
| HAO HATA KATA TAI MULT DE UN AUTO MATTI US009898517B2

(12) United States Patent
Staczek

(10) Patent No . : US 9 , 898 , 517 B2
(45) Date of Patent : Feb . 20 , 2018

(54) DECLARATIVE SYNCHRONIZATION OF
SHARED DATA

(56) References Cited
U . S . PATENT DOCUMENTS

@ (75) Inventor : Jason Staczek , Seattle , WA (US)

@ (73) Assignee : ADOBE SYSTEMS
INCORPORATED , San Jose , CA (US)

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 2841 days .

5 , 544 , 135 A * 8 / 1996 Akin , Jr G11B 5 / 59616
360 / 46

5 , 924 , 096 A * 7 / 1999 Draper G06F 17 / 30575
707 / 999 . 002

6 , 141 , 794 A * 10 / 2000 Dice et al . 717 / 118
6 , 973 , 460 B1 * 12 / 2005 Mitra GO6F 8 / 10

707 / 999 . 101
7 , 003 , 587 B1 * 2 / 2006 Battat et al 709 / 227
7 , 203 , 678 B1 * 4 / 2007 Petropoulos GO6F 17 / 30864

707 / 775
(Continued) (21) Appl . No . : 11 / 408 , 644

à (22) Filed : Apr . 21 , 2006 OTHER PUBLICATIONS

(65) Prior Publication Data
US 2013 / 0166507 A1 Jun . 27 , 2013

(51) Int . CI .
GOOF 1730 (2006 . 01)
G06F 9 / 54 (2006 . 01)
H04L 29 / 08 (2006 . 01)

(52) U . S . Ci .
CPC G06F 17 / 30575 (2013 . 01) ; G06F 9 / 542

(2013 . 01) ; H04L 67 / 1095 (2013 . 01)
(58) Field of Classification Search

CPC GO6F 17 / 30067 ; G06F 17 / 30174 ; G06F
17 / 30176 ; G06F 17 / 30212 ; G06F
17 / 30575 ; G06F 17 / 3082 ; G06F

17 / 30038 ; GO6F 17 / 30607 ; G06F
17 / 30371 ; G06F 17 / 30578 ; GO6F
17 / 30581 ; G06F 17 / 30525 ; G06F
17 / 30197 ; G06F 17 / 30168 ; G06F
17 / 30368 ; G06F 17 / 30584 ; G06F
17 / 30215 ; G06F 17 / 30194 ; G06F

17 / 30377 ; G06F 17 / 30592
USPC 707 / 10 , 201 , 203 , 610 , 640 , 661
See application file for complete search history .

IEEE 100 , The Authoritative Dictionary of IEEE Standards Terms ,
2000 , Seventh Edition , p . 39 . *

(Continued)
Primary Examiner — Ashish K Thomas
Assistant Examiner — Rezwanul Mahmood
(74) Attorney , Agent , or Firm — Wolfe - SBMC
(57) ABSTRACT
Methods and apparatus , including computer systems and
program products , related to declarative synchronization of
shared data . One method includes receiving one or more
changes to data maintained by one of multiple computer
programs having respective local copies of the data , iden
tifying an event characterizing synchronization of the data
maintained by the computer program with the other com
puter programs (e . g . , with a local copy managed by the other
computer program) , and initiating synchronization of the
changes with one of the other programs having respective
local copies (e . g . , with the local copy managed by the other
program) in response to the event occurring . The event can
be characterized by an annotation . Identifying an event can
include reading a property of a data object (e . g . , in a data
object graph of shared data) .

20 Claims , 3 Drawing Sheets

- - - - - - - - - - - - - - -
DESIGNTIME het

wwwww
RUNTIME

4

w - -

110 SERVER
112

* *

106 www -

1082 118 - MASTER
COPY -

-

Schema
of Data and
Annotations i

(XML
Schema or
RelaxNG)

Schema
Compiler

JAVA Objects
that represent
shared data
(compiled , in
bytecode)

Change to
Runtime

wwwwwwwwwwwww 1114 116

CLIENT 1 CLIENT 2
- - - - - wwwwwwwwwwwwww 122 -

124 - STUB
-

120 -

JAVA
OBJECTS
THAT

REPRESENT
SHARED
DATA

(RUNTIME)

JAVA
OBJECTS
THAT

REPRESENT
SHARED
DATA

(RUNTIME)

w
-

A wwwwwwww
-

. .

- - - - - - - - - - - - - - - - T - - - - - - - -

104

US 9 , 898 , 517 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

7 , 464 , 383 B1 * 12 / 2008 Dow G06F 9 / 4428
707 / 999 . 201

7 , 720 , 890 B2 * 5 / 2010 Rao . . . HO4L 67 / 1095
707 / 610

7 , 747 , 561 B1 * 6 / 2010 Gupta G06F 17 / 30578
707 / 999 . 204

8 , 631 , 386 B2 * 1 / 2014 Doshi G06F 8 / 315
717 / 106

2001 / 0054042 Al * 12 / 2001 Watkins G06F 17 / 30126
707 / 999 . 1

2003 / 0084073 A1 * 5 / 2003 Hotti G06F 17 / 30581
707 / 999 . 201

2003 / 0137536 A1 * 7 / 2003 Hugh GOOF 9 / 4443
715 / 744

2003 / 0227487 A1 * 12 / 2003 Hugh G06F 17 / 30958
707 / E17 . 011

2004 / 0122653 A1 * 6 / 2004 Mau G06F 17 / 30654
707 / E17 . 068

2004 / 0143814 A1 * 7 / 2004 de Jong GO6F 9 / 44589
717 / 104

2004 / 0172423 A1 * 9 / 2004 Kaasten
707 / 999 . 201

2004 / 0220926 A1 * 11 / 2004 Lamkin et al 707 / 3
2005 / 0144622 A1 * 6 / 2005 Ballinger G06F 9 / 4435

719 / 315
2005 / 0203950 A1 * 9 / 2005 Rajan G06F 17 / 30286

707 / 999 . 103

2006 / 0089974 A1 * 4 / 2006 Kobayashi GO6F 9 / 542
709 / 213

2006 / 0294333 A1 * 12 / 2006 Michaylov GO6F 9 / 466
711 / 168

2007 / 0032253 A1 * 2 / 2007 Bingham et al 455 / 502
2007 / 0124326 A1 * 5 / 2007 Polk GO6F 17 / 30421

707 / 999 . 1
2007 / 0174246 A1 * 7 / 2007 Sigurdsson G06F 17 / 30176

707 / 999 . 003
2007 / 0190978 A1 * 8 / 2007 White H04L 12 / 583

455 / 412 . 1
2007 / 0277056 A1 * 11 / 2007 Varadarajan GO6F 11 / 1438

714 / 15
2009 / 0106744 A1 * 4 / 2009 Li . GO6F 8 / 447

717 / 151
2013 / 0166507 Al * 6 / 2013 Staczek G06F 17 / 30575

707 / 625
2014 / 0067925 A1 * 3 / 2014 Strong G06F 17 / 30038

709 / 203

OTHER PUBLICATIONS

17 / 30176
Chandandeep Pabla , SyncML intensive A beginner ' s look at the
SyncML protocol and procedures , dated Apr . 1 , 2002 , http : / / www
128 . ibm . com / developerworks / wml / library / wi - syncml2 , printed
Oct . 4 , 2006 , pp . 1 - 9 .

* cited by examiner

-

-

-

- -

DESIGNTIME

-

RUNTIME

- mm

-

U . S . Patent

-

-

See

-

-

110

SERVER

-

-

1

112

|

106 -

108

en

Leid

118

MASTER COPY

-

Schema of Data and Annotations (XML
Schema or RelaxNG)

Schema Compiler
JAVA Objects that represent shared data (compiled , in bytecode)

Change to Runtime

1

Feb . 20 , 2018

content com -

- -

-

1 114

116

-

-

-

-

-

-

-

CLIENT 1

CLIENT 2

-

-

-

-

- - -

Sheet 1 of 3

-

-

-

122

- -

- -

-

-

STUB

-

mere

-

-

-

D120
JAVA OBJECTS THAT REPRESENT SHARED DATA (RUNTIME)

JAVA OBJECTS THAT REPRESENT SHARED DATA (RUNTIME)

-

1

-

-

—

-

-

-

-

you
more

recent even - -

- -

- - - -

-

-

- - - - -

-

-

-

mm -

-

Lowest coast wees - 102

104 -

US 9 , 898 , 517 B2

FIG . 1

U . S . Patent Feb . 20 , 2018 Sheet 2 of 3 US 9 , 898 , 517 B2

- - - - - - - - - - - GUENTI - - - - I 208
. - w - - - - - - ww - - -

CLIENT 1

202

To con 216 222 224

214 X 5

210 218 216 222 220 220 224
DATA VALUE DIRTY | DATA VALUE DIRTY DATA VALUE DIRTY X YH
x 50 x 150 x X5 X7 i ftual ! 7 11 87

NYT 3 1021 24 1 LIY 11 | 12 Outgoing ID STRO STROD STRO Change
H 0 0 | H | 87 | 1 | Queue

?????????????????????
| 230 SERVER
- - - - 7 230 - = = = = =

2041

226 +
DATA VALUE DIRTY

X 50
Y 3

232 234

ID | STR
H 10

I (L

DATA VALUE DIRTY XYH X7 x 71 hari 7 1187 Y 111
STR Outgoing

Change
Queue

0 X TYTH
7 11 87

Incoming Change
Queue

- - - -

H 877
I
L - - wawe wawm wam ww - - - - - - -

CLIENT 2 206 238
- - Od - -

240 236 242

XY
71187
Incoming
Change
Queue

DATA VALUE DIRTY
15

Y 3
D STR
H00

3 10
DATA VALUE DIRTY

7
Y 110
D STRO
H 8710

y 11 Toli
-

ennen TI de - - - - - - - - w - - - - - - - -

FIG . 2

U . S . Patent Feb . 20 , 2018 Sheet 3 of 3 US 9 , 898 , 517 B2

310 RECEIVE CHANGES
TO A COPY OF DATA

320 IDENTIFY AN EVENT
CHARACTERIZING
SYNCHRONIZATION

330 330D INITIATE
SYNCHRONIZATION

FIG . 3

US 9 , 898 , 517 B2

DECLARATIVE SYNCHRONIZATION OF of the data maintained by a computer program of the client
SHARED DATA system ; identifying an event characterizing synchronization

of the copy maintained by the computer program with one
BACKGROUND or more of the client systems where the event is character

5 ized by an annotation associated with the data ; and initiating
The present disclosure relates to client / server synchroni synchronization of the changes with one or more of the local

zation , and in particular , declarative synchronization of data . copies in response to the event occurring . The server system
In a client / server system , shared data can exist as a local In a client / server system , shared data can exist as a local can assist in the synchronization of the changes with the one

copy at one or more clients . A master copy of the data can or more of the local copies .
be maintained by a server that has a client / server relation - 10 Various implementations can include one or more of the ship with the clients . To ensure that clients have an accurate following features . Identifying an event associated with
view of data and the master copy is current , data can be synchronization can include reading a property of a data synchronized among the clients and the server . For example , object that identifies the event at which synchronization of changes at a client can be reflected at a server . Similarly , the data object is to be initiated . changes committed to a master copy at a server can be 15 The data object can include byte code executable in a reflected at clients . runtime system in conformance with a JAVA standard for

SUMMARY runtime systems . The data object can include code that was
written in languages including JAVA , JavaScript , Action

In one aspect , a method includes receiving one or more 20 Script , and the like . The property of the data object can result
changes to a copy of data maintained by one of multiple from compilation of the annotation associated with the data .
computer programs having respective local copies , identi A schema of the data and associated annotations can be
fying an event characterizing synchronization of the copy written in accordance with a tree - structured format (e . g . ,
maintained by the computer program with another computer RelaxNG or XML (eXtensible Markup Language)) and a
program (e . g . , with a local copy managed by the other 25 compiler can be used to generate a runtime representation of
computer program) , and initiating synchronization of the the data in accordance with the schema . The tree - structured
changes with one or more of the computer programs having format can specify that annotations are to be written for a
the respective local copies (e . g . , with the local copy man granularity of one or more nodes of a tree and annotations aged by the other program) in response to the event occur of a node apply to nodes in the tree nested within the node ring . In the method , the event is characterized by an anno - 30 (e . g . , to child nodes of a parent node in a tree) . Initiating tation associated with the data . synchronization of the changes can include buffering the In another aspect , a computer program product is operable changes in an outgoing queue of changes at a client system to cause one or more data processing apparatus to perform where the computer program resides . operations that include those of the method above .

In another aspect , a system includes a schema of data and 35 An additional feature can include committing the changes
a computer program . In that system , the schema is associ to a server system from a client system where the computer
ated with one or more annotations characterizing synchro - program resides . Committing the changes to a server system
nization for one or more changes to the data . Also , the can include committing the changes in response to a request
computer program is operable to compile the schema and the from the server system to receive changes queued by the
annotations to generate a runtime representation of the data 40 client system . Committing the changes to a server system
such that the runtime representation is operable to identify can include committing the changes as a result of a push of
an event characterized by an annotation associated with the the changes to the server system from the client system .
data and initiate synchronization of the changes with other An additional feature can include a first buffering of the
copies of the data in response to the event occurring . changes at the computer program such that the changes are

In another aspect , a computer program product is operable 45 unavailable for being committed to a server system prior to
to cause one or more data processing apparatus to perform the initiating synchronization of the changes . Initiating
operations that include receiving a schema of data that has synchronization of the changes can include a second buff
annotations characterizing synchronization for one or more e ring of the changes at the computer program such that the
changes to the data , and compiling the schema and the changes are available for being committed to the server
annotations to generate a runtime representation of the data . 50 system .
In the computer program , the runtime representation is The first buffering of the changes at the computer program
operable to identify an event characterized by an annotation can include marking an object graph to indicate which of one
associated with the data , and initiate synchronization of the or more data objects correspond to the changes .
changes with other copies of the data in response to the event Events can be linked to user interaction such that user
occurring . 55 interaction , or lack thereof , results in an event that causes

In another aspect , a method includes receiving a schema synchronization to be initiated .
of data that has annotations characterizing synchronization Identifying an event associated with synchronization of
of the data , and compiling the schema and the annotations to the local copy can include identifying that synchronization
generate a runtime representation of the data . In the method of the changes is to be initiated at an end of an interval of
the runtime representation is operable to identify an event 60 time if further changes fail to be detected before the end of
characterized by an annotation associated with the data , and the interval ; identifying that synchronization of the changes
initiate synchronization of the changes with other copies of is to be initiated if the changes are detected at an end of an
the data in response to the event occurring . interval of time ; identifying that synchronization of the

In another aspect , a system includes a server system and changes is to be initiated if the changes are to be synchro
multiple client systems having respective local copies of 65 nized immediately ; identifying that synchronization of the
data . At least one of the client systems can perform opera - changes is to be initiated if focus of a user interface element
tions that include receiving one or more changes to a copy is changed ; identifying that synchronization of the changes

US 9 , 898 , 517 B2

is to be postponed until an associated node defined as a need not poll for updates , the code need not be customized
master is changed ; or identifying some combination of these to be aware that other clients exist , and the developer can
events . treat data as if it were local .

Another feature can include generating event handling Annotations can define policies that preserve data con
stubs to receive notifications of the changes to the data (e . g . , 5 sistency . For example , annotations can specify that all parts
stubs generated by a schema compiler for use by a devel - of an address are to be synchronized atomically such that a
oper) . client cannot edit and commit changes to a " zip code " value

Particular embodiments of the invention can be imple without also committing a value for a “ state ” field (e . g . , such
mented to realize one or more of the following advantages . that both a zip code and state are synchronized as a unit , and
Changes to data shared among multiple clients can be input of a zip code is synchronized with corresponding input
reflected across the clients automatically such that the client of a state) . Similarly , annotations can protect groups of
applications need not be concerned with polling for updates . related data . For example , a user A can edit an address , and
A schema of data that is to be shared among multiple clients that user might not wish to see a user B ’ s changes applied
can include annotations that specify behaviors for synchro - 1 on a field - by - field basis (A enters WA for state and B
nizing the data . For example , annotations can specify events immediately enters the zip for CA) . The annotations can
that should trigger synchronization of data from a client to commit all of A ' s changes to the related fields before
a server , which can , in turn , cause synchronization of the applying all of B ’ s changes .
data across other clients . Client policies for committing The annotations can also specify how data is to be handled
changes to data to a server can be used in combination with 20 if a client becomes disconnected . For example , annotations
server policies for synchronizing data . For example , anno can specify that a client should refuse further changes , or
tations that specify an event to trigger synchronizing data that a client should batch changes for synchronizing when
from a client to the server can be used to batch changes in reconnected .
an outgoing queue of a client and those changes can be The details of one or more embodiments of the invention
pushed to a server or pulled to a server depending on the 25 are set forth in the accompanying drawings and the descrip
server ' s policies (e . g . , every five minutes the server can poll tion below . Other features , aspects , and advantages of the
outgoing queues of clients to determine if changes to shared invention will become apparent from the description , the
data should be committed to the server) . As annotations can drawings , and the claims .
specify units of data that are to be synchronized , a large unit
of data comprising smaller units (e . g . , a data structure 30 BRIEF DESCRIPTION OF THE DRAWINGS
having multiple properties) need not be synchronized as a
whole , which can reduce resource usage during synchroni FIG . 1 is a diagram of example designtime and runtime

environments of data that can be shared across multiple zation (e . g . , reduce network bandwidth usage) . clients . The annotation language can be interpreted by a program 35 FIG . 2 is a diagram of example synchronization of data of that generates runtime objects that represent shared data at a first client with data of a server and a second client . clients . That program can generate runtime objects repre FIG . 3 is a flowchart of an example process of synchro senting shared data in a generic fashion such that the nizing data .
program need not be changed for different types of client ot be changed for different types of client Like reference numbers and designations in the various Like reference numbers and designations in the various
applications . For example , two shared data schemas can be 40 drawings indicate like elements .
created for a first and a second client application and the
same program can be used to compile the schemas and DETAILED DESCRIPTION
generate appropriate runtime objects that represent shared

FIG . 1 is a diagram of example designtime and runtime
Annotations can be used for a tree - structured data schema 45 environments 102 , 104 of data that can be shared across

and the annotations can have a hierarchical application such multiple clients 114 , 116 . In general , a schema of data , such
that , for example , annotations for a parent node in a tree as a schema 106 in the designtime environment 102 , can
apply to child nodes of that parent node . Different annota - include data that is to be shared and annotations of the data .
tions can be used for different units of data such that different The annotations can declare synchronization behaviors that
synchronization behaviors can apply to various portions of 50 should be followed for associated data . For example , data
shared data . can have an associated annotation that declares the data

The annotations can improve an end user ' s experience should be synchronized as soon as changes to the data are
(e . g . , an end - user of a client application that synchronizes made . The synchronization behaviors specified in annota
shared data in accordance with annotations) . For example , tions can be client - side synchronization behaviors that
an annotation can specify that a particular piece of data is 55 describe events at a client at which changes to a local copy
only to be synchronized during periods of keyboard or of data are available for committing to a server .
mouse inactivity of at least some time interval . Such anno - The designtime environment 102 represents an environ
tations can avoid unnecessary user interruption during syn - ment in which a schema of annotations , such as a schema
chronization activity , and , efficiently utilize a client ' s 106 in the designtime environment 102 , can be drafted and
resources (e . g . , by synchronizing during inactivity rather 60 compiled before being used in a runtime environment . The
than burdening a client program with synchronization and schema 106 can be drafted in a text editor or other devel
user interaction) . opment environment . The schema 106 includes a description

Annotations can decrease client code complexity . Since of data that is to be shared and annotations that describe
synchronizing policies can be specified declaratively and client - side synchronization behaviors that should be fol
implemented automatically , in some variations , a developer 65 lowed for the data . The schema 106 can be drafted in
of a client program can safely ignore that data is being accordance with a tree - structured language , such as XML
shared with other clients . For example , a client program (eXtensible Markup Language) or Relax NG and the anno

data .

US 9 , 898 , 517 B2

tations can be attributes of the data in that language . The 108 need not exist to compile a schema for each application
following is an example of data with an annotation declaring (e . g . , the schema compiler 108 need not be customized for
a synchronization behavior : each application or have application - specific code) .

< Vcard syncable = " yes " trigger = " focus " > In the designtime environment 102 , one or more of the
In the above example , the XML tag Vcard represents a 5 JAVA objects 110 are generated for a unit of data (e . g . , a unit

Vcard (virtual business card) set of data , the “ yes ” value for can be a node of a tree - structured data model representing
the syncable attribute can indicate that the Vcard data is the data) , and the JAVA objects 110 represent a runtime synchronized with a server and across clients , and the trigger version of the data in the schema 106 that is input to the attribute can be an annotation describing an event upon schema compiler 108 . The JAVA objects 110 include the which a Vcard ' s data is to be synchronized . For example , the 10 synchronization behaviors for respective units of data . Fol value " focus " of the trigger attribute can indicate that a lowing the earlier Vcard example , the Vcard unit of data can Vcard should be synchronized if focus is lost from a Vcard be represented by a JAVA object that has compiled code that that is being edited (e . g . , if a window including a Vcard loses
focus (e . g . , a component of a graphical user interface which represents the synchronization behavior that occurs on an
is currently selected has focus) , changes to the Vcard data 15 eve data is event associated with “ focus . ” For example , changes to the
can be synchronized) . Vcard object in a runtime environment can cause the Vcard
As the annotations can be used for a tree - structured data object to call code that synchronizes the changes to the

schema , the annotations can have a hierarchical application Vcard in response to a loss of focus .
such that , for example , annotations for a parent node in a tree The JAVA objects 110 can be generated as an object
apply to child nodes of that parent node . Different annota - 20 graph . Operations on the object graph can be used to access
tions can be used for different units of data such that different and edit the JAVA objects 110 . For example , a get command
synchronization behaviors can apply to various portions of can be used to access a local copy of data (e . g . , Vcard . ad
shared data . Also , policies for resolving precedence of dress . get () can be used to get an address of a Vcard) , a set
nested annotations can be enforced . For example , a parent command can be used to edit data (e . g . , Vcard . address . set
node could have an annotation declaring that the parent node 25 (“ 1 Main St ”) can be used to change the object graph) , and
(and , by virtue of this annotation applying to the parent an add command can be used to add data (e . g . , Vcard
node , the child nodes of the parent can also have this policy) phonenumber . add (“ Cell phone ” “ 555 - 555 - 555 ") can be
should be synchronized immediately ; whereas , the child used to add a phone number labeled “ Cell phone ”) .
node has an annotation declaring that the child node should In the runtime environment 104 , a server 112 interacts be synchronized only at the end of every five minutes . In that 30 with a first and second client 114 , 116 to synchronize shared example , default logic can define that child nodes should data across the clients 114 , 116 . The server 112 has a master always have precedence over parent nodes , except when a copy of the data 118 . The master copy 118 need not always parent node has an annotation declaring that changes to data
be synchronized immediately . For example , if changes to the be synchronized with local copies of the data that are in the
child are normally published at the end of a five minute 35 10 form of JAVA objects 120 , 122 at the clients 114 , 116 . For
interval ; yet , when changes are made to the parent node , the example , the JAVA objects 120 maintained by the first client
changes of the parent node and the child node are to be 114 can have recent changes to them that have not yet been
immediately synchronized . In various implementations , committed to the master copy 118 .
policies and precedence of policies can vary (e . g . , depending The clients 114 , 116 are clients in the sense of being client
on a type of policy or the relationship between nodes , such 40 programs (e . g . , a client program having a client / server
as parent and child) . relationship with a server program) ; although , the term

The schema of annotations 106 in the designtime envi - client , as used herein , can refer to a client system (e . g . , a
ronment 102 can be the input of a schema compiler 108 , computer system where a client program resides and the
which can compile the schema 106 , including both data and computer system having a client / server relationship with a
annotations for the data , to generate JAVA objects 110 (in 45 server computer system) . In any case , a client program can
variations , other types of objects can be generated , such as be referred to as a tool (e . g . , a computer program) , and , that
objects in other languages , including ActionScript , tool can be used to access services offered by a server
Javascript , and the like) . The schema compiler 108 interprets program . Also , a client program can be made of one or more
the annotations which are written in accordance with an computer programs (e . g . , a client program can be an amal
annotation language . Based on an interpretation of the 50 gamation of multiple programs) . Similarly , the server 112 is
annotations , the schema compiler 108 can , for example , use a server in the sense of being a server program ; although , the
generic sections of code , which are associated with a syn term server , as used herein , can refer to a server system (e . g . ,
chronization behavior , and properties of the data that is a computer system where a server program resides) . A
associated with the annotations , to generate JAVA objects computer system can be a client system or server system by
110 . The JAVA objects 110 implement specified synchroni - 55 having a client or system program , respectively , residing on
zation behaviors for specified data (e . g . , the JAVA objects the computer system , where , from the view of the relation
110 are in byte code executable in a runtime system in ship of a client and server program , a client / server relation
conformance with a JAVA standard for runtime systems) . In ship can exist . A computer system need not be only a client
this manner of generating a runtime version of the data that system or a server system . For example , for one set of client
is to be shared (e . g . , generating the JAVA objects 110) , 60 and server programs , a computer system can be a client
generic code can be used to implement synchronization system by having a client program ; yet , the computer system
behaviors for data and customized application code need not can be a server system by having a server program from
be drafted for a set of data that is to be shared . For example , another set of client and server programs . Although FIG . 1
a first application and a second application can be developed depicts a single server 112 , a client / server system need not
and the data used for each of the applications can have 65 be limited to one server . Also , a client / server system can
synchronization behaviors that are generated by the schema have periods during which clients and servers are not
compiler 108 ; yet , different versions of the schema compiler connected to each other . For example , the server 112 need

US 9 , 898 , 517 B2

not be connected to the first client 114 until a time at which those values that have changed (e . g . , only those values that
the first client 114 has data available for synchronization had an associated dirty bit set to “ 1 ”) . In other implemen
with the server 112 . tations , other data can be placed in an outgoing queue as

In some implementations , changes to a local copy of data well . The changes in the outgoing queue 224 are changes
at one of the clients 114 , 116 can be committed to the server 5 that should be committed to the server 204 (e . g . , in a series
112 and synchronized with another client ' s local copy of of client / server communications that synchronizes the
data automatically and transparently from the view of an changes to a master copy of the shared data at the server
application writer of the clients 114 , 116 . For example , a 204) . In various implementations , not all changes to data
change to data at the first client 114 can be committed to the need be synchronized upon a synchronization event . For
server 112 in accordance with annotations for synchroniza - 10 example , some data in a local object graph might not be
tion . In response to changes to the master copy of the data specified for synchronization (e . g . , data that is not consid
118 , the JAVA objects 122 at the second client 116 can ered shared data might not be synchronized) .
automatically update the data at the second client 116 such The addition of items to the outgoing queue of changes
that an application writer of the second client 116 need not can be dictated by client - side synchronization policies that
be concerned with polling for updates . For example , the 15 define events upon which changes should be placed on the
server 112 can publish updates to the second client 116 , and outgoing queue . Client - side synchronization policies can be
the JAVA objects 122 at the second client 116 can update a used to limit the frequency of events upon which items are
user interface displaying the data that was changed to reflect added to the outgoing queue of changes (or , in variations ,
the changes . In various implementations , runtime compo - pushed to a server) such that data is not placed in the queue
nents in addition to or instead of JAVA objects can be 20 in response to each change to data , and rather , data is placed
generated and / or used to monitor changes to data and less frequently on the outgoing queue to reduce communi
implement features of the subject matter described herein . cation between the first client 202 and the server 204 (and ,

FIG . 2 is a diagram of example synchronization of data of further , communication between the server 204 and the
a first client 202 with data of a server 204 and a second client second client 206 can be reduced should the changes be
206 . In general , the diagram depicts that changes to data at 25 synchronized with the second client 206) . In this manner of
the first client 202 are placed on an outgoing change queue using client - side synchronization policies , resource usage
224 , the changes are received by the server 204 at an can be reduced . For example , although the data Y changed
incoming change queue 228 , the server 204 applies the between the first and second tables 210 , 216 and again
changes to a master copy of data , the server 204 places the between the second and third tables 216 , 220 , a change
changes on an outgoing queue 234 for publishing to clients 30 might not be placed on an outgoing queue until a later event
(e . g . , the second client 206) , the changes are received by the such that the outgoing queue 224 only reflects the latest
second client 206 at an incoming change queue 236 , and the value of Y and does not reflect the earlier change to Y (e . g . ,
second client 206 applies the changes to the second client ' s such that fewer changes to Y are indicated in the outgoing
206 local copy of data . queue to reduce data that is transmitted to the server 204) .

At the first client 202 , a tree 208 is a model of the data that 35 The client - side synchronization policies can be described
is in a table 210 . Similar trees 230 , 238 that model data are in annotations to the data in a designtime environment . For
at the server 204 and the second client 206 to reflect similar example , the description of the designtime environment 102
models of data . The table 210 is a representation of the data of FIG . 1 includes a description of using annotations to
in the tree 208 and need not be the form of a data structure define events upon which synchronization can be initiated .
in which the data is stored at the first client 202 (e . g . , an 40 Features similar to the designtime environment 102 of FIG .
m - branch tree can be the underlying data structure of the tree 1 can be used to generate runtime objects that include
202 and corresponding values and properties of nodes of the synchronization behaviors that are specified by annotations .
tree 208) . In the table 210 , data have associated values and software developer of a client application , such as the
" dirty " bits that indicate whether the data has changed first client 202 of FIG . 2 , can use annotations to specify
locally since changes have been placed in an outgoing 45 events upon which the developer desires to have synchro
change queue . For example , in the first table 210 of the first nization initiated (e . g . , initiated by placing changes on an
client 202 , the data Y 214 has the value 3 and the associated outgoing queue of changes of a client) . For example , a user
dirty bit is zero indicating that the local value of the data has interface that has a text field which is to include end - user
not changed since changes were placed in the outgoing comments can be developed . Because an end - user can
change queue (or , since the value was generated ; e . g . , at 50 continually edit the field (e . g . , each letter typed into a text
initialization) . field is a change to the data of the text field) , the software

A second table 216 at the first client 202 depicts the data developer can limit the synchronization of the field across a
at the first client 202 after the value for Y 218 has changed server and other clients in an effort to conserve resources .
In the second table 216 , the value for Y is 24 . To indicate that For example , the software developer can use an annotation
Y has changed , an associated dirty bit is set to " 1 " . Were 55 that specifies synchronization of the data in the text field
synchronization among the first client 202 and the server should only be initiated when focus of the text field has been
204 to be initiated (e . g . , placing the changes in an outgoing lost . In that example , all of the changes of the text field can
change queue) , the dirty bit can be cleared . In variations , be batched together , placed in an outgoing queue in response
other stimuli can result in a change of a dirty bit associated to a loss of focus , and committed to a server in one
with the data . For example , there need not be an outgoing 60 communication rather than a series of communications over
change queue and pushing changes to the server 204 can time that are responsive to each change in the text field . The
cause the dirty bit to change . batching of changes can reduce usage of network bandwidth

A third table 220 depicts further changes to the data . For for synchronization by reducing the amount of communica
example , the data X 222 has changed to the value 7 . The tions between a client and a server .
dirty bit is “ 1 ” to reflect this change . 65 Returning to a description of FIG . 2 , the server 204 can

A fourth table represents an outgoing queue of changes have an incoming change queue 228 that includes changes
224 . The outgoing queue of changes 224 may include only from one or more clients and a copy of the shared data as

US 9 , 898 , 517 B2

206 .

depicted by a first table 226 . As the first table 226 of the that received the changes to the data . For example , the JAVA
server 204 is the same as the first table 214 of the first client runtime objects 120 of FIG . 1 can identify an event that
202 , the first table 226 of the server does not reflect changes characterizes synchronization .
that occurred to the copy of data at the first client 202 . The T he event can be defined by annotations to a data schema
server 204 uses the changes in the incoming change queue 5 that were defined in a designtime environment , such as the
228 to synchronize the master copy of data at the server 204 . designtime environment 102 . The event can become part of
A second table 232 at the server 204 reflects synchronization a compiled runtime object through the use of a compiler ,
of the data . such as the schema compiler 108 of FIG . 1 .

As part of the process of synchronizing the data , the Identifying an event can include reading a property of the
server 204 can also track changes that need to be synchro - 10 runtime object that represents the local copy of data . For
nized with clients other than the first client 202 . These example , a runtime object Y can represent the data Y in the
changes can be tracked by a set of dirty bits in the second first client 202 of FIG . 2 . The runtime object can receive a
table 232 . When the server 204 is to synchronize changes to change to the data and identify an event associated with the
the master data with the other clients , the dirty bits can be runtime object by reading an attribute of the runtime object .
used to determine which changes are to be made and to 15 For example , an attribute of the runtime object can be
generate an outgoing change queue 234 . In FIG . 2 , the referred to as " syncable ” and can have a value specifying an
outgoing change queue 234 is generated so that changes to event . The identification of an event can occur in response
the shared data can be synchronized with the second client to the receipt of the change to the data (310) or in response

to other stimuli .
Changes to data queued at the outgoing change queue 234 20 Events characterizing synchronization of data can char

of the server 204 can be placed on the incoming change acterize an event , upon which , changes to a local copy of
queue 236 of the second client . The second client 206 shared data should start to be synchronized with a master
synchronizes the changes with a local copy of the shared copy of data (e . g . , the master data 118 at the server 112 of
data as represented by the first table 240 of the second client FIG . 1) , which can in turn cause synchronization of the
206 . The result is that the second client 206 has an updated 25 changes with copies of data at other clients .
view of data as depicted in the second table 242 at the second Many types of events can be used to characterize syn
client 206 . chronization of data , including an end of an interval of time

In some variations , some or all of the change queues need at which other changes have not yet been detected (e . g . , a
not be used . For example , the outgoing change queue 224 of change can cause a timer to start , where the timer is renewed
the first client 202 and the incoming change queue 228 of the 30 each time a change occurs , when no changes are detected
server 204 need not be implemented . In that example , within the timer ' s period , the changes can be committed to
changes can be pushed directly to the server 204 in accor - a server) , an end of an interval of time (e . g . , a change can
dance with synchronization behaviors specified by annota - cause a timer to start and at the end of the timer the changes
tions to the shared data and the server 204 can immediately can be committed to a server) , as soon as changes are
apply those changes . Queues can be last - in - first - out or 35 detected (e . g . , synchronization is to immediately be initiated
first - in - first - out , and may merely act as a buffer of data . in response to a change ; this can be used , for example , in a

FIG . 3 is a flowchart of an example process of synchro - time - critical application where changes to data should
nizing data . In general , the process involves receiving immediately be reflected to master data) , at a loss or change
changes to a copy of data (310) , identifying an event that of focus (e . g . , synchronization can be initiated in response to
characterizes synchronization (320) , and initiating synchro - 40 a loss of focus of a user interface element) , when associated
nization of data (330) . The process of the flowchart can be data is changed or synchronized (e . g . , synchronization can
performed in the example runtime environment 104 of FIG . be postponed until synchronization of data of an associated
1 , or , the process can be a characterization of the synchro - node defined as a master , such that the synchronization
nization described with reference to FIG . 2 . The process can follows a master / slave relationship ; this can be useful in an
be performed in environments other than the runtime envi - 45 application involving a form document , where changes are
ronment 104 of FIG . 1 and the process can be implemented only propagated from a client when a form is submitted) ,
with additional or different features than the synchronization and a fixed interval of time (e . g . , every five minutes changes
of FIG . 2 . can be placed on an outgoing change queue) . The events can

Receiving changes to a copy of data (310) can be per - be represented in an annotation language of shared data , by ,
formed at a client , such as the first client 114 of FIG . 1 . In 50 for example , the annotations " window , " " interval , " " imme
particular , the changes can be received at one or more diately , " " focus , ” and “ master / slave , ” respectively , which
runtime objects such as the JAVA runtime objects 120 . The can be used to generate compiled code . In variations , the
changes can originate from user input . For example , an events can be guidelines such that the synchronization might
end - user of a client can interact through a user interface to not actually start at that time and synchronization can be
change the value of a text field , which causes a change to a 55 initiated at a later or earlier time , and this can depend on
runtime object representing the data displayed in the text other factors , such as server - side synchronization policies .
field (thus , the runtime object receives the changes) . For In addition to identifying an event , in variations , the
example , an object graph can receive changes by a com - change can be noted . For example , a dirty bit in an object
mand , such as the example set command described above graph can be set for a data object that has changed . Noting
(e . g . , Vcard . address . set (“ 1 Main St ”) can result in the object 60 the changes can be helpful , for example , such that if syn
graph receiving the change of the address to “ 1 Main St ”) . chronization does not occur in response to a change , a
Changes can include additions , deletions or alterations (e . g . , change can be noted for synchronization in response to
update) of data . another event .

Identifying an event that characterizes synchronization Also , in addition to identifying an event , in variations , the
(320) can also be performed at a client , such as the first client 65 changes can be reflected locally regardless of whether
114 . In particular , the client that identifies an event that synchronization is initiated . For example , in response to a
characterizes synchronization can be the same as the client change of a value that is received by user input , a pie chart

US 9 , 898 , 517 B2
12

reflecting the value can be updated locally and synchroni - the schema compiler 108 , could be used with any user
zation of the changes might not be initiated until an event interface components (e . g . , the objects can be specific to a
specified in an annotation of a data schema has occurred . certain set of data but generic to user interface components

Synchronization of the data (330) can be initiated at the such that different user interface components can use the
client that receives changes and identifies an event upon 5 same shared data and synchronization of the data can be
which synchronization of the data is to be initiated . In managed according to the annotations) . As another example , particular , synchronization can be initiated by a runtime a user interface need not exist . For example , a client not object that represents the changed data . Initiating synchro having a user interface can , for example , generate periodic
nization of the data can include placing changes to data on electronic mail reports related to changes made to interesting an outgoing change queue from which a server pulls the 10 data , and , the client could use the annotations to define changes (e . g . , see the description of the outgoing change events upon which the updates should be generated . queue 224 of the first client 202 of FIG . 2) , pushing of An electronic document does not necessarily correspond changes to a server (e . g . , if the server included a database
containing a master copy of the shared data , an SQL to a file . A document may be stored in a portion of a file that
command can be issued) , pushing of changes to other clients 15 10 or clients 15 holds other documents , in a single file dedicated to the
(e . g . , a broadcast to other clients of the changes to the data) , document in question , or in multiple coordinated files .
or otherwise making changes available for synchronization Embodiments of the invention and all of the functional
to a server and / or other clients . operations described in this specification can be imple

Synchronization performed in response to the initiation of mented in digital electronic circuitry , or in computer soft
synchronization of data (330) can include synchronization of 20 ware , firmware , or hardware , including the structures dis
changes at a client with a server ' s copy of data and / or closed in this specification and their structural equivalents ,
changes at a client with other client ' s local copies of data . or in combinations of them . Embodiments of the invention
For example , changes to a client can be committed to a can be implemented as one or more computer program
master copy of shared data at a server and the server can then products , i . e . , one or more modules of computer program
publish the changes to other clients . As another example , a 25 instructions encoded on a computer - readable medium for
client can broadcast changes to other clients without using execution by , or to control the operation of , data processing
the server as an intermediary for performing synchroniza - apparatus . The computer - readable medium can be a
tion . machine - readable device , e . g . , a machine - readable storage Factors can influence when and whether synchronization device , storage medium , or memory device , or multiple ones actually occurs in response to synchronization being initi - 30 of them ; or it can be a tangible machine - readable propagated ated . For example , server policies can delay committing of signal . The term “ data processing apparatus ” encompasses
data to a server or publishing of changes to other clients . all apparatus , devices , and machines for processing data , Runtime objects that are local copies of data can be
generated by a schema compiler . Those runtime objects can including by way of example a programmable processor , a
operate regardless of the operations of a client application 35 compuler , or mu e regardless of the operations of a client application 35 computer , or multiple processors or computers . The appa
such that synchronization automatically occurs and may ratus can include , in addition to hardware , code that creates
require limited further implementation by an application an execution environment for the computer program in
writer of a client . For example , a schema compiler can be question , e . g . , code that constitutes processor firmware , a
provided as a tool to developers of client applications . The protocol stack , a database management system , an operating
schema compiler can generate runtime objects that are 40 system , or a combination of them . A propagated signal is an
distributed with a client application but , operate indepen - artificially generated signal , e . g . , a machine - generated elec
dently of a client application such that developers need not trical , optical , or electromagnetic signal , that is generated to
be concerned with the details of how data is synchronized encode information for transmission to suitable receiver
(e . g . , a developer can write an application assuming the data apparatus .
to be local to the client , without concern of how and when 45 computer program (also known as a program , software ,
the data is updated) . software application , script , or code) can be written in any
As data can be automatically synchronized , user interface form of programming language , including compiled or

elements can be updated to reflect the changes to the data interpreted languages , and it can be deployed in any form ,
To ease implementation of this , event handling stubs can be including as a stand - alone program or as a module , compo
generated by a schema compiler and provided for use by an 50 nent , subroutine , or other unit suitable for use in a computing
application developer . When changes are received at a environment . A computer program does not necessarily
client , an event notification can be sent and the notification correspond to a file in a file system . A program can be stored
can trigger event handling stubs . For example , in FIG . 1 , the in a portion of a file that holds other programs or data (e . g . ,
schema compiler 108 can generate an event handling stub one or more scripts stored in a markup language document) ,
124 . In some implementations , there can be one stub per an 55 in a single file dedicated to the program in question , or in
annotation . multiple coordinated files (e . g . , files that store one or more
As there can be conflicts of changes to shared data (e . g . , modules , sub - programs , or portions of code) . A computer

two clients can change local copies of shared data and the program can be deployed to be executed on one computer or
server might have to resolve the difference of the changes) , on multiple computers that are located at one site or dis
conflict resolution policies can be implemented at clients 60 tributed across multiple sites and interconnected by a com
and / or servers . Conflict resolution can include allowing the munication network .
last (e . g . , most recent) change to win , except in the case of The processes and logic flows described in this specifi
a deletion of data , which can have precedence over all other cation can be performed by one or more programmable
changes . processors executing one or more computer programs to

In various implementations , annotations to shared data 65 perform functions by operating on input data and generating
need not specify client user interface components . As an output . The processes and logic flows can also be performed
example , objects generated from a schema compiler , such as by , and apparatus can also be implemented as , special

14
US 9 , 898 , 517 B2

13
purpose logic circuitry , e . g . , an FPGA (field programmable a single embodiment can also be implemented in multiple
gate array) or an ASIC (application - specific integrated cir - embodiments separately or in any suitable subcombination .
cuit) . Moreover , although features may be described above as

Processors suitable for the execution of a computer pro acting in certain combinations and even initially claimed as
gram include , by way of example , both general and special 5 such , one or more features from a claimed combination can
purpose microprocessors , and any one or more processors of in some cases be excised from the combination , and the
any kind of digital computer . Generally , a processor will claimed combination may be directed to a subcombination
receive instructions and data from a read - only memory or a or variation of a subcombination .
random access memory or both . The essential elements of a Similarly , while operations are depicted in the drawings in
computer are a processor for executing instructions and one 10 a particular order , this should not be understand as requiring
or more memory devices for storing instructions and data . that such operations be performed in the particular order
Generally , a computer will also include , or be operatively shown or in sequential order , or that all illustrated operations
coupled to receive data from or transfer data to , or both , one be performed , to achieve desirable results . In certain cir
or more mass storage devices for storing data , e . g . , mag cumstances , multitasking and parallel processing may be
netic , magneto - optical disks , or optical disks . However , a 15 advantageous . Moreover , the separation of various system
computer need not have such devices . Moreover , a computer components in the embodiments described above should not
can be embedded in another device , e . g . , a mobile telephone , be understood as requiring such separation in all embodi
a personal digital assistant (PDA) , a mobile audio player , a ments , and it should be understood that the described
Global Positioning System (GPS) receiver , to name just a program components and systems can generally be inte
few . Information carriers suitable for storing computer pro - 20 grated together in a single software product or packaged into
gram instructions and data include all forms of non - volatile multiple software products .
memory , including by way of example semiconductor Thus , particular embodiments of the invention have been
memory devices , e . g . , EPROM , EEPROM , and flash described . Other embodiments are within the scope of the
memory devices ; magnetic disks , e . g . , internal hard disks or following claims . For example , the actions recited in the
removable disks ; magneto - optical disks ; and CD - ROM and 25 claims can be performed in a different order and still achieve
DVD - ROM disks . The processor and the memory can be desirable results .
supplemented by , or incorporated in , special purpose logic
circuitry . What is claimed is :

To provide for interaction with a user , embodiments of the 1 . A method comprising :
invention can be implemented on a computer having a 30 receiving one or more changes , by one or more computing
display device , e . g . , a CRT (cathode ray tube) or LCD devices , to a copy of data maintained by a computer
(liquid crystal display) monitor , for displaying information program being one of a plurality of computer programs
to the user and a keyboard and a pointing device , e . g . , a having respective local copies of the data ;
mouse or a trackball , by which the user can provide input to marking an object graph , by the one or more computing
the computer . Other kinds of devices can be used to provide 35 devices , as a first buffering of the changes at the
for interaction with a user as well ; for example , feedback computer program to indicate which of one or more
provided to the user can be any form of sensory feedback , data objects correspond to the changes such that the
e . g . , visual feedback , auditory feedback , or tactile feedback ; changes are unavailable for being committed to the
and input from the user can be received in any form , plurality of computer programs , wherein individual
including acoustic , speech , or tactile input . 40 data objects represent a runtime version of specific data

Embodiments of the invention can be implemented in a and implement specified synchronization behavior for
computing system that includes a back - end component , e . g . , the runtime version of the specific data that the indi
as a data server , or that includes a middleware component , vidual data object represents , the synchronization
e . g . , an application server , or that includes a front - end behavior being implemented by compiled code ,
component , e . g . , a client computer having a graphical user 45 included in the data object , that represents the synchro
interface or a Web browser through which a user can interact nization behavior that is to occur on the occurrence of
with an implementation of the invention , or any combination an event , the event including a change of focus of a user
of such back - end , middleware , or front - end components . interface element ;
The components of the system can be interconnected by any initiating synchronization of the changes after marking
form or medium of digital data communication , e . g . , a 50 the object graph , by the one or more computing
communication network . Examples of communication net devices , with one or more of the plurality of computer
works include a local area network (“ LAN ”) and a wide area programs having the respective local copies in response
network (“ WAN ") , e . g . , the Internet . to the event occurring , the initiating synchronization of

The computing system can include clients and servers . A the changes comprising a second buffering of the
client and server are generally remote from each other and 55 changes at the computer program such that the changes
typically interact through a communication network . The are available for being committed to the plurality of
relationship of client and server arises by virtue of computer computer programs , the event causing synchronization
programs running on the respective computers and having a of the one or more changes to be postponed until an
client - server relationship to each other . associated node defined as a master is changed .

While this specification contains many specifics , these 60 2 . The method of claim 1 , wherein the compiled code
should not be construed as limitations on the scope of the comprises byte code executable in a runtime system in
invention or of what may be claimed , but rather as descrip - conformance with a JAVA standard for runtime systems .
tions of features specific to particular embodiments of the 3 . The method of claim 1 , wherein specified synchroni
invention . Certain features that are described in this speci z ation behaviors are specified by an associated annotation
fication in the context of separate embodiments can also be 65 written in accordance with a tree - structured format .
implemented in combination in a single embodiment . Con - 4 . The method of claim 3 , wherein the tree - structured
versely , various features that are described in the context of format specifies that annotations are written for a granularity

US 9 , 898 , 517 B2
15 16

30

of one or more nodes of a tree and annotations of a node synchronization of the one or more changes to be
apply to nodes in the tree nested within the node . postponed until an associated node defined as a

5 . The method of claim 1 , wherein the initiating synchro master is changed .
nization of the changes comprises buffering the changes in 13 . The system of claim 12 , wherein the specified syn
an outgoing queue of changes at the one or more computing 5 5 chronization behavior is specified by a compiled annotation
devices where the computer program resides . that includes a reference to a set of data and a trigger

6 . The method of claim 1 wherein the plurality of com attribute describing the event .
puter programs comprises one or more server systems and 14 . The system of claim 12 , wherein the compiled code
one or more client systems . comprises byte code executable in a runtime system in

7 . The method of claim 6 , wherein the operations com - 10 Cod ons com 10 conformance with a JAVA standard for runtime systems .
15 . The system of claim 14 , wherein specified synchro prise committing the changes to the one or more server

systems from the one or more client systems where the nization behaviors are specified by an associated annotation
written in accordance with a tree - structured format . computer program resides .

8 . The method of claim 7 , wherein the committing the 16 . The system of claim 12 , wherein the initiating syn
changes to the one or more server systems comprises 15 chronization of the changes comprises buffering the changes
committing the changes in response to a request from the in an outgoing queue of changes at the one or more com
one or more server systems to receive changes queued by the puting devices where the computer program resides .

17 . The system of claim one or more client systems . 12 , wherein the plurality of
9 . The method of claim 7 , wherein the committing the computer programs . comprises one or more server systems

changes to the one or more server systems comprises 20 a . des 20 and one or more client systems .
committing the changes as a result of a push of the changes 18 . The system of claim 17 , wherein the operations
to the one or more server systems from the one or more comprise committing the changes to the one or more server
client systems . systems from the one or more client systems where the

10 . The method of claim 6 wherein the initiating synchro computer program resides .

nization further comprises bypassing the one or more server 25 19 . A machine - readable device , tangibly embodying a
systems and synchronizing the one or more changes between computer program product configured to cause a data pro
two or more of the one or more client systems . cessing apparatus to perform operations comprising :

11 . The method of claim 1 wherein the specified synchro receiving one or more changes to a copy of data main
nization behavior includes one set of client - side annotations tained by a computer program being one of a plurality
and one set of server - side annotations . of computer programs having respective local copies of

12 . A system comprising : the data ;
one or more computing devices configured to perform marking an object graph as a first buffering of the changes

operations comprising : at the computer program to indicate which of one or
receiving one or more changes to a copy of data more data objects correspond to the changes such that

maintained by a computer program being one of a 35 the changes are unavailable for being committed to the
plurality of computer programs having respective plurality of computer programs , wherein individual
local copies of the data ; data objects represent a runtime version of specific data

marking an object graph as a first buffering of the and implement specified synchronization behavior for
changes at the computer program to indicate which the runtime version of the specific data that the indi
of one or more data objects correspond to the 40 vidual data object represents , the synchronization

behavior being implemented by compiled code , changes such that the changes are unavailable for
being committed to the plurality of computer pro included in the data object , that represents the synchro
grams , wherein individual data objects represent a nization behavior that is to occur on the occurrence of
runtime version of specific data and implement an event , the event including a change of focus of a user
specified synchronization behavior for the runtime 45 interface element ;

initiating synchronization of the changes after the mark version of the specific data that the individual data
object represents , the synchronization behavior ing of the object graph with one or more of the plurality
being implemented by compiled code , included in of computer programs having the respective local cop
the data object , that represents the synchronization ies in response to the event occurring , the initiating

synchronization of the changes comprising a second behavior that is to occur on the occurrence of an 30
event , the event including a change of focus of a user buffering of the changes at the computer program such
interface element ; that the changes are available for being committed to

initiating synchronization of the changes after the the plurality of computer programs , the event causing

marking of the object graph with one or more of the synchronization of the one or more changes to be
plurality of computer programs having the respective 55 postponed until an associated node defined as a master
local copies in response to an event occurring as is changed .

20 . The machine - readable device of claim 19 , wherein the specified in a data object , the initiating synchroni
zation of the changes comprising a second buffering specified synchronization behavior is specified by a com
of the changes at the computer program such that the piled annotation that includes a reference to a set of data and
changes are available for being committed to the 60 a trigger attribute describing the event .
plurality of computer programs , the event causing * * * * *

