a2 United States Patent

Heinrich et al.

US009836549B2

US 9,836,549 B2
Dec. 5, 2017

(10) Patent No.:
45) Date of Patent:

(54)

(71)

(72)

(73)

")

@

(22)

(65)

(1)

(52)

(58)

COLLABORATION ADAPTER TO EXPLOIT
SINGLE-USER WEB APPLICATIONS FOR
COLLABORATIVE WORK

Applicants:Matthias Heinrich, Dresden (DE);
Franz Josef Grueneberger, Dresden

(DE)

Inventors: Matthias Heinrich, Dresden (DE);
Franz Josef Grueneberger, Dresden
(DE)

Assignee: SAP SE, Walldorf (DE)

Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35
U.S.C. 154(b) by 835 days.

Appl. No.: 13/892,305
Filed: May 12, 2013

Prior Publication Data

US 2014/0337760 Al Nov. 13, 2014

Int. CL.

GO6F 17/00 (2006.01)

GO6F 17/30 (2006.01)

GO6F 17/24 (2006.01)

GO6F 17/22 (2006.01)

HO4L 29/06 (2006.01)

U.S. CL

CPC ... GOG6F 17/30893 (2013.01); GO6F 17/2247

(2013.01); GO6F 17/24 (2013.01); HO4L
65/403 (2013.01)
Field of Classification Search
CPC ... G06Q 10/101; HO4AL 65/403; GOGF 3/0481;
GOGF 17/2247; GO6F 17/241; GOGF
17/24; GO6F 17/30893
See application file for complete search history.

100 ‘““\‘\

(56) References Cited

U.S. PATENT DOCUMENTS

5,781,732 A 7/1998 Adams

5,844,553 A 12/1998 Hao et al.

7,249,314 B2 7/2007 Walker et al.

7,404,194 B2 7/2008 Wason et al.

7,774,703 B2 8/2010 Junuzovic et al.

7,865,606 Bl 172011 Tewes et al.

7,996,465 B2 8/2011 Cromp et al.

8,078,591 B2 12/2011 Rapp

8,239,760 B2 8/2012 Hanson et al.

8,484,561 B1* 7/2013 Lemonik GO6F 17/24

715/255

(Continued)

OTHER PUBLICATIONS

Kiczales, G. et al,“Aspect-Oriented Programming,” © 1997,
Springer-Verlag, 25 pages.™
(Continued)

Primary Examiner — Cesar Paula
Assistant Examiner — James H Blackwell

(57) ABSTRACT

A framework-specific collaboration adapter (FCA) provides
a lightweight transformation process capable of converting
single-user Web applications into their collaborative coun-
terparts. Thereby, a local data structure of a local document
instance is transformed into a shared data structure with
concurrency control support. The FCA replays local docu-
ment changes at all remote sites. To mark the data model
within the source code of the original application, the
original single-user Web application has to be enhanced with
Source Code Annotations (SCA). The concurrency control
system synchronizes all shared model instances that are
distributed on the client-side as well as on the server-side.

20 Claims, 8 Drawing Sheets

100 CLIENT_1110
VIEW_1

-~ 170

-~ 130
CONTROLLER_1

HTTP

A4

140 160

LOCAL
MODEL_1

SERVER 105

CLIENT_2 115

Se% VIEW.2

178

HTTP

LOCAL
MODEL_2

2:,3 ORIGINAL APPLICATION COMPONENTS
COLLABORATION ADAPTER COMPONENTS

CONCURRENCY CONTROL SYSTEM COMPONENTS

FCA - FRAMEWORK-SPECIFIC COLLABORATION ADAPTER

CCC ~ CONCURRENCY CONTROL COMPONENT

SCA - SOURCE CODE ANNOTATIONS

US 9,836,549 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

8,499,036 B2 7/2013 Kalthoff et al.
8,527,440 B2 9/2013 Hettel
8,583,619 B2 11/2013 Ghods et al.
8,656,271 B2 2/2014 Vayssiere et al.
2009/0187834 Al* 7/2009 Rapo ...ccoccovveeecnn AG63F 13/10
715/758
2010/0082747 Al* 4/2010 Yue ...cccoooren.n. GO6F 17/30873
709/204
2011/0092279 A1* 4/2011 Pilip .occovvveencnee AG63F 13/63
3/63

2012/0233555 Al
2013/0138733 Al*

9/2012 Psistakis et al.
5/2013 Heinrich GO6F 17/24
709/204

2013/0332813 Al 12/2013 Heinrich et al.

OTHER PUBLICATIONS

Rohall, S. et al.,“The Zipper System for Flexible, Replicated
Application Sharing,” © 2005, ACM, pp. 1-10.*

Sun, D. et al.,“Operation Context and Context-based Operational
Transform,” © 2006, ACM, pp. 279-288.*

Heinrich, M. et al.,“Exploiting Single-User Web Applications for
Shared Editing—A Generic Transformation Approach,” © 11
pages.*

Zhao, C. et al.,“A Collaboration Transparence Approach to Share
Heterogeneous Single-User Molecule Editors,” © 2011, Elsevier
Ltd., pp. 319-327.*

Adlet, A. et al.,“TellTable: A Server for Collaborative Office Appli-
cations,” © XXXX, 6 pages.*

Gruneberger, F. J.,“Real-Time Collaboration Support for JavaScript
Frameworks, Minor Thesis,” © Jul. 14, 2012, Technische
Universitat, Deresden, 119 pages.*

Lukosch, S. et al.,“Reusing Single-User Applications to Create
Multi-user Internet Applications,” © 2001, Springer-Verlag Berlin
Heidelberg, pp. 79-90.*

Sun, C. et al.,“Transparent Adaptation of Single-User Applications
for Multi-User Real-Time Collaboration,” © 2006, ACM, pp. 531-
582.%

Sanderson, S.,“Introducing Knockout, a UI Library for JavaScript,”
© Jul. 5, 2010, 10 pages.*

Xia, S. et al.,“Leveraging Single-user Applications for Multi-user
Collaboration: the CoWord Approach,” © 2004, ACM, pp. 162-
171.%

Yue, C. et al.,“RCB: A Simple and Practical Framework for Real-
time Collaborative Browsing,” © 2009, 40 pages.*

Isenhour, PL. et al.,“Supporting Interactive Collaboration on the
Web with CORK,” © 2001, Interacting with Computers 13, pp.
655-676.*

Vidot, N. et al.,“Copies Convergence in a Distributed Real-Time
Collaborative Environment,” © 2000, ACM, pp. 171-180.*

Li, D. et al, “A Lightweight Approach to Transparent Sharing of
Familiar Single-User Editors,” © 2006, ACM, pp. 139-148.*
Pichiliani, M.C. et al.,“A Guide to Map Application Components to
Support Multi-User Real-Time Collaboration,” © 2006, IEEE, 5
pages.*

Pichiliani, M.C. et al.,“A Technical Comparison of the Existing
Approaches to Support Collaboration in Non-Collaborative Applia-
tions,” © 2009, IEEE, pp. 314-321.*

Heinrich, M.,“Enriching Web Applications Efficiently with Real-
Time Collaboration Capabilities,” Doctoral Dissertation in Web
Engineering and Web Science vol. 1, Tecnische Univeritat
Chemnitz, 2014, 209 total pages.™

Manno, I. et al.,“Introducing COllaboration in Single-user Appli-
cations though the Centralized Control Architecture,” © 2010,
IEEE, 10 pages.*

Atwood, Jeff,“Understanding Model-View-Controller,” © May 5,
2008, Coding Horror blog, 23 pages.*

Ellis, C.A. et al.,“Concurrency Control in Groupware Systems,” ©
1989, ACM, pp. 399-407 *

Pastor, Pablo,“MVC for Noobs,” © Mar. 24, 2010, blog posting, 9
pages.*

Lin, K. et al.,“Leveraging Single-User Microsoft Visio for Multi-
user Real-Time Collaboration,” © 2007, Springer-Verlag, pp. 353-
360.*

Lin, K. et al.,“API Design Recommendations for Facilitating Con-
version of Single-user Applications into Collaborative Applica-
tions,” © 2007, IEEE, 9 pages.*

Liu, A.F. et al.,“CoMaya: Incorporating Advanced Collaboration
Capabilities into 3D Digital Media Design Tools,” © 2008, ACM,
pp. 5-8.*

Streitz, N.A. et al.,“DOLPHIN: Integrated Meeting Support across
LiveBoards, Local and Remote Desktop Environments,” © 1994,
ACM, pp. 1-14.*

Krasner, G.E. et al.,“A Cookbook for Using the Model-View-
Controller User Interface Paradigm in Smalltalk-80,” © 1988,
JOOP, pp. 26-49.*

* cited by examiner

US 9,836,549 B2

Sheet 1 of 8

Dec. 5, 2017

U.S. Patent

I 3-NOId

SNOILVIONNY 3000 304€N0S ~ VOIS SININOdNOD WALSAS TOHLINOD AONIHHNONOD

AININOdNOD TOHLINOD ADNIHHNONOD — 000

43 1dVAY NOILYHOaVY1100 J14103dS-MHOMIANYEA ~ VO

SININOdNGD H3ILdvaVv NOILYHOEVYT1T0D

SLININOdWOD NOILYOITddY TVNIDIMO | |

Z 13Aon
OO0

114 B

qGl

Z {3ATIOYULINOD }.w

AT EIT fmmr

ST Z IN3MD GOl ¥3AY3S

0g1

A

dilH

OLF L IN3ITD

091

A =lale)
W00

ovl

L YT TI0HLINOD

om_‘&\

om_‘i\

L M3IA

W 00l

US 9,836,549 B2

Sheet 2 of 8

Dec. 5, 2017

U.S. Patent

¢ 34NOld

(T3IAONW)SONIANIGATddY OM

{ () LNANI"TIAON
({OLNANI"T3A0OW : INWVN, } MSVL MIN)HSNd SHSVYL T13A0ON
}ONOILONNS = MSVYL1aav 13aon

{ OAVHYYITGYAEISEO OM MSVL
‘()3719YAY3ISE0 OM :LNdNI } = 1IA0OIN VA
(. 13IAON,)DNASD //
{ (SIHL)IAOWIEMSYLTIAOW } ONOILONNL = 31373A'IAdALOLOYd MSYL

{ @QNVYNVLVYQ)IT1GVALISEO OM = NVYN'SIHL } (VLVYA) NOILONNS = MSVL HVA
(MSVL,)SSVY10D //

US 9,836,549 B2

Sheet 3 of 8

Dec. 5, 2017

U.S. Patent

€ -NOId

{1 (AVEYVY)TdALSI'IAONNT I

{
(U YIANILSITIEIAONAAVY 13A0ONaIYYHS
SIONVHO TIAOW dIAHUVHS OL 3891¥0S9NS //

A ENTYAMIANINOILONNA)IAFIMOSENS IAONWT
SIONVHO TvOO1 ILVOVHO¥d //

‘(*"")3AONAAVY13A0ONAAYYHS = IAONNS
ANTVATTVILINI L3S ANV 3AO0ON T3A0N d3-VHS 31V //

HEAILINIE D) ADALSIIAONWT A
0aiNNL3sS 3IAONNT

HO3AoOWTIVO0I1EA0ONIASHIAVYH L NI IAONNTHOVYIHOS
{

LSIT3IAONWT NYNLIY

TIAON VD01 IHL 40 SIAON 1TV SAANTONI LS/
}(1I3AONWTVO 0 1AA0ONISHIAVYEL NOILONNA

,,,,,,,,, 00€

US 9,836,549 B2

Sheet 4 of 8

Dec. 5, 2017

U.S. Patent

¥ F-NOId

‘3000 1dIJOSVAVI A8 30V 1d3d NI3d AAVIHTY IAVH SNOILV.LONNY «

v

0FF NTLSAS TOHLNOD AONIHHNONOD

0S¥
IsEVANLAt-EE
NOSP

o
¢ HJTANVH
730N 10

()
&)

v

Z8T 2 13a0n
A3yvHS

®

GGl Z vod

v

I ¢ T3Aa0N
OO

«G

<

Stz
HITIOYLINOD

ZL 2 M3IA

le:

Z NOILYOI1ddY gam

147

017 NOILYHOJHYOONI IDONVHO ILONWIY

@

GEV WILSAS TOYLNOD AONIHHNONOD

(1157
HAZITVIAES
NOSP

~ eh
L Y3TANVH
T1300N 1O

&£

®

v

08T L 13a0on
A3YVHS

®

05T L vod

LOPF L 13A0N
VOO0

0T L
HIATIOHLINOD

¢l 1 M3IA

(@]

L NOILYOINddY 93m

Sy

G0¥ NOILVOVdO¥d IONVHO TvO01

Fo O0F

US 9,836,549 B2

Sheet 5 of 8

Dec. 5, 2017

U.S. Patent

13A0N d3-VHS 1SHid

NOILYH3Id0O 1O NV OLNI

V¥ NO NOILVHTdO 1O FHL AlddY [NOILYDIHIGOW IHL LHIANOD
¢ FdN9OI4
086G « Gz »
NOILV.LNISTHdIN NOILYDI4IQOW 3HL LNOgY
TWNLX3L Y OLNI YITANVH (LO) NOILYWHOASNYNL
NOILLYSIdO 1O IHL JZIVINIS TYNOLLYH IO NY WHOANI
geg ! 0zg A
NOILYOI4IGOW IHL HLIM T3A0N -~ ozow_%%u w__u_mn_m/m_.* IN3MS a3141a0NW
D01 ANODIS IHL ANY TIAOW s Y SR LA SI 7300 T¥DOT 1SH14 THL
VOO0 LSHI4 IHL IZINOYHONAS o, 1VHL NOILYDI4ILON V IAIFO3Y
596 - A ovs -~ ! 615 -~ A
NOILYOI1ddY §3M ANODIS NOILYY3dO _._m_v*,\n,vm._oﬂwwwm wm _wmo\,wﬁ\wd,_]
3HL 40 TIAON TYOOT ANODIS 10 3HL OLNI NOILVINISIddTY AL AT
v O NOILYDIIAOW THL AlddY IWNLX3L 3HL 3ZITvid3s3d Sl e
09G A SvG ! 0l - A
IN3IT0 ANODIS IHL
NOILYYIdO 10
NO d3L¥D0T T3AOW aFHVHS IN3D V 1V
aNOD3S V OL NOILvyado | u%@_mm_“w%%wmmw&%%&ww NOILYOMddY 93M 1S¥I4 V avoT
10 GIWHO4SNYHL IHL ATddV
g5g 055 506
e >

U.S. Patent Dec. 5, 2017 Sheet 6 of 8 US 9,836,549 B2

50

40

DEVELOPMENT TIME IN HOURS
25
20

FIGURE 6

USING STANDARD CCS API 620
USING FCA 630

SINGLE-USER APPLICATION
610
COLLABORATIVE APPLICATION
COLLABORATIVE APPLICATION

US 9,836,549 B2

Sheet 7 of 8

Dec. 5, 2017

U.S. Patent

0€9 vOd4 ONISN
NOILYONddV
INILYH0EYTI00

029 IdV SO0
JYVANVLS ONISN
NOILVOITddY
IAILVHOaVYT10D

019
NOILYOIdd¥
H3ISN-TTONIS

4 €N9Id

009

00y 00¢ 0

NOILLYAINOIANOD

SNOILYLONNV

T OO ~NOO

LdIbdOSVAVT

INLH

3A00 40 S3ANIT

US 9,836,549 B2

Sheet 8 of 8

Dec. 5, 2017

U.S. Patent

8 'Ol4
Y3av3Y VIAIW 30IA3A LNdNI 3DIA3A LNLNO -
cgg
gve sng v
098 — —
023 5e3 ||
304N0S JOVANILNI HOLYDINNWWOD _\ﬁw N Omwmwom j
vivd 304NO0S V.Lva MYOMLIN
058 dyomLan 7
008 \

US 9,836,549 B2

1
COLLABORATION ADAPTER TO EXPLOIT
SINGLE-USER WEB APPLICATIONS FOR
COLLABORATIVE WORK

FIELD

The field generally relates to the software arts, and, more
specifically, to methods and systems including a collabora-
tion adapter to exploit single-user Web applications for
collaborative work.

BACKGROUND

Nowadays, collaborative Web applications are wide-
spread since they exhibit numerous advantages in contrast to
traditional desktop applications. Leveraging the Web as an
application platform provides users with access from differ-
ent devices (e.g., PCs, smartphones, etc.) and allows imme-
diate adoption without requiring time-consuming installa-
tion procedures. Moreover, real-time collaborative Web
applications such as Google Docs allow multiple users to
edit the same document simultaneously replacing conven-
tional document merging or document locking techniques.

Existing collaborative applications support a variety of
shared editing use cases ranging from jointly authoring text
documents, spreadsheets, and presentations to collabora-
tively creating source code files or Business Process Model
and Notation (BPMN) models. Shared editing applications
have to incorporate concurrency control capabilities to
enable users shared access. That allows synchronizing
numerous document instances in real-time and enables
potential editing conflicts to be resolved automatically (e.g.,
if two users change the same word or graphic). However,
specific concurrency control services are not included in
general-purpose frameworks such as jQuery® or Knock-
out®. Hence, developers have to get familiar with specific
collaboration frameworks (e.g., Share]S®). Further, even
the collaborative Web applications are appealing to end-
users, the implementation is a complicated and a time-
consuming task due to the insufficient development support.

The extra concurrency control library requires additional
programming tasks that may substantially increase the
development costs. First, Web developers have to get famil-
iar with an extra programming library. Second, synchroniz-
ing multiple document instances requires capturing and
replaying all document changes that may involve plenty of
source code changes. Third, introducing a number of scat-
tered source code changes contradicts the separation-of-
concerns principle and eventually increases maintenance
effort.

SUMMARY

Various embodiments of systems and methods including
a collaboration adapter to exploit single-user Web applica-
tions for collaborative work are described herein. In various
embodiments, the method includes receiving a notification
at a framework-specific adapter that a first local model of a
first Web application of a first client is modified, wherein the
first local model was enhanced with annotations during
design time of the first Web application. Then, the modifi-
cation of the first local model is converted into an opera-
tional transformation operation. The method also includes
applying the operational transformation operation on a first
shared model of a concurrency control system. In addition,
a textual representation of the operational transformation
operation is transmitted to a second client including a second

10

20

30

35

40

45

50

2

Web application, wherein a second local model of the
second Web application was enhanced with the annotations.
Finally, the first local model and the second local model are
synchronized with the modification.

In various embodiments, the system includes a processor
and a memory in communication with the processor.
According to one aspect, the memory includes a first Web
application located on a first client including a first local
model, wherein the first local model was enhanced with
annotations during design time of the first Web application.
The system also includes a framework-specific collaboration
adapter that parses the first local model and registers a set of
listeners to inform when a modification in the first local
model occurs. A concurrency control system includes a first
shared model. Further, an operational transformation han-
dler is included that converts the modification in the first
local model into an operational transformation operation and
applies the operational transformation operation to the first
shared model. Finally, a serializer is included that converts
the operational transformation operation into a textual rep-
resentation that is transmitted to a second client to apply the
modification on a second shared model and a second local
model of a second Web application, wherein the second local
model of the second Web application was enhanced with the
annotations.

These and other benefits and features of embodiments will
be apparent upon consideration of the following detailed
description of preferred embodiments thereof, presented in
connection with the following drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

The claims set forth the embodiments with particularity.
The embodiments are illustrated by way of examples and not
by way of limitation in the figures of the accompanying
drawings in which like references indicate similar elements.
The embodiments, together with its advantages, may be best
understood from the following detailed description taken in
conjunction with the accompanying drawings.

FIG. 1is a block diagram illustrating an architectural view
of a collaboration system including a collaboration adapter,
according to an embodiment.

FIG. 2 is a diagram illustrating an example of an anno-
tated data model, according to an embodiment.

FIG. 3 is a diagram illustrating a function replacing the
@Sync annotation, according to an embodiment.

FIG. 4 is a block diagram illustrating a synchronization
workflow of the collaboration adapter, according to an
embodiment.

FIG. 5 is a flow diagram illustrating exploiting single-user
Web applications for collaborative work, according to an
embodiment.

FIG. 6 is a diagram illustrating evaluation results based on
development time needed for developing a Web application.

FIG. 7 is a diagram representing evaluation results based
on lines of code needed for developing a Web application.

FIG. 8 is a block diagram of an exemplary computer
system 800, according to an embodiment.

DETAILED DESCRIPTION

Embodiments of techniques for methods and systems
including a collaboration adapter to exploit single-user Web
applications for collaborative work are described herein. In
the following description, numerous specific details are set
forth to provide a thorough understanding of the embodi-
ments. One skilled in the relevant art will recognize, how-

US 9,836,549 B2

3

ever, that the embodiments can be practiced without one or
more of the specific details, or with other methods, compo-
nents, materials, etc. In other instances, well-known struc-
tures, materials, or operations are not shown or described in
detail.

Reference throughout this specification to “one embodi-
ment”, “this embodiment” and similar phrases, means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
of the one or more embodiments. Thus, the appearances of
these phrases in various places throughout this specification
are not necessarily all referring to the same embodiment.
Furthermore, the particular features, structures, or charac-
teristics may be combined in any suitable manner in one or
more embodiments.

For a significant part of Web applications, such as Model-
View-Controller (MVC) applications, programming efforts
can be simplified since the MVC applications expose an
isolated data model that may be synchronized automatically
using an intelligent collaboration adapter. Due to the fact
that numerous widespread Web frameworks (e.g., SAPUIS,
Knockout, Backbone.js, etc.) enforce applications to be
structured according to the established MVC pattern, the
approach of automatically synchronizing data model
instances could be adopted by plenty of Web applications. In
various embodiments, systems and methods include a col-
laboration adapter that provides a lightweight transforma-
tion process capable of converting single-user MVC appli-
cations into their collaborative counterparts. Thereby, a local
data structure may be transformed into a shared data struc-
ture with concurrency control support.

FIG. 1is a block diagram illustrating an architectural view
of a collaboration system including a collaboration adapter,
according to an embodiment. In various embodiments, col-
laboration system 100 includes a server 105 and a set of
clients such as client_1 110 and client_2 115. The compo-
nents of collaboration system 100 are divided into several
different types of components including, but not limited to:
framework-based original application components, collabo-
ration adapter components, and concurrency control system
components. The framework-based original application
components, such as MVC application components, include
aview (e.g., view_1 120 and view_2 125), a controller (e.g.,
controller_1 130 and controller_2 135), and a local model
(e.g., local model_1 140 and local model 2 145). The
framework-based original application components represent
components of an application developed on a given Web
framework, such as Knockout, and located on the client side.
In the MVC pattern, the controller acts as a mediator
between the view and the local model. This means that once
the user triggers some changes in the view component, they
are propagated to the local model and vice versa.

The concurrency control system components are located
on both client and server side. These components include a
Concurrency Control Component (CCC), such as CCC_1
170, CCC_2 176, and CCC_3 178, and a shared model, such
as shared model_1 180, shared model_2 182, and shared
model_3 184. A concurrency control system, such as SAP
Gravity, is a distributed system that provides synchroniza-
tion of data models such as various document instances of a
text document. For example, a document can be opened
online for editing by multiple users at the same time for
changing some texts, adding pictures to the documents and
so on. The concurrency control system synchronizes the
different document instances opened for edit by the different
users using shared data models. In addition, the concurrency

15

25

40

45

55

4

control system resolves any editing conflicts that may occur
during the synchronization process.

The collaboration adapter components are located on the
client side and include Framework-specific Collaboration
Adapters (FCAs), such as FCA_1 150 and FCA_2 155, and
Source Code Annotations (SCAs), such as SCA_1 160 and
SCA_2 165. In various embodiments, the FCA is developed
for a particular Web framework. For example, for the
Knockout Web framework, there is a specific FCA; for the
SAPUIS Web framework, there is another FCA, and so on.
This means that it is not necessary to implement an FCA for
each Web application, but to implement an FCA for each and
every Web framework that is supported by the client side.

In various embodiments, the collaboration adapter cap-
tures local model manipulations and replays remote model
modifications. The collaboration adapter provides collabo-
ration functionality such as concurrency control services.
The captured model changes have to be supplied to the
collaboration engine to react upon model changes. Hence,
model manipulations can be recorded and propagated. The
capture and replay logic is accommodated in the Frame-
work-specific Collaboration Adapter (FCA). In various
embodiments, the FCA is the main component providing the
local-to-shared model conversion. Further, the FCA is in
charge for bridging the gap between a local data model and
a shared data model. For example, between local model_1
140 and shared model_1 180. Thus, the FCA records, filters
and propagates local document changes. Moreover, the FCA
replays local document changes at all remote sites. This
functionality is performed by enriching the original appli-
cation with Source Code Annotations (SCAs).

Annotations represent a viable means to declaratively
mark a data model in order to configure the collaboration
adapter. The data model structure determines the quantity of
required annotations. Applications with subgraph-based data
structures require solely one annotation since the interlinked
data structure can be completely discovered by marking the
single root node of the data model. Minimizing the number
of SCAs is essential for increasing developer productivity.
The FCA includes an annotation processor that replaces the
Source Code Annotations (SCAs) with JavaScript® (here-
inafter, “JavaScript”) function calls once the application is
loaded. These inserted function calls are a means to register
listeners as well as to attach replay handlers.

To support proper document synchronization and conflict
resolution, an Operational Transformation Engine (OTE)
may be included at both client side and server side to handle
all sync mechanics. Thereby, the FCA supplies change
notifications that are converted by the OTE into operational
transformation (OT) operations. Transforming concurrent
OT operations, allows to resolve conflicts and to maintain
consistent document copies. For example, if two users
simultaneously add a character at the first position of their
document copy, the OTE adapts the indexes so that one
character is added at the first position while the other
character is inserted at the second position. Hence, the
editing conflict is resolved and both document copies are
consistent.

Another responsibility of the OTE is to serialize OT
operations in a JSON representation. Serialized OT opera-
tions are sent to a central server using common bi-direc-
tional, HTTP-based communication techniques such as long
polling, Hypertext Transfer Protocol (HTTP) streaming,
WebSockets®, and so on. The server instance forwards the
messages to all clients except the sender client. Once the
message is delivered to a client, the JSON message is
deserialized into an OT operation. In order to reconcile

US 9,836,549 B2

5

potential conflicts, this OT operation has to be transformed
against concurrent local operations. Transformed OT opera-
tions are translated into model manipulations to sync the
respective model instance.

FIG. 2 is a diagram illustrating an example of an anno-
tated data model, according to an embodiment. Example 200
illustrates an annotated data model of a Web application
developed on the Knockout Web framework. However, it
should be noted that annotations may be used to enhance
data models of Web applications developed on different Web
frameworks. In various embodiments, the transformation of
a single-user MVC Web application to a collaborative MVC
Web application may include the following steps: 1) anno-
tate the application’s source code to mark up the data model;
and 2) import a JavaScript file that encapsulates the logic of
the collaboration adapter into the original single-user Web
application. In example 200, the data model is annotated
using minimal annotation language including the following
source code annotations: 1) @Sync(modelName); and 2)
@Class(className). All annotations are encapsulated in
JavaScript comments since JavaScript does not offer a native
annotation concept.

The @Sync(modelName) annotation marks the data
model (e.g., the Knockout data model) that should be
synchronized among all application instances sharing the
same session. The parameter “modelName” identifies the
name of the JavaScript variable pointing to the data model.
In 200, the JavaScript variable is named “model”. The
@Class(className) annotation marks the object constructor
to allow creating new task objects. In some embodiments, an
object constructor may be used to allow for a proper replay
of a local object creation at all remote sites, since the object
creation might involve some side effects. For example,
creating a new object might entail to increment a global
counter. This side effect of incrementing a counter may not
be replayed in a generic fashion and thus, the collaboration
adapter requires a handle to the actual object constructor.

In various embodiments, besides inserting source code
annotations in files encapsulating data model definitions,
another step is importing the JavaScript file into the original
single-user Web application during design time. A specific
JavaScript file (for example, an fca.js file) has to be embed-
ded into the header section of the single-user application’s
main HyperText Markup Language (HTML) file. For
example, the following source code may be inserted into the
header section: “<script type="text/javascript” src=
“feca.js”/>.

FIG. 3 is a diagram illustrating a function replacing the
@Sync annotation, according to an embodiment. In various
embodiments, one of the FCA components is the annotation
processor. The annotation processor replaces the @Class
annotation and the @Sync annotation with JavaScript source
code at runtime. The annotation processing starts with
parsing all model definition files and then identifies the
inserted annotations. These annotations are expanded to
blocks of JavaScript code, which for the @Class annotation
is straightforward. The logic replacing the @Class annota-
tion expands to a function call storing a reference to the
constructor method in a global map and thus, new objects
can easily be created. For the replacement of the @Sync
annotation, the inserted code has to bridge the gap between
the local model and the shared model of the concurrency
control system. This may essentially enable the propagation
of local manipulations and the replay of remote manipula-
tions.

FIG. 3 depicts an exemplary skeleton 300 of the function
replacing the @Sync annotation. It should be noted that this

25

35

40

45

55

65

6

skeleton is implemented in accordance with SAP Gravity®
concurrency control system. Other concurrency control sys-
tems may also be used. A graph model is created using a
dedicated JavaScript Application Programming Interface
(API) that offers functions such as createModel(),
addNode(), etc. The concurrency control system may syn-
chronize all shared data model instances automatically.
Hence, to sync an application, the local model has to be
mapped to the concurrency control system’s shared data
structure and vice versa. This bi-directional mapping may be
implemented by several functions included in skeleton 300.

Function 310 represents traversing the local model, for
example local model_1 140. The local data model may be
identified using the @Sync annotation. In some embodi-
ments, the local data model may represent a tree structure of
data objects. Therefore, the entire tree structure should be
traversed. Function 320 represents assigning a unique iden-
tifier (ID) to the local model nodes. In this way, the changed
nodes of the local data model may be recognized and
identified. Function 330 represents creating concurrency
control system counterparts for the local model nodes in the
shared model. For example, if there is a local model tree
structure with four nodes (data objects), then four data
objects have to be created in the shared model instance as
well. Function 340 represents registering a set of listeners on
the local model nodes at runtime to inform the collaboration
adapter about local changes. For example, if a user has
opened a document online and starts editing the document,
the document provider should be aware of any changes that
may be performed on the document. This is possible by
registering listeners.

Function 350 represents attaching the set of listeners to
the local model (e.g., local model_1 140) and also to the
concurrency control system nodes (shared model_1 180) to
replay remote changes. Initially, when a user makes a change
in the local data model, a listener fires an event about the
local change. Then, the collaboration adapter captures the
change, extracts the required information, and distributes the
change to all clients. Thus, initially, the change is reflected
in the local data model and then in the shared model of the
current client (e.g., local model_1 140 and shared model_1
180 in client_1 110), but the change is not distributed to the
local data models of the other clients yet (e.g., local model_2
145 of client_2 115). That is why, it is necessary to attach
listeners to the shared model of the concurrency control
system as well, so that the other clients are informed about
the change. Subscriptions on the shared model of the current
client (e.g., client_1 110) are necessary to keep track of the
remote modifications issued by the remote client(s) (e.g.,
client_2 115) and vice versa. Then, the change is replayed at
the local models of the other clients. In comparison to
inserting a one-line annotation, the complex functionality,
supporting arbitrary local models, adds up to more than a
thousand lines of JavaScript code. This complexity origi-
nates from the generic applicability of the function that
supports the traversal of all graph-structured local models,
the mapping of various local node types, the callback
registration for different model change operations, etc.

It should be noted that inserting the source code annota-
tions is performed at design time, while the functions
presented in skeleton 300 are performed during runtime. The
JavaScript file embedded into the header section of the
single-user application’s main HTML file (e.g., the fca.js
file) of the collaboration adapter contains the parser and
replacement logic that is executed at runtime. Once the
application is loaded in a Web browser, the collaboration
adapter functionality is performed. The annotations inserted

US 9,836,549 B2

7

at design time are replaced with JavaScript blocks. The
collaboration adapter tries to map the local data model to the
shared data model. Therefore, a set of listeners are registered
in the local model and in the shared model of the concur-
rency control system to capture changes of user actions in
the application. These changes are then propagated to the
shared data model. The shared data model located on the
client running the application is synchronized with the
shared data model on the server side. On each client, there
are at least two data models: a local data model of the Web
application and an instance of the shared data model of the
concurrency control system. These two data models have to
be mapped accordingly for the application to be synchro-
nized.

FIG. 4 is a block diagram illustrating a synchronization
workflow of the collaboration adapter, according to an
embodiment. In various embodiments, after all annotations
were replaced with corresponding JavaScript functions, the
synchronization workflows are executed by the browser’s
JavaScript engine. The synchronization 400 is divided into
two processes: local change propagation 405 and remote
change incorporation 410. In various embodiments, the local
change propagation 405 workflow starts with a user change
in the user interface (e.g., view_1 120) of a Web applica-
tion_1 415. The controller_1 130 reflects the change in the
local model_1 140 of the Web application. As described
above, when loading the Web application, the FCA_1 150
registers a set of listeners on the local model_1 140 that
listen for any manipulations modifying the local model.
When a modification occurs, the FCA_1 150 extracts the
required information. The required information includes the
IDs of the local model nodes affected by the modification,
the type of the modification (e.g., change, create, or delete
operations), any new values (e.g., if a text node was changed
from “hello” to “hello world”). The listeners translate all
types of manipulations into concurrency control system API
calls. Further, the listeners of the FCA_1 150 inform the
operational transformation (OT) model handler_1 420 of the
concurrency control system (CCS) 435 about the modifica-
tion in the local model 1 140 via the API calls.

As soon as the OT model handler_1 420 is notified about
the occurred modifications, the OT model handler 1 420
translates the local model modifications into operational
transformation (OT) operations. Operational transformation
is the predominant algorithm that synchronizes shared docu-
ment instances and resolves conflicts. Then, the OT model
handler_1 420 applies the OT operations on the shared
model_1 180. The local change propagation 405 workflow
then continues at the JSON serializer 430. JSON (JavaScript
Object Notation) is a lightweight data-interchange format
that is completely language independent and is used for
parsing and transmitting data structures over a network.
Serialization is the process of translating data structures or
object state into a format that can be stored. The JSON
serializer 430 converts the OT operations into a JSON
representation (e.g., text format) that is transmitted to the
server (e.g., server 105). The server distributes the JSON
messages to all clients (e.g., client_2 115) except the sender
client (e.g., client_1 110).

In various embodiments, clients receiving JSON mes-
sages (e.g., text stream) trigger the remote change incorpo-
ration 410 process. Initially, the JSON deserializer 450 of
CCS 440 transforms received JSON messages from the
JSON serializer 430 into JavaScript objects that include OT
operations. The OT model handler_2 445 then transforms
these OT operations against concurrent local OT operations
to resolve potential editing conflicts. The resulting trans-

10

15

20

25

30

35

40

45

50

55

60

65

8

formed OT operations are then applied to the shared
model_2 182. Using the annotations and the IDs of the local
model nodes, the OT model handler_2 445 knows where
synchronization in the local model_2 145 is needed. Finally,
the OT model handler_2 445 reflects the modifications in the
local model_2 145 and thus, synchronizes both local models,
local model_1 140 and local model 2 145.

FIG. 5 is a flow diagram illustrating exploiting single-user
Web applications for collaborative work, according to an
embodiment. Process 500 begins at block 505 with loading
a first single-user Web application at a client. Before a client
retrieves a Web application from a server, the annotations
are inserted. Thus, all clients retrieving the Web application
receive an annotated Web application. Then, all clients
replace the annotations once the Web application is loaded.
At block 510, the annotations in a first local model of the
first Web application and the annotations in a second local
model of a second Web application are replaced with
JavaScript code blocks. In various embodiments, the anno-
tations were inserted during design time.

Besides the annotations, a JavaScript file was embedded
into the header section of the single-user Web application’s
main HTML file (e.g., the fca js file). After loading the Web
application, the JavaScript file is executed by framework-
specific collaboration adapter. The framework-specific col-
laboration adapter performs parsing all model definition files
and then identifies the inserted annotations. These annota-
tions are expanded to blocks of JavaScript code. This means
that the annotations are replaced with JavaScript functions
by an annotation processor that is encapsulated in the
JavaScript file. Further, the above functions of skeleton 300
are implemented, including, but not limited to: 1) traversing
the first local model; 2) assigning IDs to the first local model
nodes; 3) creating CCS counterparts for the first local model
nodes; 4) registering a set of listeners on the first local model
nodes; and 5) attaching the set of listeners to a first shared
model nodes to replay remote changes. It should be noted
that the JavaScript file is executed on all clients loading the
Web application and the above functions of skeleton 300 are
implemented on all the clients loading the Web application
as well including, but not limited to, client_1 110 and
client_2 115.

At block 515, a notification is received that the first local
model is modified. The notification is received by the set of
listeners registered on the first local model nodes. In various
embodiments, the notification is received at the framework-
specific collaboration adapter. The set of listeners translate
the modification in the first local model into a CCS API call.
The modification may be a change operation, a create
operation, a delete operation, and so on. At block 520, an
operational transformation (OT) handler is informed about
the modification in the first local model via the CCS API
call. At block 525, the modification is translated into an OT
operation. Then, the OT operation is applied on a first shared
model of a concurrency control system (CCS), at block 530.
The OT handler forwards the OT operation to a JSON
serializer. At block 535, the OT operation is serialized into
a textual representation. Then, the textual representation is
transmitted to a second client hosting a second Web appli-
cation, at block 540. It should be noted that the first Web
application and the second Web application are Web appli-
cation instances opened on different clients of a Web appli-
cation located on a server such as server 105. For example,
a document for online editing is located on a server and an
instance of the document is opened for edit on one client and
a second instance of the same document is opened for edit
on a second client. Thus, the textual representation is first

US 9,836,549 B2

9

transmitted to the server. The server then transmits the
textual representation to all clients, such as the second client,
except the sender client, i.e. the first client.

At block 545, the textual representation is deserialized
back to the OT operation. Then, the OT operation is trans-
formed against a concurrent local OT operation to resolve
potential editing conflicts. This is performed at block 550. At
block 555, the transformed OT operation is applied to a
second shared model located on the second client. At block
560, the modification of the first local model is retrieved and
applied to a second local model of the second Web appli-
cation. At block 565, the first local model and the second
local model are synchronized.

FIG. 6 is a diagram illustrating evaluation results based on
development time needed for developing a Web application.
Evaluation 600 represents a developer study, where a num-
ber of computer science students were selected to develop a
single-user Web application and one collaborative Web
application using two different technologies. It should be
noted that the students were familiar with numerous pro-
gramming languages (e.g., Java®, C®, etc.), but the students
had no knowledge regarding the development of shared
editing applications. The time needed for the students to
develop the applications was measured in hours. Evaluation
600 includes the development time needed for developing a
single-user application 610, a collaborative application
using a standard CCS API 620 (for example, SAP Gravity
API), and a collaborative application using a framework-
specific collaboration adapter 630 (such as FCA_1 150).

On average, the development time of a single-user appli-
cation 610 took 25 hours. Further, students spent 54 hours to
get familiar with a standard CCS API, such as the SAP
Gravity API, and to program the collaborative Web appli-
cation 620. In contrast, the students needed 42 hours to adopt
source code annotations and to develop a collaborative
application using an FCA 630. Hence, employing the anno-
tations-based approach may reduce the development time
and effort by 22 percent. The overall development time of 54
hours and 42 hours respectively include 25 hours that were
dedicated to the implementation of the single-user applica-
tion 610. Thus, the actual development effort for introducing
shared editing capabilities adds up to 29 hours for develop-
ment 620 versus 17 hours for development 630. This rep-
resents a 41 percent reduction when adopting the annotation-
based approach. Evaluation 600 clearly shows that the
annotation-based approach of the FCA is beneficial in terms
of efficiency and can significantly outperform conventional
collaboration libraries.

FIG. 7 is a diagram representing evaluation results based
on lines of code needed for developing a Web application.
Evaluation 700 represents a developer study which results
were taken from the same test performed for evaluation 600.
Evaluation 700 measures the lines of code (LoC) written
when developing a single-user application 610, a collabora-
tive application using a standard CCS API 620 (for example,
SAP Gravity API), and a collaborative application using a
framework-specific collaboration adapter 630 (such as
FCA_1 150). The code contributions were divided into the
following individual categories: (1) HTML code; (2)
JavaScript code; (3) annotation code; and (4) configuration
code. Evaluation 600 shows the LoC measurements, where
in each category the total number is depicted.

One distinguishing factor between the use of the standard
CCS API (e.g., SAP Gravity API) and the use of annotations
is the JavaScript LoC measure. On average, developers
needed 97 lines of JavaScript code accompanied by 4
annotations and 7 configuration lines to inject collaboration

10

15

20

25

30

35

40

45

50

55

60

65

10

capabilities in contrast to 515 lines of JavaScript code for
adopting the Gravity APIL. This represents a considerable
reduction of 81 percent in terms of JavaScript code when
using the annotation-based approach of the FCA. Even
though the HTML LoC exposes only minor differences, the
overall LoC measure resulting in 878 LoC versus 462 LoC
once again shows a 47 percent source code reduction
adopting the annotation-based approach. The substantial
LoC reduction is another demonstration of the efficiency an
annotation-based solution can deliver.

Traditionally, converting a single-user Web application
into a collaborative one requires a concurrency control
library, such as SAP Gravity or Apache Wave, necessitating
a plenty of source code changes. The framework-specific
collaboration adapter may substantially reduce the develop-
ment effort in terms of development time and added source
code lines. Evaluation 600 and evaluation 700 demonstrate
reduced development time by more than 40 percent and
reduced number of added source code lines by almost 50
percent. Further, the collaboration adapter is framework-
specific. This means that one framework-specific collabo-
ration adapter may serve hundreds or even thousands of Web
applications.

Some embodiments may include the above-described
methods being written as one or more software components.
These components, and the functionality associated with
each, may be used by client, server, distributed, or peer
computer systems. These components may be written in a
computer language corresponding to one or more program-
ming languages such as, functional, declarative, procedural,
object-oriented, lower level languages and the like. They
may be linked to other components via various application
programming interfaces and then compiled into one com-
plete application for a server or a client. Alternatively, the
components maybe implemented in server and client appli-
cations. Further, these components may be linked together
via various distributed programming protocols. Some
example embodiments may include remote procedure calls
being used to implement one or more of these components
across a distributed programming environment. For
example, a logic level may reside on a first computer system
that is remotely located from a second computer system
containing an interface level (e.g., a graphical user inter-
face). These first and second computer systems can be
configured in a server-client, peer-to-peer, or some other
configuration. The clients can vary in complexity from
mobile and handheld devices, to thin clients and thick clients
or even other servers.

The above-illustrated software components are tangibly
stored on a computer readable storage medium as instruc-
tions. The term “computer readable storage medium” should
be taken to include a single medium or multiple media that
stores one or more sets of instructions. The term “computer
readable storage medium” should be taken to include any
physical article that is capable of undergoing a set of
physical changes to physically store, encode, or otherwise
carry a set of instructions for execution by a computer
system which causes the computer system to perform any of
the methods or process steps described, represented, or
illustrated herein. A computer readable storage medium may
be a non-transitory computer readable storage medium.
Examples of a non-transitory computer readable storage
media include, but are not limited to: magnetic media, such
as hard disks, floppy disks, and magnetic tape; optical media
such as CD-ROMs, DVDs and holographic devices; mag-
neto-optical media; and hardware devices that are specially
configured to store and execute, such as application-specific

US 9,836,549 B2

11

integrated circuits (“ASICs”™), programmable logic devices
(“PLDs”) and ROM and RAM devices. Examples of com-
puter readable instructions include machine code, such as
produced by a compiler, and files containing higher-level
code that are executed by a computer using an interpreter.
For example, an embodiment may be implemented using
Java, C++, or other object-oriented programming language
and development tools. Another embodiment may be imple-
mented in hard-wired circuitry in place of, or in combination
with machine readable software instructions.

FIG. 8 is a block diagram of an exemplary computer
system 800, according to an embodiment. The computer
system 800 includes a processor 805 that executes software
instructions or code stored on a computer readable storage
medium 855 to perform the above-illustrated methods. The
processor 805 can include a plurality of cores. The computer
system 800 includes a media reader 840 to read the instruc-
tions from the computer readable storage medium 855 and
store the instructions in storage 810 or in random access
memory (RAM) 815. The storage 810 provides a large space
for keeping static data where at least some instructions could
be stored for later execution. According to some embodi-
ments, such as some in-memory computing system embodi-
ments, the RAM 815 can have sufficient storage capacity to
store much of the data required for processing in the RAM
815 instead of in the storage 810. In some embodiments, all
of the data required for processing may be stored in the
RAM 815. The stored instructions may be further compiled
to generate other representations of the instructions and
dynamically stored in the RAM 815. The processor 805
reads instructions from the RAM 815 and performs actions
as instructed. According to one embodiment, the computer
system 800 further includes an output device 825 (e.g., a
display) to provide at least some of the results of the
execution as output including, but not limited to, visual
information to users and an input device 830 to provide a
user or another device with means for entering data and/or
otherwise interact with the computer system 800. Each of
these output devices 825 and input devices 830 could be
joined by one or more additional peripherals to further
expand the capabilities of the computer system 800. A
network communicator 835 may be provided to connect the
computer system 800 to a network 850 and in turn to other
devices connected to the network 850 including other cli-
ents, servers, data stores, and interfaces, for instance. The
modules of the computer system 800 are interconnected via
a bus 845. Computer system 800 includes a data source
interface 820 to access data source 860. The data source 860
can be accessed via one or more abstraction layers imple-
mented in hardware or software. For example, the data
source 860 may be accessed by network 850. In some
embodiments the data source 860 may be accessed via an
abstraction layer, such as, a semantic layer.

In the above description, numerous specific details are set
forth to provide a thorough understanding of embodiments.
One skilled in the relevant art will recognize, however that
the embodiments can be practiced without one or more of
the specific details or with other methods, components,
techniques, etc. In other instances, well-known operations or
structures are not shown or described in detail.

Although the processes illustrated and described herein
include series of steps, it will be appreciated that the
different embodiments are not limited by the illustrated
ordering of steps, as some steps may occur in different
orders, some concurrently with other steps apart from that
shown and described herein. In addition, not all illustrated
steps may be required to implement a methodology in

10

25

30

40

45

60

65

12

accordance with the one or more embodiments. Moreover, it
will be appreciated that the processes may be implemented
in association with the apparatus and systems illustrated and
described herein as well as in association with other systems
not illustrated.

The above descriptions and illustrations of embodiments,
including what is described in the Abstract, is not intended
to be exhaustive or to limit the one or more embodiments to
the precise forms disclosed. While specific embodiments of,
and examples for, the invention are described herein for
illustrative purposes, various equivalent modifications are
possible within the scope of the invention, as those skilled
in the relevant art will recognize. These modifications can be
made in light of the above detailed description. Rather, the
scope is to be determined by the following claims, which are
to be interpreted in accordance with established doctrines of
claim construction.

What is claimed is:

1. A computer implemented method for exploiting a
single-user MVC Web application for collaborative work,
the method comprising:

receiving a modification of a first Model-View-Controller

(MVC) local model of a first instance of the single-user
Web application of a first client, wherein the first MVC
local model is an isolated data model enhanced with
source code annotations marking the first MVC local
model for synchronization among instances of the
single-user Web application, and wherein the first
instance of the single-user Web application is struc-
tured according to a MVC pattern;

converting the received modification of the first MVC

local model into an operational transformation opera-
tion;
applying the operational transformation operation on a
first MVC shared model of a concurrency control
system on the first client, wherein the first shared model
is created with collaborative counterparts of the first
MVC local model nodes, and wherein the first shared
model is mapped to the first MVC local model via a
bi-directional mapping;
transmitting by a processor over a network a textual
representation of the operational transformation opera-
tion to a second client including a second instance of
the Web application, wherein a second MVC local
model of the second instance of the Web application is
enhanced with the source code annotations, and
wherein the second instance of the Web application is
structured according to the MVC pattern;

automatically synchronizing a second MVC shared model
of the concurrency control system with the first MVC
shared model to distribute the modification of the first
MVC local model, wherein the second MVC shared
model is located on the second client; and

upon the synchronization of the second shared model of

the concurrency control system with the modification,
synchronizing the second MVC local model with the
second shared model of the concurrency control system
to distribute the modification of the first MVC local
model to the second MVC local model.

2. The method of claim 1, wherein synchronizing the
second MVC local model comprising:

deserializing the textual representation back to the opera-

tional transformation operation;

transforming the operational transformation operation

against a concurrent local operational transformation
operation;

US 9,836,549 B2

13

applying the transformed operational transformation

operation to the second MVC shared model located on

the second client; and

applying the modification of the second MVC shared

model to the second local model.

3. The method of claim 1, wherein the first MVC local
model and the second MVC local model are enhanced by
embedding a JavaScript file into the first instance of the Web
application and the second instance of the Web application,
wherein the JavaScript file is executed when the first
instance of the Web application and the second instance of
the Web application are loaded.

4. The method of claim 3, wherein the source code
annotations are replaced with JavaScript functions by an
annotation processor that is encapsulated in the JavaScript
file.

5. The method of claim 4, wherein the JavaScript func-
tions comprise:

traversing the first MVC local model and the second

MVC local model;

assigning a first set of unique identifiers to the first MVC

local model nodes and a second set of unique identifiers

to second MVC local model nodes; and

creating a first set of first shared model counterparts for

the first MVC local model nodes and a second set of

second shared model counterparts for the second MVC
local model nodes.

6. The method of claim 5, further comprising:

registering a set of listeners to the first MVC local model

nodes to inform about meodifications in the first MVC
local model; and

attaching the set of listeners to first MVC shared model

nodes to replay remote modifications.

7. The method of claim 1, further comprising: translating
the modification into a concurrency control system message
sent from a listener of a framework-specific adapter to an
operational transformation handler of the concurrency con-
trol system to inform about the modification.

8. A computer system, comprising:

a processor;

a memory in communication with processor, the memory

comprising:

a first instance of a Web application located on a first
client including a first MVC local model, wherein
the first MVC local model is enhanced with source
code annotations marking the first MVC local model
for synchronization among instances of the Web
application, and wherein the first instance of the Web
application is structured according to a MVC pattern;

a framework-specific collaboration adapter that parses
the first MVC local model and registers a set of
listeners to inform when a modification in the first
MVC local model occurs;

a concurrency control system that includes a first MVC
shared model created with collaborative counterparts
of the first MV C local model nodes, and wherein the
first shared model is mapped to the first MVC local
model via a bi-directional mapping;

an operational transformation handler that converts the
modification of the first MVC local model into an
operational transformation operation and applies the
operational transformation operation to the first
MVC shared model; and

a serializer that converts the operational transformation
operation into a textual representation that is trans-
mitted to a second client to apply the modification on
a second MVC shared model and a second MVC

10

15

20

25

30

35

40

45

50

55

60

65

14

local model of a second instance of the Web appli-
cation, wherein the second MVC local model of the
second instance of the Web application is enhanced
with the source code annotations, and wherein the
second Web application is structured according to
the MVC pattern.

9. The computer system of claim 8, further comprising:

a deserializer that deserializes the textual representation
back to the operational transformation operation;

a second concurrency control system that includes the
second MVC shared model; and

a second operational transformation handler at the second
client that transforms the operational transformation
operation against a concurrent local operational trans-
formation operation.

10. The system of claim 9, wherein the second operational
transformation handler applies the transformed operational
transformation operation to the second MVC shared model.

11. The system of claim 8, wherein the framework-
specific collaboration adapter comprises an annotation pro-
cessor that replaces the source code annotations with
JavaScript code blocks at runtime.

12. The system of claim 8, wherein the set of listeners are
attached to first MVC shared model nodes to replay remote
modifications.

13. The system of claim 11, wherein the JavaScript code
blocks comprise:

a first block for traversing the first MVC local model and

the second MVC local model;

a second block for assigning a first set of unique identi-
fiers to the first MVC local model nodes and a second
set of unique identifiers to second MVC local model
nodes; and

a third block for creating a set of first shared model
counterparts for the first MVC local model nodes and
a second set of second shared model counterparts for
the second MVC local model nodes.

14. A non-transitory computer-readable medium storing
instructions, which when executed cause a computer system
to:

receive a modification of a first Model-View-Controller
(MVC) local model of a first instance of a Web appli-
cation of a first client, wherein the first MVC local
model is an isolated data model enhanced with source
code annotations marking the first MVC local model
for synchronization among instances of the Web appli-
cation, and wherein the first Web application is struc-
tured according to a MVC pattern;

convert the received modification of the first MVC local
model into an operational transformation operation;

apply the operational transformation operation on a first
MVC shared model of a concurrency control system on
the first client, wherein the first shared model is created
with collaborative counterparts of the first MVC local
model nodes, and wherein the first shared model is
mapped to the first MVC local model via a bi-direc-
tional mapping;

transmit by a processor over a network a textual repre-
sentation of the operational transformation operation to
a second client including a second instance of the Web
application, wherein a second MVC local model of the
second instance of the Web application is enhanced
with the source code annotations, and wherein the
second instance of the Web application is structured
according to the MVC pattern;

automatically synchronize a second MVC shared model
of the concurrency control system with the first MVC

US 9,836,549 B2

15
shared model to distribute the modification of the first
MVC local model, wherein the second MVC shared
model is located on the second client; and

upon the synchronization of the second shared model of

the concurrency control system with the modification,
synchronize the second MVC local model with the
second shared model of the concurrency control system
to distribute the modification of the first MVC local
model to the second MVC local model.

15. The computer-readable medium of claim 14, wherein
synchronize the second MVC local model comprises
instructions that cause the computer system to:

deserialize the textual representation back to the opera-

tional transformation operation;

transform the operational transformation operation

against a concurrent local operational transformation
operation;

apply the transformed operational transformation opera-

tion to the second MVC shared model located on the
second client; and

apply the modification of the second MVC shared model

to the second local model.

16. The computer-readable medium of claim 14, wherein
the first MVC local model and the second MVC local model
are enhanced by embedding a JavaScript file into the first
instance of the Web application and the second instance of
the Web application, wherein the JavaScript file is executed
when the first instance of the Web application and the second
instance of the Web application are loaded.

15

20

16

17. The computer-readable medium of claim 16, wherein
the source code annotations are replaced with JavaScript
functions by an annotation processor that is encapsulated in
the JavaScript file.

18. The computer-readable medium of claim 17, wherein
the JavaScript functions comprise instructions that cause the
computer system to:

traverse the first MVC local model and the second MVC

local model;

assign a first set of unique identifiers to the first MVC

local model nodes and a second set of unique identifiers
to second MVC local model nodes; and

create a first set of first shared model counterparts for the

first MVC local model nodes and a second set of second
shared model counterparts for the second MVC local
model nodes.

19. The computer-readable medium of claim 18, further
comprising instructions to cause the computer system to:

register a set of listeners to the first MVC local model

nodes to inform about modifications in the first MVC
local model; and

attach the set of listeners to first MVC shared model nodes

to replay remote modifications.

20. The computer-readable medium of claim 14, further
comprising instructions to cause the computer system to
translating the modification into a concurrency control sys-
tem message sent from a listener of a framework-specific
adapter to an operational transformation handler of the
concurrency control system to inform about the modifica-
tion.

