
TOMMUNOGLU TUTHU THARANI
US009836549B2

(12) United States Patent
Heinrich et al .

(10) Patent No . : US 9 , 836 , 549 B2
(45) Date of Patent : Dec . 5 , 2017

(56) References Cited (54) COLLABORATION ADAPTER TO EXPLOIT
SINGLE - USER WEB APPLICATIONS FOR
COLLABORATIVE WORK U . S . PATENT DOCUMENTS

(71) Applicants : Matthias Heinrich , Dresden (DE) ;
Franz Josef Grueneberger , Dresden
(DE)

(72) Inventors : Matthias Heinrich , Dresden (DE) ;
Franz Josef Grueneberger , Dresden
(DE)

5 , 781 , 732 A 7 / 1998 Adams
5 , 844 , 553 A 12 / 1998 Hao et al .
7 , 249 , 314 B2 7 / 2007 Walker et al .
7 , 404 , 194 B2 7 / 2008 Wason et al .
7 , 774 , 703 B2 8 / 2010 Junuzovic et al .
7 , 865 , 606 B1 1 / 2011 Tewes et al .
7 , 996 , 465 B2 8 / 2011 Cromp et al .
8 , 078 , 591 B2 12 / 2011 Rapp
8 , 239 , 760 B28 / 2012 Hanson et al .
8 , 484 , 561 B1 * 7 / 2013 Lemonik (73) Assignee : SAP SE , Walldorf (DE) GO6F 17 / 24

715 / 255
@ @

(*) Notice : (Continued) Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 835 days . OTHER PUBLICATIONS

(21) Appl . No . : 13 / 892 , 305 Kiczales , G . et al . , “ Aspect - Oriented Programming , " © 1997 ,
Springer - Verlag , 25 pages . *

(Continued) (22) Filed : May 12 , 2013

(65) Prior Publication Data
US 2014 / 0337760 A1 Nov . 13 , 2014

Primary Examiner — Cesar Paula
Assistant Examiner — James H Blackwell

(51) Int . Cl .
G06F 17 / 00 (2006 . 01)
G06F 1730 (2006 . 01)
G06F 17 / 24 (2006 . 01)
G06F 17 / 22 (2006 . 01)
H04L 29 / 06 (2006 . 01)

(52) U . S . CI .
CPC G06F 17 / 30893 (2013 . 01) ; G06F 17 / 2247

(2013 . 01) ; G06F 17 / 24 (2013 . 01) ; H04L
65 / 403 (2013 . 01)

(58) Field of Classification Search
CPC . . . G06Q 10 / 101 ; H04L 65 / 403 ; G06F 3 / 0481 ;

G06F 17 / 2247 ; G06F 17 / 241 ; G06F
17 / 24 ; G06F 17 / 30893

See application file for complete search history .

(57) ABSTRACT
A framework - specific collaboration adapter (FCA) provides
a lightweight transformation process capable of converting
single - user Web applications into their collaborative coun
terparts . Thereby , a local data structure of a local document
instance is transformed into a shared data structure with
concurrency control support . The FCA replays local docu
ment changes at all remote sites . To mark the data model
within the source code of the original application , the
original single - user Web application has to be enhanced with
Source Code Annotations (SCA) . The concurrency control
system synchronizes all shared model instances that are
distributed on the client - side as well as on the server - side .

20 Claims , 8 Drawing Sheets

100
VEHUNTY ?????????????? ,

CLIENT _ 1 110 SERVER 105 CLIENT _ 2 115
VIEW 1 120

130
125 VIEW _ 2

KRASARIM 70 pre 170 AXA en om 178 ma 176
135 y ws WWWWWWW Toutes CONTROLLER _ 1 HTTP HTTP ove CONTROLLER _ 2

Www

peste 140 160 g 150 o 184 - 182 element 155 165 en 145 WALLALANINSKAALA AVAN MA
XXXXXXXXX ca SHARED WYTYWY LOCAL

MODEL _ 1
SHARED
MODEL 2 * SAVA mwwww LOCAL

MODEL 2
PescuzTTOO COCHONDRAKOTAANZA Lancaster mw SATCO R SAKAUNTXONOW . COACUNO

W WWwwwwwwwwwwwwwww plastr wwwwwwwwwwwwwwww Swawwwwwwwwwwwwwwwwwwwwwwwwman

ORIGINAL APPLICATION COMPONENTS FCA - - FRAMEWORK - SPECIFIC COLLABORATION ADAPTER

COLLABORATION ADAPTER COMPONENTS CCC - CONCURRENCY CONTROL COMPONENT

3 CONCURRENCY CONTROL SYSTEM COMPONENTS SCA - SOURCE CODE ANNOTATIONS

US 9 , 836 , 549 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

8 , 499 , 036 B2
8 , 527 , 440 B2
8 , 583 , 619 B2
8 , 656 , 271 B2

2009 / 0187834 Al *

2010 / 0082747 A1 *

7 / 2013 Kalthoff et al .
9 / 2013 Hettel

11 / 2013 Ghods et al .
2 / 2014 Vayssiere et al .
7 / 2009 Rapo A63F 13 / 10

715 / 758
4 / 2010 Yue G06F 17 / 30873

709 / 204
4 / 2011 Pilip . A63F 13 / 63

3 / 63
9 / 2012 Psistakis et al .
5 / 2013 Heinrich GO6F 17 / 24

709 / 204
12 / 2013 Heinrich et al .

2011 / 0092279 A1 *

2012 / 0233555 AL
2013 / 0138733 A1 *

2013 / 0332813 Al

OTHER PUBLICATIONS
Rohall , S . et al . , “ The Zipper System for Flexible , Replicated
Application Sharing , " © 2005 , ACM , pp . 1 - 10 . *
Sun , D . et al . , " Operation Context and Context - based Operational
Transform , ” © 2006 , ACM , pp . 279 - 288 . *
Heinrich , M . et al . , “ Exploiting Single - User Web Applications for
Shared Editing — A Generic Transformation Approach , " © 11
pages . *
Zhao , C . et al . , " A Collaboration Transparence Approach to Share
Heterogeneous Single - User Molecule Editors , ” © 2011 , Elsevier
Ltd . , pp . 319 - 327 . *
Adlet , A . et al . , “ TellTable : A Server for Collaborative Office Appli
cations , " © XXXX , 6 pages . *
Gruneberger , F . J . , “ Real - Time Collaboration Support for JavaScript
Frameworks , Minor Thesis , " © Jul . 14 , 2012 , Technische
Universitat , Deresden , 119 pages . *
Lukosch , S . et al . , “ Reusing Single - User Applications to Create
Multi - user Internet Applications , ” © 2001 , Springer - Verlag Berlin
Heidelberg , pp . 79 - 90 . *
Sun , C . et al . , “ Transparent Adaptation of Single - User Applications
for Multi - User Real - Time Collaboration , ” © 2006 , ACM , pp . 531
582 . *
Sanderson , S . , “ Introducing Knockout , a UI Library for JavaScript , ”
© Jul . 5 , 2010 , 10 pages . *
Xia , S . et al . , “ Leveraging Single - user Applications for Multi - user
Collaboration : the CoWord Approach , ” © 2004 , ACM , pp . 162
171 . *

Yue , C . et al . , " RCB : A Simple and Practical Framework for Real
time Collaborative Browsing , " © 2009 , 40 pages . *
Isenhour , P . L . et al . , " Supporting Interactive Collaboration on the
Web with CORK , ” © 2001 , Interacting with Computers 13 , pp .
655 - 676 . *
Vidot , N . et al . , " Copies Convergence in a Distributed Real - Time
Collaborative Environment , " © 2000 , ACM , pp . 171 - 180 . *
Li , D . et al , “ A Lightweight Approach to Transparent Sharing of
Familiar Single - User Editors , ” © 2006 , ACM , pp . 139 - 148 . *
Pichiliani , M . C . et al . , “ A Guide to Map Application Components to
Support Multi - User Real - Time Collaboration , ” © 2006 , IEEE , 5
pages . *
Pichiliani , M . C . et al . , “ A Technical Comparison of the Existing
Approaches to Support Collaboration in Non - Collaborative Applia
tions , " © 2009 , IEEE , pp . 314 - 321 . *
Heinrich , M . , " Enriching Web Applications Efficiently with Real
Time Collaboration Capabilities , ” Doctoral Dissertation in Web
Engineering and Web Science vol . 1 , Tecnische Univeritat
Chemnitz , 2014 , 209 total pages . *
Manno , I . et al . , “ Introducing Collaboration in Single - user Appli
cations though the Centralized Control Architecture , " © 2010 ,
IEEE , 10 pages . *
Atwood , Jeff , “ Understanding Model - View - Controller , " © May 5 ,
2008 , Coding Horror blog , 23 pages . *
Ellis , C . A . et al . , " Concurrency Control in Groupware Systems , " ©
1989 , ACM , pp . 399 - 407 . *
Pastor , Pablo , “ MVC for Noobs , " © Mar . 24 , 2010 , blog posting , 9
pages . *
Lin , K . et al . , “ Leveraging Single - User Microsoft Visio for Multi
user Real - Time Collaboration , ” © 2007 , Springer - Verlag , pp . 353
360 . *
Lin , K . et al . , “ API Design Recommendations for Facilitating Con
version of Single - user Applications into Collaborative Applica
tions , ” © 2007 , IEEE , 9 pages . *
Liu , A . F . et al . , " CoMaya : Incorporating Advanced Collaboration
Capabilities into 3D Digital Media Design Tools , " © 2008 , ACM ,
pp . 5 - 8 . *
Streitz , N . A . et al . , “ DOLPHIN : Integrated Meeting Support across
LiveBoards , Local and Remote Desktop Environments , " © 1994 ,
ACM , pp . 1 - 14 . *
Krasner , G . E . et al . , “ A Cookbook for Using the Model - View
Controller User Interface Paradigm in Smalltalk - 80 , " © 1988 ,
JOOP , pp . 26 - 49 . *

* cited by examiner

U . S . Patent

100

YMYWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW .
wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww
MAXWXRMWANZAREMMANUAIRWAYWORMWOXXX

COORDOCCERCEROECOCEDERICERCER

COERCEDEDOR
CROOROCRORENDENCE CERTOCOCO

CLIENT 1 110

SERVER 105

CLIENT _ 2 115

VIEW 1

VIEW
125 125

? ???????????????

VIEW _ 2

Badded

WWWWWWW

pr 130

wwwwwwwwwwwwwwwwww

Down 178

170

aren 176
w

135

CONTROLLER 1

HTTP

HTTP |

ccc 2

CONTROLLER _ 2

??????

SOCIOCCACCIO

Dec . 5 , 2017

per 140

160

pv 150

p 180

morena 184

on 182

para 155

WWW XvvWW

Programs

Wwwwwww

SHARED MODEL _ 1

????????????????????????

wa

165 mm 145

| SCA 21 LOCAL MODEL _ 2

LOCAL MODEL _ 1

20 ??

SHARED MODEL _ 3

SHARED MODEL 2

WY

wwwwwwwwww
WA

TMrrrrrvine

Sheet 1 of 8

ORIGINAL APPLICATION COMPONENTS

FCA - FRAMEWORK - SPECIFIC COLLABORATION ADAPTER CCC - CONCURRENCY CONTROL COMPONENT

W

COLLABORATION ADAPTER COMPONENTS CONCURRENCY CONTROL SYSTEM COMPONENTS

SCA - SOURCE CODE ANNOTATIONS

FIGURE 1

US 9 , 836 , 549 B2

U . S . Patent

200 e

II @ CLASS (“ TASK ")

VAR TASK = FUNCTION (DATA) { THIS . NAME = KO . OBSERVABLE (DATA . NAME) } TASK . PROTOTYPE . DELETE = FUNCTION () { MODEL . TASK . REMOVE (THIS) }

Dec . 5 , 2017

Il @ SYNC (" MODEL ")

VAR MODEL = { INPUT : KO . OBSERVABLE ,

TASK : KO . OBSERVABLEARRAY () }

MODEL . ADDTASK = FUNCTION () {

MODEL . TASKS . PUSH (NEW TASK ({ ' NAME ' : MODEL . INPUT () })) ;

MODEL . INPUT (" ') }

Sheet 2 of 8

KO . APPLYBINDINGS (MODEL) ;

FIGURE 2

US 9 , 836 , 549 B2

300

-

U . S . Patent

FUNCTION TRAVERSEMODEL (LOCALMODEL) {
. . . / / LIST INCLUDES ALL NODES OF THE LOCAL MODEL

RETURN LMNODELIST ;

FOREACH (LMNODE IN TRAVERSEMODEL (LOCALMODEL)) {

320

LMNODE . SETUUIDO ;
IF (LMNODE . ISTYPE (PRIMITIVE)) {

Dec . 5 , 2017

/ / CREATE SHARED MODEL NODE AND SET INITIAL VALUE
SMNODE = SHAREDMODEL . ADDNODEC . . .) ;

/ / PROPAGATE LOCAL CHANGES

LM . NODE . SUBSCRIBE (FUNCTION (NEWVALUE) { . . . }) ;

Sheet 3 of 8

350

/ / SUBSCRIBE TO SHARED MODEL CHANGES

SHAREDMODEL . ADDMODELLISTENER (. . .) ;

IF (LMNODE . ISTYPE (ARRAY)) { . . . }

FIGURE 3

US 9 , 836 , 549 B2

400

LOCAL CHANGE PROPAGATION 405

U . S . Patent

REMOTE CHANGE INCORPORATION 410

WEB APPLICATION 1 415

wewane
WEB APPLICATION _ 2 425 CONTROLLER LOCAL

_ 2 135

MODEL _ 2 145 *

VIEW _ 1 120

CONTROLLER _ 1 130

LOCAL MODEL _ 1 140 *

VIEW _ 2 125 112

Dec . 5 , 2017

FCA _ 1 150

FCA _ 2 155 FCA _ 2 155

0

SHARED MODEL _ 1 180

OT MODEL
HANDLER _ 1

420

SHARED MODEL _ 2 182

OT MODEL HANDLER 2 445

Sheet 4 of 8

14

JSON DESERIALIZER

JSON SERIALIZER 430
CONCURRENCY CONTROL SYSTEM 435

450

CONCURRENCY CONTROL SYSTEM 440

* ANNOTATIONS HAVE ALREADY BEEN REPLACED BY JAVASCRIPT CODE .

FIGURE 4

US 9 , 836 , 549 B2

START

mas 500

U . S . Patent

content 505

550

maanan 555

LOAD A FIRST WEB APPLICATION AT A CLIENT

TRANSFORM THE OT OPERATION AGAINST A CONCURRENT LOCAL OT OPERATION

APPLY THE TRANSFORMED OT OPERATION TO A SECOND SHARED MODEL LOCATED ON THE SECOND CLIENT

510

545

paren 560

REPLACE ANNOTATIONS IN A FIRST LOCAL MODEL OF THE FIRST WEB APPLICATION WITH JAVASCRIPT CODE BLOCKS

DESERIALIZE THE TEXTUAL REPRESENTATION INTO THE OT OPERATION

APPLY THE MODIFICATION TO A SECOND LOCAL MODEL OF THE SECOND WEB APPLICATION

Dec . 5 , 2017

porn 515

per 540 540

presentes 565

RECEIVE A NOTIFICATION THAT THE FIRST LOCAL MODEL IS MODIFIED

TRANSMIT THE TEXTUAL REPRESENTATION TO A SECOND CLIENT HOSTING A SECOND WEB APPLICATION

SYNCHRONIZE THE FIRST LOCAL MODEL AND THE SECOND LOCAL MODEL WITH THE MODIFICATION

Sheet 5 of 8

meno 520

535

INFORM AN OPERATIONAL
TRANSFORMATION (OT) HANDLER

ABOUT THE MODIFICATION

SERIALIZE THE OT OPERATION INTO A TEXTUAL REPRESENTATION

END

verano 525

orationis 5

30

FIGURE 5

CONVERT THE MODIFICATION INTO AN OT OPERATION

APPLY THE OT OPERATION ON A FIRST SHARED MODEL

US 9 , 836 , 549 B2

600 FT

U . S . Patent

DEVELOPMENT TIME IN HOURS

SINGLE - USER APPLICATION 610

25

Dec . 5 , 2017

COLLABORATIVE APPLICATION USING STANDARD CCS API 620

Sheet 6 of 8

COLLABORATIVE APPLICATION USING FCA 630

F

E

?

20

30

40

50

US 9 , 836 , 549 B2

FIGURE 6

700

U . S . Patent

LINES OF CODE

T

SINGLE - USER APPLICATION 610

HTML
W

157 163 154

COLLABORATIVE APPLICATION USING STANDARD CCS API 620

Dec . 5 , 2017

200

JAVASCRIPT

W

715

297

YEYEWE

COLLABORATIVE APPLICATION USING FCA 630

ANNOTATIONS
toomoo

Sheet 7 of 8

CONFIGURATION

II 400 400 600

600

0

200 200

US 9 , 836 , 549 B2

FIGURE 7

800

?

U . S . Patent

NETWORK 850

?

PROCESSOR 805

NETWORK COMMUNICATOR 835

Dec . 5 , 2017

RAM 815

DATA SOURCE INTERFACE 820

DATA SOURCE 860

?? , BUS 842

Sheet 8 of 8

855

OUTPUT DEVICE 825

INPUT DEVICE 830

MEDIA READER 840

STORAGE 810

FIG . 8

US 9 , 836 , 549 B2

US 9 , 836 , 549 B2

COLLABORATION ADAPTER TO EXPLOIT Web application , wherein a second local model of the
SINGLE - USER WEB APPLICATIONS FOR second Web application was enhanced with the annotations .

COLLABORATIVE WORK Finally , the first local model and the second local model are
synchronized with the modification .

FIELD 5 In various embodiments , the system includes a processor
and a memory in communication with the processor .

The field generally relates to the software arts , and , more According to one aspect , the memory includes a first Web
specifically , to methods and systems including a collabora - application located on a first client including a first local
tion adapter to exploit single - user Web applications for model , wherein the first local model was enhanced with
collaborative work . 10 annotations during design time of the first Web application .

The system also includes a framework - specific collaboration
BACKGROUND adapter that parses the first local model and registers a set of

listeners to inform when a modification in the first local
Nowadays , collaborative Web applications are wide - model occurs . A concurrency control system includes a first

spread since they exhibit numerous advantages in contrast to 15 shared model . Further , an operational transformation han
traditional desktop applications . Leveraging the Web as an d ler is included that converts the modification in the first
application platform provides users with access from differ local model into an operational transformation operation and
ent devices (e . g . , PCs , smartphones , etc .) and allows imme - applies the operational transformation operation to the first
diate adoption without requiring time - consuming installa - shared model . Finally , a serializer is included that converts
tion procedures . Moreover , real - time collaborative Web 20 the operational transformation operation into a textual rep
applications such as Google Docs allow multiple users to resentation that is transmitted to a second client to apply the
edit the same document simultaneously replacing conven - modification on a second shared model and a second local
tional document merging or document locking techniques . model of a second Web application , wherein the second local

Existing collaborative applications support a variety of model of the second Web application was enhanced with the
shared editing use cases ranging from jointly authoring text 25 annotations .
documents , spreadsheets , and presentations to collabora - These and other benefits and features of embodiments will
tively creating source code files or Business Process Model be apparent upon consideration of the following detailed
and Notation (BPMN) models . Shared editing applications description of preferred embodiments thereof , presented in
have to incorporate concurrency control capabilities to connection with the following drawings .
enable users shared access . That allows synchronizing 30
numerous document instances in real - time and enables BRIEF DESCRIPTION OF THE DRAWINGS
potential editing conflicts to be resolved automatically (e . g . ,
if two users change the same word or graphic) . However , The claims set forth the embodiments with particularity .
specific concurrency control services are not included in The embodiments are illustrated by way of examples and not
general - purpose frameworks such as jQuery® or Knock - 35 by way of limitation in the figures of the accompanying
out® . Hence , developers have to get familiar with specific drawings in which like references indicate similar elements .
collaboration frameworks (e . g . , ShareJS?) . Further , even The embodiments , together with its advantages , may be best
the collaborative Web applications are appealing to end - understood from the following detailed description taken in
users , the implementation is a complicated and a time conjunction with the accompanying drawings .
consuming task due to the insufficient development support . 40 FIG . 1 is a block diagram illustrating an architectural view

The extra concurrency control library requires additional of a collaboration system including a collaboration adapter ,
programming tasks that may substantially increase the according to an embodiment .
development costs . First , Web developers have to get famil - FIG . 2 is a diagram illustrating an example of an anno
iar with an extra programming library . Second , synchroniz - tated data model , according to an embodiment .
ing multiple document instances requires capturing and 45 FIG . 3 is a diagram illustrating a function replacing the
replaying all document changes that may involve plenty of @ Sync annotation , according to an embodiment .
source code changes . Third , introducing a number of scat FIG . 4 is a block diagram illustrating a synchronization
tered source code changes contradicts the separation - of - workflow of the collaboration adapter , according to an
concerns principle and eventually increases maintenance embodiment .
effort . 50 FIG . 5 is a flow diagram illustrating exploiting single - user

Web applications for collaborative work , according to an
SUMMARY embodiment .

FIG . 6 is a diagram illustrating evaluation results based on
Various embodiments of systems and methods including development time needed for developing a Web application .

a collaboration adapter to exploit single - user Web applica - 55 FIG . 7 is a diagram representing evaluation results based
tions for collaborative work are described herein . In various on lines of code needed for developing a Web application .
embodiments , the method includes receiving a notification FIG . 8 is a block diagram of an exemplary computer
at a framework - specific adapter that a first local model of a system 800 , according to an embodiment .
first Web application of a first client is modified , wherein the
first local model was enhanced with annotations during 60 DETAILED DESCRIPTION
design time of the first Web application . Then , the modifi
cation of the first local model is converted into an opera - Embodiments of techniques for methods and systems
tional transformation operation . The method also includes including a collaboration adapter to exploit single - user Web
applying the operational transformation operation on a first applications for collaborative work are described herein . In
shared model of a concurrency control system . In addition , 65 the following description , numerous specific details are set
a textual representation of the operational transformation forth to provide a thorough understanding of the embodi
operation is transmitted to a second client including a second ments . One skilled in the relevant art will recognize , how

US 9 , 836 , 549 B2

ever , that the embodiments can be practiced without one or control system resolves any editing conflicts that may occur
more of the specific details , or with other methods , compo during the synchronization process .
nents , materials , etc . In other instances , well - known struc The collaboration adapter components are located on the
tures , materials , or operations are not shown or described in client side and include Framework - specific Collaboration
detail . 5 Adapters (FCAs) , such as FCA _ 1 150 and FCA _ 2 155 , and

Reference throughout this specification to “ one embodi Source Code Annotations (SCAs) , such as SCA _ 1 160 and
SCA 2 165 . In various embodiments , the FCA is developed ment ” , “ this embodiment ” and similar phrases , means that a

particular feature , structure , or characteristic described in for a particular Web framework . For example , for the
connection with the embodiment is included in at least one Knockout Web framework , there is a specific FCA ; for the
of the one or more embodiments . Thus , the appearances of 10 SAPUI5 Web framework , there is another FCA , and so on .

This means that it is not necessary to implement an FCA for these phrases in various places throughout this specification each Web application , but to implement an FCA for each and are not necessarily all referring to the same embodiment . every Web framework that is supported by the client side . Furthermore , the particular features , structures , or charac In various embodiments , the collaboration adapter cap
teristics may be combined in any suitable manner in one or 15 tures local model manipulations and replays remote model
more embodiments . modifications . The collaboration adapter provides collabo

For a significant part of Web applications , such as Model ration functionality such as concurrency control services .
View - Controller (MVC) applications , programming efforts . The captured model changes have to be supplied to the
can be simplified since the MVC applications expose an collaboration engine to react upon model changes . Hence ,
isolated data model that may be synchronized automatically 20 model manipulations can be recorded and propagated . The
using an intelligent collaboration adapter . Due to the fact capture and replay logic is accommodated in the Frame
that numerous widespread Web frameworks (e . g . , SAPUI5 , work - specific Collaboration Adapter (FCA) . In various
Knockout , Backbone . js , etc .) enforce applications to be embodiments , the FCA is the main component providing the
structured according to the established MVC pattern , the local - to - shared model conversion . Further , the FCA is in
approach of automatically synchronizing data model 25 charge for bridging the gap between a local data model and
instances could be adopted by plenty of Web applications . In a shared data model . For example , between local model _ 1
various embodiments , systems and methods include a col - 140 and shared model _ 1 180 . Thus , the FCA records , filters
laboration adapter that provides a lightweight transforma - and propagates local document changes . Moreover , the FCA
tion process capable of converting single - user MVC appli - replays local document changes at all remote sites . This
cations into their collaborative counterparts . Thereby , a local 30 functionality is performed by enriching the original appli
data structure may be transformed into a shared data struc - cation with Source Code Annotations (SCAS) .
ture with concurrency control support . Annotations represent a viable means to declaratively

FIG . 1 is a block diagram illustrating an architectural view mark a data model in order to configure the collaboration
of a collaboration system including a collaboration adapter , adapter . The data model structure determines the quantity of
according to an embodiment . In various embodiments , col - 35 required annotations . Applications with subgraph - based data
laboration system 100 includes a server 105 and a set of structures require solely one annotation since the interlinked
clients such as client _ 1 110 and client _ 2 115 . The compo data structure can be completely discovered by marking the
nents of collaboration system 100 are divided into several single root node of the data model . Minimizing the number
different types of components including , but not limited to : of SCAs is essential for increasing developer productivity .
framework - based original application components , collabo - 40 The FCA includes an annotation processor that replaces the
ration adapter components , and concurrency control system Source Code Annotations (SCAs) with JavaScript (here
components . The framework - based original application inafter , “ JavaScript ") function calls once the application is
components , such as MVC application components , include loaded . These inserted function calls are a means to register
a view (e . g . , view _ 1 120 and view _ 2 125) , a controller (e . g . , listeners as well as to attach replay handlers .
controller _ 1 130 and controller _ 2 135) , and a local model 45 To support proper document synchronization and conflict
(e . g . , local model 1 140 and local model 2 145) . The resolution , an Operational Transformation Engine (OTE)
framework - based original application components represent may be included at both client side and server side to handle
components of an application developed on a given Web a ll sync mechanics . Thereby , the FCA supplies change
framework , such as Knockout , and located on the client side . notifications that are converted by the OTE into operational
In the MVC pattern , the controller acts as a mediator 50 transformation (OT) operations . Transforming concurrent
between the view and the local model . This means that once OT operations , allows to resolve conflicts and to maintain
the user triggers some changes in the view component , they consistent document copies . For example , if two users
are propagated to the local model and vice versa . simultaneously add a character at the first position of their

The concurrency control system components are located document copy , the OTE adapts the indexes so that one
on both client and server side . These components include a 55 character is added at the first position while the other
Concurrency Control Component (CCC) , such as CCC _ 1 character is inserted at the second position . Hence , the
170 , CCC _ 2 176 , and CCC _ 3 178 , and a shared model , such editing conflict is resolved and both document copies are
as shared model _ 1 180 , shared model _ 2 182 , and shared consistent .
model _ 3 184 . A concurrency control system , such as SAP Another responsibility of the OTE is to serialize OT
Gravity , is a distributed system that provides synchroniza - 60 Operations in a JSON representation . Serialized OT opera
tion of data models such as various document instances of a tions are sent to a central server using common bi - direc
text document . For example , a document can be opened tional , HTTP - based communication techniques such as long
online for editing by multiple users at the same time for polling , Hypertext Transfer Protocol (HTTP) streaming ,
changing some texts , adding pictures to the documents and WebSockets® , and so on . The server instance forwards the
so on . The concurrency control system synchronizes the 65 messages to all clients except the sender client . Once the
different document instances opened for edit by the different message is delivered to a client , the JSON message is
users using shared data models . In addition , the concurrency deserialized into an OT operation . In order to reconcile

US 9 , 836 , 549 B2

potential conflicts , this OT operation has to be transformed skeleton is implemented in accordance with SAP Gravity®
against concurrent local operations . Transformed OT opera concurrency control system . Other concurrency control sys
tions are translated into model manipulations to sync the tems may also be used . A graph model is created using a
respective model instance . dedicated JavaScript Application Programming Interface

FIG . 2 is a diagram illustrating an example of an anno - 5 (API) that offers functions such as create Model () ,
tated data model , according to an embodiment . Example 200 addNode () , etc . The concurrency control system may syn
illustrates an annotated data model of a Web application chronize all shared data model instances automatically .
developed on the Knockout Web framework . However , it Hence , to sync an application , the local model has to be
should be noted that annotations may be used to enhance mapped to the concurrency control system ' s shared data
data models of Web applications developed on different Web 10 structure and vice versa . This bi - directional mapping may be
frameworks . In various embodiments , the transformation of implemented by several functions included in skeleton 300 .
a single - user MVC Web application to a collaborative MVC Function 310 represents traversing the local model , for
Web application may include the following steps : 1) anno example local model _ 1 140 . The local data model may be
tate the application ' s source code to mark up the data model ; identified using the @ Sync annotation . In some embodi
and 2) import a JavaScript file that encapsulates the logic of 15 ments , the local data model may represent a tree structure of
the collaboration adapter into the original single - user Web data objects . Therefore , the entire tree structure should be
application . In example 200 , the data model is annotated traversed . Function 320 represents assigning a unique iden
using minimal annotation language including the following tifier (ID) to the local model nodes . In this way , the changed
source code annotations : 1) @ Sync (modelName) ; and 2) nodes of the local data model may be recognized and
@ Class (className) . All annotations are encapsulated in 20 identified . Function 330 represents creating concurrency
JavaScript comments since JavaScript does not offer a native control system counterparts for the local model nodes in the
annotation concept . shared model . For example , if there is a local model tree

The @ Sync (modelName) annotation marks the data structure with four nodes (data objects) , then four data
model (e . g . , the Knockout data model) that should be objects have to be created in the shared model instance as
synchronized among all application instances sharing the 25 well . Function 340 represents registering a set of listeners on
same session . The parameter “ modelName ” identifies the the local model nodes at runtime to inform the collaboration
name of the JavaScript variable pointing to the data model . adapter about local changes . For example , if a user has
In 200 , the JavaScript variable is named " model ” . The opened a document online and starts editing the document ,
@ Class (className) annotation marks the object constructor the document provider should be aware of any changes that

to allow creating new task objects . In some embodiments , an 30 may be performed on the document . This is possible by
object constructor may be used to allow for a proper replay registering listeners .
of a local object creation at all remote sites , since the object Function 350 represents attaching the set of listeners to
creation might involve some side effects . For example , the local model (e . g . , local model _ 1 140) and also to the
creating a new object might entail to increment a global concurrency control system nodes (shared model _ 1 180) to
counter . This side effect of incrementing a counter may not 35 replay remote changes . Initially , when a user makes a change
be replayed in a generic fashion and thus , the collaboration in the local data model , a listener fires an event about the
adapter requires a handle to the actual object constructor local change . Then , the collaboration adapter captures the

In various embodiments , besides inserting source code change , extracts the required information , and distributes the
annotations in files encapsulating data model definitions , change to all clients . Thus , initially , the change is reflected
another step is importing the JavaScript file into the original 40 in the local data model and then in the shared model of the
single - user Web application during design time . A specific current client (e . g . , local model _ 1 140 and shared model _ 1
JavaScript file (for example , an fca . js file) has to be embed - 180 in client _ 1 110) , but the change is not distributed to the
ded into the header section of the single - user application ' s local data models of the other clients yet (e . g . , local model _ 2
main HyperText Markup Language (HTML) file . For 145 of client _ 2 115) . That is why , it is necessary to attach
example , the following source code may be inserted into the 45 listeners to the shared model of the concurrency control
header section : “ < script type = " text / javascript " src = system as well , so that the other clients are informed about
“ fca . js " / > the change . Subscriptions on the shared model of the current

FIG . 3 is a diagram illustrating a function replacing the client (e . g . , client _ 1 110) are necessary to keep track of the
@ Sync annotation , according to an embodiment . In various remote modifications issued by the remote client (s) (e . g . ,
embodiments , one of the FCA components is the annotation 50 client _ 2 115) and vice versa . Then , the change is replayed at
processor . The annotation processor replaces the @ Class the local models of the other clients . In comparison to
annotation and the @ Sync annotation with JavaScript source inserting a one - line annotation , the complex functionality ,
code at runtime . The annotation processing starts with supporting arbitrary local models , adds up to more than a
parsing all model definition files and then identifies the thousand lines of JavaScript code . This complexity origi
inserted annotations . These annotations are expanded to 55 nates from the generic applicability of the function that
blocks of JavaScript code , which for the @ Class annotation supports the traversal of all graph - structured local models ,
is straightforward . The logic replacing the @ Class annota the mapping of various local node types , the callback
tion expands to a function call storing a reference to the registration for different model change operations , etc .
constructor method in a global map and thus , new objects It should be noted that inserting the source code annota
can easily be created . For the replacement of the @ Sync 60 tions is performed at design time , while the functions
annotation , the inserted code has to bridge the gap between presented in skeleton 300 are performed during runtime . The
the local model and the shared model of the concurrency JavaScript file embedded into the header section of the
control system . This may essentially enable the propagation single - user application ' s main HTML file (e . g . , the fca . js
of local manipulations and the replay of remote manipula - file) of the collaboration adapter contains the parser and
tions . 65 replacement logic that is executed at runtime . Once the

FIG . 3 depicts an exemplary skeleton 300 of the function application is loaded in a Web browser , the collaboration
replacing the @ Sync annotation . It should be noted that this adapter functionality is performed . The annotations inserted

US 9 , 836 , 549 B2

at design time are replaced with JavaScript blocks . The formed OT operations are then applied to the shared
collaboration adapter tries to map the local data model to the model _ 2 182 . Using the annotations and the IDs of the local
shared data model . Therefore , a set of listeners are registered model nodes , the OT model handler _ 2 445 knows where
in the local model and in the shared model of the concur - synchronization in the local model _ 2 145 is needed . Finally ,
rency control system to capture changes of user actions in 5 the OT model handler _ 2 445 reflects the modifications in the
the application . These changes are then propagated to the local model _ 2 145 and thus , synchronizes both local models ,
shared data model . The shared data model located on the local model _ 1 140 and local model 2 145 .
client running the application is synchronized with the FIG . 5 is a flow diagram illustrating exploiting single - user
shared data model on the server side . On each client , there Web applications for collaborative work , according to an
are at least two data models : a local data model of the Web 10 embodiment . Process 500 begins at block 505 with loading
application and an instance of the shared data model of the a first single - user Web application at a client . Before a client
concurrency control system . These two data models have to retrieves a Web application from a server , the annotations
be mapped accordingly for the application to be synchro - are inserted . Thus , all clients retrieving the Web application
nized . receive an annotated Web application . Then , all clients

FIG . 4 is a block diagram illustrating a synchronization 15 replace the annotations once the Web application is loaded .
workflow of the collaboration adapter , according to an At block 510 , the annotations in a first local model of the
embodiment . In various embodiments , after all annotations first Web application and the annotations in a second local
were replaced with corresponding JavaScript functions , the model of a second Web application are replaced with
synchronization workflows are executed by the browser ' s JavaScript code blocks . In various embodiments , the anno
JavaScript engine . The synchronization 400 is divided into 20 tations were inserted during design time .
two processes : local change propagation 405 and remote Besides the annotations , a JavaScript file was embedded
change incorporation 410 . In various embodiments , the local into the header section of the single - user Web application ' s
change propagation 405 workflow starts with a user change main HTML file (e . g . , the fca . js file) . After loading the Web
in the user interface (e . g . , view _ 1 120) of a Web applica application , the JavaScript file is executed by framework
tion _ 1 415 . The controller _ 1 130 reflects the change in the 25 specific collaboration adapter . The framework - specific col
local model _ 1 140 of the Web application . As described laboration adapter performs parsing all model definition files
above , when loading the Web application , the FCA _ 1 150 and then identifies the inserted annotations . These annota
registers a set of listeners on the local model _ 1 140 that tions are expanded to blocks of JavaScript code . This means
listen for any manipulations modifying the local model that the annotations are replaced with JavaScript functions
When a modification occurs , the FCA _ 1 150 extracts the 30 by an annotation processor that is encapsulated in the
required information . The required information includes the JavaScript file . Further , the above functions of skeleton 300
IDs of the local model nodes affected by the modification , are implemented , including , but not limited to : 1) traversing
the type of the modification (e . g . , change , create , or delete the first local model ; 2) assigning IDs to the first local model
operations) , any new values (e . g . , if a text node was changed nodes ; 3) creating CCS counterparts for the first local model
from “ hello ” to “ hello world ”) . The listeners translate all 35 nodes ; 4) registering a set of listeners on the first local model
types of manipulations into concurrency control system API nodes ; and 5) attaching the set of listeners to a first shared
calls . Further , the listeners of the FCA _ 1 150 inform the model nodes to replay remote changes . It should be noted
operational transformation (OT) model handler _ 1 420 of the that the JavaScript file is executed on all clients loading the
concurrency control system (CCS) 435 about the modifica Web application and the above functions of skeleton 300 are
tion in the local model _ 1 140 via the API calls . 40 implemented on all the clients loading the Web application
As soon as the OT model handler _ 1 420 is notified about as well including , but not limited to , client _ 1 110 and

the occurred modifications , the OT model handler _ 1 420 client 2 115 .
translates the local model modifications into operational At block 515 , a notification is received that the first local
transformation (OT) operations . Operational transformation model is modified . The notification is received by the set of
is the predominant algorithm that synchronizes shared docu - 45 listeners registered on the first local model nodes . In various
ment instances and resolves conflicts . Then , the OT model embodiments , the notification is received at the framework
handler _ 1 420 applies the OT operations on the shared specific collaboration adapter . The set of listeners translate
model _ 1 180 . The local change propagation 405 workflow the modification in the first local model into a CCS API call .
then continues at the JSON serializer 430 . JSON (JavaScript The modification may be a change operation , a create
Object Notation) is a lightweight data - interchange format 50 operation , a delete operation , and so on . At block 520 , an
that is completely language independent and is used for operational transformation (OT) handler is informed about
parsing and transmitting data structures over a network . the modification in the first local model via the CCS API
Serialization is the process of translating data structures or call . At block 525 , the modification is translated into an OT
object state into a format that can be stored . The JSON operation . Then , the OT operation is applied on a first shared
serializer 430 converts the OT operations into a JSON 55 model of a concurrency control system (CCS) , at block 530 .
representation (e . g . , text format) that is transmitted to the The OT handler forwards the OT operation to a JSON
server (e . g . , server 105) . The server distributes the JSON serializer . At block 535 , the OT operation is serialized into
messages to all clients (e . g . , client _ 2 115) except the sender a textual representation . Then , the textual representation is
client (e . g . , client _ 1 110) . transmitted to a second client hosting a second Web appli

In various embodiments , clients receiving JSON mes - 60 cation , at block 540 . It should be noted that the first Web
sages (e . g . , text stream) trigger the remote change incorpo - application and the second Web application are Web appli
ration 410 process . Initially , the JSON deserializer 450 of cation instances opened on different clients of a Web appli
CCS 440 transforms received JSON messages from the cation located on a server such as server 105 . For example ,
JSON serializer 430 into JavaScript objects that include OT a document for online editing is located on a server and an
operations . The OT model handler _ 2 445 then transforms 65 instance of the document is opened for edit on one client and
these OT operations against concurrent local OT operations a second instance of the same document is opened for edit
to resolve potential editing conflicts . The resulting trans on a second client . Thus , the textual representation is first

US 9 , 836 , 549 B2
10

transmitted to the server . The server then transmits the capabilities in contrast to 515 lines of JavaScript code for
textual representation to all clients , such as the second client , adopting the Gravity API . This represents a considerable
except the sender client , i . e . the first client . reduction of 81 percent in terms of JavaScript code when

At block 545 , the textual representation is deserialized using the annotation - based approach of the FCA . Even
back to the OT operation . Then , the OT operation is trans - 5 though the HTML LOC exposes only minor differences , the
formed against a concurrent local OT operation to resolve overall LoC measure resulting in 878 LoC versus 462 LOC
potential editing conflicts . This is performed at block 550 . At once again shows a 47 percent source code reduction
block 555 , the transformed OT operation is applied to a adopting the annotation - based approach . The substantial
second shared model located on the second client . At block LoC reduction is another demonstration of the efficiency an
560 , the modification of the first local model is retrieved and 10 annotation - based solution can deliver .
applied to a second local model of the second Web appli - Traditionally , converting a single - user Web application
cation . At block 565 , the first local model and the second into a collaborative one requires a concurrency control
local model are synchronized . library , such as SAP Gravity or Apache Wave , necessitating

FIG . 6 is a diagram illustrating evaluation results based on a plenty of source code changes . The framework - specific
development time needed for developing a Web application . 15 collaboration adapter may substantially reduce the develop
Evaluation 600 represents a developer study , where a num - ment effort in terms of development time and added source
ber of computer science students were selected to develop a code lines . Evaluation 600 and evaluation 700 demonstrate
single - user Web application and one collaborative Web reduced development time by more than 40 percent and
application using two different technologies . It should be reduced number of added source code lines by almost 50
noted that the students were familiar with numerous pro - 20 percent . Further , the collaboration adapter is framework
gramming languages (e . g . , Java? , C? , etc .) , but the students specific . This means that one framework - specific collabo
had no knowledge regarding the development of shared ration adapter may serve hundreds or even thousands of Web
editing applications . The time needed for the students to applications .
develop the applications was measured in hours . Evaluation Some embodiments may include the above - described
600 includes the development time needed for developing a 25 methods being written as one or more software components .
single - user application 610 , a collaborative application These components , and the functionality associated with
using a standard CCS API 620 (for example , SAP Gravity each , may be used by client , server , distributed , or peer
API) , and a collaborative application using a framework - computer systems . These components may be written in a
specific collaboration adapter 630 (such as FCA _ 1 150) . computer language corresponding to one or more program
On average , the development time of a single - user appli - 30 ming languages such as , functional , declarative , procedural ,

cation 610 took 25 hours . Further , students spent 54 hours to object - oriented , lower level languages and the like . They
get familiar with a standard CCS API , such as the SAP may be linked to other components via various application
Gravity API , and to program the collaborative Web appli - programming interfaces and then compiled into one com
cation 620 . In contrast , the students needed 42 hours to adopt plete application for a server or a client . Alternatively , the
source code annotations and to develop a collaborative 35 components maybe implemented in server and client appli
application using an FCA 630 . Hence , employing the anno cations . Further , these components may be linked together
tations - based approach may reduce the development time via various distributed programming protocols . Some
and effort by 22 percent . The overall development time of 54 example embodiments may include remote procedure calls
hours and 42 hours respectively include 25 hours that were being used to implement one or more of these components
dedicated to the implementation of the single - user applica - 40 across a distributed programming environment . For
tion 610 . Thus , the actual development effort for introducing example , a logic level may reside on a first computer system
shared editing capabilities adds up to 29 hours for develop - that is remotely located from a second computer system
ment 620 versus 17 hours for development 630 . This rep - containing an interface level (e . g . , a graphical user inter
resents a 41 percent reduction when adopting the annotation face) . These first and second computer systems can be
based approach . Evaluation 600 clearly shows that the 45 configured in a server - client , peer - to - peer , or some other
annotation - based approach of the FCA is beneficial in terms configuration . The clients can vary in complexity from
of efficiency and can significantly outperform conventional mobile and handheld devices , to thin clients and thick clients
collaboration libraries . or even other servers .

FIG . 7 is a diagram representing evaluation results based The above - illustrated software components are tangibly
on lines of code needed for developing a Web application . 50 stored on a computer readable storage medium as instruc
Evaluation 700 represents a developer study which results tions . The term " computer readable storage medium ” should
were taken from the same test performed for evaluation 600 . be taken to include a single medium or multiple media that
Evaluation 700 measures the lines of code (LoC) written stores one or more sets of instructions . The term “ computer
when developing a single - user application 610 , a collabora readable storage medium ” should be taken to include any
tive application using a standard CCS API 620 (for example , 55 physical article that is capable of undergoing a set of
SAP Gravity API) , and a collaborative application using a physical changes to physically store , encode , or otherwise
framework - specific collaboration adapter 630 (such as carry a set of instructions for execution by a computer
FCA _ 1 150) . The code contributions were divided into the system which causes the computer system to perform any of
following individual categories : (1) HTML code ; (2) the methods or process steps described , represented , or
JavaScript code ; (3) annotation code ; and (4) configuration 60 illustrated herein . A computer readable storage medium may
code . Evaluation 600 shows the LoC measurements , where be a non - transitory computer readable storage medium .
in each category the total number is depicted . Examples of a non - transitory computer readable storage
One distinguishing factor between the use of the standard media include , but are not limited to : magnetic media , such

CCS API (e . g . , SAP Gravity API) and the use of annotations as hard disks , floppy disks , and magnetic tape ; optical media
is the JavaScript LoC measure . On average , developers 65 such as CD - ROMs , DVDs and holographic devices ; mag
needed 97 lines of JavaScript code accompanied by 4 neto - optical media ; and hardware devices that are specially
annotations and 7 configuration lines to inject collaboration configured to store and execute , such as application - specific

US 9 , 836 , 549 B2
11

integrated circuits (“ ASICs ”) , programmable logic devices accordance with the one or more embodiments . Moreover , it
(“ PLDs ") and ROM and RAM devices . Examples of com will be appreciated that the processes may be implemented
puter readable instructions include machine code , such as in association with the apparatus and systems illustrated and
produced by a compiler , and files containing higher - level described herein as well as in association with other systems
code that are executed by a computer using an interpreter . 5 not illustrated .
For example , an embodiment may be implemented using The above descriptions and illustrations of embodiments ,
Java , C + + , or other object - oriented programming language including what is described in the Abstract , is not intended
and development tools . Another embodiment may be imple to be exhaustive or to limit the one or more embodiments to
mented in hard - wired circuitry in place of , or in combination the precise forms disclosed . While specific embodiments of ,
with machine readable software instructions . 10 and examples for , the invention are described herein for

FIG . 8 is a block diagram of an exemplary computer illustrative purposes , various equivalent modifications are
system 800 , according to an embodiment . The computer possible within the scope of the invention , as those skilled
system 800 includes a processor 805 that executes software in the relevant art will recognize . These modifications can be
instructions or code stored on a computer readable storage made in light of the above detailed description . Rather , the
medium 855 to perform the above - illustrated methods . The 15 scope is to be determined by the following claims , which are
processor 805 can include a plurality of cores . The computer to be interpreted in accordance with established doctrines of
system 800 includes a media reader 840 to read the instruc - claim construction .
tions from the computer readable storage medium 855 and
store the instructions in storage 810 or in random access What is claimed is :
memory (RAM) 815 . The storage 810 provides a large space 20 1 . A computer implemented method for exploiting a
for keeping static data where at least some instructions could single - user MVC Web application for collaborative work ,
be stored for later execution . According to some embodi - the method comprising :
ments , such as some in - memory computing system embodi receiving a modification of a first Model - View - Controller
ments , the RAM 815 can have sufficient storage capacity to (MVC) local model of a first instance of the single - user
store much of the data required for processing in the RAM 25 Web application of a first client , wherein the first MVC
815 instead of in the storage 810 . In some embodiments , all local model is an isolated data model enhanced with
of the data required for processing may be stored in the source code annotations marking the first MVC local
RAM 815 . The stored instructions may be further compiled model for synchronization among instances of the
to generate other representations of the instructions and single - user Web application , and wherein the first
dynamically stored in the RAM 815 . The processor 805 30 instance of the single - user Web application is struc
reads instructions from the RAM 815 and performs actions tured according to a MVC pattern ;
as instructed . According to one embodiment , the computer converting the received modification of the first MVC
system 800 further includes an output device 825 (e . g . , a local model into an operational transformation opera
display) to provide at least some of the results of the tion ;
execution as output including , but not limited to , visual 35 applying the operational transformation operation on a
information to users and an input device 830 to provide a first MVC shared model of a concurrency control
user or another device with means for entering data and / or system on the first client , wherein the first shared model
otherwise interact with the computer system 800 . Each of is created with collaborative counterparts of the first
these output devices 825 and input devices 830 could be MVC local model nodes , and wherein the first shared
joined by one or more additional peripherals to further 40 model is mapped to the first MVC local model via a
expand the capabilities of the computer system 800 . A bi - directional mapping ;
network communicator 835 may be provided to connect the transmitting by a processor over a network a textual
computer system 800 to a network 850 and in turn to other representation of the operational transformation opera
devices connected to the network 850 including other cli tion to a second client including a second instance of
ents , servers , data stores , and interfaces , for instance . The 45 the Web application , wherein a second MVC local
modules of the computer system 800 are interconnected via model of the second instance of the Web application is
a bus 845 . Computer system 800 includes a data source enhanced with the source code annotations , and
interface 820 to access data source 860 . The data source 860 wherein the second instance of the Web application is
can be accessed via one or more abstraction layers imple structured according to the MVC pattern ;
mented in hardware or software . For example , the data 50 automatically synchronizing a second MVC shared model
source 860 may be accessed by network 850 . In some of the concurrency control system with the first MVC
embodiments the data source 860 may be accessed via an shared model to distribute the modification of the first
abstraction layer , such as , a semantic layer . MVC local model , wherein the second MVC shared

In the above description , numerous specific details are set model is located on the second client ; and
forth to provide a thorough understanding of embodiments . 55 upon the synchronization of the second shared model of
One skilled in the relevant art will recognize , however that the concurrency control system with the modification ,
the embodiments can be practiced without one or more of synchronizing the second MVC local model with the
the specific details or with other methods , components , second shared model of the concurrency control system
techniques , etc . In other instances , well - known operations or to distribute the modification of the first MVC local
structures are not shown or described in detail . model to the second MVC local model .

Although the processes illustrated and described herein 2 . The method of claim 1 , wherein synchronizing the
include series of steps , it will be appreciated that the second MVC local model comprising :
different embodiments are not limited by the illustrated deserializing the textual representation back to the opera
ordering of steps , as some steps may occur in different tional transformation operation ;
orders , some concurrently with other steps apart from that 65 transforming the operational transformation operation
shown and described herein . In addition , not all illustrated against a concurrent local operational transformation
steps may be required to implement a methodology in operation ;

13

5

US 9 , 836 , 549 B2
14

applying the transformed operational transformation local model of a second instance of the Web appli
operation to the second MVC shared model located on cation , wherein the second MVC local model of the
the second client ; and second instance of the Web application is enhanced

applying the modification of the second MVC shared with the source code annotations , and wherein the
model to the second local model . second Web application is structured according to

3 . The method of claim 1 , wherein the first MVC local the MVC pattern .
model and the second MVC local model are enhanced by 9 . The computer system of claim 8 , further comprising :
embedding a JavaScript file into the first instance of the Web a deserializer that deserializes the textual representation
application and the second instance of the Web application , back to the operational transformation operation ;
wherein the JavaScript file is executed when the first 10 a second concurrency control system that includes the
instance of the Web application and the second instance of second MVC shared model ; and
the Web application are loaded . a second operational transformation handler at the second

4 . The method of claim 3 , wherein the source code client that transforms the operational transformation
annotations are replaced with JavaScript functions by an operation against a concurrent local operational trans
annotation processor that is encapsulated in the JavaScript 15 formation operation .
file . 10 . The system of claim 9 , wherein the second operational

5 . The method of claim 4 , wherein the JavaScript func - transformation handler applies the transformed operational
tions comprise : transformation operation to the second MVC shared model .

traversing the first MVC local model and the second 11 . The system of claim 8 , wherein the framework
MVC local model ; 20 specific collaboration adapter comprises an annotation pro

assigning a first set of unique identifiers to the first MVC cessor that replaces the source code annotations with
local model nodes and a second set of unique identifiers JavaScript code blocks at runtime .
to second MVC local model nodes ; and 12 . The system of claim 8 , wherein the set of listeners are

creating a first set of first shared model counterparts for attached to first MVC shared model nodes to replay remote
the first MVC local model nodes and a second set of 25 modifications .
second shared model counterparts for the second MVC 13 . The system of claim 11 , wherein the JavaScript code
local model nodes . blocks comprise :

6 . The method of claim 5 , further comprising : a first block for traversing the first MVC local model and
registering a set of listeners to the first MVC local model the second MVC local model ;

nodes to inform about modifications in the first MVC 30 a second block for assigning a first set of unique identi
local model ; and fiers to the first MVC local model nodes and a second

attaching the set of listeners to first MVC shared model set of unique identifiers to second MVC local model
nodes to replay remote modifications . nodes ; and

7 . The method of claim 1 , further comprising : translating a third block for creating a set of first shared model
the modification into a concurrency control system message 35 counterparts for the first MVC local model nodes and
sent from a listener of a framework - specific adapter to an a second set of second shared model counterparts for
operational transformation handler of the concurrency con the second MVC local model nodes .
trol system to inform about the modification . 14 . A non - transitory computer - readable medium storing

8 . A computer system , comprising : instructions , which when executed cause a computer system
a processor ; 40 to :
a memory in communication with processor , the memory receive a modification of a first Model - View - Controller

comprising : (MVC) local model of a first instance of a Web appli
a first instance of a Web application located on a first cation of a first client , wherein the first MVC local

client including a first MVC local model , wherein model is an isolated data model enhanced with source
the first MVC local model is enhanced with source 45 code annotations marking the first MVC local model
code annotations marking the first MVC local model for synchronization among instances of the Web appli
for synchronization among instances of the Web cation , and wherein the first Web application is struc
application , and wherein the first instance of the Web tured according to a MVC pattern ;
application is structured according to a MVC pattern ; convert the received modification of the first MVC local

a framework - specific collaboration adapter that parses 50 model into an operational transformation operation ;
the first MVC local model and registers a set of apply the operational transformation operation on a first
listeners to inform when a modification in the first MVC shared model of a concurrency control system on
MVC local model occurs ; the first client , wherein the first shared model is created

a concurrency control system that includes a first MVC with collaborative counterparts of the first MVC local
shared model created with collaborative counterparts 55 model nodes , and wherein the first shared model is
of the first MVC local model nodes , and wherein the mapped to the first MVC local model via a bi - direc
first shared model is mapped to the first MVC local tional mapping ;
model via a bi - directional mapping ; transmit by a processor over a network a textual repre

an operational transformation handler that converts the sentation of the operational transformation operation to
modification of the first MVC local model into an 60 a second client including a second instance of the Web
operational transformation operation and applies the application , wherein a second MVC local model of the
operational transformation operation to the first second instance of the Web application is enhanced
MVC shared model ; and with the source code annotations , and wherein the

a serializer that converts the operational transformation second instance of the Web application is structured
operation into a textual representation that is trans - 65 according to the MVC pattern ;
mitted to a second client to apply the modification on automatically synchronize a second MVC shared model
a second MVC shared model and a second MVC of the concurrency control system with the first MVC

US 9 , 836 , 549 B2
15

shared model to distribute the modification of the first 17 . The computer - readable medium of claim 16 , wherein
MVC local model , wherein the second MVC shared the source code annotations are replaced with JavaScript
model is located on the second client ; and functions by an annotation processor that is encapsulated in

upon the synchronization of the second shared model of the JavaScript file .
the concurrency control system with the modification , 5 18 . The computer - readable medium of claim 17 , wherein

the JavaScript functions comprise instructions that cause the synchronize the second MVC local model with the computer system to : second shared model of the concurrency control system traverse the first MVC local model and the second MVC
to distribute the modification of the first MVC local local model ;
model to the second MVC local model . assign a first set of unique identifiers to the first MVC

15 . The computer - readable medium of claim 14 , wherein 10 local model nodes and a second set of unique identifiers
synchronize the second MVC local model comprises to second MVC local model nodes ; and
instructions that cause the computer system to : create a first set of first shared model counterparts for the

deserialize the textual representation back to the opera first MVC local model nodes and a second set of second
tional transformation operation ; shared model counterparts for the second MVC local

model nodes . transform the operational transformation operation 19 . The computer - readable medium of claim 18 , further against a concurrent local operational transformation comprising instructions to cause the computer system to : operation ; register a set of listeners to the first MVC local model
apply the transformed operational transformation opera nodes to inform about modifications in the first MVC

tion to the second MVC shared model located on the 20 local model ; and
second client ; and attach the set of listeners to first MVC shared model nodes

apply the modification of the second MVC shared model to replay remote modifications .
to the second local model . 20 . The computer - readable medium of claim 14 , further

16 . The computer - readable medium of claim 14 , wherein comprising instructions to cause the computer system to
the first MVC local model and the second MVC local model 25 translating the modification into a concurrency control sys
are enhanced by embedding a JavaScript file into the first tem message sent from a listener of a framework - specific
instance of the Web application and the second instance of adapter to an operational transformation handler of the
the Web application , wherein the JavaScript file is executed concurrency control system to inform about the modifica
when the first instance of the Web application and the second tion .
instance of the Web application are loaded . * * * * *

15

