
THI NA MADINI DI MI TU HI NA UNITATE 
US009875181B2 

( 12 ) United States Patent 
Wee et al . 

( 10 ) Patent No . : US 9 , 875 , 181 B2 
( 45 ) Date of Patent : Jan . 23 , 2018 

( 54 ) METHOD AND SYSTEM FOR PROCESSING 
MEMORY 

( 56 ) References Cited 
U . S . PATENT DOCUMENTS 

( 71 ) Applicants : Fingram Co . , Ltd . , Suwon ( KR ) ; 
QURAM Co . , Ltd . , Suwon ( KR ) 6 , 066 , 181 A * 

6 , 081 , 665 A * 
5 / 2000 DeMaster . . . . . . . . . . . . . . . . . G06F 8 / 30 

717 / 108 
6 / 2000 Nilsen . . . . . . . . . . . . . . . . . . GO6F 9 / 45504 

711 / E12 . 011 
( Continued ) 

( 72 ) Inventors : Young Cheul Wee , Suwon ( KR ) ; 
Seong Jin Yang , Gwangju ( KR ) 

( 73 ) Assignees : FINGRAM CO . , LTD , Seoul ( KR ) ; 
QURAM CO . , LTD . , Seoul ( KR ) 

OTHER PUBLICATIONS 

( * ) Notice : Subject to any disclaimer , the term of this 
patent is extended or adjusted under 35 
U . S . C . 154 ( b ) by 0 days . 

NativeCtx , The Android Open Source Project , 2015 , [ Retrieved on 
Sep . 27 , 2016 ] . Retrieved from the internet : < URL : http : / / atetric . 
com / atetric / javadoc / org . robolectric / android - al1 / 6 . 0 . 0 _ r1 
robolectric - 0 / src - html / android / media / ImageWriter . html > 14 Pages 
( 1 - 14 ) . * 

( Continued ) ( 21 ) Appl . No . : 14 / 802 , 432 
( 22 ) Filed : Jul . 17 , 2015 Primary Examiner — Thuy Dao 

Assistant Examiner — Anibal Rivera 
( 74 ) Attorney , Agent , or Firm — Knobbe Martens Olson 
& Bear LLP 

( 65 ) Prior Publication Data 
US 2016 / 0019031 A1 Jan . 21 , 2016 

( 30 ) Foreign Application Priority Data 

Jul . 18 , 2014 ( KR ) . . . . . . . . . . . . . . . . . . . . . . 10 - 2014 - 0090781 
( 51 ) Int . CI . 

GO6F 9 / 44 ( 2006 . 01 ) 
G06F 9 / 45 ( 2006 . 01 ) 

( Continued ) 
( 52 ) U . S . CI . 

CPC . . . . . G06F 12 / 0253 ( 2013 . 01 ) ; G06F 12 / 0269 
( 2013 . 01 ) ; G06F 12 / 0276 ( 2013 . 01 ) ; 

( Continued ) 
( 58 ) Field of Classification Search 

CPC . . . . . . GO6F 9 / 45504 ; G06F 9 / 443 ; G06F 9 / 445 ; 
G06F 9 / 541 ; G06F 11 / 073 ; 

( Continued ) 

( 57 ) ABSTRACT 
A method and system for memory management is disclosed . 
The disclosed method and system can prevent performance 
degradation due to automatic garbage collection associated 
with memory allocation for image processing . An image 
processing program includes two program modules . The 
first program modules is composed with a first language 
supporting a garbage collection feature but does not have a 
direct memory access which may trigger the garbage col 
lection feature . The second program module is composed 
with a second language lacking the garbage collection 
feature . The image processing program delegates memory 
allocation for image processing to the second program 
module to prevent unnecessary activation of the garbage 
collection feature . 

9 Claims , 5 Drawing Sheets 

110 t . 

| 1st Module 

D REQUEST FOR MEMORY 
ALLOCATION 

( S210 ) 
120 

2nd Module 

RETURN int 
REFERENCE DATA 
( S240 ) 

6 ) REQUEST DATA D TO BE 
WRITTEN IN M BY 
TRANSFERRING int 
REFERENCE DATA ( S250 ) 

2 ALLOCATE TARGET MEMORY PORTION M 
( S220 ) 

6 TRANSFORM int REFERENCE 
DATA INTO POINTER ( S260 ) 

WRITE O IN M ( $ 270 ) © TRANSFORM REFERENCE 
DATA INDICATING M INTO int 
( S230 ) 



US 9 , 875 , 181 B2 
Page 2 

( 51 ) Int . CI . 
GOOF 12 / 02 ( 2006 . 01 ) 
G06F 9 / 455 ( 2006 . 01 ) 
G06F 9 / 48 ( 2006 . 01 ) 

( 52 ) U . S . CI . 
CPC . . . . . . . G06F 8 / 4441 ( 2013 . 01 ) ; G06F 9 / 45504 

( 2013 . 01 ) ; G06F 9 / 4856 ( 2013 . 01 ) ; G06F 
2212 / 1044 ( 2013 . 01 ) 

( 58 ) Field of Classification Search 
CPC . . . . . . . . . . . . . . . . . G06F 12 / 0276 ; G06F 12 / 0269 ; G06F 

12 / 0253 ; G06F 8 / 31 ; G06F 8 / 51 ; G06F 
8 / 4441 ; G06F 8 / 4442 ; G06F 9 / 45508 ; 
GO6F 9 / 45516 ; G06F 9 / 5016 ; G06F 

9 / 4443 ; G06F 11 / 3471 ; G06F 11 / 3612 ; 
GO6F 9 / 4856 ; G06F 9 / 5022 ; G06F 9 / 466 ; 
G06F 9 / 4552 ; G06F 9 / 30003 ; G06F 9 / 44 ; 

G06F 11 / 73 ; G06F 11 / 0751 ; G06F 
11 / 3624 ; G06F 11 / 3409 ; G06F 12 / 023 ; 

GO6F 8 / 30 ; G06F 8 / 437 
See application file for complete search history . 

. . . . . . . . . . . . . . . 

( 56 ) References Cited 
U . S . PATENT DOCUMENTS 

2005 / 0289307 A1 * 12 / 2005 Achanta . . . . . . . . . . . . . . GO6F 11 / 3409 
711 / 159 

2005 / 0289315 Al * 12 / 2005 Achanta . . . . . . . . . . . . . GO6F 12 / 0269 
711 / 170 

2006 / 0190934 Al * 8 / 2006 Kielstra . . . . . . . . . . . . . GO6F 9 / 45516 
717 / 148 

2006 / 0212657 A1 * 9 / 2006 Tuel . . . . . . . . . . G06F 12 / 0276 
711 / 133 

2007 / 0136719 A1 * 6 / 2007 Lagergren . . . . . . . . . . . . GO6F 8 / 4441 
717 / 140 

2007 / 0192818 A1 * 8 / 2007 Bourges 
Sevenier . . . . . . . . . . . . . HO4L 12 / 2803 

725 / 132 
2007 / 0288538 A1 * 12 / 2007 Bacon . G06F 12 / 0269 
2007 / 0294679 Al * 12 / 2007 Bobrovsky . . . . . . . . . GO6F 9 / 45516 

717 / 146 
2009 / 0006506 A1 * 1 / 2009 DiFlora . . . . . . . . . . . . . . . G06F 12 / 0269 
2009 / 0276431 A1 * 11 / 2009 Lind . . . . . . . . . . . . . . . . . . GOOF 9 / 466 
2009 / 0296685 A1 * 12 / 2009 O ' Shea . . . . . . . . . . . . . . . . . . . H04L 69 / 32 

370 / 351 
2010 / 0287352 A1 * 11 / 2010 Chapman . . . . . . . . . . . G06F 12 / 0269 

711 / 170 
2011 / 0041137 A1 * 2 / 2011 Carmody . . . . . . G06F 9 / 30003 

718 / 107 
2011 / 0107050 A1 * 5 / 2011 Vengerov . . . . . . . . . . . . G06F 12 / 0269 

711 / 170 
2011 / 0185129 A1 * 7 / 2011 Landau . . . . . . . . . . . . . . . G06F 12 / 0253 

711 / 147 
2011 / 0264713 A1 * 10 / 2011 Ylonen . . . . . . . . . . . . . . . . G06F 12 / 0269 

707 / 818 
2011 / 0320682 Al * 12 / 2011 McDougall . . . . . . . . . . . GO6F 12 / 023 

711 / 6 
2012 / 0167066 Al * 6 / 2012 Hawblitzel . . . . . . . . . GO6F 11 / 3624 

717 / 146 
2012 / 0216015 A1 * 8 / 2012 Mitra . . . . . . . . . . . . . . . . . . . GO6F 9 / 4552 

712 / 28 
2012 / 0271866 Al * 10 / 2012 Lucco . . . . . . . . . . . . G06F 12 / 0253 

707 / 819 
2013 / 0325912 Al * 12 / 2013 Corrie . . . . . . . . . . . . . G06F 12 / 0253 

707 / 813 
2014 / 0032205 A1 * 1 / 2014 Yaffe . . . . . . . . G06F 8 / 31 

703 / 26 
2014 / 0040860 Al * 2 / 2014 Darcy . . . . . . . . . . . GO6F 8 / 437 

717 / 114 
2015 / 0227414 A1 * 8 / 2015 Varma . . . . . . . . . . . . . . . . . . . GO6F 11 / 073 

714 / 47 . 1 
2015 / 0234693 A1 * 8 / 2015 Palframan . . . . . . . . . . GO6F 11 / 0751 

714 / 37 
2015 / 0268989 A1 * 9 / 2015 Busch . . . . . . . . . . . . . . . . . . . GO6F 9 / 4856 

711 / 103 
2015 / 0286511 Al * 10 / 2015 Mickens . . . . . . . . . . . . . . . GO6F 9 / 4856 

719 / 320 

. . . . . . . . 

6 , 289 , 506 B1 * 9 / 2001 Kwong . . . . . . . . . . . . . . . GO6F 9 / 45516 
717 / 148 

6 , 484 , 188 B1 * 11 / 2002 Kwong 1 / 2002 Kwong . . . . . . . . . . . . . . . . . . . G06F 9 / 443 
6 , 662 , 362 B1 * 12 / 2003 Arora G06F 8 / 4441 

714 / E11 . 209 
6 , 684 , 393 B1 * 1 / 2004 Loen . . . G06F 9 / 45516 

707 / 999 . 202 
6 , 701 , 520 B1 * 3 / 2004 Santosuosso . . . . . G06F 8 / 4441 

707 / 999 . 202 
6 , 763 , 440 B1 * 7 / 2004 Traversat . . . . . . . . . . GOOF 12 / 0276 

707 / 999 . 202 
6 , 823 , 523 B1 * 11 / 2004 Campbell . . . . . . . . G06F 9 / 4443 

345 / 619 
7 , 230 , 562 B1 * 6 / 2007 Provis G08C 17 / 02 

341 / 173 
7 , 263 , 700 B1 * 8 / 2007 Bacon . . . . . . . . . . . . GO6F 9 / 445 

707 / 999 . 202 
7 , 436 , 345 B1 * 10 / 2008 Provis . . . . . . . . . . . . . . . . . GO6F 9 / 45508 

340 / 12 . 22 
7 , 496 , 897 B1 * 2 / 2009 Dibble . . . . . . . . . . . . . . . GO6F 9 / 45504 

714 / 39 
7 , 552 , 153 B2 * 6 / 2009 Dostert . . G06F 9 / 45504 
8 , 127 , 280 B2 * 2 / 2012 Thomas . . . . . . . . . . . . . . GO6F 8 / 4442 

717 / 136 
8 , 375 , 373 B2 * 2 / 2013 Sollich . . . GO6F 9 / 44 

717 / 143 
8 , 943 , 260 B2 * 1 / 2015 Ben - Yehuda . . . . . . . . . G06F 9 / 5022 

711 / 170 
9 , 176 , 718 B2 * 11 / 2015 Yaffe . . . . . . . GO6F 8 / 51 

2002 / 0056019 A1 * 5 / 2002 Kolodner . . . . . . . . . . . . . . G06F 9 / 5016 
711 / 6 

2002 / 0095556 A1 * 7 / 2002 Kubooka . . . . . . . . . . . . . . . G06F 9 / 445 
711 / 154 

2002 / 0194421 Al * 12 / 2002 Berry . . . . . . . . . . . . . . . . . . . GIIC 29 / 812 
711 / 1 

2003 / 0005027 A1 * 1 / 2003 Borman . . . . . . . G06F 9 / 445 
718 / 104 

2004 / 0015920 Al * 1 / 2004 Schmidt G06F 9 / 443 
717 / 153 

2005 / 0044540 A1 * 2 / 2005 Savov . . . . . . . . . . . . . . . G06F 9 / 541 
717 / 166 

OTHER PUBLICATIONS 

Miaobo Chen et al . , JAVA JNI Vridge : A Framework for Mixed 
Native ISA Execution , 2006 , [ Retrieved on Aug . 29 , 2017 ] . 
Retrieved from the internet : < URL : http : / / ieeexplore . ieee . org 
stamp stamp . jsp ? arnumber = 1611530 > 11 Pages ( 1 - 11 ) . * 
David F . Bacon et al . , A Real - time Garbage Collector with Low 
Overhead and Consistent Utilization , Jan . 15 - 17 , 2013 , [ Retrieved 
on Aug . 29 , 2017 ] . Retrieved from the internet : < URL : http : / / 
delivery . acm . org / 10 . 1145 / 610000 / 604155 / p285 - bacon . pdf > 14 
Pages ( 285 - 298 ) . * 

* cited by examiner 



atent Jan . 23 , 2018 Sheet 1 of 5 US 9 , 875 , 181 B2 

Fig . 1 

200 100 
even moment promene umetnost pasen were even mouvements maneres moment where mume wawe mwany 

I 2104 1st Code Part h 110 
2201 

* 1 st Module 
( JAVA ) 

2nd Code Part 
li 11 2nd Module 

1 l 120 
( C ) 

L - ewwe - we med L - - ~ - ~ 



U . S . Patent Jan . 23 , 2018 Sheet 2 of 5 US 9 , 875 , 181 B2 

Fig . 2 

110 

1 st Module 

3 RETURN REFERENCE 
DATA INDICATING M 

O REQUEST FOR 
MEMORY ALLOCATION 

( S110 ) 
120 

2nd Module 

REQUEST DATA D TO BE 
WRITTEN IN M BY TRANSFERRING 
REFERENCE DATA 

© WRITE O IN M ( S150 ) ( 2 ALLOCATE TARGET MEMORY 
PORTION M ( S120 ) 



U . S . Patent Jan . 23 , 2018 Sheet 3 of 5 US 9 , 875 , 181 B2 

Fig . 3 

110 
1 st Module 

O REQUEST FOR MEMORY 
ALLOCATION 

( S210 ) 
120 

2nd Module 

RETURN int 
REFERENCE DATA 
( S240 ) 

6 ) REQUEST DATA D TO BE 
WRITTEN IN M BY 
TRANSFERRING int 
REFERENCE DATA ( S250 ) 

ALLOCATE TARGET MEMORY PORTION M 
( S220 ) 

TRANSFORM int REFERENCE 
DATA INTO POINTER ( S260 ) 

WRITE O IN M ( S270 ) * TRANSFORM REFERENCE 
DATA INDICATING M INTO int 
( 8230 ) 



U . S . Patent Jan . 23 , 2018 Sheet 4 of 5 US 9 , 875 , 181 B2 

Fig . 4a 

int [ ] native Handle - new int [ 1 ] ; Il Declare variable in which reference data will be saved ( C11 ) 
ret = Native GL . AllocateNativeBuffer ( nativeHandle , size ) ; / / Call for native code ( C12 ) 

Fig . 4b 
JNIEXPORT void JNICALL 1 / Java Native Interface 
Java _ com _ Native GL _ AllocateNativeBuffer 

INIEnyt env , 
jobject thiz , 
JintArray nativeHandleArray , * * Java int array variable in which int - transformed 

memory pointer will be saved * | 
jint size ) 
void * 
int * 

ptr = NULL ; / / Pointer - type variable in which reference data will be saved 
poutputBufferArray = NULL ; 

/ / Transform Java int array into C int array 
pOutputBufferArray = ( * env ) - > GetintArrayElements ( env , native HandleArray , NULL ) ; 

/ / Allocate memory ( C21 ) 
ptr = malloc ( size ) ; 

/ / After memory pointer prt is transformed into integer , 
/ / ptr is saved in int array 
/ / ( where ptr is transferred by changing Oth value of Java - side int array ) ( C22 ) 
pOutputBufferArray [ 0 ] = ( int ) ptr ; 

/ / Release resource allocated to use Java int array 
( * env ) - > ReleaseIntArrayElements ( env , native HandleArray , poutputBufferArray , 0 ) ; 

return ; 

Fig . 40 
public void texUpload ! 

BasicTexture texture , 
int Offset , int yOffset , 
int nativeHandle , 
int format , int type ) 

int target = texture . getTarget ( ) ; / / Bring data to be uploaded ( C31 ) 

/ / Call for native code ( C32 ) 
NativeGL . giTexUploadToNativeBuffers 

target , 0 , xOffset , yoffset , 
texture . getWidth ( ) , texture . getHeight ) , 
format , type , nativeHandle ) ; 



U . S . Patent Jan . 23 , 2018 Sheet 5 of 5 US 9 , 875 , 181 B2 

Fig . 40 
/ / Java Native Interface JNIEXPORT void JNICALL 

Java _ com _ nativeGL _ NativeGL _ giTexUploadToNativeBuffer 
JNIEnv * env , jobject thiz , 
jint target , jint level , 
jint xOffset , jint yOffset , 
jint width , jint height , 
jint format , jint type , 
jint nativeHandle ) 

/ / Transform int value brought from Java side into memory pointer ( 041 ) 
void * ptr - ( void * ) nativeHandle ; 

/ / Texture upload function provided by OpenGL ( C42 ) 
glTexSubImage2DC 

target , level , xOffset , yOffset , 
width , height , 
format , type , ptr ) ; 



US 9 , 875 , 181 B2 

METHOD AND SYSTEM FOR PROCESSING 
MEMORY 

garbage collection that occurs in the JAVA environment , the 
ease and convenience of coding achievable by an advanced 
programming language , such as JAVA , must be abandoned . 

CROSS - REFERENCE TO RELATED 
APPLICATIONS BRIEF SUMMARY 

This application claims priority to and the benefit of Various aspects of the present invention provide a system 
Korean Patent Application No . 10 - 2014 - 0090781 filed in the and method able to improve performance by preventing 
Korean Intellectual Property Office on Jul . 18 . 2014 , the garbage collection in an allocated memory portion while 
entire contents of which are incorporated herein by refer - 10 executing dynamic memory allocation using an application 
ence . written in a programming language that carries out auto 

matic memory management through garbage collection . 
BACKGROUND Also provided a system and method able to prevent 

garbage collection in a dynamically created buffer that is 
Field of the Invention 15 necessary for image processing , such that an image can be 

rapidly rendered . 
The present disclosure relates to a memory management According to an aspect of the present invention a method 

method and system . More particularly , a memory manage for managing memory is provided . For example , for 
ment method and system according to a certain embodiment memory management of image processing , a computing 
of the invention relates to preventing performance degrada - 20 system can execute / utilize at least two programs ( program 
tion in image processing due to garbage collection . modules ) . A first one of the programs is composed with 

( based on a first program language which provides auto 
Description of Related Art matic garbage collection feature on a dynamic memory for 

image processing . To prevent performance degradation due 
Garbage collection ( GC ) , a form of memory management , 25 to undesirable activation of the garbage collection feature 

refers to a function of automatically releasing a memory area associated with the first program language , the computing 
occupied by an object that is no longer in use from memory system may deactivate the garbage collection feature ( asso 
areas dynamically allocated by a program . The object that is ciated with memory allocation ) while utilizing the first 
no longer in use refers to the object unreachable by any module or may exclude execution of a program ( module ) 
variable . 30 that will activate the garbage collection feature . For memory 

In programming environments in which garbage collec - management required for the image processing , the com 
tion is supported , programmers are freed from manually puting system execute / utilize a second program ( module ) 
dealing with the entirety of dynamically - allocated memory composed with ( based on ) a second program language that 
areas . It is possible to advantageously prevent dangling does not support the automatic garbage collection feature . 
pointer bugs , double free bugs , memory leaks , and the like . 35 The second program handles allocation / access of memory 
However , it may be relatively expensive to determine which for the image processing while not activating / requesting 
memory to release . That is , even in a situation in which a automatic garbage collection feature . The computing system 
programmer is aware of a point in time at which an allocated utilizes combination of the first and second program mod 
area of memory will be no longer needed , a garbage col - ules based on different program languages and may delegate 
lection algorithm is required to track a point in time at which 40 memory handling only to a program module which is not 
the memory area will be released . This operation requires a associated with automatic garbage collection feature . The 
significant amount of overhead . first program module is configured to , when executed by the 

In particular , in graphic processing that requires fast rates , computer system , call for the second program module for 
the overhead of garbage collection degrades performance , memory allocation / access cause the first program module 
making the problem more serious . For example , in a graphic 45 may not access memory for image processing and can only 
application written in JAVA , a language supporting garbage access memory indirectly via the second memory program 
collection , operations of saving a raw image to be drawn in module . As discussed above , an image processing program 
a memory and transmitting the raw image to a graphic executable at a computer system may be a combination of a 
apparatus are undertaken in order to draw an image . In first program module that is composed with a first language 
general , a JAVA array or array - type objects ( buffers , arrays , 50 supporting a garbage collection feature but does not have a 
or the like ) are used in order to use a memory . In particular , ( direct ) memory access necessarily triggering the garbage 
it is possible to only use a direct buffer generated through collection feature , and a second program module that is 
direct allocation in order to use graphic libraries ( GLS ) . composed with a second language lacking the garbage 
Android can use a bitmap , a dedicated image object . Con collection feature . The image processing program may limit 
sequently , a JAVA ( or Android ) graphic application must use 55 memory allocation for image processing only to program 
a direct buffer or a bitmap in order to save a raw image in modules which will not activate the garbage collection 
dynamic random access memory ( DRAM ) . However , when feature . The image processing program may limit memory 
JAVA manages and uses memory as in the case of the direct allocation by program module which will the garbage col 
buffer or the bitmap , since the memory management is lection feature during the memory allocation . 
automatically executed by JAVA , garbage collection may 60 According to an aspect of the present invention , a memory 
occur , thereby degrading rendering performance . In order to management method including : ( a ) requesting , at a first 
overcome this problem , memory pooling is used . However , module corresponding to codes written in a first program 
garbage collection may still occur before the first memory ming language , a second module corresponding to codes 
pool becomes full . In addition , a large amount of memory written in a second programming language for memory 
must be used in order to maintain the memory pool . 65 allocation ; and ( b ) allocating , at the second module , a target 

In addition , when an application or software is coded memory portion in response to the request for memory 
entirely in a native language in order to prevent automatic allocation , and returning reference data indicating the allo 



US 9 , 875 , 181 B2 

cated target memory portion to the first module . The first may write the data in the target memory portion indicated by 
programming language is a programming language that the reference data in response to the request to write the data 
carries out garbage collection in a case of memory alloca - by the first module . 
tion . The second programming language is a programming According to an embodiment , the second module may 
language that does not carry out garbage collection in the 5 allocate the target memory portion in response to the request 
case of memory allocation . for memory allocation , transforms a type of the reference According to an embodiment , the memory management data indicating the allocated target memory portion into an 
method may further include : ( c ) requesting , at the first integer type , and returns the reference data , the type of module , the second module to write data in the target which is transformed into the integer type , to the first memory portion indicated by the reference data by transfer - 10 module . The first module may request the second module to ring the reference data to the second module ; and ( d ) write the data in the target memory portion indicated by the writing , at the second module , the data in the target memory 
portion indicated by the reference data in response to the reference data by transferring the reference data , the type of 

which is transformed into the integer type , to the second request to write the data by the first module . 
According to an embodiment , the ( b ) operation may 15 15 module . In response to the request to write the data by the 

include : allocating , at the second module , the target memory first module , the second module may transform the type of 
portion in response to the request for memory allocation ; the reference data , which is transformed into the integer 
transforming a type of the reference data indicating the type , into a pointer type , and write the data in the target 
allocated target memory portion into an integer type ; and memory portion indicated by the reference data , the type of 
returning the reference data , the type of which is trans - 20 which is transformed into the pointer type . 
formed into the integer type , to the first module . According to an embodiment , the first programming 

According to an embodiment , the ( c ) operation may language may be JAVA , and the second programming lan 
include requesting , at the first module , the second module to guage may be a native language . The first module may 
write the data in the target memory portion indicated by the request the second module for memory allocation using a 
reference data by transferring the reference data , the type of 25 JNI . 
which is transformed into the integer type , to the second According to yet another aspect of the present invention , 
module . The ( d ) operation may include : transforming , at the a computer program stored in a recording medium includes : 
second module , the type of the reference data , which is a first code part written in a first programming language ; and 
transformed into the integer type , into a pointer type ; and a second code part written in a second programming lan 
writing the data in the target memory portion indicated by 30 guage . The first code part includes codes requesting the 
the reference data , the type of which is transformed into the second code part for memory allocation . The second code 
pointer type . part includes codes allocating a target memory portion in 

According to an embodiment , the first programming response to the request for memory allocation and returning 
language may be JAVA , and the second programming lan reference data indicating the allocated target memory por 
guage may be a native language . 35 tion . The first programming language is a programming 

According to an embodiment , the ( a ) operation may language that carries out garbage collection in a case of 
request the second module for memory allocation using a memory allocation . The second programming language is a 
JAVA Native Interface ( JNI ) . programming language that does not carry out garbage 

According to an embodiment , the data may be image data collection in the case of memory allocation . 
According to another aspect of the present invention , a 40 According to an embodiment , the first code part may 

computer readable writing medium has a program recorded further include codes requesting the second code part to 
therein , the program enabling the above - described method write data in the target memory portion indicated by the 
to be carried out . reference data by transferring the reference data to the 

According to further another aspect of the present inven second code part . The second code part may further include 
tion , a memory management system includes : a processor ; 45 codes writing the data in the target memory portion indicated 
and a memory storing a computer program that the processor by the reference data in response to the request to write the 
executes . The computer program enables the memory man data by the first code part . 
agement system to carry out the above - described method According to embodiments of the present invention , since 
when the computer program is executed by the processor . memory - related events ( e . g . memory allocation and de 

According to still another aspect of the present invention , 50 allocation ) are carried out in a native language while the 
a memory management system includes : a first module other events are coded in a language that provides the ease 
corresponding to codes written in a first programming of coding , such as JAVA , it is possible to prevent undesirable 
language ; and a second module corresponding to codes garbage collection and resultant degradations in the perfor 
written in a second programming language . The first module mance of the entire system . When dynamic memory allo 
requests the second module for memory allocation . The 55 cation or memory de - allocation is carried out in the JAVA 
second module allocates a target memory portion in environment , garbage collection may occur , thereby causing 
response to the request for memory allocation and returns degradations in performance due to garbage collection over 
reference data indicating the allocated target memory por - head . In contrast , according to embodiments of the present 
tion to the first module . The first programming language is invention , dynamic memory allocation is carried out in the 
a programming language that carries out garbage collection 60 native environment instead of the JAVA environment , 
in a case of memory allocation . The second programming whereby undesirable garbage collection can be prevented 
language is a programming language that does not carry out from being carried out . 
garbage collection in the case of memory allocation . In particular , unnecessary garbage collection may affect 

According to an embodiment , the first module may the entire memory of the system , thereby degrading not only 
request the second module to write data in the target memory 65 the performance of software ( application ) that enabled the 
portion indicated by the reference data by transferring the garbage collection but also the performance of the entire 
reference data to the second module , and the second module system ( for example , the process or the like stands by until 



US 9 , 875 , 181 B2 

garbage collection is completed ) . Embodiments of the pres embodying the present invention , and the memory manage 
ent invention can advantageously prevent this problem . ment system 100 may include more components . 

In addition , since JAVA has limited process memory The memory management system 100 may have a hard 
areas , memory allocation is restricted even in the case in ware resource and / or a software resource in order to imple 
which the memory has a marginal space . In contrast , a 5 ment embodiments of the present invention , and does not 
certain embodiment of the present invention carries out necessarily indicate a single physical component or a single 
dynamic memory allocation in the native environment , such device . Specifically , the memory management system 100 

that , when a physical memory has a sufficient space , more may be implemented as a logical combination of hardware 
memory portions can be used . and / or software provided to implement embodiments of the 

In particular , according to embodiments of the present + 10 present invention , and if necessary , may be implemented as 
an assembly of logical components disposed at separate invention , it is possible to prevent garbage collection in a devices to perform their own individual functions in order to buffer necessary for image processing by allocating the implement embodiments of the present invention . In addi buffer in the native environment , whereby an image can be tion , the memory management system 100 may indicate an 

rapidly rendered . 15 assembly of components provided according to the functions 
or roles to implement embodiments of the present invention . BRIEF DESCRIPTION OF THE DRAWINGS Herein , the term “ module ” may refer to a functional 
and / or structural combination of hardware for implementing 

A brief description is given for the enhancement of embodiments of the present invention and software for 
understanding of the accompanying drawings , in which : 20 enabling the hardware to operate . For example , the module 

FIG . 1 is a block diagram illustrating a memory manage iting a memory manage - may indicate a logical unit of codes and hardware resources 
ment system according to an exemplary embodiment of the that execute the codes . It will be apparent to a person skilled 
present invention ; in the art to which the present invention relates that the 

FIG . 2 illustrates a memory management method carried module does not necessarily indicate either physically 
out by the memory management system according to the 25 connected codes or one type of hardware . 
exemplary embodiment of the present invention ; The first module 110 may correspond to a first code part 

FIG . 3 illustrates another memory management method 210 written in a first programming language , and the second 
carried out by the memory management system according to module 120 may correspond to a second code part 220 
the exemplary embodiment of the present invention ; and written in a second programming language . Herein , a spe 

FIG . 4A , FIG . 4B , FIG . 4C , and FIG . 4D illustrate JAVA 30 cific module corresponding to a specific code part may 
and C codes corresponding to the memory management indicate that the specific module ( e . g . the first module 110 ) 
system according to the exemplary embodiment of the includes the specific code part or a result produced by 
present invention illustrated in FIG . 3 . compiling the specific code part or that the specific module 

is implemented as a combination of the specific code part or 
DETAILED DESCRIPTION 35 the result produced by compiling the specific code part and 

hardware resources executing the specific code part or the 
The present invention has other advantages associated result . 

with the operation of the present invention and objects that The first code part 210 and the second code part 220 may 
may be realized by the practice of the present invention be included in program codes 200 constituting a single 
which will be apparent from , or are set forth in greater detail 40 application . The program codes 200 including the first code 
in the accompanying drawings , which are incorporated part 210 and the second code part 220 may be included in a 
herein , and in the following Detailed Description of the single file or a single project . 
Invention , which together serve to explain certain embodi The first programming language may be a programming 
ments of the present invention . language that executes garbage collection in allocated 

Herein , it will be understood that , when an element is 45 memory , and the second programming language may be a 
referred to as “ transmitting " data to another element , the programming language that does not execute garbage col 
element can not only directly transmit data to another lection . For example , the first programming language may 
element but also indirectly transmit data to another element be supposed to automatically execute when memory is 
via at least one intervening element . allocated by the first programming language , and the second 

In contrast , when an element is referred to as " directly 50 programming language may not be supposed to automati 
transmitting ” data to another element , the element can cally execute garbage collection in the case of memory 
transmit the data to another element without an intervening allocation . For example , the first programming language 
element . may be one selected from among , but not limited to , JAVA , 

Embodiments of the present invention will now be SMALLTALK , RUBY , PYTHON , HYPERTEXT PREPRO 
described more fully hereinafter with reference to the 55 CESSOR ( PHP ) , JAVASCRIPT , BASIC , and the like . The 
accompanying drawings , in which exemplary embodiments second programming language may be one selected from 
thereof are shown . Reference should be made to the draw among , but not limited to , C , C + + , DELPHI , and the like . In 
ings , in which the same reference numerals and signs are some embodiments , the second programming language may 
used throughout the different drawings to designate the same be referred to as a native language . The native language 
or similar components . 60 indicates a language in which codes that run in a computer ' s 

FIG . 1 is a block diagram illustrating a memory manage - machine language or that are directly compiled by an 
ment system 100 according to an exemplary embodiment of operating system ( OS ) can be written . For example , the 
the present invention . native language may be C . 

Referring to FIG . 1 , the memory management system 100 In the following description , the first programming lan 
includes a first module 110 and a second module 120 . In 65 guage will be regarded as JAVA and the second program 
some embodiments of the present invention , some of the ming language will be regarded as C , but this is not intended 
above - described components may not be necessary for to be limiting . It will be apparent to a person skilled in the 



US 9 , 875 , 181 B2 

art to which the invention belongs that embodiments of the Returning to FIG . 2 , at S140 , the first module 110 requests 
invention can be applied to other embodiments in which the the second module 120 to write data D in the target memory 
first programming language is a programming language that portion M by transferring the reference data to the second 
carries out garbage collection and the second programming module 120 . In the same manner as described above , the 
language is a programming language that does not carry out 5 data writing request may be in the form of function calls . 
garbage collection . Afterwards , at S150 , the second module 120 writes the data As described above , the first module 110 corresponding to bodule 110 corresponding to in the target m in the target memory portion M indicated by the reference codes written in the first programming language ( i . e . JAVA ) data , in response to the data writing request . can operate in the JAVA environment . The second module FIG . 3 illustrates another memory management method 120 corresponding to codes written in the second program - 10 carried out by the first module 110 and the second module ming language ( i . e . C ) can operate in the native environ 120 according to the present embodiment . In the description 
ment . of FIG . 3 , detailed descriptions of some features will be FIG . 2 illustrates a memory management method carried 
out by the first module 110 and the second module 120 omitted in the case in which they are identical to those 

described above . according to the present embodiment . 
Referring to FIG . 2 , at S110 , the first module 110 requests Referring to FIG . 3 , at S210 , the first module 110 requests 

the second module 120 for memory allocation . In an the second module 120 for memory allocation . 
embodiment , the first module 110 may call for a function or At S220 , the second module 120 allocates a target 
a method included in the second module 120 when attempt memory portion M in response to the memory allocation 
ing the memory allocation request . The first module 110 can 20 request . 
transfer data regarding the size of a memory to be allocated Reference data regarding the memory allocated by the 
to the second module 120 . For example , the first module 110 second module may be a pointer indicating a memory 
can send a parameter indicating the size of the memory to be address . This is not a type of data that can be directly 
allocated when calling for the function included in the managed in the JAVA environment . Thus , the second module 
second module 120 . 25 120 transforms the reference data indicating the target 
At S120 , the second module 120 allocates a target memory portion M into integer - type ( int type ) data at S230 , 

memory portion M in response to the memory allocation and returns the integer - type reference data to the first module 
request by the first module 110 . Subsequently , at S130 , the 110 at S240 . 
second module 120 returns reference data indicating the As such , the second module 120 enables the first module 
allocated target memory portion M to the first module 110 . 30 110 to save or manage the reference data by transforming the 
The reference data may be an address value ( point ) of a pointer - type reference data into the integer - type reference 
memory space , but this is not intended to be limiting . The data that can be processed in the JAVA environment and 
reference data may indicate data allowing access to the returning the integer - type reference data to the first module 
allocated memory portion . 110 . 

In an embodiment in which the first code part 210 35 After that , at S250 , the first module 110 requests the 
corresponding to the first module 110 is written in JAVA and second module 120 to write data D in the target memory 
the second code part 220 corresponding to the second portion M indicated by the reference data by transferring the 
module 120 is written in C , the first module 110 can request integer - type reference data to the second module 120 . 
the second module 120 for memory allocation using a JAVA Subsequently , the second module 120 transfers the inte 
native interface ( hereinafter referred to as a “ JNI " ) . The JNI 40 ger - type reference data into pointer - type reference data at 
is a programming framework that enables a JAVA code S260 , and writes the data D in the target memory portion M 
running in a JAVA virtual machine ( JVM ) to call and be indicated by the pointer - type reference data . 
called by native application programs ( more particularly , FIG . 4A , FIG . 4B , FIG . 4C , and FIG . 4D illustrate JAVA 
application programs specific to hardware and OS plat - and C codes corresponding to the first module 110 and the 
forms ) and libraries written in a native language , such as C , 45 second module 120 according to the present embodiment 
C + + , or assembly language . illustrated in FIG . 3 . Specifically , FIG . 4A and FIG . 4C 
As such , a certain embodiment of the present invention illustrate JAVA codes corresponding to the first module 110 

enables dynamic memory allocation to be carried out in the ( i . e . codes included in the first code part 210 ) . FIG . 4B and 
native environment instead of being directly carried out in FIG . 4D illustrate C codes corresponding to the second 
the JAVA environment in which garbage collection in a 50 module 120 ( i . e . codes included in the second code part 
dynamic memory may occur . 220 ) . 
When dynamic memory allocation or memory de - alloca Referring to FIG . 4A , in C11 , the first code part 210 

tion is directly carried out in the JAVA environment , garbage declares an integer - type variable in which reference data 
collection may occur , so degradations in performance may will be saved . Since JAVA uses call - by - value semantics by 
occur due to garbage collection overhead . In contrast , 55 default , an array of integers is used such that the reference 
according to embodiments of the present invention as can be accepted as a function argument . In C12 , in order to 
described above , dynamic memory allocation is carried out request memory allocation , the first code part 210 calls for 
in the native environment instead of the JAVA environment , a function AllocateNativeBuffer ( declared to the second 
thereby preventing potential garbage collection . code part . 

In addition , in the JAVA environment , there is a problem 60 FIG . 4B illustrates the AllocateNativeBuffer ( ) function 
that dynamic memory allocation may not be enabled even if included in the second code part 220 and called by the first 
a heap area , or a pool of a dynamic memory , has a remaining code part 210 . Referring to FIG . 4B , in C21 , the Allocat 
memory space . In contrast , according to embodiments of the NativeBuffer ( ) function allocates a target memory portion . 
present invention , dynamic memory allocation is always Here , reference data indicating the target memory portion is 
enabled if a sufficient memory space remains in the heap 65 saved in a pointer - type variable ptr . 
area , since dynamic memory allocation is carried out in the In C22 , the AllocateNativeBuffer ( ) function transforms 
native environment . the memory pointer ptr into an integer type and subsequently 



US 9 , 875 , 181 B2 
10 

saves the ptr in the array of integers ( where the ptr is puter readable recording medium includes all sorts of 
transferred by changing the oth value of the JAVA - side int recording devices that store data readable by a computer 
array ) . system . 

FIG . 4C illustrates a function texUpload executing a The program commands recorded in the recording 
writing request to upload an image texture to an allocated 5 me 5 medium may be specially designed and constructed for the target memory portion . Specifically , in C31 , the present invention , or may be well - known to and used by a texUpload ( ) function acquires image texture data to be 
uploaded to the target memory portion . In C32 , the texU person skilled in the art related to software . 
pload ( ) function calls for a function Native GL _ gl Tex Examples of the computer readable recording medium 
Upload To Native Buffer ( ) declared to the second code part may include , but not limited to , magnetic media , such as a 
220 by transferring the integer - type reference data to the hard disk , a floppy disk and a magnetic tape ; optical media , 
second module 120 in order to request the uploading data to such as compact disc read - only memory ( CD - ROM ) and a 
be written in the target memory portion indicated by the digital versatile disc ( DVD ) ; magneto - optical media , such as 
reference data . a disk ; a read - only memory ( ROM ) ; and other hardware 

FIG . 4D illustrates a function Native GL gl Tex Upload devices specially constructed to store and execute program To Native Buffer ( ) that is included in the second code part 15 
220 and is called by the first code part 210 . Referring to FIG . commands , such as read - only memory ( ROM ) , random 
4D , in C41 , the Native GL _ gl Tex Upload To Native access memory ( RAM ) and flash memory . The computer 
Buffer ( ) function transforms the integer - type reference data readable recording medium may also be in the form of light 
brought from the JAVA side into a memory pointer type . In or a carrier wave that conveys signals specifying program 
C42 . the Native GL gl Tex Upload To Native Buffer ( ) 20 commands , data structures , or the like , or a transmission 
function calls for a function glTexSubImage2D provided medium , such as a metal wire or a waveguide . In addition , 
by graphic libraries in order to upload the data to the target the computer readable recording medium may be distributed 
memory portion indicated by the pointer - type reference to computer systems on the network , in which computer 
data . readable codes are stored and executed in a decentralized 

In some embodiments , the data may be image data , in 25 fashion . 
which case the first module 110 and the second module 120 Examples of the program commands include not only 
can be included in an application or a system displaying an machine languages generated by compilers , but also 
image . In this case , most functions for processing the image advanced languages that may be executed by an information 
are processed by the first module 110 corresponding to the processing device , for example , a computer , that electroni 
codes written in JAVA that can be relatively easily embod - 30 cally processes information using an interpreter . 
ied , and only some functions for allocating a memory The hardware devices described above may be con 
portion and writing ( uploading ) the image ( texture ) in ( to ) structed such that they can operate as one or more software 
the allocated memory portion can be processed by the modules for performing the operations of the present inven 
second module 120 corresponding to the native codes . For tion , and vice versa . 
example , the first module 110 can decode an image to be 35 While the present invention has been illustrated and 
displayed , and can request the second module 120 for described with reference to the certain exemplary embodi 
memory allocation in order to create a buffer in the native ments thereof , it will be understood by those skilled in the 
environment , in which the decoded image will be saved in art that various changes in form and details may be made 
the buffer . In addition , the first module 110 can request the therein without departing from the spirit and scope of the 
second module 120 to upload the image to be decoded to the 40 invention as defined by the appended claims . Therefore , the 
allocated memory portion , and can display the uploaded foregoing embodiments should be understood as being illus 
image . trative but not limitative purposes . For example , some parts 

According to embodiments of the present invention as set described as being located in a single physical entity can be 
forth above , a buffer necessary for image processing is implemented as being distributed to a plurality of physical 
allocated to the native environment . This can consequently 45 devices . In the same fashion , some parts described as being 
prevent garbage collection in the generated buffer , such that distributed to a plurality of physical devices can be located 
an image can be rapidly rendered . in a single physical entity . 

In some implementations , the memory management sys The scope of the present invention is defined not by the 
tem 100 may include a processor and a memory that stores detailed description of the invention but by the appended 
programs that the processor executes . The processor may be 50 claims , and all differences within the scope will be construed 
implemented as a single - core central processing unit ( CPU ) as being included in the present invention . 
or a multi - core CPU . The memory be implemented as 
high - speed random access memory ( RAM ) ; or may be What is claimed is : 
implemented as nonvolatile memory , such as at least one 1 . A method of processing image data , the method com 
magnetic disk storage device , a flash memory device or 55 prising : 
other nonvolatile solid - state memory . Access to the memory providing computer - executable software comprising a 
by the processor or other components may be controlled by first module and a second module , the first module 
a memory controller . When the program is executed by the corresponding to codes written in a JAVA programming 
processor , it enables the memory management system 100 language , the second module corresponding to codes 
according to the present embodiment to execute the memory 60 written in a non - JAVA programming language ; 
management method as described above . wherein the JAVA programming language requires auto 

The memory management method according to the pres matic memory garbage collection when performing a 
ent invention can be embodied as computer readable pro memory allocation routine of the JAVA programming 
gram commands and can be stored in a computer readable language whereas the non - JAVA programming lan 
recording medium . In addition , a control program and a 65 guage does not require automatic memory garbage 
target program according to the present embodiment can be collection when performing a memory allocation rou 
stored in a computer readable recording medium . The com tine of the non - JAVA programming language ; 



12 

20 

US 9 , 875 , 181 B2 
11 

wherein the second module comprises a memory alloca 7 . A system comprising : 
tion routine that does not accompany memory garbage a processor ; and 
collection ; a memory storing a computer program that the processor 

wherein the first module comprises an image processing executes , 
routine of the JAVA programming language for pro - 5 wherein the computer program enables the system to 

carry out the method as claimed in claim 1 when the cessing image data in a memory allocated by the computer program is executed by the processor . 
memory allocation routine of the second module ; 8 . A computer program stored in a non - transitory record 

wherein the first module does not comprise the memory ing medium comprising : 
allocation routine of the JAVA programming language in a first code part written in a JAVA programming language 
and is configured to activate the memory allocation " and corresponding to a first module of computer 
routine of the second module for performing memory executable software ; and 
allocation without automatic memory garbage collec a second code part written in a non - JAVA programming 
tion ; and language and corresponding to a second module of 

executing computer - executable software in a computing computer - executable software , 
system such that the first module and the second wherein the JAVA programming language requires auto 
module are executed without automatic memory gar matic memory garbage collection when performing a 
bage collection when performing the memory alloca memory allocation routine of the JAVA programming 
tion routine of the second module . language whereas the non - JAVA programming lan 

2 . The method according to claim 1 , guage does not require automatic memory garbage 
wherein the second module is configured to , when collection when performing a memory allocation rou 

tine of the non - JAVA programming language , executed , return reference data identifying an allocated wherein the second module comprises a memory alloca memory ; 
wherein the first module is configured to , when executed , tion routine that does not accompany memory garbage 

cause the computing system to write image data in the 25 collection , 
allocated memory using the reference data . wherein the first module comprises an image processing 

3 . The method according to claim 2 , wherein the second routine of the JAVA programming language for pro 
module is further configured to return the reference data in cessing image data in a memory allocated by the 
an integer type . memory allocation routine of the second module , 

4 . The method according to claim 3 , wherein the first module does not comprise the memory 
wherein the first module is further configured to request allocation routine of the JAVA programming language 

the second module to write the image data in the and is configured to activate the memory allocation 
routine of the second module for performing memory allocated memory by transferring the reference data to 

the second module , and allocation without automatic memory garbage collec 
wherein the second module is further configured to trans - 35 tion such that the first module and the second module 

form the reference data into a pointer type and to write are executed without automatic memory garbage col 
the image data in the allocated memory using the lection when performing the memory allocation routine 
reference data into the pointer type . of the second module . 

5 . The method according to claim 1 , wherein the codes of 9 . The computer program according to claim 8 , wherein 
the first module uses a Java Native Interface ( JNI ) for 40 the or 20 the second code part comprises at least one command for 
activating the memory allocation routine of the second returning reference data identifying an allocated memory , 
module . wherein the first code part further comprises codes to 

6 . A non - transitory computer readable recording medium write image data in the allocated memory using the 

in which a program enabling the method as claimed in claim reference data . 

1 to be carried out is recorded . * * * * 

30 


