - memory access operations . 25 MODR / M . reg field 2244 , the MODR / M . r / m field 2246 , the
The role of Reg field 2244 can be summarized to two VVVV field 2220 , xxx field 2254 , and the bbb field 2256 .
situations : encoding either the destination register operand Augmentation Operation Field
or a source register operand , or be treated as an opcode FIG . 22D is a block diagram illustrating the fields of the
extension and not used to encode any instruction operand . specific vector friendly instruction format 2200 that make up The role of R / M field 2246 may include the following : 30 the augmentation operation field 2150 according to one encoding the instruction operand that references a memory embodiment of the invention . When the class (U) field 2168 address , or encoding either the destination register operand contains 0 , it signifies EVEX . UO (class A 2168A) ; when it or a source register operand .

Scale , Index , Base (SIB) Byte (Byte 6) - As previously contains 1 , it signifies EVEX . U1 (class B 2168B) . When
described , the scale field ' s 2150 content is used for memory 35 U = 0 and the MOD field 2242 contains 11 (signifying a no
address generation . SIB . xxx 2254 and SIB . bbb 2256 — the memory access operation) , the alpha field 2152 (EVEX byte
contents of these fields have been previously referred to with 3 , bit [7] - EH) is interpreted as the rs field 2152A . When the
regard to the register indexes Xxxx and Bbbb . rs field 2152A contains a 1 (round 2152A . 1) , the beta field

Displacement field 2162A (Bytes 7 - 10) — when MOD 2154 (EVEX byte 3 , bits [6 : 4] - SSS) is interpreted as the
field 2242 contains 10 . bytes 7 - 10 are the displacement field 40 round control field 2154A . The round control field 2154A
2162A , and it works the same as the legacy 32 - bit displace - includes a one bit SAE field 2156 and a two bit round
ment (disp32) and works at byte granularity . operation field 2158 . When the rs field 2152A contains a 0

Displacement factor field 2162B (Byte 7) — when MOD (data transform 2152A . 2) , the beta field 2154 (EVEX byte 3 ,
field 2242 contains 01 , byte 7 is the displacement factor field bits [6 : 41 - SSS) is interpreted as a three bit data transform
2162B . The location of this field is that same as that of the 45 field 2154B . When U = 0 and the MOD field 2242 contains
legacy x86 instruction set 8 - bit displacement (disp8) , which 00 , 01 , or 10 (signifying a memory access operation) , the
works at byte granularity . Since disp8 is sign extended , it can alpha field 2152 (EVEX byte 3 , bit [71 - EH) is interpreted as
only address between - 128 and 127 bytes offsets ; in terms the eviction hint (EH) field 2152B and the beta field 2154
of 64 byte cache lines , disp8 uses 8 bits that can be set to (EVEX byte 3 , bits [6 : 41 - SSS) is interpreted as a three bit
only four really useful values – 128 , - 64 , 0 , and 64 ; since a 50 data manipulation field 2154C .
greater range is often needed , disp32 is used ; however , When U = 1 , the alpha field 2152 (EVEX byte 3 , bit
disp32 requires 4 bytes . In contrast to disp8 and disp32 , the [7] - EH) is interpreted as the write mask control (Z) field
displacement factor field 2162B is a reinterpretation of 2152C . When U = 1 and the MOD field 2242 contains 11
disp8 ; when using displacement factor field 2162B , the (signifying a no memory access operation) , part of the beta
actual displacement is determined by the content of the 55 field 2154 (EVEX byte 3 , bit [4] - S .) is interpreted as the RL
displacement factor field multiplied by the size of the field 2157A ; when it contains a 1 (round 2157A . 1) the rest
memory operand access (N) . This type of displacement is of the beta field 2154 (EVEX byte 3 , bit [6 - 5) - S2J) is
referred to as disp8 * N . This reduces the average instruction interpreted as the round operation field 2159A , while when
length (a single byte of used for the displacement but with the RL field 2157A contains a 0 (VSIZE 2157 . A2) the rest
a much greater range) . Such compressed displacement is 60 of the beta field 2154 (EVEX byte 3 , bit [6 - 5] - S2 - 1) is
based on the assumption that the effective displacement is interpreted as the vector length field 2159B (EVEX byte 3 ,
multiple of the granularity of the memory access , and hence , bit (6 - 5) - L , .) . When U = 1 and the MOD field 2242 contains
the redundant low - order bits of the address offset do not 00 , 01 , or 10 (signifying a memory access operation) , the
need to be encoded . In other words , the displacement factor beta field 2154 (EVEX byte 3 , bits [6 : 4) - SSS) is interpreted
field 2162B substitutes the legacy x86 instruction set 8 - bit 65 as the vector length field 2159B (EVEX byte 3 , bit (6 - 5)
displacement . Thus , the displacement factor field 2162B is L1 - o) and the broadcast field 2157B (EVEX byte 3 , bit
encoded the same way as an x86 instruction set 8 - bit [4] - B) .

37

con

A

B 2112 zmm

B

US 9 , 904 , 547 B2
38

Exemplary Register Architecture Alternative embodiments of the invention may use wider
FIG . 23 is a block diagram of a register architecture 2300 or narrower registers . Additionally , alternative embodiments

according to one embodiment of the invention . In the of the invention may use more , less , or different register files
embodiment illustrated , there are 32 vector registers 2310 and registers .
that are 512 bits wide ; these registers are referenced as 5 Exemplary Core Architectures , Processors , and Computer
zmm0 through zmm31 . The lower order 256 bits of the Architectures
lower 16 zmm registers are overlaid on registers ymm0 - 16 . Processor cores may be implemented in different ways ,
The lower order 128 bits of the lower 16 zmm registers (the for different purposes , and in different processors . For
lower order 128 bits of the ymm registers) are overlaid on instance , implementations of such cores may include : 1) a
registers xmm0 - 15 . The specific vector friendly instruction " general purpose in - order core intended for general - purpose
format 2200 operates on these overlaid register file as computing ; 2) a high performance general purpose out - of
illustrated in the below tables . order core intended for general - purpose computing ; 3) a

special purpose core intended primarily for graphics and / or
15 scientific (throughput) computing . Implementations of dif

Adjustable Vector ferent processors may include : 1) a CPU including one or Length Class Operations Registers more general purpose in - order cores intended for general
Instruction A 2110 , 2115 , zmm registers (the purpose computing and / or one or more general purpose
Templates that (FIG . 21A ; 2125 , 2130 vector length is 64 out - of - order cores intended for general - purpose computing ;
do not include U = 0) byte)
the vector rs (the 20 and 2) a coprocessor including one or more special purpose
length field (FIG . 21B ; vector length is 64 cores intended primarily for graphics and / or scientific
2159B U = 1) byte) (throughput) . Such different processors lead to different
Instruction 2117 , 2127 zmm , ymm , or xmm
templates that (FIG . 21B ; registers (the vector computer system architectures , which may include : 1) the
do include the U = 1) length is 64 byte , coprocessor on a separate chip from the CPU ; 2) the
vector length 32 byte , or 16 byte) 25 coprocessor on a separate die in the same package as a CPU ;
field 2159B depending on the 3) the coprocessor on the same die as a CPU (in which case , vector length field such a coprocessor is sometimes referred to as special 2159B

purpose logic , such as integrated graphics and / or scientific
(throughput) logic , or as special purpose cores) ; and 4) a

In other words , the vector length field 2159B selects 30 system on a chip that may include on the same die the
between a maximum length and one or more other shorter described CPU (sometimes referred to as the application
lengths , where each such shorter length is half the length of core (s) or application processor (s)) , the above described
the preceding length ; and instructions templates without the coprocessor , and additional functionality . Exemplary core
vector length field 2159B operate on the maximum vector architectures are described next , followed by descriptions of
length . Further , in one embodiment , the class B instruction 35 exemplary processors and computer architectures .
templates of the specific vector friendly instruction format Exemplary Core Architectures
2200 operate on packed or scalar single / double - precision In - Order and Out - of - Order Core Block Diagram
floating point data and packed or scalar integer data . Scalar FIG . 24A is a block diagram illustrating both an exem
operations are operations performed on the lowest order data plary in - order pipeline and an exemplary register renaming ,
element position in an zmm / ymm / xmm register , the higher 40 out - of - order issuelexecution pipeline according to embodi
order data element positions are either left the same as they ments of the invention . FIG . 24B is a block diagram illus
were prior to the instruction or zeroed depending on the trating both an exemplary embodiment of an in - order archi
embodiment . tecture core and an exemplary register renaming , out - of

Write mask registers 2315 — in the embodiment illus order issue / execution architecture core to be included in a
trated , there are 8 write mask registers (ko through k7) , each 45 processor according to embodiments of the invention . The
64 bits in size . In an alternate embodiment , the write mask solid lined boxes in FIGS . 24A - B illustrate the in - order
registers 2315 are 16 bits in size . As previously described , in pipeline and in - order core , while the optional addition of the
one embodiment of the invention , the vector mask register dashed lined boxes illustrates the register renaming , out - of
k0 cannot be used as a write mask ; when the encoding that order issue / execution pipeline and core . Given that the
would normally indicate ko is used for a write mask , it 50 in - order aspect is a subset of the out - of - order aspect , the
selects a hardwired write mask of OxFFFF , effectively dis - out - of - order aspect will be described .
abling write masking for that instruction . In FIG . 24A , a processor pipeline 2400 includes a fetch
General - purpose registers 2325 — in the embodiment stage 2402 , a length decode stage 2404 , a decode stage 2406 ,

illustrated , there are sixteen 64 - bit general - purpose registers an allocation stage 2408 , a renaming stage 2410 , a sched
that are used along with the existing x86 addressing modes 55 uling (also known as a dispatch or issue) stage 2412 , a
to address memory operands . These registers are referenced register read / memory read stage 2414 , an execute stage
by the names RAX , RBX , RCX , RDX , RBP , RSI , RDI , RSP , 2416 , a write back / memory write stage 2418 , an exception
and R8 through R15 . handling stage 2422 , and a commit stage 2424 .

Scalar floating point stack register file (x87 stack) 2345 , FIG . 24B shows processor core 2490 including a front end
on which is aliased the MMX packed integer flat register file 60 unit 2430 coupled to an execution engine unit 2450 , and
2350 — in the embodiment illustrated , the x87 stack is an both are coupled to a memory unit 2470 . The core 2490 may
eight - element stack used to perform scalar floating - point be a reduced instruction set computing (RISC) core , a
operations on 32 / 64 / 80 - bit floating point data using the x87 complex instruction set computing (CISC) core , a very long
instruction set extension ; while the MMX registers are used instruction word (VLIW) core , or a hybrid or alternative
to perform operations on 64 - bit packed integer data , as well 65 core type . As yet another option , the core 2490 may be a
as to hold operands for some operations performed between special - purpose core , such as , for example , a network or
the MMX and XMM registers . communication core , compression engine , coprocessor core ,

39
US 9 , 904 , 547 B2

40
general purpose computing graphics processing unit access pipeline , certain embodiments are implemented in
(GPGPU) core , graphics core , or the like . which only the execution cluster of this pipeline has the

The front end unit 2430 includes a branch prediction unit memory access unit (s) 2464) . It should also be understood
2432 coupled to an instruction cache unit 2434 , which is that where separate pipelines are used , one or more of these
coupled to an instruction translation lookaside buffer (TLB) 5 pipelines may be out - of - order issue / execution and the rest
2436 , which is coupled to an instruction fetch unit 2438 , in - order .
which is coupled to a decode unit 2440 . The decode unit The set of memory access units 2464 is coupled to the
2440 (or decoder) may decode instructions , and generate as memory unit 2470 , which includes a data TLB unit 2472
an output one or more micro - operations , micro - code entry coupled to a data cache unit 2474 coupled to a level 2 (L2) points , microinstructions , other instructions , or other control 10 cache unit 2476 . In one exemplary embodiment , the memory signals , which are decoded from , or which otherwise reflect , access units 2464 may include a load unit , a store address or are derived from , the original instructions . The decode unit , and a store data unit , each of which is coupled to the unit 2440 may be implemented using various different

data TLB unit 2472 in the memory unit 2470 . The instruc mechanisms . Examples of suitable mechanisms include , but
are not limited to , look - up tables , hardware implementa - 15 tion tion cache unit 2434 is further coupled to a level 2 (L2)
tions , programmable logic arrays (PLAs) , microcode read cache unit 2476 in the memory unit 2470 . The L2 cache unit
only memories (ROMs) , etc . In one embodiment , the core 2476 is coupled to one or more other levels of cache and
2490 includes a microcode ROM or other medium that eventually to a main memory .
stores microcode for certain macroinstructions (e . g . , in By way of example , the exemplary register renaming ,
decode unit 2440 or otherwise within the front end unit 20 out - of - order issue / execution core architecture may imple
2430) . The decode unit 2440 is coupled to a renamel ment the pipeline 2400 as follows : 1) the instruction fetch
allocator unit 2452 in the execution engine unit 2450 . 2438 performs the fetch and length decoding stages 2402

The execution engine unit 2450 includes the renamed and 2404 ; 2) the decode unit 2440 performs the decode stage
allocator unit 2452 coupled to a retirement unit 2454 and a 2406 ; 3) the rename / allocator unit 2452 performs the allo
set of one or more scheduler unit (s) 2456 . The scheduler 25 cation stage 2408 and renaming stage 2410 ; 4) the scheduler
unit (s) 2456 represents any number of different schedulers , unit (s) 2456 performs the schedule stage 2412 ; 5) the
including reservations stations , central instruction window , physical register file (s) unit (s) 2458 and the memory unit
etc . The scheduler unit (s) 2456 is coupled to the physical 2470 perform the register read / memory read stage 2414 ; the
register file (s) unit (s) 2458 . Each of the physical register execution cluster 2460 perform the execute stage 2416 ; 6)
file (s) units 2458 represents one or more physical register 30 the memory unit 2470 and the physical register file (s) unit (s)
files , different ones of which store one or more different data 2458 perform the write back / memory write stage 2418 ; 7)
types , such as scalar integer , scalar floating point , packed various units may be involved in the exception handling
integer , packed floating point , vector integer , vector floating stage 2422 ; and 8) the retirement unit 2454 and the physical
point , status (e . g . , an instruction pointer that is the address register file (s) unit (s) 2458 perform the commit stage 2424 .
of the next instruction to be executed) , etc . In one embodi - 35 The core 2490 may support one or more instructions sets
ment , the physical register file (s) unit 2458 comprises a (e . g . , the x86 instruction set (with some extensions that have
vector registers unit , a write mask registers unit , and a scalar been added with newer versions) ; the MIPS instruction set
registers unit . These register units may provide architectural of MIPS Technologies of Sunnyvale , Calif . ; the ARM
vector registers , vector mask registers , and general purpose instruction set (with optional additional extensions such as
registers . The physical register file (s) unit (s) 2458 is over - 40 NEON) of ARM Holdings of Sunnyvale , Calif .) , including
lapped by the retirement unit 2454 to illustrate various ways the instruction (s) described herein . In one embodiment , the
in which register renaming and out - of - order execution may core 2490 includes logic to support a packed data instruction
be implemented (e . g . , using a reorder buffer (s) and a retire - set extension (e . g . , AVX1 , AVX2) , thereby allowing the
ment register file (s) ; using a future file (s) , a history buffer (s) , operations used by many multimedia applications to be
and a retirement register file (s) ; using a register maps and a 45 performed using packed data .
pool of registers ; etc .) . The retirement unit 2454 and the It should be understood that the core may support multi
physical register file (s) unit (s) 2458 are coupled to the threading (executing two or more parallel sets of operations
execution cluster (s) 2460 . The execution cluster (s) 2460 or threads) , and may do so in a variety of ways including
includes a set of one or more execution units 2462 and a set time sliced multithreading , simultaneous multithreading
of one or more memory access units 2464 . The execution 50 (where a single physical core provides a logical core for each
units 2462 may perform various operations (e . g . , shifts , of the threads that physical core is simultaneously multi
addition , subtraction , multiplication) and on various types of threading) , or a combination thereof (e . g . , time sliced fetch
data (e . g . , scalar floating point , packed integer , packed ing and decoding and simultaneous multithreading thereaf
floating point , vector integer , vector floating point) . While ter such as in the Intel® Hyperthreading technology) .
some embodiments may include a number of execution units 55 While register renaming is described in the context of
dedicated to specific functions or sets of functions , other out - of - order execution , it should be understood that register
embodiments may include only one execution unit or mul - renaming may be used in an in - order architecture . While the
tiple execution units that all perform all functions . The illustrated embodiment of the processor also includes sepa
scheduler unit (s) 2456 , physical register file (s) unit (s) 2458 , rate instruction and data cache units 2434 / 2474 and a shared
and execution cluster (s) 2460 are shown as being possibly 60 L2 cache unit 2476 , alternative embodiments may have a
plural because certain embodiments create separate pipe - single internal cache for both instructions and data , such as ,
lines for certain types of data / operations (e . g . , a scalar for example , a Level 1 (L1) internal cache , or multiple levels
integer pipeline , a scalar floating point / packed integer / of internal cache . In some embodiments , the system may
packed floating point / vector integer / vector floating point include a combination of an internal cache and an external
pipeline , and / or a memory access pipeline that each have 65 cache that is external to the core and / or the processor .
their own scheduler unit , physical register file (s) unit , and / or Alternatively , all of the cache may be external to the core
execution cluster — and in the case of a separate memory and / or the processor .

US 9 , 904 , 547 B2
42

Specific Exemplary in - Order Core Architecture being integrated graphics and / or scientific (throughput)
FIGS . 25A - B illustrate a block diagram of a more specific logic (which may include one or more cores) , and the cores

exemplary in - order core architecture , which core would be 2602A - N being one or more general purpose cores (e . g . ,
one of several logic blocks (including other cores of the general purpose in - order cores , general purpose out - of - order
same type and / or different types) in a chip . The logic blocks 5 cores , a combination of the two) ; 2) a coprocessor with the
communicate through a high - bandwidth interconnect net - cores 2602A - N being a large number of special purpose
work (e . g . , a ring network) with some fixed function logic , cores intended primarily for graphics and / or scientific
memory I / O interfaces , and other necessary I / O logic , (throughput) ; and 3) a coprocessor with the cores 2602A - N
depending on the application . being a large number of general purpose in - order cores .

FIG . 25A is a block diagram of a single processor core , 10 Thus , the processor 2600 may be a general - purpose proces
along with its connection to the on - die interconnect network sor , coprocessor or special - purpose processor , such as , for
2502 and with its local subset of the Level 2 (L2) cache example , a network or communication processor , compres
2504 , according to embodiments of the invention . In one sion engine , graphics processor , GPGPU (general purpose
embodiment , an instruction decoder 2500 supports the x86 graphics processing unit) , a high - throughput many inte
instruction set with a packed data instruction set extension . 15 grated core (MIC) coprocessor (including 30 or more cores) ,
An L1 cache 2506 allows low - latency accesses to cache embedded processor , or the like . The processor may be
memory into the scalar and vector units . While in one implemented on one or more chips . The processor 2600 may
embodiment (to simplify the design) , a scalar unit 2508 and be a part of and / or may be implemented on one or more
a vector unit 2510 use separate register sets (respectively , substrates using any of a number of process technologies ,
scalar registers 2512 and vector registers 2514) and data 20 such as , for example , BiCMOS , CMOS , or NMOS .
transferred between them is written to memory and then read The memory hierarchy includes one or more levels of
back in from a level 1 (L1)) cache 2506 , alternative embodi cache within the cores , a set or one or more shared cache
ments of the invention may use a different approach (e . g . , units 2606 , and external memory (not shown) coupled to the
use a single register set or include a communication path that set of integrated memory controller units 2614 . The set of
allow data to be transferred between the two register files 25 shared cache units 2606 may include one or more mid - level
without being written and read back) . caches , such as level 2 (L2) , level 3 (L3) , level 4 (L4) , or

The local subset of the L2 cache 2504 is part of a global other levels of cache , a last level cache (LLC) , and / or
L2 cache that is divided into separate local subsets , one per combinations thereof . While in one embodiment a ring
processor core . Each processor core has a direct access path based interconnect unit 2612 interconnects the integrated
to its own local subset of the L2 cache 2504 . Data read by 30 graphics logic 2608 , the set of shared cache units 2606 , and
a processor core is stored in its L2 cache subset 2504 and can the system agent unit 2610 / integrated memory controller
be accessed quickly , in parallel with other processor cores unit (s) 2614 , alternative embodiments may use any number
accessing their own local L2 cache subsets . Data written by of well - known techniques for interconnecting such units . In
a processor core is stored in its own L2 cache subset 2504 one embodiment , coherency is maintained between one or
and is flushed from other subsets , if necessary . The ring 35 more cache units 2606 and cores 2602 - A - N .
network ensures coherency for shared data . The ring net - In some embodiments , one or more of the cores 2602A - N
work is bi - directional to allow agents such as processor are capable of multi - threading . The system agent 2610
cores , L2 caches and other logic blocks to communicate with includes those components coordinating and operating cores
each other within the chip . Each ring data - path is 1012 - bits 2602A - N . The system agent unit 2610 may include for
wide per direction . 40 example a power control unit (PCU) and a display unit . The

FIG . 25B is an expanded view of part of the processor PCU may be or include logic and components needed for
core in FIG . 25A according to embodiments of the inven - regulating the power state of the cores 2602A - N and the
tion . FIG . 25B includes an L1 data cache 2506A part of the integrated graphics logic 2608 . The display unit is for
L1 cache 2504 , as well as more detail regarding the vector driving one or more externally connected displays .
unit 2510 and the vector registers 2514 . Specifically , the 45 The cores 2602A - N may be homogenous or heteroge
vector unit 2510 is a 16 - wide vector processing unit (VPU) neous in terms of architecture instruction set ; that is , two or
(see the 16 - wide ALU 2528) , which executes one or more of more of the cores 2602A - N may be capable of execution the
integer , single - precision float , and double - precision float same instruction set , while others may be capable of execut
instructions . The VPU supports swizzling the register inputs ing only a subset of that instruction set or a different
with swizzle unit 2520 , numeric conversion with numeric 50 instruction set .
convert units 2522A - B , and replication with replication unit Exemplary Computer Architectures
2524 on the memory input . Write mask registers 2526 allow FIGS . 27 - 30 are block diagrams of exemplary computer
predicating resulting vector writes . architectures . Other system designs and configurations
Processor with Integrated Memory Controller and Graphics known in the arts for laptops , desktops , handheld PCs ,

FIG . 26 is a block diagram of a processor 2600 that may 55 personal digital assistants , engineering workstations , serv
have more than one core , may have an integrated memory ers , network devices , network hubs , switches , embedded
controller , and may have integrated graphics according to processors , digital signal processors (DSPs) , graphics
embodiments of the invention . The solid lined boxes in FIG . devices , video game devices , set - top boxes , micro control
26 illustrate a processor 2600 with a single core 2602A , a lers , cell phones , portable media players , hand held devices ,
system agent 2610 , a set of one or more bus controller units 60 and various other electronic devices , are also suitable . In
2616 , while the optional addition of the dashed lined boxes general , a huge variety of systems or electronic devices
illustrates an alternative processor 2600 with multiple cores capable of incorporating a processor and / or other execution
2602A - N , a set of one or more integrated memory controller logic as disclosed herein are generally suitable .
unit (s) 2614 in the system agent unit 2610 , and special Referring now to FIG . 27 , shown is a block diagram of a
purpose logic 2608 . 65 system 2700 in accordance with one embodiment of the

Thus , different implementations of the processor 2600 present invention . The system 2700 may include one or
may include : 1) a CPU with the special purpose logic 2608 more processors 2710 , 2715 , which are coupled to a con

US 9 , 904 , 547 B2
43 44

ST

troller hub 2720 . In one embodiment the controller hub 2720 a memory 2832 and a memory 2834 , which may be portions
includes a graphics memory controller hub (GMCH) 2790 of main memory locally attached to the respective proces
and an Input / Output Hub (IOH) 2750 (which may be on sors .
separate chips) ; the GMCH 2790 includes memory and Processors 2870 , 2880 may each exchange information
graphics controllers to which are coupled memory 2740 and 5 with a chipset 2890 via individual P - P interfaces 2852 , 2854
a coprocessor 2745 ; the IOH 2750 is couples input / output using point to point interface circuits 2876 , 2894 , 2886 ,
(I / O) devices 2760 to the GMCH 2790 . Alternatively , one or 2898 . Chipset 2890 may optionally exchange information
both of the memory and graphics controllers are integrated with the coprocessor 2838 via a high - performance interface

2839 . In one embodiment , the coprocessor 2838 is a special within the processor (as described herein) , the memory 2740
and the coprocessor 2745 are coupled directly to the pro 10 purpose processor , such as , for example , a high - throughput

MIC processor , a network or communication processor , cessor 2710 , and the controller hub 2720 in a single chip compression engine , graphics processor , GPGPU , embed
with the IOH 2750 . ded processor , or the like . The optional nature of additional processors 2715 is A shared cache (not shown) may be included in either denoted in FIG . 27 with broken lines . Each processor 2710 , 10 , 15 processor or outside of both processors , yet connected with
2715 may include one or more of the processing cores the processors via P - P interconnect , such that either or both
described herein and may be some version of the processor processors ' local cache information may be stored in the
2600 . shared cache if a processor is placed into a low power mode .

The memory 2740 may be , for example , dynamic random Chipset 2890 may be coupled to a first bus 2816 via an
access memory (DRAM) , phase change memory (PCM) , or 20 interface 2896 . In one embodiment , first bus 2816 may be a
a combination of the two . For at least one embodiment , the Peripheral Component Interconnect (PCI) bus , or a bus such
controller hub 2720 communicates with the processor (s) as a PCI Express bus or another third generation I / O
2710 , 2715 via a multi - drop bus , such as a frontside bus interconnect bus , although the scope of the present invention
(FSB) , point - to - point interface such as QuickPath Intercon - is not so limited .
nect (QPI) , or similar connection 2795 . 25 As shown in FIG . 28 , various I / O devices 2814 may be

In one embodiment , the coprocessor 2745 is a special - coupled to first bus 2816 , along with a bus bridge 2818
purpose processor , such as , for example , a high - throughput which couples first bus 2816 to a second bus 2820 . In one
MIC processor , a network or communication processor , embodiment , one or more additional processor (s) 2815 , such
compression engine , graphics processor , GPGPU , embed as coprocessors , high - throughput MIC processors , GPG
ded processor , or the like . In one embodiment , controller hub 30 PU ' s , accelerators (such as , e . g . , graphics accelerators or
2720 may include an integrated graphics accelerator . digital signal processing (DSP) units) , field programmable

There can be a variety of differences between the physical gate arrays , or any other processor , are coupled to first bus
resources 2710 , 2715 in terms of a spectrum of metrics of 2816 . In one embodiment , second bus 2820 may be a low
merit including architectural , microarchitectural , thermal , pin count (LPC) bus . Various devices may be coupled to a
power consumption characteristics , and the like . 35 second bus 2820 including , for example , a keyboard and / or

In one embodiment , the processor 2710 executes instruc - mouse 2822 , communication devices 2827 and a storage
tions that control data processing operations of a general unit 2828 such as a disk drive or other mass storage device
type . Embedded within the instructions may be coprocessor which may include instructions / code and data 2830 , in one
instructions . The processor 2710 recognizes these coproces - embodiment . Further , an audio I / O 2824 may be coupled to
sor instructions as being of a type that should be executed by 40 the second bus 2820 . Note that other architectures are
the attached coprocessor 2745 . Accordingly , the processor possible . For example , instead of the point - to - point archi
2710 issues these coprocessor instructions (or control sig - tecture of FIG . 28 , a system may implement a multi - drop bus
nals representing coprocessor instructions) on a coprocessor or other such architecture .
bus or other interconnect , to coprocessor 2745 . Coproces - Referring now to FIG . 29 , shown is a block diagram of a
sor (s) 2745 accept and execute the received coprocessor 45 second more specific exemplary system 2900 in accordance
instructions . with an embodiment of the present invention . Like elements

Referring now to FIG . 28 , shown is a block diagram of a in FIGS . 28 and 29 bear like reference numerals , and certain
first more specific exemplary system 2800 in accordance aspects of FIG . 28 have been omitted from FIG . 29 in order
with an embodiment of the present invention . As shown in to avoid obscuring other aspects of FIG . 29 .
FIG . 28 , multiprocessor system 2800 is a point - to - point 50 FIG . 29 illustrates that the processors 2870 , 2880 may
interconnect system , and includes a first processor 2870 and include integrated memory and I / O control logic (“ CL ”)
a second processor 2880 coupled via a point - to - point inter - 2872 and 2882 , respectively . Thus , the CL 2872 , 2882
connect 2850 . Each of processors 2870 and 2880 may be include integrated memory controller units and include I / O
some version of the processor 2600 . In one embodiment of control logic . FIG . 29 illustrates that not only are the
the invention , processors 2870 and 2880 are respectively 55 memories 2832 , 2834 coupled to the CL 2872 , 2882 , but also
processors 2710 and 2715 , while coprocessor 2838 is copro that I / O devices 2914 are also coupled to the control logic
cessor 2745 . In another embodiment , processors 2870 and 2872 , 2882 . Legacy I / O devices 2915 are coupled to the
2880 are respectively processor 2710 coprocessor 2745 . chipset 2890 .

Processors 2870 and 2880 are shown including integrated Referring now to FIG . 30 , shown is a block diagram of a
memory controller (IMC) units 2872 and 2882 , respectively . 60 SoC 3000 in accordance with an embodiment of the present
Processor 2870 also includes as part of its bus controller invention . Similar elements in FIG . 26 bear like reference
units point - to - point (PPP) interfaces 2876 and 2878 ; simi - numerals . Also , dashed lined boxes are optional features on
larly , second processor 2880 includes P - P interfaces 2886 more advanced SoCs . In FIG . 30 , an interconnect unit (s)
and 2888 . Processors 2870 , 2880 may exchange information 3002 is coupled to : an application processor 3010 which
via a point - to - point (PPP) interface 2850 using P - P interface 65 includes a set of one or more cores 202A - N and shared cache
circuits 2878 , 2888 . As shown in FIG . 28 , IMCs 2872 and unit (s) 2606 ; a system agent unit 2610 ; a bus controller
2882 couple the processors to respective memories , namely unit (s) 2616 ; an integrated memory controller unit (s) 2614 ;

em

US 9 , 904 , 547 B2
45 46

a set or one or more coprocessors 3020 which may include Emulation (Including Binary Translation , Code Morphing ,
integrated graphics logic , an image processor , an audio Etc .)
processor , and a video processor ; an static random access In some cases , an instruction converter may be used to
memory (SRAM) unit 3030 ; a direct memory access (DMA) convert an instruction from a source instruction set to a
unit 3032 ; and a display unit 3040 for coupling to one or 5 target instruction set . For example , the instruction converter
more external displays . In one embodiment , the coproc - may translate (e . g . , using static binary translation , dynamic
essor (s) 3020 include a special - purpose processor , such as , binary translation including dynamic compilation) , morph ,
for example , a network or communication processor , com emulate , or otherwise convert an instruction to one or more
pression engine , GPGPU , a high - throughput MIC processor , other instructions to be processed by the core . The instruc
embedded processor , or the like . 10 tion converter may be implemented in software , hardware ,

Embodiments of the mechanisms disclosed herein may be firmware , or a combination thereof . The instruction con
implemented in hardware , software , firmware , or a combi verter may be on processor , off processor , or part on and part
nation of such implementation approaches . Embodiments of off processor .
the invention may be implemented as computer programs or FIG . 31 is a block diagram contrasting the use of a
program code executing on programmable systems compris - 15 software instruction converter to convert binary instructions
ing at least one processor , a storage system (including in a source instruction set to binary instructions in a target
volatile and non - volatile memory and / or storage elements) , instruction set according to embodiments of the invention .
at least one input device , and at least one output device . In the illustrated embodiment , the instruction converter is a

Program code , such as code 2830 illustrated in FIG . 28 , software instruction converter , although alternatively the
may be applied to input instructions to perform the functions 20 instruction converter may be implemented in software , firm
described herein and generate output information . The out - ware , hardware , or various combinations thereof . FIG . 31
put information may be applied to one or more output shows a program in a high level language 3102 may be
devices , in known fashion . For purposes of this application , compiled using an x86 compiler 3104 to generate x86 binary
a processing system includes any system that has a proces - code 3106 that may be natively executed by a processor with
sor , such as , for example ; a digital signal processor (DSP) , 25 at least one x86 instruction set core 3116 . The processor with
a microcontroller , an application specific integrated circuit at least one x86 instruction set core 3116 represents any
(ASIC) , or a microprocessor . processor that can perform substantially the same functions

The program code may be implemented in a high level as an Intel processor with at least one x86 instruction set
procedural or object oriented programming language to core by compatibly executing or otherwise processing (1) a
communicate with a processing system . The program code 30 substantial portion of the instruction set of the Intel x86
may also be implemented in assembly or machine language , instruction set core or (2) object code versions of applica
if desired . In fact , the mechanisms described herein are not tions or other software targeted to run on an Intel processor
limited in scope to any particular programming language . In with at least one x86 instruction set core , in order to achieve
any case , the language may be a compiled or interpreted substantially the same result as an Intel processor with at
language . 35 least one x86 instruction set core . The x86 compiler 3104
One or more aspects of at least one embodiment may be represents a compiler that is operable to generate x86 binary

implemented by representative instructions stored on a code 3106 (e . g . , object code) that can , with or without
machine - readable medium which represents various logic additional linkage processing , be executed on the processor
within the processor , which when read by a machine causes with at least one x86 instruction set core 3116 . Similarly ,
the machine to fabricate logic to perform the techniques 40 FIG . 31 shows the program in the high level language 3102
described herein . Such representations , known as “ IP cores ” may be compiled using an alternative instruction set com
may be stored on a tangible , machine readable medium and piler 3108 to generate alternative instruction set binary code
supplied to various customers or manufacturing facilities to 3110 that may be natively executed by a processor without
load into the fabrication machines that actually make the at least one x86 instruction set core 3114 (e . g . , a processor
logic or processor . 45 with cores that execute the MIPS instruction set of MIPS

Such machine - readable storage media may include , with Technologies of Sunnyvale , Calif . and / or that execute the
out limitation , non - transitory , tangible arrangements of ARM instruction set of ARM Holdings of Sunnyvale ,
articles manufactured or formed by a machine or device , Calif .) . The instruction converter 3112 is used to convert the
including storage media such as hard disks , any other type x86 binary code 3106 into code that may be natively
of disk including floppy disks , optical disks , compact disk 50 executed by the processor without an x86 instruction set
read - only memories (CD - ROMs) , compact disk rewritable ' s core 3114 . This converted code is not likely to be the same
(CD - RWs) , and magneto - optical disks , semiconductor as the alternative instruction set binary code 3110 because an
devices such as read - only memories (ROMs) , random instruction converter capable of this is difficult to make ;
access memories (RAMs) such as dynamic random access however , the converted code will accomplish the general
memories (DRAMs) , static random access memories 55 operation and be made up of instructions from the alterna
(SRAMs) , erasable programmable read - only memories tive instruction set . Thus , the instruction converter 3112
(EPROMs) , flash memories , electrically erasable program - represents software , firmware , hardware , or a combination
mable read - only memories (EEPROMs) , phase change thereof that , through emulation , simulation or any other
memory (PCM) , magnetic or optical cards , or any other type process , allows a processor or other electronic device that
of media suitable for storing electronic instructions . 60 does not have an x86 instruction set processor or core to

Accordingly , embodiments of the invention also include execute the x86 binary code 3106 .
non - transitory , tangible machine - readable media containing While the sequences of numbers disclosed herein are
instructions or containing design data , such as Hardware useful for control indexes , their use is not limited to control
Description Language (HDL) , which defines structures , cir - indexes . They may also be used for other purposes (e . g . , as
cuits , apparatuses , processors and / or system features 65 input to other instructions or algorithms) . In other embodi
described herein . Such embodiments may also be referred to ments , sequences of other numbers of integers (e . g . , 6 , 12 ,
as program products . 20 , 24 , 128 , etc .) may be stored .

47
US 9 , 904 , 547 B2

48
The methods shown in the block flow diagrams herein the flow diagrams , but operations may optionally be added

may be performed by general - purpose processors , special to and / or removed from the methods . In addition , a particu
purpose processors (e . g . , a graphics processors or a digital lar order of the operations may have been described , accord
signal processors) , or other types of digital logic devices or ing to example embodiments , it is to be understood that that
instruction processing apparatus . In various embodiments , 5 particular order is exemplary . Alternate embodiments may
the instructions may be received at the instruction process - optionally perform the operations in different order , combine
ing apparatus , the processor , or a portion thereof (e . g . , a certain operations , overlap certain operations , etc .
decoder , instruction converter , etc .) . In various aspects , the Certain operations may be performed by hardware com
instruction may be received at the processor from an off - ponents , or may be embodied in machine - executable or
processor source (e . g . , from a main memory , a disc , or a 10 circuit - executable instructions , that may be used to cause , or
bus / interconnect) , or from an on - processor source (e . g . , at least result in , a circuit or hardware programmed with the
from an instruction cache , instruction fetch unit , etc .) . In instructions performing the operations . The circuit may
some embodiments , the methods may be performed by the include a general - purpose or special - purpose processor , or
processor of FIG . 1 and / or the instruction processing appa - logic circuit , to name just a few examples . The operations
ratus of FIG . 4 . Alternatively , the methods may be per - 15 may also optionally be performed by a combination of
formed by different embodiments of processors and / or hardware and software . An execution unit and / or a processor
instruction processing apparatus . Moreover , the processor of may include specific or particular circuitry or other logic
FIG . 1 and / or the instruction processing apparatus of FIG . 4 responsive to instructions , microinstructions , or one or more
may perform operations and methods that are either the control signals , derived from a machine instruction to per
same as , similar to , or different than those of the methods 20 form certain operations .
shown in the block flow diagrams . It should also be appreciated that reference throughout

The methods shown in the block flow diagrams herein this specification to " one embodiment ” , “ an embodiment ” ,
describe operations that are visible from outside a processor or " one or more embodiments ” , for example , means that a
or instruction processing apparatus (e . g . , visible from a particular feature may be included in the practice of the
software perspective) . For example , the instruction is pro - 25 invention . Similarly , it should be appreciated that in the
vided to the processor and a result is stored in an architec - description various features are sometimes grouped together
turally visible storage location in response to the instruction in a single embodiment , Figure , or description thereof for
In other embodiments , any of these methods may optionally the purpose of streamlining the disclosure and aiding in the
include one or more other operations occurring internally understanding of various inventive aspects . This method of
within the processor or instruction processing apparatus . By 30 disclosure , however , is not to be interpreted as reflecting an
way of example , the instructions may be fetched , the instruc - intention that the invention requires more features than are
tions may be decoded or otherwise converted into one or expressly recited in each claim . Rather , as the following
more other instructions or control signals , execution units claims reflect , inventive aspects may lie in less than all
may be enabled to perform the operations according to the features of a single disclosed embodiment . Thus , the claims
instructions , microarchitectural operations to implement the 35 following the Detailed Description are hereby expressly
operations of the instructions may be performed (e . g . , incorporated into this Detailed Description , with each claim
sequences of integers may be calculated or accessed from a standing on its own as a separate embodiment of the
non - architecturally visible storage location of an on - die invention .
ROM) , etc . What is claimed is :

The terms “ coupled ” and “ connected , ” along with their 40 1 . A method comprising :
derivatives , may be used herein . It should be understood that receiving a packed data rearrangement control indexes
these terms are not intended as synonyms for each other . generation instruction , the packed data rearrangement
Rather , in particular embodiments , " connected ” may be used control indexes generation instruction indicating one or
to indicate that two or more elements are in direct physical more numerical pattern defining parameters , and indi
or electrical contact with each other . “ Coupled ” may mean 45 cating a destination storage location ;
that two or more elements are in direct physical or electrical using each of the one or more numerical pattern defining
contact . However , “ coupled " may also mean that two or parameters to evaluate a numerical pattern defining
more elements are not in direct contact with each other , but relation that is implicit to the packed data rearrange
yet still co - operate or interact with each other . For example , ment control indexes generation instruction ; and
an execution unit may be coupled with a register through one 50 storing a result in the destination storage location in
or more intervening components . In the figures , arrows are response to the packed data rearrangement control
used to show couplings . indexes generation instruction , the result including a

In the description above , for the purposes of explanation , sequence of at least four non - negative integers repre
numerous specific details have been set forth in order to senting packed data rearrangement control indexes ,
provide a thorough understanding of the embodiments of the 55 each of the one or more numerical pattern defining
invention . It will be apparent however , to one skilled in the parameters affecting a value of each of the at least four
art , that one or more other embodiments may be practiced non - negative integers , at least one of the one or more
without some of these specific details . The particular numerical pattern defining parameters being used to
embodiments described are not provided to limit the inven generate a value of at least a plurality of the at least four
tion but to illustrate it . The scope of the invention is not to 60 non - negative integers ,
be determined by the specific examples provided above but wherein values of the at least four non - negative integers
only by the claims below . In other instances , well - known are not calculated using a result of a preceding instruc
circuits , structures , devices , and operations have been shown tion , and
in block diagram form or without detail in order to avoid wherein it is implicit to an opcode of the instruction that
obscuring the understanding of the description . the result includes the sequence of integers .

Various operations and methods have been described . 2 . The method of claim 1 , wherein receiving comprises
Some of the methods have been described in a basic form in receiving the packed data rearrangement control indexes

49
US 9 , 904 , 547 B2

50
generation instruction that does not indicate a source packed parameters , and wherein the result is to be stored
data operand having a plurality of packed data elements in without calculating values of the least four non - nega
an architecturally - visible storage location . tive integers from a result of a preceding instruction ,

3 . The method of claim 1 , wherein storing the result wherein it is implicit to an opcode of the instruction that
comprises storing the sequence of at least eight non - negative 5 the result is to include the sequence of integers , and
integers having a numerical pattern , and wherein the numeri - wherein said one of the one or more numerical pattern
cal pattern is based predominantly on the opcode of the defining parameters is not to be provided by an imme
packed data rearrangement control indexes generation diate .
instruction and the one or more numerical pattern defining 12 . The apparatus of claim 11 , wherein the execution unit
parameters . 10 is to store the result responsive to the packed data rearrange

4 . The method of claim 1 , wherein receiving comprises ment control indexes generation instruction that is not to
receiving the packed data rearrangement control indexes indicate a source packed data operand having a plurality of
generation instruction indicating an integer offset , and packed data elements in an architecturally - visible storage
wherein storing comprises storing the sequence of the at location .
least four non - negative integers with a smallest of the at least 15 13 . The apparatus of claim 11 , wherein the execution unit ,
four non - negative integers differing from zero by the integer in response to the packed data rearrangement control
offset . indexes generation instruction , is to store the sequence of at

5 . The method of claim 1 , wherein receiving comprises least eight non - negative integers that are to have a numerical
receiving the packed data rearrangement control indexes pattern , and wherein the numerical pattern is to be based
generation instruction indicating a constant integer stride , 20 predominantly on the opcode of the packed data rearrange
and wherein storing comprises storing the sequence of the atm ent control indexes generation instruction and the one or
least four non - negative integers with all consecutive integers more numerical pattern defining parameters .
differing by the constant integer stride . 14 . The apparatus of claim 11 , wherein each of the one or

6 . The method of claim 1 , wherein storing comprises more numerical pattern defining parameters is to affect a
storing the sequence of the at least four non - negative inte - 25 value of each of the at least four non - negative integers .
gers with all consecutive integers differing by a constant 15 . The apparatus of claim 11 , wherein the execution unit ,
stride , and wherein receiving comprises receiving the in response to the packed data rearrangement control
instruction having the opcode that fixes that all the consecu - indexes generation instruction , is to store the sequence of at
tive integers differ by the constant stride . least eight non - negative integers that are to have a numerical

7 . The method of claim 1 , wherein receiving comprises 30 pattern that is based entirely on the opcode of the packed
receiving the instruction indicating a plurality of numerical data rearrangement control indexes generation instruction
pattern defining parameters . and the one or more numerical pattern defining parameters .

8 . The method of claim 1 , wherein storing comprises 16 . The apparatus of claim 11 , wherein the packed data
storing a result including the sequence of at least thirty - two rearrangement control indexes generation instruction is to
non - negative integers representing packed data rearrange - 35 indicate an integer offset , and wherein the execution unit , in
ment control indexes . response to the packed data rearrangement control indexes

9 . The method of claim 1 , wherein the one or more generation instruction , is to store the sequence of the at least
numerical pattern defining parameters comprise a stride . four non - negative integers with a smallest of the at least four

10 . The method of claim 1 , further comprising : non - negative integers to differ from zero by the integer
receiving a packed data rearrangement instruction 40 offset .

selected from a permute instruction and a shuffle 17 . The apparatus of claim 11 , wherein the execution unit ,
instruction , the packed data rearrangement instruction in response to the opcode of the packed data rearrangement
indicating the packed data rearrangement control control indexes generation instruction , is to store all con
indexes , indicating at least one source packed data , and secutive integers in the sequence of the at least four non
indicating a second destination storage location ; and 45 negative integers to differ by a constant stride .

storing a packed data result in the second destination 18 . The apparatus of claim 11 , wherein the one or more
storage location in response to the packed data rear - numerical pattern defining parameters comprise a plurality
rangement instruction , the packed data result including of numerical pattern defining parameters .
data elements from the at least one source packed data 19 . The apparatus of claim 11 , wherein the one or more
rearranged according to the packed data rearrangement 50 numerical pattern defining parameters comprise a stride .
control indexes . 20 . A system comprising :

11 . An apparatus comprising : an interconnect ;
a destination storage location ; a processor coupled with the interconnect , the processor
a decode unit to decode a packed data rearrangement including a destination register , the processor , in

control indexes generation instruction that is to indicate 55 response to a packed data rearrangement control
one or more numerical pattern defining parameters , and indexes generation instruction that is to indicate one or
is to indicate the destination storage location ; and more numerical pattern defining parameters and is to

an execution unit coupled with the destination storage indicate the destination register , to store a result in the
location , the execution unit , in response to the packed destination register , the result to include a sequence of
data rearrangement control indexes generation instruc - 60 at least four non - negative integers that are to represent
tion being decoded , to store a result in the destination packed data rearrangement control indexes , each of the
storage location , the result to include a sequence of at one or more numerical pattern defining parameters to
least four non - negative integers that are to represent affect a value of each of the at least four non - negative
packed data rearrangement control indexes , wherein at integers , wherein at least a plurality of the at least four
least a plurality of the at least four non - negative inte - 65 non - negative integers of the sequence are to have been
gers of the sequence are to have been generated from generated using one of the one or more numerical
one of the one or more numerical pattern defining pattern defining parameters ,

US 9 , 904 , 547 B2
52

wherein the processor is to store the result responsive to
the packed data rearrangement control indexes genera
tion instruction that is not to indicate a source packed
data operand having a plurality of packed data elements
in an architecturally - visible storage location , and 5
wherein it is to be implicit to an opcode of the instruc
tion that the result is to include the sequence of inte
gers , and wherein said one of the one or more numeri
cal pattern defining parameters is not to be provided in
an immediate ; and

a dynamic random access memory (DRAM) coupled with
the interconnect .

21 . The system of claim 20 , wherein the sequence of the
at least four non - negative integers is to have a numerical
pattern that is based predominantly on the opcode of the 15
packed data rearrangement control indexes generation
instruction and the one or more numerical pattern defining
parameters that are to be indicated by the packed data
rearrangement control indexes generation instruction .

20 * * * * *

