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FEW - SHOT LEARNING OF REPETITIVE 
HUMAN TASKS 

TECHNICAL FIELD 

[ 0001 ] The present disclosure relates to few - shot learning 
of repetitive human tasks . 

BACKGROUND 

[ 0002 ] In modern industrial manufacturing , low - cost 
smart sensors are commonly utilized to monitor , analyze , 
and improve the assembly process . In particular , body 
mounted motion sensors can continuously record high 
precision movement signals . Advanced machine learning 
systems can then be built on them to perform abnormality 
detection , efficiency analysis , and poka - yoke feedback etc. 
At each station along an assembly line , the operator needs to 
complete a sequence of assembling steps in a standard and 
timely manner . The human activity involved is often repeti 
tive . 
[ 0003 ] Few - shot learning is a task in which a classifier is 
adapted to accommodate new classes not seen during train 
ing , given only a few examples of each of these classes . 
Types of few - shot learning models include matching net 
works and prototypical networks . One of the issues for 
systems performing few - shot learning is overfitting , in 
which the error for a training set is driven to a small value , 
but new data presented to the network gives a typically 
unusably large error . 

portions of the plurality of cycles according to the motion 
alignment ; perform meta - training to teach a model accord 
ing to data sampled from a labeled set of human motions and 
the categories for each of the corresponding portions , the 
model utilizing a bidirectional long short - term memory 
( LSTM ) network to account for length variation between the 
plurality of cycles ; and use the model to perform temporal 
segmentation on a data stream of sensor data in real time for 
predicting motion windows within the data stream . 
[ 0006 ] In one or more illustrative examples , a non - transi 
tory computer readable medium comprising instructions of 
a few - shot analysis application that , when executed by one 
or more processors , cause the one or more processors to 
perform sliding window - based temporal segmentation of 
sensor data for a plurality of cycles of a repetitive task , the 
plurality of cycles including a reference cycle and one or 
more operation cycles ; perform motion alignment of the 
plurality of cycles , the motion alignment mapping portions 
of the plurality of cycles to corresponding portions of other 
of the plurality of cycles , construct categories for each of the 
corresponding portions of the plurality of cycles according 
to the motion alignment ; perform meta - training to teach a 
model according to data sampled from a labeled set of 
human motions and the categories for each of the corre 
sponding portions , the model utilizing a bidirectional long 
short - term memory ( LSTM ) network to account for length 
variation between the plurality of cycles ; and use the model 
to perform temporal segmentation on a data stream of sensor 
data in real time for predicting motion windows within the 
data stream . 

SUMMARY 
BRIEF DESCRIPTION OF THE DRAWINGS [ 0004 ] In one or more illustrative examples , a method for 

few - shot learning of repetitive human tasks is performed . 
Sliding window - based temporal segmentation is performed 
of sensor data for a plurality of cycles of a repetitive task , the 
plurality of cycles including a reference cycle and one or 
more operation cycles . Motion alignment is performed of 
the plurality of cycles , the motion alignment mapping por 
tions of the plurality of cycles to corresponding portions of 
other of the plurality of cycles . Categories are constructed 
for each of the corresponding portions of the plurality of 
cycles according to the motion alignment . Meta - training is 
performed to teach a model according to data sampled from 
a labeled set of human motions and the categories for each 
of the corresponding portions , the model utilizing a bidirec 
tional long short - term memory ( LSTM ) network to account 
for length variation between the plurality of cycles . The 
model is used to perform temporal segmentation on a data 
stream of sensor data in real time for predicting motion 
windows within the data stream . 
[ 0005 ] In one or more illustrative examples , a system for 
few - shot learning of repetitive human tasks includes a 
memory configured to store a few - shot analysis application 
and motion capture data including a reference cycle and a 
one or more operation cycles ; and a processor , operatively 
connected to the memory . The processor is configured to 
execute the few - shot analysis application to perform sliding 
window - based temporal segmentation of sensor data for a 
plurality of cycles of a repetitive task , the plurality of cycles 
including the reference cycle and the one or more operation cycles ; perform motion alignment of the plurality of cycles , 
the motion alignment mapping portions of the plurality of 
cycles to corresponding portions of other of the plurality of 
cycles ; construct categories for each of the corresponding 

[ 0007 ] FIG . 1 illustrates a schematic diagram of an exem 
plary embodiment of a system for performing few - shot 
learning of repetitive human tasks . 
[ 0008 ] FIG . 2 illustrates an example setting for the per 
formance of a repetitive human activity ; 
[ 0009 ] FIG . 3 illustrates an example temporal segmenta 
tion of motion activity using a sliding window approach ; 
[ 0010 ] FIG . 4 illustrates an example of motion phase 
recognition formulated under a few - shot learning frame 
work ; 
[ 0011 ] FIG . 5 illustrates an example task construction 
method on a training set ; 
[ 0012 ] FIG . 6 illustrates a bidirectional long short - term 
memory architecture for calculating fixed - length embed 
dings ; and 
[ 0013 ] FIG . 7 illustrates an example process for perform 
ing few - shot learning of repetitive human tasks . 

DETAILED DESCRIPTION 

[ 0014 ] Embodiments of the present disclosure are 
described herein . It is to be understood , however , that the 
disclosed embodiments are merely examples and other 
embodiments can take various and alternative forms . The 
figures are not necessarily to scale ; some features could be 
exaggerated or minimized to show details of particular 
components . Therefore , specific structural and functional 
details disclosed herein are not to be interpreted as limiting , 
but merely as a representative basis for teaching one skilled 
in the art to variously employ the embodiments . As those of 
ordinary skill in the art will understand , various features 
illustrated and described with reference to any one of the 
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figures can be combined with features illustrated in one or 
more other figures to produce embodiments that are not 
explicitly illustrated or described . The combinations of 
features illustrated provide representative embodiments for 
typical applications . Various combinations and modifica 
tions of the features consistent with the teachings of this 
disclosure , however , could be desired for particular appli 
cations or implementations . 
[ 0015 ] An operator at a station along an assembly line may 
complete a sequence of assembling steps . These assembling 
steps may be referred to as motion phases . An ordered 
sequence of the motion phases may be referred to as a cycle 
in the repetitive activity . An approach to provide real - time 
recognition for the motion phase is described . As the 
approach recognizes the motion phases in real - time , latency 
free feedback functionality is provided to the user , which is 
desirable in achieving a complete poka - yoke system . 
[ 0016 ] FIG . 1 illustrates a schematic diagram of an exem 
plary embodiment of a system 100 for performing few - shot 
learning of repetitive human tasks . The system 100 includes 
a processor 102 that is operatively connected to a memory 
110 , input device 118 , motion capture device 120 , and a 
display device 108. While the illustrated system 100 is 
shown using a single computing device , other example 
systems 100 may include multiple computing devices per 
forming various aspects of the few - shot learning . 
[ 0017 ] In the system 100 as shown , the processor 102 
includes one or more integrated circuits that implement the 
functionality of a central processing unit ( CPU ) 104 and 
graphics processing unit ( GPU ) 106. In some examples , the 
processor 102 is a system on a chip ( SOC ) that integrates the 
functionality of the CPU 104 and GPU 106 , and optionally 
other components including , for example , the memory 110 , 
a network device , and a positioning system , into a single 
integrated device . In other examples the CPU 104 and GPU 
106 are connected to each other via a peripheral connection 
device such as PCI express or another suitable peripheral 
data connection . In one example , the CPU 104 is a com 
mercially available central processing device that imple 
ments an instruction set such as one of the x86 , ARM , 
Power , or MIPS instruction set families . 
[ 0018 ] The GPU 106 may include hardware and software 
for display of at least two - dimensional ( 2D ) and optionally 
three - dimensional ( 3D ) graphics to a display device 108 . 
The display device 108 may include an electronic display 
screen , projector , printer , or any other suitable device that 
reproduces a graphical display . In some examples , processor 
102 executes software programs including drivers and other 
software instructions using the hardware functionality in the 
PU 106 to accelerate generation and display of the graphi 

cal depictions of models of human movement and visual 
izations of quantitative computations that are described 
herein . 
[ 0019 ] During operation , the CPU 104 and GPU 106 
execute stored program instructions that are retrieved from 
the memory 110. The stored program instructions include 
software that control the operation of the CPU 104 and the 
GPU 106 to perform the operations described herein . While 
the system 100 depicts the processor 102 as including both 
the CPU 104 and GPU 106 , alternative embodiments may 
omit the GPU 106 , as for example the processor 102 may be 
of a server that generates output visualization data using 
only a CPU 104 and transmits the output visualization data 
to a remote client computing device that uses a GPU 106 and 

a display device 108 to display the data . Additionally , 
alternative embodiments of the processor 102 can include 
microcontrollers , application specific integrated circuits 
( ASICs ) , field programmable gate arrays ( FPGAs ) , digital 
signal processors ( DSPs ) , or any other suitable digital logic 
devices in addition to or as replacements of the CPU 104 and 
GPU 106 . 
[ 0020 ] In the system 100 , the memory 110 includes both 
non - volatile memory and volatile memory devices . The 
non - volatile memory includes solid - state memories , such as 
NAND flash memory , magnetic and optical storage media , 
or any other suitable data storage device that retains data 
when the system 100 is deactivated or loses electrical power . 
The volatile memory includes static and dynamic random 
access memory ( RAM ) that stores program instructions and 
data , including a few - shot analysis application 112 , motion 
capture data 114 , and a machine - learning model 116 , during 
operation of the system 100. In some embodiments the CPU 
104 and the GPU 106 each have access to separate RAM 
devices ( e.g. , a variant of DDR SDRAM for the CPU 104 
and a variant of GDDR , HBM , or other RAM for the GPU 
106 ) while in other embodiments the CPU 104 and GPU 106 
access a shared memory device . 
[ 0021 ] The input device 118 may include any of various 
devices that enable the system 100 to receive the input from 
a user . Examples of suitable input devices include human 
interface inputs such as keyboards , mice , touchscreens , 
voice input devices , and the like , as well . In some examples 
the system 100 implements the input device 118 as a 
network adapter or peripheral interconnection device that 
receives data from another computer or external data storage 
device , which can be useful for receiving large sets of 
motion capture data 114 in an efficient manner . 
[ 0022 ] The motion capture data 114 refers to a plurality of 
records representative of the locations of at least one tracked 
item or portion of the item over time . For example , the 
motion capture data 114 may include one or more of : records 
of positions of a reference point on a body part over time or 
at set time intervals , sensor data taken over time , a video 
stream or a video stream that has been processed using a 
computer - vision technique , data indicative of the operating 
state of a machine over time , etc. In some cases , the motion 
capture data 114 may include data representative of more 
than one continuous movement . For instance , the motion 
capture data 114 may include a combination of a plurality of 
combined motion capture data 114 sets . 
[ 0023 ] Amotion capture device 120 is a device configured 
to generate motion capture data 114. Motion capture devices 
120 may include , as some non - limiting examples : cameras , 
visual sensors , infra - red sensors , ultrasonic sensors , accel 
erometers , gyroscopes , pressure sensors , or the like . One 
non - limiting example of a motion capture device 120 is one 
or a pair of digital gloves that a user wears while performing 
cyclical motions . The digital gloves may include sensors that 
capture the motions of the user to generate the motion 
capture data 114 that are stored in the memory 110 . 
[ 0024 ] In machine learning systems , model - based reason 
ing refers to an inference method that operates based on a 
machine learning model 116 of a worldview to be analyzed . 
Generally , the machine learning model 116 is trained to learn 
a function that provides a precise correlation between input 
values and output values . At runtime , a machine learning 
engine uses the knowledge encoded in the machine learning 
model 116 against observed data to derive conclusions such 
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as a diagnosis or a prediction . One example machine learn 
ing system may include the TensorFlow AI engine made 
available by Alphabet Inc. of Mountain View , Calif . , 
although other machine learning systems may additionally 
or alternately be used . In the examples described herein , the 
model 116 is a few - shot learning model . 
[ 0025 ] FIG . 2 illustrates an example setting for the per 
formance of a repetitive human activity . At each assembly 
station , a few cycles ( shown as a minimum of one cycle ) of 
standard procedure is recorded as the reference to train the 
machine learning model 116. For instance , the motion 
capture device 120 may be used to capture motion capture 
data 114 to use as the reference movement . It should be 
noted that the motion activity at different stations can be 
completely different depending on the assembly procedure , 
and further that although the activity is repetitive , it can be 
performed at different rates and small motions are suscep 
tible to variations . 
[ 0026 ] During an inference stage , an operator repeats the 
assembly cycle under the observation of the motion capture 
device 120 and the model 116 recognizes which phase is 
being performed at every time step . This is challenging due 
to certain constraints . First , acquiring large amounts of 
labeled data to train the model 116 may be prohibitive due 
to the busy manufacturing schedule in factories and labori 
ous labeling efforts from humans . Since minimal supervi 
sion ensures the usability of the system , a focus is placed on 
the challenging case where only one demonstration of the 
assembly procedure is available at each station . Second , 
assembly activities are complex and can be segmented at 
different granularity levels . For example , some users may 
divide a cycle into a few long , coarse motion phases whereas 
other users are interested in short , fine - grained motions . As 
a result , although the motion phase labels are given by the 
user during recording of the reference , they are , in fact , 
highly ambiguous . The lack of unified definition of motion 
patterns makes the transfer of knowledge from relevant 
classes difficult , challenging the typical assumption from 
most few - shot learning approaches ( see , e.g. , Snell , Jake , 
Kevin Swersky , and Richard Zemel . “ Prototypical networks 
for few - shot learning . ” Advances in Neural Information 
Processing Systems , pp . 4077-4087 . 2017 ; and Finn , Chel 
sea , Pieter Abbeel , and Sergey Levine . “ Model - agnostic 
meta - learning for fast adaptation of deep networks . ” Pro 
ceedings of the 34th International Conference on Machine 
Learning - Volume 70 , pp . 1126-1135 . JMLR , 2017. ) To 
tackle these challenges , motion phase recognition is formu 
lated under the few - shot learning framework . Then a task 
construction method is provided based on time - series align 
ment in order to train the embedding network . 
[ 0027 ] FIG . 3 illustrates an example temporal segmenta 
tion of motion activity using a sliding window approach . As 
shown , the time series corresponds to the motion capture 
device 120 readings of one cycle from a considered station , 
which consists of three phases . Since only one demonstra 
tion ( cycle ) of the assembly activity is available , the training 
data for performing phase recognition is extremely limited . 
As shown , given the training cycle of motion capture data 
114 for a station , first sliding window - based temporal seg 
mentation is performed . Denoting the cycle length as 1 , the 
window length as w and the stride of the moving window as 
T , the total number of resulting training samples is ( 1std - w ) / 
T + 1 , which often arrives the low - sample regime . The num 
ber of samples ( windows ) for each phase is also very low . 

Note that multiple phases exist in the cycle . Therefore , the 
number of training examples per class can be even lower , 
reaching perhaps two or three . 
[ 0028 ] The assembly procedure across stations is often 
dramatically different ( assembling a power drill versus a 
washing machine ) . Hence , the labeled motion capture data 
114 from existing stations cannot be directly shared with a 
new station and their specific phases must be considered as 
different classes . This scenario fits into the few - shot setting 
in machine learning field , where the model 116 must learn 
to generalize from a few examples ( see , e.g. , Fei - Fei , Li , 
Rob Fergus , and Pietro Perona . “ One - shot learning of object 
categories . ” IEEE transactions on pattern analysis and 
machine intelligence 28 , no . 4 ( 2006 ) : 594-611 ) . 
[ 0029 ] FIG . 4 illustrates an example of motion phase 
recognition formulated under a few - shot learning frame 
work . The target station is where the transfer of the model 
116 is to occur , and is named as testing set ( Station 4 in FIG . 
4 ) . Note that the testing set contains both the reference cycle 
and the actual operation cycles . The reference cycle is 
named as support set and is where the model 116 can be 
fine - tuned after the transfer learning is completed . The 
operation cycles correspond to the query set and is where the 
model 116 performs recognition of the phase in real - time . 
The reference and operation cycles from the other stations 
( stations 1 to 3 in FIG . 4 ) is referred to as a training set . As 
explained in further detail , the model 116 is trained based on 
the entire training set and then transferred to the testing set . 
This procedure is referred to as meta - learning . 
[ 0030 ) Directly applying a few - shot learning model , e.g. , 
Prototypical Network ( ProtoNet ) ( see , e.g. , Snell et al . ) , to 
this framework has issues . First , although the training set is 
large with recordings from multiple stations , the labeled part 
contains only a reference of each station and is a very small 
fraction of the entire set . The label sparsity contradicts the 
typical assumption of few - shot learning , which considers 
that labels in the training set are abundant . Furthermore , 
motion procedures are ambiguous in nature ; thus , it is 
difficult to clearly define each phase and its boundaries . 
Therefore , how to construct tasks from the training set , i.e. , 
define proper support and query sets , is key to successful 
transfer . An effective task construction approach is proposed 
to resolve these challenges . 
[ 0031 ] FIG . 5 illustrates an example task construction 
method on a training set . As shown , the example is illus 
trated for sampling a three - way , three - shot task . A first 
aspect in the task construction method is to derive pseudo 
labels for the unlabeled data . Intuitively , the cyclic nature of 
the recording indicates that there are inherent categories 
indicated by the correspondence between cycles . Once the 
cycles are aligned , phase labels can be uncovered in these 
cycles . 
[ 0032 ] However , jointly aligning a large number of time 
series is hard ( see , e.g. , Petitjean , Francois , Alain Ketterlin , 
and Pierre Gançarski . " A global averaging method for 
dynamic time warping , with applications to clustering . ” 
Pattern Recognition 44 , no . 3 ( 2011 ) : 678-693 ) and some 
cycles might even contain abnormal motions . Thus , the 
reference cycle is used as an anchor in order to align all 
existing cycles . Specifically , denoting the reference cycle as 
Xrer and the operational cycles as { x } = 1 " , temporal align 
ment is performed between Xref and each x , using dynamic 
time warping ( DTW ) ( see , e.g. , Keogh , Eamonn , and Choti 
rat Ann Ratanamahatana . “ Exact indexing of dynamic time 
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The predicted class distribution is then modeled as the 
softmax over the Euclidean distance between the query 
sample and all class prototypes as follows : 

Py ( y = k | Xquery ) = exp ( -d ( fp ( xquery ) , Ck ) ) 
Ek'exp ( -d ( fo ( xquery ) , ck ' ) ) 

warping . ” Knowledge and information systems 7 , no . 3 
( 2005 ) : 358-386 ) . DTW is a technique for comparing 
sequences that may vary in speed by computing an optimal 
matching between discrete portions of the sequences . DTW 
includes computing a “ warping path ” that corresponds to a 
mapping between a portion of one sequence and a similar 
portion of another sequence occurring at a different time or 
rate . Through dynamic programming , DTW matches each 
time step in the reference to one or multiple steps in the cycle 
sequence . This is illustrated in the motion alignment block 
of FIG . 5 . 
[ 0033 ] Next , the alignment in the motion is used to con 
struct categories . Due to the difficulty in defining a motion 
class and its boundaries , the atomic motion in the short 
sliding window is used to define a large number of classes . 
Specifically , first a temporal segmentation is performed , 
similar to as shown in FIG . 3 , on the reference cycle . The 
stride of the moving window is set to t = w in order to avoid 
overlap between categories . Denoting the kth window as 
Xref * ) , the DTW - matched temporal boundaries of the win 
dow within each cycle are then found . These matched 
motion windows are denoted as { x , ( K ) } n = 1 ̂ . In the case of 
multiple matching steps , the step with the lowest matching 
cost is chosen . For each station , this procedure is followed 
to construct K classes , where s denotes the station . The total 
number of classes is therefore K = E , K ,. This process is 
illustrated in the class construction block of FIG . 5 . 
[ 0034 ] Given the obtained classes , meta - training is per 
formed , using a similar architecture as ProtoNet in order to 
learn the model . One obstacle is that ProtoNet utilizes the 
convolutional neural network ( CNN ) as the modeling com 
ponent and it has two disadvantages for the instant applica 
tion . First , CNN is superior in capturing the spatial corre 
lation in images but is not sufficient in modeling the 
temporal ordering information in the sensor time series . 
Second , the motion windows obtained as discussed above 
may vary significantly in length as a result of the rate 
variation in different operation cycles . CNN only accepts 
fixed - size input and the required padding operation may 
change the inherent motion information . To tackle these 
concerns , the modeling component in ProtoNet is replaced 
with a bidirectional long short - term memory ( LSTM ) net 
work ( see , e.g. , Graves , Alex , and Jürgen Schmidhuber . 
“ Framewise phoneme classification with bidirectional 
LSTM and other neural network architectures . " Neural 
networks 18 , no . 5-6 ( 2005 ) : 602-610 ) . 
[ 0035 ] FIG . 6 illustrates a bidirectional LSTM architecture 
for calculating fixed - length embeddings . As demonstrated in 
FIG . 6 , the network consists of two LSTM cells both 
modeling the time series in a recurrent fashion . One cell only 
looks at the forward direction while the other at the back 
ward direction , and their corresponding hidden embeddings 
are then summed or concatenated to form the d - dimentional 
fixed - length output embedding . The overall model is 
denoted as fep , with the learnable network parameters as o . 
[ 0036 ] Similar to Snell et al . , in order to train the model , 
the prototype of each class is calculated as the mean of the 
class embedding vectors as follows : 

Finally , the learning is performed by minimizing the nega 
tive log - probability loss regarding the true class label k : 

J ( 0 ) = - log ( P + ( v = klxquery ) ) 
[ 0037 ] A key procedure in most meta - learning approaches 
is to sample large quantities of few - shot tasks from the 
meta - training set ( see , e.g. , Snell et al . and Vinyals , Oriol , 
Charles Blundell , Timothy Lillicrap , and Daan Wierstra . 
“ Matching networks for one shot learning . ” Advances in 
neural information processing systems , pp . 3630-3638 . 
2016 ) . Each sampled task consisting of C classes and M 
samples per class . An example with C = 3 and M = 3 is shown 
in the meta - learning block of FIG . 4. The sampling process 
is performed as follows : at each training episode , C classes 
are first sampled from the total number of K classes . Then , 
for each of the selected classes , M samples are randomly 
sampled to construct the support set . From the remaining 
data of unselected classes , Q random samples are randomly 
retrieved to construct the query set . Given the support and 
query set , J ( 0 ) can be calculated and the model parameters 
can be updated by backpropagation . 
[ 0038 ] As mentioned before , the network fp is meta 
trained on all existing stations ( e.g. , station 1-3 of FIG . 5 ) , 
but needs to be deployed on a new station with only the 
reference as support set ( e.g. , station 4 of FIG . 5 ) . The 
station specific model can be obtained by fine - tuning fe . Specifically , for the target station , temporal segmentation is 
performed on the reference cycle , f , is trained further with 
the user - defined phase labels . The training can be stopped 
early to prevent overfitting , especially when the motions 
differ significantly from existing stations . 
[ 0039 ] During runtime , temporal segmentation is per 
formed on the operation data stream in real time and the 
prediction on the motion window is made according to 
Po ( y = k | xquery ) . The transfer of knowledge through the meta 
training stage tackles the limitation of low training data and 
improves the model generalization towards new operation 
cycles . 
[ 0040 ] Thus , the recognition of repetitive human activities 
is formulated as few - shot model learning under low data 
regime . The inherent categories of repetitive human activi 
ties are uncovered by temporal alignment . Knowledge of 
human motions is transferred from a large labeled set to 
novel categories by meta - training . Knowledge of human 
motions is also transferred from a large labeled set to novel 
categories by fine - tuning . This solution further improves the 
temporal transfer in few - shot learning by utilizing a bidi 
rectional LSTM model . 
[ 0041 ] FIG . 7 illustrates an example process 700 for 
performing few - shot learning of repetitive human tasks . In 
an example , the process 700 may be performed by the 
system 100 , using the approach discussed in detail herein . 
[ 0042 ] At operation 702 , the system 100 performs sliding 
window - based temporal segmentation of sensor data for a 

? - ????? ) ) 
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plurality of cycles of a repetitive task . The plurality of cycles 
may include a reference cycle and one or more operation 
cycles . 
[ 0043 ] At operation 704 , the system 100 performs motion 
alignment of the plurality of cycles . The motion alignment 
may map portions of the plurality of cycles to corresponding 
portions of other of the plurality of cycles . At operation 706 , 
the system 100 constructs categories for each of the corre 
sponding portions of the plurality of cycles according to the 
motion alignment . 
[ 0044 ] At operation 708 , the system 100 performs meta 
training to teach a model according to data sampled from a 
labeled set of human motions and the categories for each of 
the corresponding portions . The model may utilize a bidi 
rectional long short - term memory ( LSTM ) network to 
account for length variation between the plurality of cycles . 
At operation 710 , the system 100 uses the model to perform 
temporal segmentation on a data stream of sensor data in real 
time for predicting motion windows within the data stream . 
[ 0045 ] The processes , methods , or algorithms disclosed 
herein can be deliverable to / implemented by a processing 
device , controller , or computer , which can include any 
existing programmable electronic control unit or dedicated 
electronic control unit . Similarly , the processes , methods , or 
algorithms can be stored as data and instructions executable 
by a controller or computer in many forms including , but not 
limited to , information permanently stored on non - writable 
storage media such as ROM devices and information alter 
ably stored on writeable storage media such as floppy disks , 
magnetic tapes , CDs , RAM devices , and other magnetic and 
optical media . The processes , methods , or algorithms can 
also be implemented in a software executable object . Alter 
natively , the processes , methods , or algorithms can be 
embodied in whole or in part using suitable hardware 
components , such as Application Specific Integrated Cir 
cuits ( ASICs ) , Field - Programmable Gate Arrays ( FPGAs ) , 
state machines , controllers or other hardware components or 
devices , or a combination of hardware , software and firm 
ware components . 
[ 0046 ] While exemplary embodiments are described 
above , it is not intended that these embodiments describe all 
possible forms encompassed by the claims . The words used 
in the specification are words of description rather than 
limitation , and it is understood that various changes can be 
made without departing from the spirit and scope of the 
disclosure . As previously described , the features of various 
embodiments can be combined to form further embodiments 
of the invention that may not be explicitly described or 
illustrated . While various embodiments could have been 
described as providing advantages or being preferred over 
other embodiments or prior art implementations with respect 
to one or more desired characteristics , those of ordinary skill 
in the art recognize that one or more features or character 
istics can be compromised to achieve desired overall system 
attributes , which depend on the specific application and 
implementation . These attributes can include , but are not 
limited to cost , strength , durability , life cycle cost , market ability , appearance , packaging , size , serviceability , weight , 
manufacturability , ease of assembly , etc. As such , to the 
extent any embodiments are described as less desirable than 
other embodiments or prior art implementations with respect 
to one or more characteristics , these embodiments are not 
outside the scope of the disclosure and can be desirable for 
particular applications . 

What is claimed is : 
1. A method for few - shot learning of repetitive human 

tasks , the method comprising : 
performing sliding window - based temporal segmentation 

of sensor data for a plurality of cycles of a repetitive 
task , the plurality of cycles including a reference cycle 
and one or more operation cycles ; 

performing motion alignment of the plurality of cycles , 
the motion alignment mapping portions of the plurality 
of cycles to corresponding portions of other of the 
plurality of cycles ; 

constructing categories for each of the corresponding 
portions of the plurality of cycles according to the 
motion alignment ; 

performing meta - training to teach a model according to 
data sampled from a labeled set of human motions and 
the categories for each of the corresponding portions , 
the model utilizing a bidirectional long short - term 
memory ( LSTM ) network to account for length varia 
tion between the plurality of cycles ; and 

using the model to perform temporal segmentation on a 
data stream of sensor data in real time for predicting 
motion windows within the data stream . 

2. The method of claim 1 , wherein the motion alignment 
is performed using dynamic time warping ( DTW ) to com 
pute an optimal matching between discrete portions of the 
plurality of cycles . 

3. The method of claim 1 , wherein the motion alignment 
is performed using the reference cycle as an anchor to align 
the one or more operation cycles . 

4. The method of claim 1 , wherein LSTM network 
includes a first cell looking in a forward direction and a 
second cell looking in a backward direction , wherein hidden 
embeddings from each of the first cell and the second cell are 
combined to form a fixed - length output embedding . 

5. The method of claim 1 , wherein the model is trained by : 
calculating a class prototype of each of the categories as 

a mean of embedding vectors for the category ; 
modeling a predicted class distribution using a softmax 

function over a Euclidean distance between query 
samples and the class prototype ; and 

learning by minimizing a negative log - probability loss 
regarding a true class label for the category . 

6. The method of claim 1 , wherein the sensor data is 
received from a digital glove . 

7. A system for few - shot learning of repetitive human 
tasks , comprising : 

a memory configured to store a few - shot analysis appli 
cation and motion capture data including a reference 
cycle and a one or more operation cycles ; and 

a processor , operatively connected to the memory , and 
configured to execute the few - shot analysis application 
to 
perform sliding window - based temporal segmentation 

of sensor data for a plurality of cycles of a repetitive 
task , the plurality of cycles including the reference 
cycle and the one or more operation cycles ; 

perform motion alignment of the plurality of cycles , the 
motion alignment mapping portions of the plurality 
of cycles to corresponding portions of other of the 
plurality of cycles ; 

construct categories for each of the corresponding 
portions of the plurality of cycles according to the 
motion alignment ; 
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perform meta - training to teach a model according to 
data sampled from a labeled set of human motions 
and the categories for each of the corresponding 
portions , the model utilizing a bidirectional long 
short - term memory ( LSTM ) network to account for 
length variation between the plurality of cycles ; and 

use the model to perform temporal segmentation on a 
data stream of sensor data in real time for predicting 
motion windows within the data stream . 

8. The system of claim 7 , wherein the motion alignment 
is performed using dynamic time warping ( DTW ) to com 
pute an optimal matching between discrete portions of the 
plurality of cycles . 

9. The system of claim 7 , wherein the motion alignment 
is performed using the reference cycle as an anchor to align 
the one or more operation cycles . 

10. The system of claim 7 , wherein LSTM network 
includes a first cell looking in a forward direction and a 
second cell looking in a backward direction , wherein hidden 
embeddings from each of the first cell and the second cell are 
combined to form a fixed - length output embedding . 

11. The system of claim 7 , wherein the processor is further 
configured to execute the few - shot analysis application to 
train the model by operations including to : 

calculate a class prototype of each of the categories as a 
mean of embedding vectors for the category ; 

model a predicted class distribution using a softmax 
function over a Euclidean distance between query 
samples and the class prototype ; and 

learn by minimizing a negative log - probability loss 
regarding a true class label for the category . 

12. The system of claim 7 , wherein the sensor data is 
received from a digital glove . 

13. A non - transitory computer readable medium compris 
ing instructions of a few - shot analysis application that , when 
executed by one or more processors , cause the one or more 
processors to : 

perform sliding window - based temporal segmentation of 
sensor data for a plurality of cycles of a repetitive task , 
the plurality of cycles including a reference cycle and 
one or more operation cycles ; 

perform motion alignment of the plurality of cycles , the 
motion alignment mapping portions of the plurality of 
cycles to corresponding portions of other of the plu 
rality of cycles ; 

construct categories for each of the corresponding por 
tions of the plurality of cycles according to the motion 
alignment ; 

perform meta - training to teach a model according to data 
sampled from a labeled set of human motions and the 
categories for each of the corresponding portions , the 
model utilizing a bidirectional long short - term memory 
( LSTM ) network to account for length variation 
between the plurality of cycles ; and 

use the model to perform temporal segmentation on a data 
stream of sensor data in real time for predicting motion 
windows within the data stream . 

14. The medium of claim 13 , wherein the motion align 
ment is performed using dynamic time warping ( DTW ) to 
compute an optimal matching between discrete portions of 
the plurality of cycles . 

15. The system of claim 13 , wherein the motion alignment 
is performed using the reference cycle as an anchor to align 
the one or more operation cycles . 

16. The system of claim 13 , wherein LSTM network 
includes a first cell looking in a forward direction and a 
second cell looking in a backward direction , wherein hidden 
embeddings from each of the first cell and the second cell are 
combined to form a fixed - length output embedding . 

17. The system of claim 13 , wherein the medium further 
comprises instructions of the few - shot analysis application 
that , when executed by the one or more processors , cause the 
one or more processors to : 

calculate a class prototype of each of the categories as a 
mean of embedding vectors for the category ; 

model a predicted class distribution using a softmax 
function over a Euclidean distance between query 
samples and the class prototype ; and 

learn by minimizing a negative log - probability loss 
regarding a true class label for the category . 

18. The system of claim 13 , wherein the sensor data is 
received from a digital glove . 


