
MAI MUUDATUNTUI LIU NUO DA MINI
US009898398B2

(12) United States Patent
Petculescu et al .

(10) Patent No . : US 9 , 898 , 398 B2
(45) Date of Patent : Feb . 20 , 2018

(54) RE - USE OF INVALIDATED DATA IN
BUFFERS

@ (71) Applicant : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

6 , 189 , 094 B1
6 , 629 , 314 B1
6 , 662 , 268 B1
6 , 701 , 420 B1
6 , 741 , 983 B1
7 , 352 , 390 B2
7 , 467 , 169 B2
7 , 617 , 184 B2
7 , 818 , 349 B2
7 , 827 , 279 B2
7 , 921 , 142 B2
8 , 139 , 593 B2

2 / 2001 Hinds et al .
9 / 2003 Wu

12 / 2003 Mcbrearty et al .
3 / 2004 Hamilton et al .
5 / 2004 Birdwell et al .
4 / 2008 Gonzalez

12 / 2008 Gole et al .
11 / 2009 Ferrari et al .
10 / 2010 Frost
11 / 2010 Xu et al .
4 / 2011 Chang et al .
3 / 2012 Dravida et al .

(Continued)

@ (72) Inventors : Cristian Petculescu , Seattle , WA (US) ;
Amir Netz , Bellevue , WA (US)

@ (73) Assignee : Microsoft Technology Licensing , LLC ,
Redmond , WA (US)

@ (*) Notice : FOREIGN PATENT DOCUMENTS Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 44 days . ZEE 102867046 A

2555129
20130074802

1 / 2013
2 / 2013
3 / 2013 (21) Appl . No . : 14 / 144 , 418

(22) Filed : Dec . 30 , 2013 OTHER PUBLICATIONS
Klein , et al . , “ A Scalable Distributed Architecture for Network - and
QoS - aware Service Composition " , in Proceedings of Joint Agent
oriented Workshops in Synergy , Sep . 9 , 2012 , 8 pages .

(Continued)

(65) Prior Publication Data
US 2015 / 0186255 A1 Jul . 2 , 2015

(51) Int . Cl .
GOOF 12 / 02 (2006 . 01)
G06F 12 / 0871 (2016 . 01)
U . S . CI .
CPC GO6F 12 / 023 (2013 . 01) ; G06F 12 / 0871

(2013 . 01)
(58) Field of Classification Search

CPC . G06F 12 / 02
USPC 711 / 165
See application file for complete search history .

Primary Examiner — Tuan Thai
Assistant Examiner — Gautam Sain
(74) Attorney , Agent , or Firm — Workman Nydegger

@

.

(57) ABSTRACT
Reusing data in a memory buffer . A method includes reading
data into a first portion of memory of a buffer implemented
in the memory . The method further includes invalidating the
data and marking the first portion of memory as free such
that the first portion of memory is marked as being usable for
storing other data , but where the data is not yet overwritten .
The method further includes reusing the data in the first
portion of memory after the data has been invalidated and
the first portion of the memory is marked as free .

(56) References Cited
U . S . PATENT DOCUMENTS

5 , 809 , 516 A
6 , 028 , 539 A
6 . 175 , 906 B1 *

9 / 1998 Ukai et al .
2 / 2000 Matsui
1 / 2001 Christie GO6F 12 / 1063

711 / 144 14 Claims , 4 Drawing Sheets

104 112 - 1 - 1 114 C1911
C185

$ 112 - 1 - 2
C2 $ 1
C285

112 - 1 - 3
C3S1
C385

112 - 1 - 17
Cn $ 1
CnS5 C1 C2 C3

.

.

o
.

. Free Startment 112 - 2 - 1
110 - 2

5112 - 2 - 2 3112 - 2 - 3 _
TC18210252 0352 . . .

112
.

112 - 2 - 0 5112 - 2 - - |
Cn52

Free End
V

.

. . .

N .
. . .

126 128 110 - 3
- 112 - 3 - 2 112 - 3 - 3

C283 C383
112 - 3 - 1
C183

, 1123 . n
Cr $ 3 | |

116

elleni 110 - 4
112 - 4 - 1 112 - 4 - 2 112 - 4 - 3
C184 C15402540354 . . C284 C384

112 - 4 - 1
106 CnS4

US 9 , 898 , 398 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

8 , 156 , 107 B2 4 / 2012 Bawa et al .
8 , 312 , 037 B1 11 / 2012 Bacthavachalu et al .
8 , 312 , 039 B2 11 / 2012 Bilula
8 , 489 , 817 B2 7 / 2013 Flynn et al .
9 , 049 , 145 B2 6 / 2015 Li et al .

2002 / 0069317 A1 6 / 2002 Chow et al .
2004 / 0078622 A1 4 / 2004 Kaminsky et al .
2004 / 0122845 A1 6 / 2004 Lohman et al .
2005 / 0102613 A15 / 2005 Boukouvalas et al .
2008 / 0052469 A1 * 2 / 2008 Fontenot GO6F 12 / 0891

711 / 133
2009 / 0254774 Al 10 / 2009 Chamdani et al .
2010 / 0180095 Al * 7 / 2010 Fujibayashi GO6F 5 / 14

711 / 163
2011 / 0072197 A1 * 3 / 2011 Lund G06F 13 / 14

711 / 103
2011 / 0072437 Al 3 / 2011 Druyan
2011 / 0082983 A1 * 4 / 2011 Koktan G06F 12 / 0804

711 / 135
2011 / 0191522 A1 4 / 2011 Condict et al .
2011 / 0320733 Al 12 / 2011 Sanford et al .
2012 / 0072652 AL 3 / 2012 Celis et al .
2012 / 0110538 A1 5 / 2012 Shih et al .
2012 / 0131126 A1 * 5 / 2012 Bandyopadhyay . H04L 67 / 1097

709 / 213
2012 / 0150527 A1 6 / 2012 Creedon et al .
2013 / 0019057 AL 1 / 2013 Stephens et al .
2014 / 0082293 A1 * 3 / 2014 Alexander GO6F 9 / 467

711 / 133
2014 / 0108421 Al 4 / 2014 Isaacson et al .
2014 / 0325145 A1 * 10 / 2014 Sampathkumar . . . GO6F 12 / 0868

711 / 114
2015 / 0186410 A1 7 / 2015 Petculescu et al .
2015 / 0188978 A1 7 / 2015 Petculescu et al .
2016 / 0239513 AL 8 / 2016 Petculescu et al .

“ Disk Configuration for Sequential Scans ” , Published on : Jan . 25 ,
2000 , Available at : http : / / www . ixora . com . au / tips / creation sequen
tial _ reads . htm .
Rahm , et al . , “ Analysis of Parallel Scan Processing in Shared Disk
Database Systems ” , in Proceedings of First International Euro - Par
Conference of Parallel Processing , Aug . 29 , 1995 , 14 pages .
Chen , et al . , “ Essential Roles of Exploiting Internal Parallelism of
Flash Memory based Solid State Drives in High - Speed Data Pro
cessing ” , in Proceedings of IEEE 17th International Symposium on
High Performance Computer Architecture , Feb . 12 , 2011 , 12 pages .
Do , et al . , “ Turbocharging DBMS Buffer Pool Using SSDs ” , in
Proceedings of the International Conference on Management of
Data ACM SIGMOD , Jun . 12 , 2011 , 12 pages .
Holloway , Allison L . , “ Adapting Database Storage for New Hard
ware ” , in Thesis for Degree of Philosophy , Retrieved on : Oct . 11 ,
2013 , 146 pages .
“ Buffer Pool Extension ” , Retrieved on : Oct . 11 , 2013 , Available at :
http : / / technet . microsoft . com / en - us / library / dn133176 (v = sql . 120) .
aspx .
Canim , et al . , " SSD Bufferpool Extensions for Database Systems ” ,
in Proceedings of the VLDB Endowment , vol . 3 , Issue 1 - 2 , Sep .
2010 , 12 pages .
“ Second Written Opinion Issued in PCT Application No . PCT /
US2014 / 071777 ” , dated Nov . 19 , 2015 , 6 Pages .
Notice of Allowance dated Dec . 22 , 2015 cited in U . S . Appl . No .
14 / 144 , 374 .
“ International Search Report & Written Opinion for PCT Applica
tion No . PCT / US2014 / 071777 ” , dated Mar . 31 , 2015 , 9 pages .
Office Action dated Nov . 20 , 2015 cited in U . S . Appl . No .
14 / 144 , 355 .
Office Action dated Oct . 9 , 2015 cited in U . S . Appl . No . 14 / 144 , 374 .
Office Action dated Jun . 6 , 2016 cited in U . S . Appl . No . 14 / 144 , 355 .
Office Action dated Jan . 20 , 2017 cited in U . S . Appl . No .
15 / 137 , 827 .
Notice of Allowance dated Mar . 17 , 2017 cited in U . S . Appl . No .
15 / 137 , 827 .
Notice of Allowance dated Apr . 12 , 2017 cited in U . S . Appl . No .
14 / 144 , 355 .
Office Action dated Apr . 17 , 2017 cited in U . S . Appl . No .
15 / 137 , 827 .
“ International Preliminary Report on Patentability Issued in PCT
Application No . PCT / US2014 / 071777 ” , dated Feb . 17 , 2016 , 7
Pages .

OTHER PUBLICATIONS

“ Basic RAID Organizations ” , Published on : Sep . 20 , 2000 , Avail
able at : http : / / www . ecs . umass . edu / ece / koren / architecture / Raid /
basicRAID . html * cited by examiner

104 104

5 112 - 1 - 2

5112 - 1 - 1

|

4

114

|

U . S . Patent

110 - 1

5112 - 1 - 1

5112 - 1 - 3

C191

C291
C155 C255

C1950255 0355
C355 C331

CnS1 CnS5
s5 |

C1 C2 C3

5 C

ST
ä ?

110 - 2
$ 112 - 2 - 2 5112 - 2 - 3 C2S2 C3S2

5112 - 2 - 1 C182

112 - 2 - n

C182

0252

C352] .

Feb . 20 , 2018

Cns2 Cns2 | |

?

110 - 3 5112 - 3 - 2 5112 - 3 - 3

$ 112 - 3 - 1 C183

$ 112 - 3 - n
Cns3 | |

?

c2530353

Sheet 1 of 4

118

Checa

112 - 4 - 1

culo
5112 - 4 - 1 C184 21841 0154

110 - 4

112 - 4 - 3 C354

$ 112 - 4 - 2 C2S4 0254

384 . . .

Tansal CnS4

102

US 9 , 898 , 398 B2

Figure 1A

U . S . Patent Feb . 20 , 2018 Sheet 2 of 4 US 9 , 898 , 398 B2

128

126 122 pug ?l Figure 1B

> Leis?

124

atent Feb . 20 , 2018 Sheet 3 of 4 US 9 , 898 , 398 B2

202 -

Load One Or More Columns Of A Database Into Main Memory Of
A Computing System As A Table Based Database

204

Divide A Column Of The Database Into Sequential Portions , Wherein Each Of
The Sequential Portions Is Of Sufficient Size To Create Efficient Transfers
Using Hard Disk Controllers To Transfer An Entire Sequential Portion

206

Write Each Of The Sequential Portions Sequentially Onto Sequentially
Ordered Drives In A Round Robin Fashion Such That Sequential

Portions Of The Column Are On Sequential Drives

Figure 2

atent Feb . 20 , 2018 Sheet 4 of 4 US 9 , 898 , 398 B2

302 -

Read Data Into A First Portion Of Memory Of A Buffer
Implemented In The Memory

304 -

Invalidate The Data And Marking The First Portion Of Memeory As Free

306

Reuse The Data In The First Portion Of Memory After The Data Has Been
Invalidated And The First Portion Of The Memory is Marked As Free

Figure 3

US 9 , 898 , 398 B2

RE - USE OF INVALIDATED DATA IN embodiments will be described and explained with addi
BUFFERS tional specificity and detail through the use of the accom

panying drawings in which :
BACKGROUND FIG . 1A illustrates a drive based database system that

5 operates in a fashion similar to an in - memory database
Background and Relevant Art system ;

FIG . 1B illustrates additional details regarding reusing
Computers and computing systems have affected nearly data from a ring buffer ;

every aspect of modern living . Computers are generally FIG . 2 illustrates a method of implementing a database
involved in work , recreation , healthcare , transportation , sportation 10 system using a plurality of sequentially ordered drives to
entertainment , household management , etc . store sequential portions of columns of the database ; and
Some computing systems make use of buffers . Buffers are FIG . 3 illustrates a method for reusing data in a buffer .

typically used to store data from slower or less accessible DETAILED DESCRIPTION storage in faster more accessible storage . For example , data 15
may be read from hard drives and stored in a buffer in system Some embodiments described herein implement a data
memory . However , buffers are typically limited in size and base system using hard drives , such as solid state drives
therefore carefully selecting items to read into or keep in the (SSDs) that will work well for column - oriented in - memory buffer may be important to optimize buffer usage . databases without changing much the in - memory architec

The subject matter claimed herein is not limited to 20 ture . Embodiments use a new , generation - based caching
embodiments that solve any disadvantages or that operate system that allows keeping essentially the same architecture
only in environments such as those described above . Rather , as in memory systems without sacrificing significant
this background is only provided to illustrate one exemplary amounts of speed . In particular , by using a sequentially
technology area where some embodiments described herein ordered series of different drives to sequentially store dif
may be practiced . 25 ferent segments , and by reading sufficiently large amounts of

data into each drive to optimize drive controller reads ,
BRIEF SUMMARY embodiments can achieve the maximum throughput of the

drive rather than being limited by the number of Input /
One embodiment illustrated herein includes a method that Output Operations per Second (TOPS) for the drives . This

may be practiced in a computing environment . The method 30 allows embodiments to keep the same or substantially
includes acts for reusing data in a memory buffer . The similar memory specific speeds by having an architecture
method includes reading data into a first portion of memory that allows combining paging and scaling the database out .
of a buffer implemented in the memory . The method further The improved system is implemented in a fashion that

makes drives look , and in many cases , perform , like memory includes invalidating the data and marking the first portion 35 so that the architecture does not need to be drastically of memory as free such that the first portion of memory is * modified so that current performance characteristics are marked as being usable for storing other data , but where the maintained . To accomplish this , embodiments may imple
data is not yet overwritten . The method further includes ment any or all of the following functionality : paging in full reusing the data in the first portion of memory after the data segments (which may be required by the column - oriented has been invalidated and the first portion of the memory is 40
marked as free . memory is allocated circularly (to avoid the overhead of

This Summary is provided to introduce a selection of “ real ” memory allocation) ; adjusting the scale - out algorithm
concepts in a simplified form that are further described to keep the same memory bandwidth as the original in
below in the Detailed Description . This Summary is not memory system ; using a read - ahead of one segment to keep
intended to identify key features or essential features of the 45 the data as warm as possible without exceeding the buffer
claimed subject matter , nor is it intended to be used as an aid pool .
in determining the scope of the claimed subject matter . In considering how to reduce costs for in - memory data

Additional features and advantages will be set forth in the base systems , the following factors may be relevant :
description which follows , and in part will be obvious from SSD latencies are small , pushing 100 K IOPS .
the description , or may be learned by the practice of the 50 SSD throughputs are good , and are approaching memory
teachings herein . Features and advantages of the invention throughputs (500 + MB / s for SATA3 SSDs and 1500 + MB / s
may be realized and obtained by means of the instruments for PCIe SSD boards) .
and combinations particularly pointed out in the appended SSDs are cheap (presently , typically $ 0 . 8 / GB up to
claims . Features of the present invention will become more $ 2 / GB) .
fully apparent from the following description and appended 55 Memory is also cheap .
claims , or may be learned by the practice of the invention as Machines that can accommodate large amounts of
set forth hereinafter . memory (e . g . 2 TB) come in expensive form factors .

Machines that can accommodate similar amounts of SSD
BRIEF DESCRIPTION OF THE DRAWINGS storage space can be implemented in much less expensive

60 form factors . For example , a typical Windows AzureTM
In order to describe the manner in which the above - recited compute node available from Microsoft Corporation of

and other advantages and features can be obtained , a more Redmond Wash . will have 120 GB of (usable) RAM but 2 . 4
particular description of the subject matter briefly described TB of SSD storage .
above will be rendered by reference to specific embodiments In the example above , the machine can generally accom
which are illustrated in the appended drawings . Understand - 65 modate two orders of magnitude more SSD (or other disk)
ing that these drawings depict only typical embodiments and storage than memory , while the performance of memory is
are not therefore to be considered to be limiting in scope , only within one order of the SSD speed . Furthermore , a

US 9 , 898 , 398 B2

re

machine may be implemented with a set of SSDs rather than segments would be paged in . Better performance can be
a single SSD , and striping the access across the disks could achieved in some embodiments if whole segments will be
result in a significant improvement over the performance of paged in rather than individual pages . In particular , for some
a single SSD . systems to work unmodified , a whole segment has to be

The following illustrates experimental results validating 5 available when the query starts . Thus , it may be more
the effectiveness of some of the embodiments described efficient to page in a whole segment . Further , issuing
herein . The experiment was run on a (standard developer) between high tens to low hundreds of larger outstanding IOs
2420 machine with 1 processor E5 - 1650 @ 3 . 2 GHz , 24 GB across multiple disks is more efficient than issuing thousands
RAM system available from Hewlett Packard Corporation or 10s of thousands of smaller IOs . Additionally , paging in
of Palo Alto , Calif . The stock machine was equipped with a 10 whole segments has also the advantage that the processing
2 TB SATA (rotational) disk with modest performance . Four code stays largely unmodified . Embodiments that page in
240 GB of OCZ RevoDrive 3x2 drives were added . These pages will need to make sure that runs get split (artificially)
are SSD boards that can be coupled on the PCIe interface at page boundaries , which is a significant change in the
and can deliver up to 1 . 5 GB / sec . processing pipeline

The simulated workload was characterized by a moderate 15 As the sizes of the segments are large (up to 32 MB and
number of large IOs (i . e . high 100 kBs to a few MBs) . The typically around 2 - 4 MB , assuming a 10 - 15x compression
results are presented in the table below : ratio) , embodiments may not be able to allocate system

memory with each page - in operation , as it would delegate to
expensive allocation procedures . Thus , as illustrated below ,

Experiment Description Speed MB / s 20 embodiments implement a buffer pool . To deal with frag
mentation and different allocation sizes , embodiments may 1 disk x 1 MB IOs , queue depth = 10 1610

In parallel , 2 disks x 1 MB IOs , queue depth = 10 implement a ring buffer pool , as illustrated below , that 3190
In parallel , 4 disks x 1 MB IOs , queue depth = 10 6210 operates in a circular fashion using pointers to keep track of
RAIDO disk of the 4 x 1 MB IOs , queue depth = 10 2850 free portions of the buffer pool rather than using fixed page
In parallel , 4 disks x 64 kB IOs , queue depth = 20 , 50 3130 25 sizes . In parallel , 4 disks x 128 kB IOs , queue depth = 10 , 20 4120 Further , some embodiments only page the data files of the

subsegments , not the RLE runs , dictionaries , hierarchies ,
As can be observed from the preceding experiment , as metadata , etc . This may be done as an optimization when

long as the physical bus permits , embodiments can achieve paging dictionaries and hierarchies results in large amounts
an acceptable bandwidth of the SSD hardware with a 30 of work that will cause instability in the system .
workload that might be implemented in a desired database Referring now to FIG . 1A , an example implementation is
system . Also , to achieve higher performance , a custom illustrated . In the example illustrated , data can be stored in
RAIDO system can be implemented rather than simply using cloud storage 102 . For example , the cloud storage may be
an off the shelf RAIDO system . Further , performance is implemented using an Azure Blob Store available in Win
better if large IOs (i . e . IOs that are of significant size in 35 dows AzureTM system . Portions of data from the cloud
comparison to drive controller capabilities) are performed at storage 102 can be cached locally at a service 104 in a local
the SSDs , even if smaller queue depths are employed . For database cache 106 . Initially , portions of data from the local
example , in many modern SSD drives or drive cards , there database cache 106 can be read into main memory into a
may be a desire to reach data transfer that approximates the table 108 . From the table 108 in main memory , the data is
specified throughput of the drive . Small reads from the 40 scattered out to available drives at a segment level . A
drives will not approach these throughputs . However , large segment , as used herein , is a predetermined number of rows
reads may . Thus , performing a group of 10x1 MB reads in a table . In some embodiments , a segment size may be a
would result in a 10 MB read from a drive which would default of 8 million rows . However , this size is configurable
saturate the controller and cause the disk to perform at or and in some embodiments , not all segments are the same
near is specified throughput identified in the disk specifica - 45 size . Rather , some embodiments allow for segments to be of
tion . Thus , disk reads may be in some embodiments , disk different sizes . Returning now to the present example , the
reads may be some value above about 4 MB . However , system 104 includes four drives 110 - 1 through 110 - 4 . Four
reasonable performance can be achieved when reads are drives are illustrated in the example , but it should be
above 500 KB . appreciated that a different number of drives could be used

In implementing embodiments herein , several factors may 50 in other embodiments .
contribute to the design . It is desirable to implement some When a model loads , data goes to the main memory only
embodiments with minimal changes compared to to be scattered at the segment level onto the n (in the
in - memory database systems . This may be important to illustrated example , n = 4) SSD cache drives available . Then ,
protect the stability of a system as a whole which incorpo - the memory in the segment is freed and the segment remem
rates the database system into it . 55 bers a handle (that a paging module can interpret appropri
Embodiments may implement disk paging into memory ately) that has in the underlying structure , among other

on top of a distributed on - disk caching structure . This allows things , the file and offset for the data to be paged in .
for other portions of the system , such as storage , to remain When the data is paged out to the drives , embodiments
the same . As illustrated below , embodiments create a cach - create one file per column partition per drive location . Note
ing structure on load and operate with the caching structure 60 that the file , in this particular embodiment , is per column ,
at query time . and not per segment . Thus , a given file may store several
When paging in , embodiments could choose to operate segments from a column . Illustratively , FIG . 1A illustrates

either with fixed size pages or with segments . A typical that each of the drives 110 - 1 through 110 - 4 includes one file
representative system in which the database may be used for each column in the table 110 . For example , in FIG . 1A ,
may have 16 processor cores , for a typical representative 65 a file 112 - 1 - 1 is included in the drive 110 - 1 for column C1
query involving about 6 columns that would need to be in the table 108 . A file 112 - 2 - 1 in included in the drive 110 - 2
paged in such that in a cold page in , about 100 column for column C1 in the table 108 . A file 112 - 3 - 1 in included in

US 9 , 898 , 398 B2

the drive 110 - 3 for column C1 in the table 108 . A file 112 - 4 - 1 requires only 1 bit per 4 kB , meaning only about 1 . 5 MB of
in included in the drive 110 - 4 for column C1 in the table 108 . the drive 110 - 4 for column C1 in the table 108 . map (a 0 . 31 % memory overhead) .
FIG . 1A also illustrates files 112 - 1 - 2 , 112 - 1 - 3 and 112 - 1 - 4 Experimental results have shown that using the 1 segment
for columns C2 , C3 , and C4 in the table 108 respectively . look - ahead technique described above , embodiments are
Similar files are included in drives 110 - 2 , 110 - 3 and 110 - 4 5 able to achieve about 99 % of the potential bandwidth of
for those columns as well . about 6 GB / s on the Z420 machine considered above . In

As segments are loaded , they are cached out to the n particular , the lookahead technique The look - ahead gives the
locations (again , in the illustrated example , n = 4) . Assuming ing last 30 % performance boost by insuring that , while the N segments , for each column partition , there are n files , each current (already paged in) segment is queried , the IO system with about N / n segments . The shuffling of the segments is 10
round robin , in order to achieve parallelism during querying . works on paging in the next segment .

Embodiments may be implemented where not all tables For example , as illustrated in the example of FIG . 1A , there are paged out to the drives . For example , in some embodi are 5 segments for each column . Using the round - robin
paging out , the file 112 - 1 - 1 stores segment 51 from column ments , only sharded tables and / or smaller models are paged
C1 . The file 112 - 2 - 1 stores segment S2 from column C1 . The 15 out to drives . The 15 out to drives .
file 112 - 3 - 1 stores segment S3 from column C1 . The file In some embodiments , even further improvements can be
112 - 4 - 1 stores segment S4 from column C1 . The round robin implemented . For example , in some embodiments an addi
algorithm continues and circles around such that the file tional feature may be to have a hot list of the memory inside
112 - 1 - 1 stores segment S5 from column C1 . Similar actions the buffer pool and an appropriate eviction mechanism . For
are performed for the remaining columns in the table 108 , 20 example , a last recently used (LRU) eviction mechanism
but with different files at each drive for each different may be used . For example , as illustrated in FIG . 1A ,
column . For example , FIG . 1A illustrates file 112 - 1 - 2 for embodiments may implement a second ring buffer 118 in
column C2 in the table 108 . Various other files are evident main memory of a smaller size where hot memory gets
in FIG . 1A for the different columns and different drives . promoted . Items in the second ring buffer 118 are not
An engine 114 can be implemented at the service 104 to 25 recycled as quickly , and thus remain available for longer

handle the paging in / out . Additionally , as illustrated below , periods of time . Count usage per configurable time or some
the engine 114 can handle overlapped IOs , buffer pool other policy . May use approximate most recently used , least
management and buffer pool caches . recently used .
When the server 104 starts , it also allocates a buffer pool A further enhancement in some embodiments is the ability

116 . The buffer pool 116 is global per server . The size of the 30 to reuse invalidated data from the buffer pool 116 . In
buffer pool 116 is configured according to pre - defined particular , data may be invalidated in the buffer pool 116
initialization settings . In some embodiments , a recom - after it has been accessed . Invalidating the data essentially
mended buffer pool size is about 40 % of the physical indicates that the portion of the ring containing the data is
memory size . The buffer pool 116 is implemented as a ring available for use by new data being read into the buffer pool
buffer where the next storage address at the end of the buffer 35 116 . However , so long as new data has not been moved into
pool 116 is the first address in the buffer pool 110 . the memory for data that has been invalidated , the data can
When a query executes , each job (that now handles an actually be reused until it is actually overwritten . Thus , so

array of segments) will get an appropriate memory alloca - called “ invalidated ” data can be used nonetheless as if it
tion out of the buffer pool 116 , overlapped IOs will be were valid data .
spawned for all of the columns needed by the current 40 Referring now to FIG . 1B , and example is illustrated .
segment of the job . In some embodiments , overlapped IOS FIG . 1B illustrates the ring buffer 116 . As illustrated in FIG .
will be spawned for all of the columns needed by the next 1B , two pointers can be used to indicate the portion 124 of
segment of the job as well , as a look - ahead technique to keep the ring buffer 116 marked as free . The first pointer 120
data warm . In particular , one additional segment needed for marks where the free portion 124 of the ring buffer 116 starts
a next portion of a job is read into the buffer pool 116 so that 45 and the second pointer 122 marks where the end of the free
that data is warm . The job will block to wait on the IOs of portion 124 of the ring buffer 116 . When data has been read
the current segment . At the end of the segment query , the and used , the second pointer can be moved to a memory
segment data is “ freed ” , i . e . memory is returned to the buffer location past that data to indicate that that portion of the ring
pool 116 . The buffer pool is typically significantly larger buffer 116 is now free . However , a subsequent search may
than the typical instantaneous outstanding memory needs . 50 wish to use some data that has already been read used and
The allocation / free technique of the buffer pool is as follows : marked as free . So long as that data has not been overwrit

(1) If there is not sufficient memory in the buffer pool 116 , ten , the data can be reused .
embodiments can wait for a short period of time for memory For example , assume in FIG . 1B that a subsequent search
in the buffer pool 116 to be freed up and made available . will use data such as that in the location labeled 126 . The

(2) When returning memory to the buffer pool 116 , the 55 memory location is marked as free , but the data has not been
memory becomes available only when the free happens at overwritten . Thus the data in location 126 can be reused .
the end of the (ring) buffer pool . If not , the actual availability This may be accomplished by moving the second pointer
is deferred to the moment of when the free at the end of the 122 back to the start of location 126 (i . e . the end of location
buffer pool is issued , which also triggers a garbage collect 128) so that the location 126 is no longer marked as free . The
operation of the previously freed operations . 60 data in location 126 can then simply be used as normal .

(3) To easily manage the buffer pool , internally , in the Alternatively , the data in location 126 may be read from
illustrated example , it is divided in 4 kB pages , but its API location 126 in the ring buffer 116 and rewritten to the
has to possibility of allocating contiguous ranges of pages , beginning of the free portion 124 . The first pointer 120 is
which is how embodiments herein allocate portions of the moved as performed when reading from disk . While this
buffer pool 116 . The division into 4 kB pages makes the 65 may be slower than simply moving the second pointer 122 ,
management reasonable by providing direct access without it is still faster than reading directly from disk . Further , as
too much overhead . A 50 GB buffer pool , for example , noted below , various considerations may be taken into

US 9 , 898 , 398 B2

account to determine whether the second pointer 122 should 11 - 4 ordered sequentially each with a file where each file on
be moved , or if the data should be re - read , re - written and the each sequential drive stores a sequential segment . Further , as
first pointer 120 moved . described above , the segments are stored in a round robin

For example , consider if the data to be reused is stored in fashion . Thus , in the illustrated example , file 112 - 1 - 1 stores
location 128 . Rather than moving the pointer 122 back to the 5 segment 1 from column 1 and segment 5 from column 1
start of location 128 , and un - necessarily un - freeing location because it is , in a round robin sequence , next after the file
126 , the data in location 128 can be read from location 128 112 - 4 - 1 .
of the ring buffer 116 and written into the start of the free As illustrated in various examples above , the method 200
portion 124 . The first pointer 120 would then be moved may be practiced where each of the sequentially ordered
passed the written data so that the written data would be in 10 drives is an SSD drive .
the active portion of the ring buffer 116 . However , if the data As illustrated in the example in FIG . 1A , the method 200
to be re - used is in location 126 , the second pointer 122 can may be practiced where each of the sequential portions is a
be moved without re - capturing any unnecessary data so as to segment .
efficiently use the ring buffer . The method 200 may be practiced where each of the

In an alternative embodiment , a determination may be 15 drives stores database data on a file per column basis such
made as to how much unneeded data will be revalidated by that each drive has a single data file for a given column of
unfreezing portions of the ring buffer 116 versus how much the database irrespective of how many portions of a column
needed data will be revalidated by unfreezing portions of the are stored at a given drive . FIG . 1A illustrates an example of
ring buffer 116 . This can affect whether the second pointer this where each drive includes a file for each of the n
122 is moved or whether the data is re - read (either from the 20 columns .
ring buffer 116 , or disk) . For example , if moving the second Similarly , the method 200 may further include , for one or
pointer will result in 80 % of the data revalidated being more other columns , repeating the acts of dividing a column
needed data and 20 % being unneeded data , then embodi - of the database into sequential portions and writing each of
ments may determine this to be sufficiently efficient and the sequential portions sequentially onto sequentially
cause the second pointer 122 to be moved thus revalidating 25 ordered drives in a round robin fashion .
data at the end of the free portion 124 . However , if moving The method 200 may further include , reading sequential
the second pointer will result in 80 % of the data revalidated portions from the drives into a ring buffer . The ring buffer is
being unneeded data and 20 % being needed data , then implemented in the main memory of the computing system .
embodiments may determine this to not be sufficiently An example is illustrated above where portions are read into
efficient and will instead reread the needed data , either from 30 the ring buffer 116 from the drives 110 - 1 through 110 - 4 . In
the ring buffer 116 or from one of the drives 110 . particular , portions can be simultaneously read from the

The following discussion now refers to a number of different drives 110 - 1 through 110 - 4 into different portions
methods and method acts that may be performed . Although of the ring buffer 116 . Operations can then be performed on
the method acts may be discussed in a certain order or the data in the ring buffer 116 . Some embodiments may
illustrated in a flow chart as occurring in a particular order , 35 determine that certain data from in the ring buffer is hot data
no particular ordering is required unless specifically stated in that the data has a predetermined frequency of reuse . As
or required because an act is dependent on another act being a result , embodiments may include transferring the certain
completed prior to the act being performed . data to another buffer implemented in the main memory of

Referring now to FIG . 2 , a method 200 is illustrated . The the computing system . For example , as illustrated in FIG .
method 200 may be practiced in a computing environment . 40 1A , heavily used data from the buffer 116 can be moved to
The method 200 includes acts for implementing a database the buffer 118 .
system using a plurality of sequentially ordered drives to Referring now to FIG . 3 , a method 300 is illustrated . The
store sequential portions of columns of the database . The method 300 may be practiced in a computing environment .
database system is usable by a system configured for use The method 300 includes acts for reusing data in a memory
with in - memory database systems . The method includes 45 buffer . The method 300 includes reading data into a first
loading one or more columns of a database into main portion of memory of a buffer implemented in the memory
memory of a computing system as a table based database (act 302) . For example , in FIG . 1A , data may be read from
(act 202) . For example , as illustrated in FIG . 1A , database a drive 110 - 1 into the ring buffer 116 .
data may be loaded from cloud storage 102 into a local The method 300 may further include invalidating the data
database cache 106 and then loaded into a table 108 imple - 50 and marking the first portion of memory as free (act 304) .
mented in main memory of the system 104 . Thus , the first portion of memory is marked as being usable

The method 200 may further include dividing a column of for storing other data , but where the data is not yet over
the database into sequential portions (act 204) . The sequen - written . For example , the location 126 may be marked as a
tial portions are generally of sufficient size to create efficient free portion by moving the pointer 122 to the end of the
transfers using hard disk controllers to transfer an entire 55 location 126 .
sequential portion . Thus , as illustrated in FIG . 1A , each of The method 300 includes reusing the data in the first
the columns is divided into segments . The segments are portion of memory after the data has been invalidated and
generally sufficiently large enough to be significant to the the first portion of the memory is marked as free (act 306) .
drives 110 - 1 through 110 - 4 . As illustrated above , using Thus , in the illustrated example , data can be used from the
current SSD or disk card storage , reads of about 4 GB may 60 location 126 even though that data had been invalidated by
be sufficiently large . Some embodiments can even perform the location 126 being marked as free .
acceptably using reads as low as about 500 KB . The method 300 may be practiced where reusing the data

The method 200 further includes writing each of the in the first portion of memory comprises unmarking the first
sequential portions sequentially onto sequentially ordered portion of memory so that the first portion of memory is no
drives in a round robin fashion such that sequential portions 65 longer marked as free . Thus , for example , the pointer 122
of the column are on sequential drives (act 206) . This is could be moved to the end of location 128 thus revalidating
illustrated in FIG . 1A which illustrates drives 110 - 1 through the data in location 126 . The method 300 may be practiced

US 9 , 898 , 398 B2
10

where the first portion of memory is unmarked based on a distinctly different kinds of computer - readable media : physi
determination of the position of the first portion of memory cal computer readable storage media and transmission com
with respect to other portions of free memory in the buffer . puter readable media .
Thus , for example , since the location 126 is at the end of the Physical computer readable storage media includes RAM ,
free portion 124 of the buffer 116 , it may be a simple task 5 ROM , EEPROM , CD - ROM or other optical disk storage
to simply move the pointer 122 . However , if the portion in (such as CDs , DVDs , etc) , magnetic disk storage or other
question was at location 128 , then a determination may be magnetic storage devices , or any other medium which can be
made to not move the pointer 122 and instead either read the used to store desired program code means in the form of
data from the portion 128 and rewrite it to the buffer or to computer - executable instructions or data structures and
read the data from disk 110 and rewrite it to the buffer . 10 which can be accessed by a general purpose or special

The method 300 may be practiced where the first portion purpose computer .
of memory is unmarked based on a determination that A “ network ” is defined as one or more data links that
unmarking the first portion of memory will not cause a enable the transport of electronic data between computer
predetermined amount of other data to be revalidated where systems and / or modules and / or other electronic devices .
the other data is data not intended to be reused . Thus , for 15 When information is transferred or provided over a network
example , if the data to be reused is in location 128 moving or another communications connection (either hardwired ,
the pointer to the beginning of location 128 will not cause wireless , or a combination of hardwired or wireless) to a
too much unneeded data (i . e . the data in location 126) to be computer , the computer properly views the connection as a
revalidated , then a determination may be made that it is transmission medium . Transmissions media can include a
acceptable to move the pointer 122 . 20 network and / or data links which can be used to carry or

The method 300 may be practiced where reusing the data desired program code means in the form of computer
in the first portion of memory comprises reading the data executable instructions or data structures and which can be
from the first portion of memory that has been marked as accessed by a general purpose or special purpose computer .
free and writing the data to a different portion of the buffer . Combinations of the above are also included within the
Thus , as illustrated above , in some embodiments , data in 25 scope of computer - readable media .
location 126 may be reused by re - reading the data from Further , upon reaching various computer system compo
location 126 and writing it to a different portion of the buffer n ents , program code means in the form of computer - execut
116 , such as the begging of the free portion 124 , and moving able instructions or data structures can be transferred auto
the first pointer 120 to a location after the rewritten data . In matically from transmission computer readable media to
some such embodiments , the data is read from the first 30 physical computer readable storage media (or vice versa) .
portion of memory that has been marked as free and written For example , computer - executable instructions or data
to a different portion of the buffer based on a determination structures received over a network or data link can be
of the position of the first portion of memory with respect to buffered in RAM within a network interface module (e . g . , a
other portions of free memory in the buffer . Thus in the “ NIC ") , and then eventually transferred to computer system
illustrated example , it may be more efficient to read data 35 RAM and / or to less volatile computer readable physical
from location 128 and rewrite the data rather than moving storage media at a computer system . Thus , computer read
the pointer 122 . As discussed above , the data may be read a ble physical storage media can be included in computer
from the first portion of memory that has been marked as system components that also (or even primarily) utilize
free and written to a different portion of the buffer based a transmission media .
determination that unmarking the first portion of memory 40 Computer - executable instructions comprise , for example ,
will cause a predetermined amount of other data to be instructions and data which cause a general purpose com
revalidated where the other data is data not intended to be puter , special purpose computer , or special purpose process
reused and thus reading and rewriting the data is more ing device to perform a certain function or group of func
efficient than unmarking the first portion as free . tions . The computer executable instructions may be , for

The method 300 may be practiced where the buffer is a 45 example , binaries , intermediate format instructions such as
ring buffer . assembly language , or even source code . Although the

Further , the methods may be practiced by a computer subject matter has been described in language specific to
system including one or more processors and computer structural features and / or methodological acts , it is to be
readable media such as computer memory . In particular , the understood that the subject matter defined in the appended
computer memory may store computer executable instruc - 50 claims is not necessarily limited to the described features or
tions that when executed by one or more processors cause acts described above . Rather , the described features and acts
various functions to be performed , such as the acts recited in are disclosed as example forms of implementing the claims .
the embodiments . Those skilled in the art will appreciate that the invention

Embodiments of the present invention may comprise or may be practiced in network computing environments with
utilize a special purpose or general - purpose computer 55 many types of computer system configurations , including ,
including computer hardware , as discussed in greater detail personal computers , desktop computers , laptop computers ,
below . Embodiments within the scope of the present inven - message processors , hand - held devices , multi - processor sys
tion also include physical and other computer - readable tems , microprocessor - based or programmable consumer
media for carrying or storing computer - executable instruc - electronics , network PCs , minicomputers , mainframe com
tions and / or data structures . Such computer - readable media 60 puters , mobile telephones , PDAs , pagers , routers , switches ,
can be any available media that can be accessed by a general and the like . The invention may also be practiced in distrib
purpose or special purpose computer system . Computer - uted system environments where local and remote computer
readable media that store computer - executable instructions systems , which are linked (either by hardwired data links ,
are physical storage media . Computer - readable media that wireless data links , or by a combination of hardwired and
carry computer - executable instructions are transmission 65 wireless data links) through a network , both perform tasks .
media . Thus , by way of example , and not limitation , In a distributed system environment , program modules may
embodiments of the invention can comprise at least two be located in both local and remote memory storage devices .

US 9 , 898 , 398 B2

Alternatively , or in addition , the functionally described copying the portion of the data in the first portion of the
herein can be performed , at least in part , by one or more ring buffer in the memory that is used for the
hardware logic components . For example , and without limi operation , re - writing the portion of the data in the
tation , illustrative types of hardware logic components that first portion of the ring buffer in the memory that is
can be used include Field - programmable Gate Arrays (FP - 5 used for the operation to the ring buffer in the
GAs) , Program - specific Integrated Circuits (ASICs) , Pro memory , and moving the first pointer in the ring
gram - specific Standard Products (ASSPs) , System - on - a buffer in the memory to include the re - written data in
chip systems (SOCs) , Complex Programmable Logic the active valid portion of the ring buffer in the
Devices (CPLDs) , etc . memory , if the portion of the data in the first portion

The present invention may be embodied in other specific 10 of the ring buffer in the memory that is used for the
forms without departing from its spirit or characteristics . operation does not meet the threshold with respect to
The described embodiments are to be considered in all the data in the free portion of the ring buffer in
respects only as illustrative and not restrictive . The scope of memory that would be revalidated but not used for
the invention is , therefore , indicated by the appended claims the operation by moving the second pointer .
rather than by the foregoing description . All changes which 15 2 . The method of claim 1 , wherein moving the second
come within the meaning and range of equivalency of the pointer is performed based on the threshold being deter
claims are to be embraced within their scope . mined based on a determination of the position of the first

portion of the ring buffer in the memory with respect to other
What is claimed is : portions of free memory in the ring buffer in the memory .
1 . In a computing environment , a method of reusing data 20 3 . The method of claim 1 , wherein moving the second

stored in a ring buffer in memory , the method comprising : pointer is performed based on the threshold being deter
accessing data in a first portion of the ring buffer in the mined based on a determination of an amount of data in
memory , the ring buffer in the memory comprising a other portions of free memory in the ring buffer in the
first pointer that points to a location where a free memory that will be revalidated as a result of moving the
portion of the ring buffer in the memory begins , and a 25 second pointer .
second pointer that points to a location where the free 4 . The method of claim 1 , wherein copying the portion of
portion of the ring buffer in the memory ends ; the data in the first portion of the ring buffer in the memory

invalidating the data in the first portion of the ring buffer that is used for the operation , re - writing the portion of the
in the memory by marking the first portion of the ring data in the first portion the ring buffer in the memory that is
buffer in the memory as free , but where the data in the 30 used for the operation to the active valid portion of the ring
first portion of the ring buffer in the memory is not yet buffer in the memory , and moving the first pointer in the ring
overwritten , wherein invalidating the data in the first buffer in the memory to include the re - written data in the
portion of the ring buffer in the memory by marking the active valid portion of the ring buffer in the memory is
first portion of the ring buffer in the memory as free performed based on the threshold being determined based on
comprises moving the second pointer past the first 35 a determination of the position of the first portion of memory
portion of the ring buffer in the memory to include the with respect to other portions of free memory in the ring
first portion of the ring buffer in the memory in the free buffer in the memory .
portion of the ring buffer in the memory ; 5 . The method of claim 1 , wherein copying the portion of

determining to reuse a portion of the data in the first the data in the first portion of the ring buffer in the memory
portion of the ring buffer in the memory for an opera - 40 that is used for the operation , re - writing the portion of the
tion after the data in the first portion of the ring buffer data in the first portion the ring buffer in the memory that is
in the memory has been invalidated by the first portion used for the operation to the active valid portion of the ring
of the ring buffer in the memory being marked as free ; buffer in the memory , and moving the first pointer in the ring

determining , based on the position of the first portion of buffer in the memory to include the re - written data in the
the ring buffer in the memory in the free portion of the 45 active valid portion of the ring buffer in the memory is
ring buffer in the memory , including a determination of performed based on the threshold being determined based on
how much of the data in the first portion of the ring a determination that moving the second pointer in the ring
buffer in the memory will be used for the operation and buffer in the memory to unmark the first portion of memory
will be revalidated by moving the second pointer to will cause a predetermined amount of other data in the free
include the first portion of the ring buffer in the memory 50 portion of the ring buffer in the memory to be revalidated
to an active valid portion of the ring buffer in the where the other data in the free portion of the ring buffer in
memory compared to how much data in the free portion the memory is data not intended to be reused .
of the ring buffer in memory will not be used for the 6 . In a computing environment , a physical computer
operation but will be revalidated by moving the second readable device comprising computer executable instruc
pointer , an action to perform ; and 55 tions that when executed by one or more processors cause

performing the determined action , wherein the deter - the following to be performed :
mined action is selected from the group comprising accessing data in a first portion of a ring buffer in a
moving the second pointer to revalidate the data in the memory , the ring buffer in the memory comprising a

first portion of the ring buffer in the memory to first pointer that points to a location where a free
include the first portion of the ring buffer in the 60 portion of the ring buffer in the memory begins , and a
memory in the active valid portion of the ring buffer second pointer that points to a location where the free
in the memory , if the portion of the data in the first portion of the ring buffer in the memory ends ;
portion of the ring buffer in the memory that is used invalidating the data in the first portion of the ring buffer
for the operation meets a threshold with respect to in the memory by marking the first portion of the ring
the data in the free portion of the ring buffer in 65 buffer in the memory as free , but where the data in the
memory that would be revalidated but not used for first portion of the ring buffer in the memory is not yet
the operation by moving the second pointer ; and overwritten , wherein invalidating the data in the first

US 9 , 898 , 398 B2
13 14

portion of the ring buffer in the memory by marking the memory to include the re - written data in the active valid
first portion of the ring buffer in the memory to include portion of the ring buffer in the memory is based on the
the first portion of the ring buffer in the memory in the threshold being determined based on a determination of the
free portion of the ring buffer in the memory ; deter position of the first portion of memory with respect to other
mining to reuse a portion of the data in the first portion 5 portions of free memory in the ring buffer in the memory .
of the ring buffer in the memory for an operation after 10 . The physical computer readable device of claim 6 ,
the data in the first portion of the ring buffer in the wherein copying the portion of the data in the first portion
memory has been invalidated by the first portion of the of the ring buffer in the memory that is used for the
ring buffer in the memory being marked as free ; operation , re - writing the portion of the data in the first

determining , based on the position of the first portion of 10 portion the ring buffer in the memory that is used for the
the ring buffer in the memory in the free portion of the operation to the active valid portion of the ring buffer in the
ring buffer in the memory , including a determination of memory , and moving the first pointer in the ring buffer in the
how much of the data in the first portion of the ring memory to include the re - written data in the active valid
buffer in the memory will be used for the operation and portion of the ring buffer in the memory is based on the
will be revalidated by moving the second pointer to 15 threshold being determined based on a determination that
include the first portion of the ring buffer in the memory moving the second pointer in the ring buffer in the memory
to an active valid portion of the ring buffer in the to unmark the first portion of memory will cause a prede
memory compared to how much data in the free portion termined amount of other data in the free portion of the ring
of the ring buffer in memory will not be used for the buffer in the memory to be revalidated where the other data
operation but will be revalidated by moving the second 20 in the free portion of the ring buffer in the memory is data
pointer , an action to perform ; and not intended to be reused .

performing the determined action , wherein the deter - 11 . In a computing environment , a system for reusing data
mined action is selected from the group comprising stored in a ring buffer in system memory , the system
moving the second pointer to revalidate the data in the comprising :

first portion of the ring buffer in the memory to 25 the ring buffer implemented in the system memory ;
include the first portion of the ring buffer in the one or more processors ;
memory in the active valid portion of the ring buffer one or more physical computer readable devices coupled
in the memory , if the portion of the data in the first to the one or more processors , wherein the one or more
portion of the ring buffer in the memory that is used physical computer readable devices comprise computer
for the operation meets a threshold with respect to 30 executable instructions that when executed by one or
the data in the free portion of the ring buffer in more of the one or more processors cause the following
memory that would be revalidated but not used for to be performed :
the operation by moving the second pointer ; and accessing data in a first portion of the ring buffer in the

copying the portion of the data in the first portion of the system memory , the ring buffer in the system memory
ring buffer in the memory that is used for the 35 comprising a first pointer that points to a location where
operation , re - writing the portion of the data in the a free portion of the ring buffer in the system memory
first portion of the ring buffer in the memory that is begins , and a second pointer that points to a location
used for the operation to the active valid portion of where the free portion of the ring buffer in the system
the ring buffer in the memory , and moving the first memory ends ;
pointer in the ring buffer in the memory to include 40 invalidating the data in the first portion of the ring buffer
the re - written data in the active valid portion of the in the system memory by marking the first portion of
ring buffer in the memory , if the portion of the data the ring buffer in the system memory as free , but where
in the first portion of the ring buffer in the memory the data in the first portion of the ring buffer in the
that is used for the operation does not meet the system memory is not yet overwritten , wherein invali
threshold with respect to the data in the free portion 45 dating the data in the first portion of the ring buffer in
of the ring buffer in memory that would be revali the system memory by marking the first portion of the
dated but not used for the operation by moving the ring buffer in the system memory as free comprises
second pointer . moving the second pointer past the first portion of the

7 . The physical computer readable device of claim 6 , ring buffer in the system memory to include the first
wherein the second pointer is moved based on the threshold 50 portion of the ring buffer in the system memory in the
being determined based on a determination of the position of free portion of the ring buffer in the system memory ;
the first portion of the ring buffer in the memory with respect determining to reuse a portion of the data in the first
to other portions of free memory in the ring buffer in the portion of the ring buffer in the system memory for an
memory . operation after the data in the first portion of the ring

8 . The physical computer readable device of claim 6 , 55 buffer in the system memory has been invalidated by
wherein the second pointer is moved based on the threshold the first portion of the ring buffer in the system memory
being determined based on a determination of an amount of being marked as free ;
data in other portions of free memory in the ring buffer in the determining , based on the position of the first portion of
memory that will be revalidated as a result of moving the the ring buffer in the system memory in the free portion
se second pointer . of the ring buffer in the system memory , including a

9 . The physical computer readable device of claim 6 , determination of how much of the data in the first
wherein copying the portion of the data in the first portion portion of the ring buffer in the system memory will be
of the ring buffer in the memory that is used for the used for the operation and will be revalidated by
operation , re - writing the portion of the data in the first moving the second pointer to include the first portion of
portion the ring buffer in the memory that is used for the 65 the ring buffer in the system memory to an active valid
operation to the active valid portion of the ring buffer in the portion of the ring buffer in the system memory com
memory , and moving the first pointer in the ring buffer in the pared to how much data in the free portion of the ring

US 9 , 898 , 398 B2
15

buffer in the system memory will not be used for the respect to the data in the free portion that would be
operation but will be revalidated by moving the second revalidated but not used for the operation by moving
pointer , an action to perform ; and the second pointer .

performing the action wherein the determined action is performing the action , wherein the determined action is 12 . The system of claim 11 , wherein the second pointer is
selected from the group comprising : 5 moved based on the threshold being determined based on a

determination of the position of the first portion of the ring moving the second pointer to revalidate the data in the buffer in the system memory with respect to other portions
first portion of the ring buffer in the system memory of free system memory in the ring buffer in the system
to include the first portion of the ring buffer in the memory .
system memory in the active valid portion of the ring 10 . 13 . The system of claim 11 , wherein the second pointer is
buffer in the system memory , if the portion of the moved based on the threshold being determined based on a
data in the first portion of the ring buffer in the determination of an amount of data in other portions of free
system memory that is used for the operation meets memory in the ring buffer in the system memory that will be
a threshold with respect to the data in the free portion revalidated as a result of moving the second pointer .
that would be revalidated but not used for the opera - 15 14 . The system of claim 11 , wherein copying the portion
tion by moving the second pointer ; and of the data in the first portion of the ring buffer in the system

copying the portion of the data in the first portion of the memory that is used for the operation , re - writing the portion
ring buffer in the system memory that is used for the of the data in the first portion the ring buffer in the system
operation , re - writing the portion of the data in the memory that is used for the operation to the active valid
first portion of the ring buffer in the system memory 20 portion of the ring buffer in the system memory , and moving

the first pointer in the ring buffer in the system memory to that is used for the operation to the active valid
portion of the ring buffer in the system memory , and include the re - written data in the active valid portion of the
moving the first pointer in the ring buffer in the ring buffer in the system memory is based on the threshold

being determined based on a determination of the position of system memory to include the re - written data in the
active valid portion of the ring buffer in the system 25 the first portion of the ring buffer in the system memory with
memory , if the portion of the data in the first portion respect to other portions of free memory in the ring buffer in
of the ring buffer in the system memory that is used the system memory .
for the operation does not meet the threshold with * * * * *

