
THE NATIONAL UNTUK ORANITATE
US009852172B2

(12) United States Patent (10) Patent No . : US 9 , 852 , 172 B2
(45) Date of Patent : Dec . 26 , 2017 Dhakar

(56) References Cited (54) FACILITATING HANDLING OF CRASHES IN
CONCURRENT EXECUTION
ENVIRONMENTS OF SERVER SYSTEMS
WHILE PROCESSING USER QUERIES FOR
DATA RETRIEVAL

U . S . PATENT DOCUMENTS

(71) Applicant : Oracle International Corporation ,
Redwood Shores , CA (US)

6 , 112 , 304 A * 8 / 2000 Clawson G06F 9 / 4875
709 / 202

6 , 247 , 023 B1 * 6 / 2001 Hsiao GO6F 11 / 1474
6 , 738 , 928 B1 8 / 2004 Brown
7 , 191 , 364 B23 / 2007 Hudson et al .
7 , 739 , 553 B2 6 / 2010 Bendapudi et al .

(Continued) (72) Inventor : Ashok Kumar Dhakar , Bangalore (IN)
FOREIGN PATENT DOCUMENTS (73) Assignee : Oracle International Corporation ,

Redwood Shores , CA (US) CN 101719090 A
103678109 A

6 / 2010
3 / 2014

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 345 days .

OTHER PUBLICATIONS

(21) Appl . No . : 14 / 599 , 543

(22) Filed : Jan . 19 , 2015
(65) Prior Publication Data

US 2016 / 0078050 A1 Mar . 17 , 2016

Related U . S . Application Data
(60) Provisional application No . 62 / 051 , 306 , filed on Sep .

17 , 2014 .

Diagnosing System Failures with Crash Analyzer , http : / / technet .
microsoft . com / en - us / library / jj713366 . aspx , date Nov . 1 , 2012 , pp .
1 - 2 .

(Continued)
Primary Examiner — Hung T Vy
(74) Attorney , Agent , or Firm — IPHorizons PLLC ;
Narendra Reddy Thappeta
(57) ABSTRACT
A server system provided according to an aspect of the
present disclosure forms physical queries to process a user
query received from a client system . Each physical query is
thereafter executed in a corresponding concurrent execution
entity (e . g . , thread) to retrieve a respective data portion from
a corresponding data source . A response to the user query is
formed based on the data portions . State information corre
sponding to each execution entity is logged into log storage .
According to another aspect , when a query (either physical
or user) causes an execution environment to crash , the
identifier of such query is added to a prohibited list . When
a new query is to be executed , the initiation of execution of
the new query is prevented if the identifier of the new query
is present in the prohibited list .

16 Claims , 8 Drawing Sheets

(51) Int . CI .
G06F 1730 (2006 . 01)
U . S . CI .
CPC . G06F 17 / 30348 (2013 . 01)

(58) Field of Classification Search
CPC GO6F 17 / 30554 ; G06F 17 / 30864 ; G06F

3 / 0481 ; G06F 17 / 30572 ; G06F 3 / 04842
USPC 707 / 769 , 771 , 648 ; 709 / 202 , 318 , 221
See application file for complete search history .

Client System
110A 295 Client System

1103
Cilent System

110N

Internet
120

160 HOWER Data Store
130A

Server System
140A

Data Store
Server System

1403
130B

Data Store
130N

Server System
140N

US 9 , 852 , 172 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

7 , 805 , 636 B2 9 / 2010 Blanchard et al .
8 , 065 , 319 B2 * 11 / 2011 Ding G06F 17 / 30516

707 / 769
8 , 280 , 991 B2 * 10 / 2012 Cheshire H04L 29 / 12028

709 / 221
8 , 484 , 243 B2 * 7 / 2013 Krishnamurthy . G06F 17 / 30516

707 / 771
8 , 489 , 932 B2 7 / 2013 Hirata
8 , 627 , 475 B21 / 2014 Loveland et al .

2003 / 0028509 A1 * 2 / 2003 Sah . . . GOOF 17 / 30595
2005 / 0177775 A1 * 8 / 2005 Qadeer G06F 11 / 3608

714 / 38 . 13
2009 / 0248631 A1 * 10 / 2009 Alba GO6F 17 / 30522
2009 / 0292677 A1 * 11 / 2009 Kim . . G06F 17 / 3089
2010 / 0146522 A1 * 6 / 2010 Duffy G06F 13 / 24

719 / 318
2012 / 0144234 A1 * 6 / 2012 Clark G06F 11 / 0727

714 / 16
2012 / 0323368 A1 * 12 / 2012 White , III H04L 41 / 0213

700 / 275

OTHER PUBLICATIONS
How to Run the Crash Analyzer on an Enduser Computer , http : / /
technet . microsoft . com / en - us / library / jj713370 . aspx , date Nov . 1 ,
2012 , pp . 1 - 1 .

* cited by examiner

U . S . Patent

Client System 10A

Client System

??

110B

Client System 110N

Internet 120

Dec . 26 , 2017 us Frent n . 2017 mular

10

Data Store 130A

Server System 140A

Sheet 1 of 8

Data Store 1308

Server System 140B

\
Server System

Data Store 130N

140N

US 9 , 852 , 172 B2

FIG . 1

201

U . S . Patent

Start Receive a user query from a client system

220

Form physical queries for retrieving all data required to form response to the user query

Dec . 26 , 2017

230

Execute the physical queries in corresponding concurrent threads

240

Generate a response to the user query

Sheet 2 of 8

270

Send the response to the client system

290

Log the status of activities in each concurrent thread to a log storage

299

(End End

G . 2 FIG . 2

US 9 , 852 , 172 B2

U . S . Patent

140A

Query Buffer 310

Configuration Data 350

I

Dec . 26 , 2017

Logical Thread Pool

Logical Query Processing Block (LQPB) 330

Physical Thread Pool 340

320 Log Data 390 lang taon

Log Management Block 370 na ang pamant

Database Query Processing (DQPB)
360

Sheet 3 of 8

Log Stacks 380

FIG . 3

US 9 , 852 , 172 B2

U . S . Patent D ec . 26 , 2017 Sheet 4 of 8 US 9 , 852 , 172 B2

, ,

430 Activity Type State Information FIG . 4B

495 102

Entry 450 ?? ? Entry 440

FIG . 4A
485

??? ? Entry 430 Entry 420 Entry 410

U . S . Patent Dec . 26 , 2017

ENTRY 540

ENTRY 540

ENTRY 530

ENTRY 530

Sheet 5 of 8

ENTRY 520

ENTRY 520

ENTRY 560

ENTRY 510

ENTRY 510

ENTRY 550

501 501

505

502 502

506

501

505

502

506

503

507

US 9 , 852 , 172 B2

FIG . 5A

FIG . 5B

390

U . S . Patent

- - -

508

ENTRY ENTRY ENTRY 570 560 550

Dec . 26 , 2017

509

ENTRY 540

ENTRY ENTRY ENTRY ENTRY 540 530 520 510

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

ENTRY 530

ENTRY 570

Sheet 6 of 8

FIG . 5D

ENTRY 520

ENTRY 560

ENTRY 510

ENTRY 550

ENTRY 580

501

505

502 502

506 506

503 503

507 507

FIG . 5C

US 9 , 852 , 172 B2

601

U . S . Patent

Start

610

Identify a query causing the execution environment to crash

620

Add identifier of the query to a prohibited list

Dec . 26 , 2017

630

Receive identifier of a potential query required to be issued

640

Sheet 7 of 8

Yes

No

Identifier of potential query in the prohibited list ?

650

660

Notify user that execution of potential query is not permitted

Continue with processing of the potential query

US 9 , 852 , 172 B2

FIG . 6

U . S . Patent

REMOVABLE STORAGE UNIT 740

700

SECONDARY MEMORY 730

RAM 720
SHARED ENVIRONMENT

Dec . 26 , 2017

725

HARD DRIVE 735

FLASH MEMORY 736
REMOVABLE STORAGE DRIVE

CPU 710

USER PROGRAMS 726

737 =

Sheet 8 of 8

GRAPHICS CONTROLLER 760
DISPLAY UNIT 770

NETWORK INTERFACE 780
INPUT INTERFACE 790

FIG . 7

US 9 , 852 , 172 B2

US 9 , 852 , 172 B2

FACILITATING HANDLING OF CRASHES IN Aspects of the present disclosure facilitate handling of
CONCURRENT EXECUTION crashes in such server systems , as described below .

ENVIRONMENTS OF SERVER SYSTEMS
WHILE PROCESSING USER QUERIES FOR BRIEF DESCRIPTION OF THE DRAWINGS

DATA RETRIEVAL 5
Example embodiments of the present disclosure will be

RELATED APPLICATION AND PRIORITY described with reference to the accompanying drawings
CLAIM briefly described below .

FIG . 1 is a block diagram illustrating an example envi
The present disclosure claims priority from US Provi - 10 ronment (computing system) in which several aspects of the

sional Patent Application having the same title as the subject present disclosure can be implemented .
patent application , assigned Application No . 62 / 051 , 306 , FIG . 2 is a flow chart illustrating the manner in which logs
Filed on : 17 Sep . 2014 , and is incorporated in its entirety are maintained in concurrent execution environments
into the present application , to the extent not inconsistent is according to an aspect of the present disclosure .
with the disclosure herein . FIG . 3 is a block diagram illustrating the details of a

server system in an embodiment .
BACKGROUND OF THE DISCLOSURE FIG . 4A is a block diagram illustrating the management of

status using stacks in an embodiment .
Technical Field 20 FIG . 4B depicts the details of a stack entry , in an embodi
The present disclosure relates to server systems operating ment .

in conjunction with database servers and more specifically to FIG . 5A depicts the details of stack entries in threads and
facilitating handling of crashes in concurrent execution the association of a logical thread with a physical thread in
environments of such server systems while processing user an embodiment .
queries for data retrieval . 25 FIG . 5B depicts the details of stack entries in threads and

Related Art the association of a logical thread with two physical threads
Server systems are employed to process user queries for in an embodiment .

data retrieval . In a common scenario , a user (human being) FIG . 5C depicts the details of the creation of additional
at a client system causes appropriate user queries to be entries in stacks corresponding to logical and physical
issued , which are received by server systems . The server 30 threads in an embodiment .
system may in turn retrieve the data by issuing appropriate FIG . 5D shows log data generated by log management
database queries to database servers , and provide corre - block after a crash in a physical thread .
sponding responses to user queries . FIG . 6 is a flow chart illustrating the manner in which

Server systems are often implemented with concurrent failed queries are disabled , in an embodiment .
execution environments to process user queries . Concurrent 35 FIG . 7 is a block diagram illustrating the details of a
execution implies that multiple execution entities (e . g . , digital processing system in which several aspects of the
threads) are employed to execute respective tasks (related to present invention are operative by execution of appropriate
processing of the query) in parallel . The execution entities software instructions .
are characterized in that each can be scheduled for execution in the drawings , like reference numbers generally indicate
and managed (suspended and resumed , etc .) independently 40 identical , functionally similar , and / or structurally similar
by the operating system . The execution entities can be elements . The drawing in which an element first appears is
executed in parallel , for example , by a time - sliced execution indicated by the leftmost digit (s) in the corresponding ref
of threads , and / or on multiple independent processors erence number .
executing respective threads .

Concurrent execution provides benefits such as better 45 DETAILED DESCRIPTION OF THE
utilization of various resources in the server system , EMBODIMENTS OF THE DISCLOSURE
enhanced throughput performance , etc . , as is well known in
the relevant arts . Thus , when server system with concurrent 1 . Overview
execution environment processes user queries , multiple A server system provided according to an aspect of the
execution entities (executing in parallel) may be employed 50 present disclosure , forms physical queries to process a user
to process a single user query . query received from a client system . Each physical query is

Crashes are occasionally encountered in such concurrent thereafter executed in a corresponding concurrent execution
execution environments while processing user queries . A entity (e . g . , thread) to retrieve a respective data portion from
crash refers to a condition in which processing of a user a corresponding data source . A response to the user query is
query causes a disruption to the underlying execution envi - 55 formed based on the data portions . State information corre
ronment (e . g . , server system malfunctions or stops process sponding to each execution entity is logged into log storage .
ing other queries) such that processing of other user queries The content of the log may be made available upon occur
is thereafter adversely impacted . Typically corrective mea - rence of a crash .
sures such as restarting / rebooting are thereafter performed , In an embodiment , a stack is maintained for logging status
to restore normal processing facilities for the user queries . 60 information corresponding to each execution entity . Each

Crashes are of concern in concurrent execution environ - stack entry may store state information corresponding to a
ments due to the challenges presented in debugging the error respective activity performed in the thread . Each entry is
causing the crash , in addition to the disruption to processing removed upon completion of the corresponding activity .
noted above . Challenges are presented in debugging , for Thus , when a crash occurs , the entries in the stacks contain
example , since the problem may not be consistently repro - 65 state information of at least all the incomplete activities . If
ducible in view of the various possibilities with operation of there is no crash , the stack is emptied due to completion of
concurrent execution entities . all activities related to processing in the thread .

US 9 , 852 , 172 B2

According to another aspect , when a query (either physi migrated , for processing of various requests from client
cal or user) causes an execution environment to crash , the systems 110A - 110N and for sending corresponding
identifier of such query is added to a prohibited list . When responses .
a new query is to be executed , the initiation of execution of While cloud 150 is shown with three server systems and
the new query is prevented if the identifier of the new query 5 three database servers merely for conciseness , it will be
is present in the prohibited list . readily appreciated that cloud 150 may contain many more

Several aspects of the present disclosure are described servers / systems , potentially in the order of thousands . The
below with reference to examples for illustration . However , computing and storage systems may also be coupled based
one skilled in the relevant art will recognize that the disclo on IP protocol , though the corresponding connectivity is not
sure can be practiced without one or more of the specific " shown in FIG . 1 .
details or with other methods , components , materials and so Each of data stores 130A - 130N represents a non - volatile
forth . In other instances , well - known structures , materials , (persistent) storage facilitating storage and retrieval of a
or operations are not shown in detail to avoid obscuring the corresponding collection of data by applications executing
features of the disclosure . Furthermore , the features / aspects 15 in other systems of the enterprise such as server systems
described can be practiced in various combinations , though 140A - 140N . Data stores 130A - 130N may be implemented
only some of the combinations are described herein for using database technologies in a known way . Alternatively ,
conciseness . some of data stores 130A - 130N may be implemented as

2 . Example Environment respective database servers , and some others as file servers
FIG . 1 is a block diagram illustrating an example envi - 20 providing storage and retrieval of data in the form of files

ronment in which several aspects of the present disclosure organized as one or more directories , as is well known in the
can be implemented . The block diagram is shown containing relevant arts .
client systems 110A - 110N , Internet 120 , and cloud 150 . However , it should be appreciated that processing many
Cloud 150 is in turn shown containing data stores 130A - queries requires data from more than one data store . Merely
130N and server systems 140A - 140N . 25 for ease of description , it is hereafter assumed that each such
Merely for illustration , only representative number / type data store provides data for processing of a query is a

of systems is shown in FIG . 1 . Many environments often relational database server . However , the data stores may be
contain many more systems , both in number and type , implemented using other database technologies such as
depending on the purpose for which the environment is hierarchical database technologies , object oriented data
designed . Each block of FIG . 1 is described below in further 30 bases , etc . , or can be of the same technology but from
detail . different vendors providing different functional specifica

Each of client systems 110A - 110N represents a system tions , etc .
such as a personal computer , workstation , mobile station , Server systems 140A - 140N host various applications for
mobile phones , computing tablets , etc . , used by users to processing of user queries received from various client
interact with server systems 140A - 140N . In interacting with 35 systems . The user query can be in a high - level language ,
server systems 140A - 140N , a user may cause sending of such as Structured Query Language (“ SQL ”) , where por
user queries to server systems 140A - 140N and view the tions of the query specify constraints (e . g . , wherein clause)
output generated by execution of such user queries based on for desired data set , and the specific elements (e . g . , select
appropriate user interfaces (e . g . , web pages) . clause) of interest in the data set (without having to express

Internet 120 provides connectivity between client systems 40 lower level details such as storage techniques , etc .) . How
110A - 110N and cloud 150 such that each user query and ever , alternative formats at similar conceptual level , can be
corresponding responses are transferred as corresponding used to specify such requirements , as suited in the corre
(IP) packets . Internet 120 may be implemented using pro - sponding environments , without departing from the scope of
tocols such as Transmission Control Protocol (TCP) and / or and spirit of several aspects of the present disclosure .
Internet Protocol (IP) , well known in the relevant arts . In 45 Each server system 140A - 140N is assumed to provide for
general , in TCP / IP environments , an IP packet is used as a concurrent execution of multiple execution entities (e . g . ,
basic unit of transport , with the source address being set to threads) . In an embodiment , the server systems are imple
the IP address assigned to the source system from which the mented in accordance with “ Oracle Business Intelligence
packet originates and the destination address set to the IP Enterprise Edition " , available from Oracle Corporation . The
address of the destination system to which the packet is to 50 applications thus hosted may also provide the appropriate
be eventually delivered . user interfaces for users to generate user queries and view

A (IP) packet is said to be directed to a destination system the output of the queries on user systems 110A - 110N .
when the destination IP address of the packet is set to the Each user query may be processed (by server systems
(IP) address of the destination system , such that the packet 140A - 140N) based on concurrently executing threads (ex
is eventually delivered to the destination system . When the 55 amples of execution entities) . Aspects of the present disclo
packet contains content such as port numbers , which speci - sure facilitate handling of any crashes during such process
fies the destination application , the packet may be said to be ing , as described below with examples .
directed to such application as well . The destination system 3 . Processing User Queries
may be required to keep the corresponding port numbers FIG . 2 is a flow chart illustrating the manner in which user
available / open , and process the packets with the correspond - 60 queries are processed according to an aspect of the present
ing destination ports . disclosure . The steps of the flowchart are described with

Cloud 150 represents a conglomeration of computing and respect to FIG . 1 merely for illustration . However , the
storage systems , in combination with associated infrastruc - features can be implemented in other systems and environ
ture (including networking / communication technologies , ments also without departing from the scope and spirit of
resource management / allocation technologies , etc .) such 65 several aspects of the present disclosure , as will be apparent
that the available computing , storage and communication to one skilled in the relevant arts by reading the disclosure
resources are potentially dynamically allocated and / or provided herein .

US 9 , 852 , 172 B2

In addition , some of the steps may be performed in a logical query processing block (LQPB) 330 , physical thread
different sequence than that depicted below , as suited to the pool 340 , configuration data 350 , database query processing
specific environment , as will be apparent to one skilled in block (DQPB) 360 , log management block 370 , log stacks
the relevant arts . Many of such implementations are con 380 , and log data 390 . Each block may be realized as an
templated to be covered by several aspects of the present 5 appropriate combination of hardware , firmware and soft
disclosure . The flow chart begins in step 201 , in which ware , and is described below in further detail .
control immediately passes to step 210 . Query buffer 310 stores logical queries received from In step 210 , server system 140A receives a user query client systems 110A - 110N . Upon receiving a logical query , from a client system 110A . For ease of description , the query buffer 310 queues up the logical query along with any flowchart is described in the context of client system 110A 10 other queries already in the queue . Query buffer 310 is interfacing with server system 140A , even though the fea formed based on memory locations , for example , in a tures are applicable to other combinations of client systems random access memory (RAM) . and server systems .

In step 220 , server system 140A forms physical queries , Logical thread pool 320 contains multiple threads (ex
which when executed on respective database servers , cause 15 am ause 15 amples of execution entities) , referred to as logical threads ,
retrieval of all data required to form a response to the user for ease of description , which can be scheduled indepen
query . In an embodiment , each physical query is directed to dently for execution . Assuming a multi - processor environ
a corresponding database server (consistent with the ment , threads can be executed concurrently while processing
intereface requirements of the corresponding database corresponding logical / user queries . A thread executes a
server) , assuming that different database servers store a 20 stream of instructions to perform a particular task (e . g . ,
corresponding partition of the requisite data . As such , the processing of a logical query) . In the context of logical
physical query is generated in a query language that is thread pool 320 , each logical thread may execute its copy of
compatible with the specific database server from which it the same set of instructions to process the corresponding
retrieves data . The physical query may thus be referred to as q uery . Virtual address space in the RAM for the logical
a database query and the user query as a logical query 25 thread pool 320 may be common to and shared by all threads
(which does not concern itself with the physical location of within the pool .
the requisite data) . Each thread may be designed to select one of the queued

It may be appreciated that processing of each logical logical queries for processing . Upon completion of process
query may cause generation of one or more physical queries , ing of the selected logical query , the thread may be designed
each for a corresponding destination . For example , if a 30 to select the next queued logical query awaiting processing .
logical query indicates that it is looking for data pertaining Thus , at least the threads processing respective logical
to two fiscal years and the data for each of the fiscal years queries execute concurrently .
resides on two different database servers , server system Configuration data 350 maintains metadata information
140A may generate one phyiscal query (to database server specifying the specific databases storing the corresponding
130A) indicating that the user needs data retrieved for the 35 data partitions . As noted in the example above , one database
first fiscal year , and another physical query (to database server may store data (partition) corresponding to one year
server 130B) indicating that the user needs data retrieved for and another database server may store data corresponding to
the second fiscal year . another year . The data available for responding to queries

In step 230 , server system 140A executes the physical may be partitioned and stored in respective database servers ,
queries in corresponding concurrent threads , causing the 40 according to requirements suitable for corresponding envi
corresponding data sets to be retrieved . In step 240 , server ronments .
system 140A generates a response to the user query , based The metadata information may also contain mapping of
on all such retrieved data sets . In step 270 , server system the query fields in the logical query to fields (e . g . , columns
140A sends a response to the user query of step 210 . in case of relational databases) in the database servers

In step 290 , server system 140A logs the status of activi - 45 130A - 130N . For example , as described earlier , the logical
ties of each concurrent thread to a log storage . Any desired query may contain constraints (e . g . , wherein clause) for the
detail (such as corresponding level of state information at desired data set , and the specific elements (e . g . , select
various execution instances) may be logged , as suitable in clause) of interest in the data set . In this context , the
the corresponding environment or situation (in a way to metadata information contained in the configuration data
assist with handling of crashes) . While execution of physical 50 350 specifies how the elements (e . g . , name , id) and the
threads is described as being performed in corresponding constraints (e . g . , age > 50) of the logical query map with the
concurrent threads , it should be appreciated that additional fields of the database servers 130A - 130N that contain those
concurrent threads can be employed , for example , to per - elements .
form steps 220 , 240 and 270 . The status of activities of all Configuration data 350 may also store various data
such concurrent threads also can be logged , as suited in the 55 parameters required in accessing the databases accessible
corresponding environment . using the database queries . The data parameters may include

By thus employing concurrent threads , the efficiency of information such as IP address of the destination database
operation of the user queries is enhanced . At the same time , server , any required authentication information , port num
by logging activities in accordance with the requirement of b ers at which database server listens for database queries ,
step 240 , the traceability of the various tasks of the physical 60 etc .
queries is maintained . Logical query processing block (LQPB) 330 represents

The description is continued with respect to the details of the processing of each logical query by the corresponding
server system 140A in an embodiment . logical thread . In an embodiment , LQPB 330 forms database

4 . Server System queries from the logical query , with each database query
FIG . 3 is a block diagram illustrating the details of server 65 being directed to a single data partition (i . e . , database

system 140A in an embodiment . Server system 140A is server) . The database queries are formed based on informa
shown containing query buffer 310 , logical thread pool 320 , tion maintained in configuration data 350 .

US 9 , 852 , 172 B2

LQPB 330 may receive results of execution of physical / parent thread . The presence of such multiple entries may
database queries and construct a result corresponding to the imply that entry 410 (at the lowest level) represents a
logical query . The constructed result is sent to the client master / main activity , which has a sub - activity corresponding
system) as a response to the corresponding logical / user to entry 420 . In other words , completion of the activity
query . LQPB 330 also buffers the queries for suitable 5 corresponding to entry 420 precedes completion of activity
processing by physical thread pool 340 and sub - query corresponding to entry 410 . Similarly , activity correspond
processing block 360 , as described below . ing to entry 430 may be a sub - activity of activity corre

Physical thread pool 340 contains multiple threads (re sponding to entry 420 . Accordingly , due to the operation of ferred to as physical threads , for ease of description) which the stack , the entry on top is removed first (e . g . , 430 and can execute concurrently while processing corresponding 10 160)
physical / database queries generated by LQPB 330 . Each While an entry is present , any state information charac thread may be designed to select one of the queued physical
queries for processing . Upon completion of processing of terizing the operations in the activity , values of variables of

the activity at different time instances of interest , etc . , are the selected physical query , the thread may be designed to
select the next queued physical query awaiting processing . 15 stored in the entry . Any information related to the activity
Thus at least the threads processing respective physical that may be helpful for debugging may be stored in the
queries execute concurrently . corresponding entry .

Database query processing block (DQPB) 360 represents FIG . 4B depicts the details of one entry 430 , showing
the processing of each physical query by the corresponding activity type 411 and state information 412 . The details of
physical thread . Thus , the physical / database query is issued 20 entry 430 may be further described by way of a specific
to the corresponding database / data store (as specified by , and example as follows :
using the information available in configuration data 350) . Activity Type (411) :
The result of each executed database query is sent to LQPB “ Executing Logical Query ”
330 for further processing . State Information (412) :
Log management block 370 generates a log of the details 25 Logical Query : “ select product . name as product _ name ,

of various activities performed (in 330 and 360) in each of sales . revenue as revenue from product , sales where
the threads , which simplifies debugging of any crashes . The year = 2012 ” ;
log is written into log data 390 , which may be made User : userl ;
available to developers / users trying to resolve the root cause Query Timeout = 100s ;
for the crashes . 30 Query Max Memory Limit = 512 MB .

According to an aspect of the present disclosure , log While the example shows a particular set of information
management block 370 maintains log stacks 380 , with each i . e . , Logical Query , User , Query Timeout , Query Max
stack corresponding to one of the threads . As described Memory Limit) as it relates to a specific activity type
below in further detail , the operation associated with the (Executing Logical Query) , it will be apparent to one skilled
stacks ensures most relevant state information to be pro - 35 in the relevant arts by reading the disclosure provided herein
vided upon occurrence of a crash . that any information related to a particular activity that may

5 . Stacks be helpful for debugging may be stored in the corresponding
FIG . 4A depicts the general content of log stacks 380 in entry , as noted above .

one embodiment . There are shown stacks 401 , 402 , etc . , In the absence of a crash (i . e . , normal operation) due to
with each stack corresponding to activities in a single thread 40 execution in a thread , the corresponding stack will eventu
(either of logical thread pool 320 or physical thread pool ally become empty . However , upon occurrence of a crash in
340) . Stack 401 represents a stack that is associated with a a thread , log management block 370 accesses the entries of
first thread , T1 , and stack 402 represents a stack that is the corresponding stack , and writes the information (i . e . ,
associated with a second thread , T2 . Each stack is again 411 / 412) contained in the entries in log data 390 . In addition ,
shown containing multiple entries . The operation of the 45 the information present in the stack corresponding to the
stacks , including the creation and removal of various entries parent (if so , indicated by header 485) is also written to log
is described below in further detail . data 390 .
Log management block 370 creates an entry in a stack As may be readily appreciated , such information repre

upon start of an activity in the thread . An activity generally sents minimal information that may be particularly relevant
refers to a block of instructions , which together perform a 50 in debugging of the root cause of a crash , since the log
logical task , as would be understood by developers debug - information related to successfully completed activities may
ging crashes . Examples of such a logical task can be the be already removed . The information thus provided as log
entire procedure (method) executing in the thread , of simply data 390 in one scenario is shown in Appendix A below .
a function invoked in the procedure . In view of the stack Server system 140A can be implemented in accordance
operation , the entry created first (e . g . , 410 and 440) is at 55 with the features above , using various approaches . The
lower level compared to entries created later for correspond - description is continued with respect to operation of log
ing activities . management block 370 (i . e . , software modules executing
Log management block 370 removes an entry in the stack based on corresponding processor hardware elements) in

upon completion of the corresponding activity . Due to the some example scenarios .
operation of the stack , the entry on top is removed first (e . g . , 60 6 . Log management
430 and 450) . FIG . 5A depicts details of log stacks 380 as a logical query

Stack 401 corresponding to thread T1 is shown containing is processed and execution of a physical query is started , in
three entries 410 , 420 , and 430 , in addition to header 485 . one embodiment . Log stacks 380 is shown containing stacks
The header contains information such as the identity of the 501 and 502 . Stack 501 corresponds to a logical thread L1 .
parent thread . In case of the thread corresponding to the 65 Stack 501 is shown with a header 505 , and entries 510 - 540 ,
logical threads , which do not have parent stacks , the header with each of the entries created upon start of a corresponding
information may be set to NULL reflecting the absence of a activity in thread L1 .

US 9 , 852 , 172 B2
10

For example , consider L1 to be a logical thread in logical represented as Activities # 1 , # 2 , and # 3 , shown with Activity
thread pool 320 . L1 accepts a logical query from query Types of ‘ Prepare ’ . Entry 540 is represented as Activity # 4 ,
buffer 310 and proceeds to execute the logical query in shown with Activity Type of ' Execute Query ' .
LQPB 330 . As L1 starts pre - processing of the logical query The process by which log management block 370 gener
(e . g . , performing internal validation of the functions in the 5 ates logs 508 and 509 is now illustrated . In the event of a
logical query) , three entries 510 , 520 , and 530 , correspond crash in physical thread P1 , first , log management block 370
ing to three different activities of L1 , are formed in stack reads stack 502 (corresponding to crashed thread Pl) to look
501 . As L1 executes the logical query to generate a first for one or more entries . If an entry is found , log management
physical query PQ1 in physical thread pool 340 , a fourth block 370 reads the first entry (entry 550) . Log management
entry 540 is formed in stack 501 . 10 block 370 then writes the activity type and activity infor

Physical thread P1 accepts physical query PQ1 from mation of entry 550 into the corresponding log 508 . Next ,
physical thread pool 340 and proceeds to execute the physi - log management block 370 reads stack 502 to look for a
cal query in DOPB 360 . Stack 502 corresponds to physical second entry (entry 560) . Log management block 370 writes
thread P1 . Stack 502 associates (e . g . , by making an entry in the activity type and activity information of entry 560 into
its header 506) logical thread L1 as the parent thread for 15 the corresponding log 508 . Next , log management block 370
physical thread P1 . reads stack 502 to look for a third entry (entry 570) . Log

Referring to FIG . 5B , as physical thread P1 starts pre - management block 370 writes the activity type and activity
processing of the physical query (e . g . , to initiate a database information of entry 570 into the corresponding log 508 .
connection to a corresponding database that contains data of Next , log management block 370 reads stack 502 to look for
interest) , two entries 550 and 560 , corresponding to two 20 the next entry . Since there are no other entries present in
different activities of P1 , are formed in stack 502 . stack 502 , log management block 370 completes the writing

FIG . 5B also shows stack 503 , which corresponds to of log 508 .
physical thread P2 . Physical thread P2 may accept another Log management block 370 then checks the crashed
physical query (e . g . , PQ2) from logical thread L1 via thread P1 (e . g . , by reading its header 506) to determine if
physical thread pool 340 . In such a case , stack 503 would 25 another thread is associated as its parent thread . Since parent
associate (e . g . , by making an entry in its header 507) logical thread L1 is associated with crashed thread P1 , log man
thread L1 as the parent thread for physical thread P2 , as agement block 370 writes the entries of the parent thread L1
shown in FIG . 5B . one - by - one into a corresponding log 509 , in a similar

Referring to FIG . 5C , as physical thread P1 executes the fashion as described with the writing of the log for crashed
first physical query PQ1 , a third entry 570 , corresponding to 30 thread P1 . Specifically , log management block reads and
the execution activity , is formed in stack 502 . In that writes (activity type and activity information) for each of the
duration , entry 580 is shown added to stack 503 . entries present in stack 501 at the time of crash in thread P1 .
Now , assuming there is a crash in the physical thread P1 Thus , log data 390 details the various activities performed

during the execution of the physical query PQ1 , log data 390 in each of the threads L1 and P1 of log stacks 380 (while
is generated by log management block 370 . 35 executing in LQPB 330 and DQPB 360 respectively) at the

FIG . 5D depicts logically log data 390 generated by log time of the crash occurring in physical thread P1 .
management block 370 , when physical thread P1 crashes Now , assuming that there is no crash , stack 501 is
while performing activity 570 . Specifically , since physical eventually emptied and there is no log generated . To illus
thread P1 crashes , only entries corresponding to physical trate with reference to stack 502 (in the event of no crash)
thread P1 and its parent logical thread L1 are logged by log 40 in FIG . 5C , suppose entry 570 represents the last activity that
management block 370 . Accordingly , log data 390 shows will need to be performed by physical thread P1 prior to
entries corresponding to the crashed thread P1 (log 508) and completing the execution of physical query PQ1 . After the
its parent thread L1 (log 509) . activity corresponding to entry 570 is completed , entry 570

The text corresponding to log data 390 corresponding to is removed from stack 502 . Thereafter , entries 560 and 550
the above crash scenario , in an example scenario , is shown 45 are also removed from stack 502 in that order . Further , any
in Appendix A . Specifically , portions of the log of Appendix association stored in stack 502 (e . g . , an entry in its header
A marked between “ START : Activities Task for Thread : 506) associating logical thread L1 as the parent thread for
0x41e63940 [Owner : 0x43d19940] ” and “ END : Activities physical thread P1 is also removed . After the entries and the
Task for Thread : Ox41e63940 ” relate to activities of the parent - thread association are removed , physical thread P1 is
crashed physical thread P1 (in stack 502) , whereas portions 50 ready to accept another physical query from physical thread
of the log of Appendix A marked between “ START : Activi - pool 340 .
ties Task for Thread : Ox43d19940 ” and “ END : Activities From the above , it may be appreciated that a developer
Task for Thread : Ox43d19940 ” relate to activities (in stack may be able to identify the specific activity (in either logical
501) of the logical thread L1 . or physical threads) causing a crash . According to an aspect

As shown in log 508 , all entries of physical thread P1 in 55 of the present disclosure , execution of queries corresponding
the corresponding stack 502 up until the point of the crash to such activities may be subsequently disabled , at least to
are recorded (i . e . , entries 550 - 570) . In the log of Appendix avoid further crashes , as described below .
A , entries 550 and 560 are represented as Activities # 1 and 7 . Query Disabler
2 , shown with Activity Types of ' DBGateway InitCursor FIG . 6 is a flow chart illustrating the manner in which
and ‘ InitCursof ” . Entry 580 is represented as Activity # 3 , 60 failed queries are processed according to an aspect of the
shown with Activity Type of ‘ Producer Executing Query ' . present disclosure . The steps of the flowchart are described
As shown in log 509 , all entries of the parent logical with respect to the above figures merely for illustration .

thread L1 in the corresponding stack 501 up until the point However , the features can be implemented in other systems
of crash are recorded (i . e . , entries 510 - 540) . Information and environments also without departing from the scope and
identifying logical thread L1 as the parent thread (to physi - 65 spirit of several aspects of the present disclosure , as will be
cal thread P1) was stored in physical thread P1 as described apparent to one skilled in the relevant arts by reading the
previously . In the log of Appendix A , entries 510 - 530 are disclosure provided herein .

US 9 , 852 , 172 B2
11

In addition , some of the steps may be performed in a unit potentially being designed for a specific task . Alterna
different sequence than that depicted below , as suited to the tively , CPU 710 may contain only a single general - purpose
specific environment , as will be apparent to one skilled in processing unit .
the relevant arts . Many of such implementations are con - RAM 720 may receive instructions from secondary
templated to be covered by several aspects of the present 5 memory 730 using communication path 750 . RAM 720 is
invention . The flow chart begins in step 601 , in which shown currently containing software instructions , such as
control immediately passes to step 610 . those providing threads and stacks , constituting shared envi

In step 610 , server system 140A identifies a query (logical ronment 725 and / or user programs 726 . Shared environment

or physical) causing the execution environment to crash . As 725 includes operating systems , device drivers , virtual
described above , when a particular query fails as a result of F 10 machines , etc . , which provide a (common) run time envi

ronment for execution of user programs 726 . one its activities failing to execute (leading to a crash) , a Graphics controller 760 generates display signals (e . g . , in developer or user may use the stored log information (i . e . , in RGB format) to display unit 770 based on data / instructions log data 390) to identify the particular query that led to the received from CPU 710 . Display unit 770 contains a display crash . The identification of the failed query (logical or 15 screen to display the images (e . g . , those the display screens physical) may be performed by examining the identification depicted above) defined by the display signals . Input inter
information stored with respect to each thread (as shown in face 790 may correspond to a keyboard and a pointing
FIG . 4 , e . g . , information stored in header 485) . device (e . g . , touch - pad , mouse) and may be used to provide
Once the failed query is identified , an identifier of the inputs . Network interface 780 provides connectivity to a

query is added to a prohibited list , as shown in step 620 . 20 network (e . g . , using Internet Protocol) , and may be used to
Configuration data 350 may store such prohibited list . This communicate with other systems (such as those shown in
identifier may be a numeric or alphanumeric identifier FIG . 1) connected to the network .
computed using one or more known techniques , such as by Secondary memory 730 may contain hard drive 735 , flash
applying a hash algorithm to the query . memory 736 , and removable storage drive 737 . Secondary

At step 630 , server 140 A receives an identifier of a user 25 memory 730 may store the data software instructions (e . g . ,
query from a client system 110A . For ease of description , the for performing the actions noted above with respect to FIG .
flowchart is described in the context of client system 110A 2) , which enable digital processing system 700 to provide
interfacing with server system 140A , even though features several features in accordance with the present disclosure .
are applicable to other combinations of client systems and Some or all of the data and instructions may be provided
server systems . 30 on removable storage unit 740 , and the data and instructions
At step 640 , an identifier of the user query (e . g . , computed may be read and provided by removable storage drive 737

by applying known techniques , such as a hash algorithm to to CPU 710 . Floppy drive , magnetic tape drive , CD - ROM
the query) is compared with the identifiers of the queries drive , DVD Drive , Flash memory , removable memory chip
contained in the prohibited list . If there is a match , control (PCMCIA Card , EEPROM) are examples of such removable
passes to step 650 , where the user issuing the user query is 35 storage drive 737 .
notified that the execution of the user query is not permitted Removable storage unit 740 may be implemented using
(e . g . , due to prior failures) . If there no match , control moves medium and storage format compatible with removable
to step 660 , where the user query is further processed . storage drive 737 such that removable storage drive 737 can

Accordingly , future crashes are avoided upon identifica read the data and instructions . Thus , removable storage unit
tion of a query , the execution of which has lead to a crash 40 740 includes a computer readable (storage) medium having
and therefore could lead to future crashes . stored therein computer software and / or data . However , the

It should be appreciated that the features described above computer (or machine , in general) readable medium can be
can be implemented in various embodiments as a desired in other forms (e . g . , non - removable , random access , etc .) .
combination of one or more of hardware , executable mod - In this document , the term " computer program product " is
ules , and firmware . The description is continued with respect 45 used to generally refer to removable storage unit 740 or hard
to an embodiment in which various features are operative disk installed in hard drive 735 . These computer program
when executable modules are executed . products are means for providing software to digital pro

8 . Digital Processing System cessing system 700 . CPU 710 may retrieve the software
FIG . 7 is a block diagram illustrating the details of digital instructions , and execute the instructions to provide various

processing system 700 in which various aspects of the 50 features of the present disclosure described above .
present disclosure are operative by execution of appropriate The term “ storage media / medium ” as used herein refers to
software instructions . Digital processing system 700 may any non - transitory media that store data and / or instructions
correspond to server system 140A (or any other system in that cause a machine to operate in a specific fashion . Such
which the various features disclosed above can be imple - storage media may comprise non - volatile media and / or
mented) . 55 volatile media . Non - volatile media includes , for example ,

Digital processing system 700 may contain one or more optical disks , magnetic disks , or solid - state drives , such as
processors such as a central processing unit (CPU) 710 , storage memory 730 . Volatile media includes dynamic
random access memory (RAM) 720 , secondary memory memory , such as RAM 720 . Common forms of storage
727 , graphics controller 760 , display unit 770 , network media include , for example , a floppy disk , a flexible disk ,
interface 780 , and input interface 790 . All the components 60 hard disk , solid - state drive , magnetic tape , or any other
except display unit 770 may communicate with each other magnetic data storage medium , a CD - ROM , any other
over communication path 750 , which may contain several optical data storage medium , any physical medium with
buses as is well known in the relevant arts . The components patterns of holes , a RAM , a PROM , and EPROM , a FLASH
of FIG . 7 are described below in further detail . EPROM , NVRAM , any other memory chip or cartridge .
CPU 710 may execute instructions stored in RAM 720 to 65 Storage media is distinct from but may be used in con

provide several features of the present disclosure . CPU 710 junction with transmission media . Transmission media par
may contain multiple processing units , with each processing ticipates in transferring information between storage media .

US 9 , 852 , 172 B2
13 14

For example , transmission media includes coaxial cables , 9 . Conclusion
copper wire and fiber optics , including the wires that com While various embodiments of the present disclosure
prise bus 750 . Transmission media can also take the form of have been described above , it should be understood that they
acoustic or light waves , such as those generated during have been presented by way of example only , and not

radio - wave and infra - red data communications . 5 limitation . Thus , the breadth and scope of the present
disclosure should not be limited by any of the above Reference throughout this specification to “ one embodi described exemplary embodiments , but should be defined

ment " , " an embodiment ” , or similar language means that a only in accordance with the following claims and their
particular feature , structure , or characteristic described in equivalents .
connection with the embodiment is included in at least one . It should be understood that the figures and / or screen
embodiment of the present disclosure . Thus , appearances of shots illustrated in the attachments highlighting the func
the phrases " in one embodiment " , " in an embodiment " and tionality and advantages of the present disclosure are pre
similar language throughout this specification may , but do sented for example purposes only . The present disclosure is
not necessarily , all refer to the same embodiment . sufficiently flexible and configurable , such that it may be

Furthermore , the described features , structures , or char - 10 utilized in ways other than that shown in the accompanying
acteristics of the disclosure may be combined in any suitable Further , the purpose of the following Abstract is to enable manner in one or more embodiments . In the above descrip the U . S . Patent and Trademark Office and the public gen tion , numerous specific details are provided such as erally , and especially the scientists , engineers and practitio
examples of programming , software modules , user selec - ners in the art who are not familiar with patent or legal terms
tions , network transactions , database queries , database struc - 20 or phraseology , to determine quickly from a cursory inspec
tures , hardware modules , hardware circuits , hardware chips , tion the nature and essence of the technical disclosure of the
etc . , to provide a thorough understanding of embodiments of application . The Abstract is not intended to be limiting as to
the disclosure . the scope of the present disclosure in any way .

APPENDIX
=

Miscellaneous Information
=

DB Max Execution Time : 0
DBGateway Max Rows : 0
DBGateway Max Threads : 200
Listen Port : 9703
MAXIMUM _ FILE _ HANDLES : 540
Machine : slc04ysh . us . oracle . com
Max Session Limit : 2000
Monitor Port : 9701
Number of Processors : 2
ORACLE BI LANG : en
ORACLE _ HOME : / ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome
ORACLE INSTANCE : / ade / adhakar test / biserver / a build . linux . 64 /

orahome
Repositories : { Star = / ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 /

orainst / bifoundation / OracleBIServerComponent / coreapplication _ obis1 /
repository / northwind . rpd }

SQLBypass Max Threads : 200
Server Max Threads : 100
Server Thread Stack Size : 1048576
Session TimeOut (Secs) : 60
Unique Identifier : instancel : coreapplication _ obis1
= = = = =
Beginning of crash dump . . .
Signal : 11
=

START : Activities Task for Thread : 0x41e63940 [Owner : 0x43d19940]
Activity # 1 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG

=

=

Activity type : DbGateway InitCursor
DSN : Northwind Connections ; userName : northwind
Physcial SQL Hash : 0x525b82c
Physical SQL : WITH SAWITHO AS (select T492944 . C172573801 as cl from

(SELECT V56424546 . ASSIGNMENT _ STATUS _ TYPE _ ID AS C172573801 ,
V56424546 . ASSIGNMENT _ ID776 AS PKA _ AssignmentPEOAssignmentido ,
V56424546 . EFFECTIVE _ START _ DATE785 AS PKA _ AssignmentPEOEffectiveSta0 ,
V56424546 . EFFECTIVE _ END _ DATE794 AS PKA _ AssignmentPEOEffectiveEndo ,
V56424546 . EFFECTIVE _ LATEST _ CHANGE AS PKA _ AssignmentPEOEffectiveLato ,
V56424546 . EFFECTIVE _ SEQUENCE AS PKA _ AssignmentPEOEffectiveSeqo FROM
(SELECT PersonPEO . PERSON _ ID AS PERSON _ ID271 ,
AssignmentPEO . ASSIGNMENT _ ID AS ASSIGNMENT _ ID776 ,
AssignmentPEO . EFFECTIVE _ START _ DATE AS EFFECTIVE _ START _ DATE785 ,
AssignmentPEO . EFFECTIVE _ END _ DATE AS EFFECTIVE _ END _ DATE794 ,
AssignmentPEO . EFFECTIVE _ LATEST _ CHANGE ,
AssignmentPEO . EFFECTIVE _ SEQUENCE ,
AssignmentPEO . ASSIGNMENT _ STATUS _ TYPE _ ID FROM PER _ PERSONS Person PEO ,
PER _ ALL _ PEOPLE _ F PersonDetailsPEO , PER _ ALL _ ASSIGNMENTS _ M AssignmentPEO
WHERE (PersonPEO . PERSON _ ID = PersonDetailsPEO . PERSON _ ID AND

US 9 , 852 , 172 B2
15 16 .

APPENDIX - continued
PersonDetailsPEO . PERSON _ ID = AssignmentPEO . PERSON _ ID AND (DATE - 2014 - 07

BETWEEN Person DetailsPEO EFFECTIVE START DATE AND
PersonDetailsPEO . EFFECTIVE _ END _ DATE) AND (DATE 2014 - 07 - 30 ' BETWEEN
AssignmentPEO . EFFECTIVE _ START _ DATE AND AssignmentPEO . EFFECTIVE _ END _ DATE))
AND ((((1 = 2) OR (EXISTS ((SELECT 1 FROM PER _ ALL _ ASSIGNMENTS _ MA
WHERE ROWNUM > AND A . ASSIGNMENT _ TYPE IN (' E ' , ' C ' , ' N ' , ' P ') AND
A . EFFECTIVE _ LATEST _ CHANGE = ' Y ' AND TRUNC (SYSDATE) BETWEEN
A . EFFECTIVE _ START _ DATE AND A . EFFECTIVE _ END _ DATE AND
A . PERSON _ ID = PersonPEO . PERSON _ ID AND (NOT EXISTS (SELECT 1 FROM PER _ USERS
U WHERE U . PERSON _ ID = A . PERSON _ ID AND U . USER _ GUID = FND _ GLOBAL . USER _ GUID)
AND ((A . ASSIGNMENT _ ID IS NOT NULL AND EXISTS (SELECT 1 FROM
PER _ MANAGER _ HRCHY _ DN MH WHERE MH . PERSON _ ID = A . PERSON _ ID AND TRUNC (SYSDATE)
BETWEEN MH . EFFECTIVE START DATE AND MH . EFFECTIVE END DATE AND
MH . MANAGER _ ID = (SELECT U . PERSON _ ID FROM PER _ USERS U WHERE
U . USER _ GUID = FND _ GLOBAL . USER _ GUID) AND MH . MANAGER _ TYPE = ' LINE _ MANAGER ')
))) UNION ALL SELECT 1 FROM PER SHARE INFORMATION SI WHERE
SI . GRANTEE _ PERSON _ ID = (SELECT U . PERSON _ ID FROM PER _ USERS U WHERE
U . USER _ GUID = FND _ GLOBAL . USER _ GUID) AND SI . PERSON _ ID = PersonPEO . PERSON _ ID
)))) AND (((AssignmentPEO . EFFECTIVE _ LATEST _ CHANGE = ' Y ')) AND ((
(AssignmentPEO . ASSIGNMENT _ TYPE = ' E ')) OR (
(AssignmentPEO . ASSIGNMENT _ TYPE = ' C ')) OR (
(AssignmentPEO . ASSIGNMENT _ TYPE = ' N ')) OR (
(AssignmentPEO . ASSIGNMENT _ TYPE = ' P ')))))) V56424546) T492944) ,
SAWITH1 AS (select distinct D1 . cl as cl , cast (D1 . cl as VARCHAR (80
)) as c4 from SAWITHO D1) , SAWITH2 AS (select T492945 . C61833496 as
cl , T492945 . C510542816 as c2 from (SELECT
V308947565 . USER _ STATUS AS C61833496 ,
V308947565 . ASSIGNMENT _ STATUS _ TYPE _ ID AS C510542816 ,
V308947565 . LANGUAGE AS C317595872 FROM PER _ ASSIGNMENT _ STATUS _ TYPES _ TL
V308947565 WHERE (((V308947565 . LANGUAGE = ' US ')))) T492945) , SAWITH3
AS (select D1 . cl as cl , D2 . cl as c2 , D1 . c4 as c3 from
SAWITH1 D1 left outer join SAWITH2 D2 On D1 . cl = D2 . c2 where (nvl (D2 . c1 ,
D1 . c4) = ' Active - Payroll Eligible ')) , SAWITH4 AS (select D901 . cl as
cl , nvl (D901 . c2 , D901 . c3) as c2 from SAWITH3 D901) select
distinct D1 . cl as c1 , D1 . c2 as c2 , D1 . cl as c3 from
SAWITH4 D1 order by cl , c2

=

=

=

Activity # 2 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG
= = =

Activity type : InitCursor
Execution Projection : < < 62493 > > Projection ; Logical Hash : oxbf1d29d9
= = = = = = =

Activity # 3 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG
=

Activity type : Producer Executing Query
Repository Name : Star Subject Area Name : SnowflakeSales User

Name : weblogic
=

END : Activities Task for Thread : 0x41e63940
=

START : Activities Task for Thread : 0x43d19940
Activity # 1 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG
=

Activity type : Prepare
Execution Projection : < < 62551 > > Projection ; Logical Hash : oxbf1d29d9
=

Activity # 2 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG
=

Activity type : Prepare
Execution Projection : < < 62276 > > Projection ; Logical Hash : oxbf1d29d9
=

Activity # 3 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG
=

Activity type : Prepare
Execution Projection : < < 62467 > > Projection ; Logical Hash : oxbf1d29d9
=

Activity # 4 ECID : 004zqjPTqpO9xW73VJVKB80002A0003EWG
=

Activity type : Execute Query
Repository Name : Star
Catalog : SnowflakeSales _ subrequest
User : weblogic
Session ID : Oxa7b70000
Request ID : 0xa7b70002
Logical Hash : oxbf1d29d9
Logical SQL : SET VARIABLE

QUERY _ SRC _ CD = " DisplayValue Map ’ , PREFERRED _ CURRENCY = " Local Currency ’ ; SELECT
DESCRIPTOR _ IDOF (“ Worker ” “ Assignment Status ”) saw _ 0 , " Worker ” “ Assignment
Status ” saw _ 1 , DESCRIPTOR _ IDOF (“ Workforce Performance - Performance Task
Status Real Time ” . “ Worker ” “ Assignment Status ”) saw _ 2 FROM “ Workforce

US 9 , 852 , 172 B2
17

APPENDIX - continued
Performance - Performance Task Status Real Time ” WHERE
“ Worker ” “ Assignment Status ” = ' Active - Payroll Eligible ' ORDER BY
saw _ 0 , saw _ 1

=

END : Activities Task for Thread : Ox43d19940
=

BACKTRACE :
lade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /

server / bin / libnqutilityserver64 . so [0x2b9d878375f3]
Jade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /

server / bin / libnqutilityserver64 . so [0x2b9d8783781f]
/ lib64 / libpthread . so . 0 [0x3f39a0ebeo]
ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation

server / bin / libnqsdbgateway64 . so (_ ZN11NQDbGateway10InitCursorEv +
Ox6b2) [0x2b9d7da0522a]

/ ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation
server / bin / libnqcachestorage64 . so (_ ZN22CacheStorage ListStream10Init
CursorEv + 0x57) [0x2b9d7bfa4ad7]

lade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /
server / bin / libnqsexecutionlist64 . so (_ ZN12NQProjection 10InitCursor
Ev + 0x82) [0x2b9d7e9fddeo]

ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /
server / bin / libnqsexecutionlist64 . so (_ ZN8Producer11ExecuteOnceEv +
Oxc37) [0x2b9d7e9e8ca5]

Jade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /
server / bin / libnqsexecutionlist64 . so (_ ZN13Query Producer7ProduceEv +
0x15) [0x2b9d7e9e9543]

lade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /
server / bin / libnqsexecutionlist64 . so (_ ZN18NQThreadJob _ No ArgsI8Producer
E15ExecuteUserMainEv + Oxb0) [0x2b9d7e9eda28]

Jade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation /
server / bin / libnqutility generic64 . so (_ ZN16NQExecutionState17Execute
SystemMainEv + Oxa5) [0x2b9d87333ec5]

lade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation
server / bin / libnqutility generic64 . so (_ ZN15NQThreadJobBasel 7Execute
SystemMainEv + 0X47) [0x2b9d87393b091

nqsserver (_ ZN17ManagedJob FunctorclEv + 0x34) [0x40efbc]
lade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation

server / bin / libnqutility generic64 . so (_ ZN10PoolThread15ExecuteUserMain
Ev + 0x1db) [0x2b9d87394add]

/ ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation
server / bin / libnqutility generic64 . so (_ ZN16NQExecution State17Execute
SystemMainEv + Oxa5) [0x2b9d87333ec5]

lade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation
server / bin / libnqutility generic64 . so (_ ZN8NQThread 17ExecuteSystemMain
Ev + 0x59) [0x2b9d87392cd5]

ade / adhakar _ test / biserver / analytics / jambuild . linux . 64 / orahome / bifoundation
server / bin / libnqutility generic64 . so (_ ZN8NQThread15 ThreadMain Entry
EPv + 0x30) [0x2b9d87392ada]

/ lib64 / libpthread . so . Of0x3f39a0677d]
/ lib64 / libc . so . 6 (clone + 0x6d) [0x3f38ed49ad]
=

50

What is claimed is :
1 . A method performed in a server system , said method

comprising :
receiving a user query from a client system ;
forming physical queries from said user query , each

physical query for retrieving a portion of data required
to form response to said user query ;

executing each of said physical queries in a corresponding
concurrent execution entity of a plurality of execution 55
entities to receive the respective portions of said data ;

generating a response to said user query based on said
respective portions if there is no occurrence of a crash
during said executing ;

sending said response to said client system if there is no 60
occurrence of a crash during said executing ;

during said executing , logging status of activities initiated
for execution of the respective physical query in each
concurrent execution entity to a log storage , wherein
said status indicates whether performance of any of 65
said activities is not completed , wherein said logging
comprises :

maintaining a respective stack for each concurrent
execution entity such that a first stack is maintained
for a first concurrent execution entity of said plural
ity of execution entities ;

adding a corresponding entry to said first stack upon
initiation of each activity in said first concurrent
execution entity , wherein each entry maintains a
state information related to the corresponding activ
ity , wherein said first stack includes a first entry
corresponding to a first activity and a second entry
corresponding to a second activity ; and

removing said second entry from said first stack upon
completion of said corresponding second activity ,

wherein unremoved entries in said first stack at said
time instance correspond to the not yet completed
activities in said first concurrent execution entity as
of said time instance ;

receiving an indication of occurrence of a crash of said
first execution entity at a time instance during said
executing ; and

in response to said indication , providing content of each
entry in said first stack to an administrator for debug

30

US 9 , 852 , 172 B2
19 20

ging purpose as status with respect to activities not yet removing said second entry from said first stack upon
completed in said first execution entity until said time completion of said corresponding second activity ,
instance . wherein unremoved entries in said first stack at said

2 . The method of claim 1 , wherein said first execution time instance correspond to the not yet completed
entity processes a first physical query , wherein said user 5 activities in said first concurrent execution entity as
query is processed in a second execution entity also execut of said time instance ;
ing concurrent with said first execution entity , receiving an indication of occurrence of a crash of said

wherein said method further comprises : first execution entity at a time instance during said
maintaining a parent stack for logging activities related to executing ; and

processing of said user query in said second execution in response to said indication , providing content of each
entity ; and entry in said first stack to an administrator for debug

including a pointer from said first stack to said parent ging purpose as status with respect to activities not yet
stack . completed in said first execution entity until said time

3 . The method of claim 2 , wherein said providing further 15 instance .
comprising : 7 . The non - transitory machine readable medium of claim

providing content of each entry in said parent stack 6 , wherein said first execution entity processes a first physi
corresponding to said second execution entity , cal query , wherein said user query is processed in a second

wherein said content of said parent stack represents status execution entity also executing concurrent with said first
information with respect to all activities not yet com - 20 execution entity ,
pleted in said second execution entity until said time wherein said actions further comprise :
instance . maintaining a parent stack for logging activities related to

4 . The method of claim 3 , wherein each of said first processing of said user query in said second execution
execution entity and said second execution entity is a thread . entity ; and

5 . The method of claim 1 , wherein a first portion of data 25 including a pointer from said first stack to said parent
maintained in a first database server and a second portion of stack .
data maintained in a second database server , wherein said 8 . The non - transitory machine readable medium of claim
executing comprises : 7 , wherein said providing further comprising :

connecting to said first database server to retrieve said providing content of each entry in said parent stack
first portion of data ; and corresponding to said second execution entity ,

connecting to said second database server to retrieve said wherein said content of said parent stack represents status
second portion of data . information with respect to all activities not yet com

6 . A non - transitory machine readable medium storing one pleted in said second execution entity until said time
or more sequences of instructions for enabling a server instance .
system to facilitate handling of crashes , wherein execution 35 9 . The non - transitory machine readable medium of claim
of said one or more instructions by one or more processors 8 , wherein each of said first execution entity and said second
contained in said server system enables said server system to execution entity is a thread .
perform the actions of : 10 . A server system comprising :

receiving a user query from a client system ; one or more random access memories (RAMs) to store
forming physical queries from said user query , each 40 instructions ;

physical query for retrieving a portion of data required one or more processing units to retrieve said instructions
to form response to said user query ; from said RAMs and execute the retrieved instructions ,

executing each of said physical queries in a corresponding wherein execution of said instructions causes said
concurrent execution entity of a plurality of execution server system to perform the actions of :
entities to receive the respective portions of said data ; 45 receiving a user query from a client system ;

generating a response to said user query based on said forming physical queries from said user query , each
respective portions if there is no occurrence of a crash physical query for retrieving a portion of data
during said executing ; required to form response to said user query ;

sending said response to said client system if there is no executing each of said physical queries in a correspond
occurrence of a crash during said executing ; ing concurrent execution entity of a plurality of

during said executing , logging status of activities initiated execution entities to receive the respective portions
for execution of the respective physical query in each of said data ;
concurrent execution entity to a log storage , wherein generating a response to said user query based on said
said status indicates whether performance of any of respective portions if there is no occurrence of a
said activities is not completed , wherein said logging 55 crash during said executing ;
comprises : sending said response to said client system if there is no
maintaining a respective stack for each concurrent occurrence of a crash during said executing ; and

execution entity such that a first stack is maintained during said executing , logging status of activities initiated
for a first concurrent execution entity of said plural for execution of the respective physical query in each
ity of execution entities ; concurrent execution entity to a log storage , wherein

adding a corresponding entry to said first stack upon said status indicates whether performance of any of
initiation of each activity in said first concurrent said activities is not completed , wherein said logging
execution entity , wherein each entry maintains a comprises :
state information related to the corresponding activ maintaining a respective stack for each concurrent
ity , wherein said first stack includes a first entry 65 execution entity such that a first stack is maintained
corresponding to a first activity and a second entry for a first concurrent execution entity of said plural
corresponding to a second activity ; and ity of execution entities ;

50

US 9 , 852 , 172 B2
21

adding a corresponding entry to said first stack upon adding respective identifiers of said set of queries to a
initiation of each activity in said first concurrent prohibited list , wherein said respective identifiers are in
execution entity , wherein each entry maintains a said prohibited list by said first time instance ;
state information related to the corresponding activ receiving , after said first time instance , a second identifier
ity , wherein said first stack includes a first entry 5 of a potential query to be issued ;

determining whether said prohibited list contains said corresponding to a first activity and a second entry second identifier by comparing said second identifier corresponding to a second activity ; and with said respective identifiers in said prohibited list ;
removing said second entry from said first stack upon preventing execution of said potential query if said pro

completion of said corresponding second activity , hibited list contains said second identifier .
wherein unremoved entries in said first stack at said " 15 . A non - transitory machine readable medium storing

time instance correspond to the not yet completed one or more sequences of instructions for enabling a server
activities in said first concurrent execution entity as system to facilitate handling of crashes , wherein execution
of said time instance ; of said one or more instructions by one or more processors

receiving an indication of occurrence of a crash of said 16 contained in said server system enables said server system to
15 perform the actions of : first execution entity at a time instance during said identifying a set of queries that have caused an execution executing ; and environment to crash before a first time instance ; in response to said indication , providing content of adding respective identifiers of said set of queries to a

each entry in said first stack to an administrator for prohibited list , wherein said respective identifiers are in
debugging purpose as status with respect to activities 20 said prohibited list by said first time instance ;
not yet completed in said first execution entity until receiving , after said first time instance , a second identifier
said time instance . of a potential query to be issued ;

11 . The server system of claim 10 , wherein said first determining whether said prohibited list contains said
execution entity processes a first physical query , wherein second identifier by comparing said second identifier
said user query is processed in a second execution entity also 25 with said respective identifiers in said prohibited list ;
executing concurrent with said first execution entity , preventing execution of said potential query if said pro

hibited list contains said second identifier . wherein said actions further comprise : 16 . A server system comprising : maintaining a parent stack for logging activities related to
processing of said user query in said second execution one or more random access memories (RAMs) to store

instructions ; entity ; and
including a pointer from said first stack to said parent one or more processing units to retrieve said instructions

from said RAMs and execute the retrieved instructions , stack . wherein execution of said instructions causes said 12 . The server system of claim 11 , wherein said providing
further comprising : server system to perform the actions of :

identifying a set of queries that have caused an execu providing content of each entry in said parent stack 35
tion environment to crash before a first time instance ; corresponding to said second execution entity , adding respective identifiers of said set of queries to a wherein said content of said parent stack represents status prohibited list , wherein said respective identifiers are information with respect to all activities not yet com in said prohibited list by said first time instance ; pleted in said second execution entity until said time

instance . receiving , after said first time instance , a second iden
13 . The server system of claim 12 , wherein each of said tifier of a potential query to be issued ;

first execution entity and said second execution entity is a determining whether said prohibited list contains said
thread . second identifier by comparing said second identifier

with said respective identifiers in said prohibited list ; 14 . A method of handling crashes , said method compris
ing : preventing execution of said potential query if said

identifying a set of queries that have caused an execution prohibited list contains said second identifier .
environment to crash before a first time instance ; * * * * *

30 30

40

mpris
A5

