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ABSTRACT 
A method for use in estimating a pose of an imaged object 
comprises identifying candidate elements of an atlas that 
correspond to pixels in an image of the object , forming pairs 
of candidate elements , and comparing the distance between 
the members of each pair and with the distance between the 
corresponding pixels . 

15 Claims , 8 Drawing Sheets 

start 

$ 100 receive an image made up of image elements 

S200 for each image element , identify one or more corresponding 
candidate locations in an atlas 

for two or more different image element pairs 

S300 form a pair of image elements from the image elements of 
step S200 , the pair comprising a first image element and a 
second image element 

8400 determine a first distance between the first image element 
and the second image element 

S500 determine a second distance between a first candidate 
location corresponding to the first image element and a 
second candidate location corresponding to the second image 
element 

compare the first and second distances and assign a 
compatibility score 
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start start 

$ 100 receive an image made up of image elements 

S200 for each image element , identify one or more corresponding 
candidate locations in an atlas 

for two or more different image element pairs : 

$ 300 form a pair of image elements from the image elements of 
step $ 200 , the pair comprising a first image element and a 
second image element 

S400 determine a first distance between the first image element 
and the second image element 

S500 determine a second distance between a first candidate 
location corresponding to the first image element and a 
second candidate location corresponding to the second image 
element 

000 compare the first and second distances and assign a 
compatibility score 

Fig . 4 
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S700 form one or more triplets of candidate locations by selecting 
pairs of candidate locations having a candidate location in 
common 

S800 Select a subset of the triplets of candidate locations based on 
compatibility scores 

8900 for each triplet in the subset of triplets : 
$ 900a : compute an initial pose estimate for the imaged object 
based on the triplet 

$ 9006 : create an estimated image of the imaged object based 
on the initial pose estimate of that triplet 

S900c : compare the estimated image with the image 
representing the scene including the imaged object 

S900d : based on the comparison , determine and score a refined 
Ipose estimate for the triplet 

$ 1000 Select one of the refined pose estimates based on the scores 
of the refined pose estimates 

end 

Fig . 5 
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OBJECT POSE RECOGNITION a Microsoft Kinect device ) , an ultrasound distance measurer , 
a laser rangefinder , a LiDAR device , and a shape from X 

FIELD apparatus , such as a shape from ( passive ) stereo apparatus 
and / or a shape from shading apparatus . Further , the 

This disclosure relates to a method for use in estimating 5 approaches described herein may be applied to any image 
a pose of an imaged object . In particular , but without representing a scene in three spatial dimensions . The image 
limitation , this disclosure relates to a method for use in acquiring device 101 is coupled , physically and / or wire 
estimating a pose of an imaged object based on depth lessly , to a processing device 103 , which is arranged to 
images . process images acquired by the image acquiring device 101 

10 in order to estimate a pose of the imaged object 102 . 
BACKGROUND FIG . 2 shows an exemplary block diagram of a processing 

device 103 . The processing device 103 comprises a micro 
The task of object recognition involves finding and iden processor 220 arranged to execute computer - readable 

tifying objects in images or videos , while the task of pose instructions as may be provided to the processing device 103 
estimation involves estimating the pose of objects which 15 via one or more of : a network interface 228 arranged to 
have been recognised . Object recognition and pose estima enable the microprocessor 220 to communicate with a 
tion are challenging problems for computer vision algo communications network such as the internet ; input / output 
rithms , especially when objects are partially occluded means 222 which may be arranged , without limitation , to 
Object recognition and pose estimation may be attempted interface with : floppy disks , compact discs , USB sticks , one 
using colour images , or alternatively , in situations where 20 or more keyboards , and / or one or more computer mice ; and 
colour cues are not available or are unreliable , may be a memory 224 , for example a random access memory , that 
attempted using only depth information . is arranged to be able to retrieve , store , and provide to the 

microprocessor 220 , instructions and data that have been 
SUMMARY stored in the memory 224 . The microprocessor 220 may 

25 further be coupled to a monitor 226 upon which a user 
Aspects and features of the invention are set out in the interface may be displayed and further upon which the 

appended claims . results of processing operations may be presented . The 
microprocessor 220 may also or alternatively communicate 

BRIEF DESCRIPTION OF THE DRAWINGS those results to another device via the network interface 228 . 
30 In addition , the microprocessor 220 may comprise a Graph 

Examples of the present disclosure will now be explained ics Processing Unit ( GPU — not shown ) , arranged to process 
with reference to the accompanying drawings in which : images intended for display on the monitor , and which may 

FIG . 1 shows a system for use in acquiring an image of also be used to execute parallel instructions at higher speeds 
an object ; than the microprocessor 220 . 

FIG . 2 shows an exemplary block diagram of a processing 35 A method for use in estimating a pose of the imaged 
device for use in implementing the steps of the methods object 102 will now be explained with reference to FIG . 3 , 
described herein ; which shows an illustration of potential correspondences 

FIG . 3 shows an illustration of potential correspondences between an image and an atlas , and FIGS . 4 and 5 , which 
between an image and an atlas ; show , in first and second consecutive parts , a flowchart of 

FIGS . 4 and 5 show , in two consecutive parts , a flow chart 40 the steps of the method . 
of the steps of a method described herein ; At step S100 , an image 301 ( or depth map ) is received . 

FIG . 6 shows exemplary results of a method described The image represents , in three spatial dimensions , a scene 
herein ; including the imaged object 102 ( which may be partially 

FIG . 7 shows further exemplary results of a method occluded due to another object , or objects , being in between 
described herein ; and 45 the imaged object and the image acquiring device 101 ) . The 

FIG . 8 shows performance results of a method described image 301 is made up of image elements , e . g . , 305 , 306 , 307 , 
herein . and 308 which are in this case pixels , the respective inten 

Throughout the description and the drawings , like refer sities of which represent distances at the time of acquisition 
ence numerals refer to like parts . of the image 301 between the image acquiring device 101 

50 and the various components of the scene . 
DETAILED DESCRIPTION At step S200 , for each of at least a subset of the image 

elements , one or more corresponding candidate locations are 
FIG . 1 illustrates a system for use in acquiring an image identified in an atlas 315 of one or more candidate objects . 

of an object 102 ( henceforth ' an imaged object ' ) . Examples The atlas 315 of one or more candidate objects contains 
of imaged objects include : in a gesture recognition applica - 55 a representation of each candidate object . The representation 
tion , a hand or a part thereof ; in an infrastructure inspection of each candidate object may be a 2D image providing a 
application , a building block or a part thereof , or a building three - dimensional representation of the object ( such as a 
or a part thereof ; and in an obstacle avoidance application , depth map or laser scan ) , a volumetric 3D representation of 
a hazard or an obstacle . the object ( such as a 3D array or volumetric image the 

An image - acquiring device 101 is arranged to acquire an 60 elements of which having values indicative of presence or 
image representing , in three spatial dimensions , a scene absence of the object and / or the surface of the object ) , or a 
including the imaged object 102 . The image - acquiring geometric model of the object ( for example as may be 
device 101 may be any kind of device that is capable of mathematically defined or determined using Computer 
acquiring an image containing data about the depth of an Aided Design ( CAD ) software ) . 
image point with respect to the image acquiring device 101 . 65 Candidate locations are identified for each image element 
Examples of the image acquiring device 101 include : a by deriving a descriptor associated with the respective image 
time - of - flight camera , a structured - light 3D scanner ( such as element , the descriptor representing the local geometry in 
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the vicinity of that image element . The descriptor associated tion 312 is determined , and a distance da ' between the pair 
with the image element is matched to one or more descrip - of candidate locations ( 311 , 312 ) ( which also correspond to 
tors associated with potential candidate locations in the the pair of image elements ( 306 , 307 ) ) is determined . 
atlas . When matching a descriptor associated with the image At step 8600 , the distances between pairs of image 
element to a descriptor associated with a candidate location , 5 elements in image space and between the corresponding 
a matching score may be assigned , said score quantifying the pairs of candidate locations in atlas space are compared . For 
similarity between the two descriptors . example , the distance d , between image elements 306 and 
As one possibility , for a number of predefined spatial 307 is compared with the distance d , between corresponding 

positions around an image element , a descriptor is formed by candidate locations 310 and 312 , and the distance d . is also 
listing those positions and creating a string ( for example a 10 compared with the distance d ' between corresponding can 
binary occupancy string ) wherein each element of the string didate locations 311 and 312 . 
corresponds to one of the listed positions and has a first If the distance between a pair of image elements and the 
value ( i . e . a 1 ) if the image elements of the image indicate distance between a pair of corresponding candidate locations 
that that spatial position is behind the imaged scene or a are dissimilar , then the pair of candidate locations is not 
second value ( i . e . a 0 ) if the image elements of the image 15 likely to actually correspond to the pair of image elements , 
indicate that that spatial position is in front of the imaged and a low compatibility score may be assigned to the pair of 
scene . In practice , this may be achieved by working out a corresponding candidate locations . For example , candidate 
surface normal at a given image element based on adjacent locations 311 and 312 are less likely to correspond to image 
image element values and then defining positions in relation elements 306 and 307 than candidate locations 310 and 312 , 
to the normal - for example at a set distance centred upon 20 as distance d ' is further from d , than d , is . 
the surface point and spaced apart by increments of 20 As a result of the comparison of step S600 , a pairwise 
degrees . Potential candidate descriptors are also determined compatibility score is assigned to each of the pairs of 
for the atlas in a corresponding manner . corresponding candidate locations . As one possibility , the 

As other possibilities , descriptors that use higher - order pairwise compatibility score may be the difference between 
moments to describe local shape geometry could be used 25 the image space distance and the atlas space distance or may 
and / or descriptors designed for intensity images ( e . g . SURF be derived therefrom . 
and shape context ) . These descriptors model local gradient Steps S300 to $ 600 of the above - described method are 
statistics . Generally , descriptors can be described as vectors performed for at least two different pairs of image elements 
in R ” . The matching of two descriptors is performed by and steps S300 - S600 for any of those pairs of image 
determining the Hamming distance between the two strings , 30 elements steps may be performed in parallel , sequentially , or 
and determining that the Hamming distance is below a a mixture thereof with steps S300 - S600 of any other of the 
threshold . The Hamming distance may directly be used as a pairs of image elements . An effect of this is to easily enable 
matching score . As other possibilities , ( normalized ) cross the approach to be performed in parallel and therefore 
correlation , and / or the squared or non - squared Euclidean quickly . 
distance may be used to compare descriptors . 35 The flowchart of FIG . 4 continues from step S600 to step 

In the example of FIG . 3 , for image element 306 , two S700 of FIG . 5 . The optional steps outlined in FIG . 5 enable 
candidate locations 310 , 311 on a candidate object 313 are a pose estimate to be determined from the compatibility 
identified as corresponding to image element 306 ; for image scores of step S600 . 
element 307 , two candidate locations 310 , 312 on the At step S700 , at least one triplet of candidate locations is 
candidate object 313 are identified as corresponding to 40 formed by selecting two pairs of candidate locations that 
image element 307 , and for image element 308 , candidate have a candidate location in common . For example , a triplet 
location 311 on the candidate object 313 is identified as of candidate locations ( 310 , 311 , 312 ) may be formed from a 
corresponding to image element 308 . first pair of candidate locations ( 310 , 312 ) corresponding to 

At step S300 , at least one pair of image elements ( 306 , the pair of image elements ( 306 , 307 ) and from a second pair 
307 ) is formed / selected from the image elements for which 45 of candidate locations ( 310 , 311 ) corresponding to the pair of 
step S200 has been performed . As at least one corresponding image elements ( 306 , 308 ) . Preferably , a triplet will not be 
candidate location will have been identified for each of the selected if the three candidate locations that constitute it lie 
image elements for which step S200 has been performed , for o n a straight line ( i . e . are collinear ) as such a triplet would 
each pair of image elements , at least two ( a pair of ) not enable reliable pose determination . 
corresponding candidate locations will have been identified 50 At step S800 , a subset of triplets of candidate locations is 
in step S200 . For example , for the pair of image elements selected from the at least one triplet of candidate locations 
( 306 , 307 ) , the pair of corresponding candidate locations based on the compatibility scores of the pairs of candidate 
( 310 , 312 ) and also the pair of corresponding candidate locations of each triplet , and optionally also based on the 
locations ( 311 , 312 ) will have been identified . matching scores of the individual candidate locations form 
At step S400 , for each of the pairs of image elements , a 55 ing of each triplet . For example , the compatibility scores of 

distance between the image elements forming that pair is the two pairs of candidate locations that make up a given 
determined . For example , a distance d ; between a first image triplet could be added so as to give an overall compatibility 
element 306 and a second image element 307 is determined score for that triplet . The triplets are then ranked according 
In the case where the image is a depth map , distances ( in to their compatibility scores and / or matching scores , and a 
image space ) between pairs of image elements are deter - 60 subset of the triplets is selected based on the ranking . As one 
mined by back - projecting the image elements using the example , a belief propagation approach is used to score a 
depth information contained in the image 301 . whole configuration of predicted matches based on the 
At step S500 , distances ( in atlas space ) between each of scores for the parts ( matching scores and compatibility 

the pairs of candidate locations are calculated . For example , ones ) . 
as the pair of candidate locations ( 310 , 312 ) correspond to 65 At step S900 , for each triplet in the subset of triplets , steps 
the pair of image elements ( 306 , 307 ) , a distance de between S900a to S900d are performed . As a triplet of non - collinear 
a first candidate location 310 and a second candidate loca - points is sufficient to uniquely define the spatial pose of a 
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th 

candidate object , at step S900a , an initial pose estimate ( for image - acquiring device 101 so as to reduce its resolution 
example a rigid transformation matrix ) for the imaged object and thereby reduce the computational complexity of the 
102 is computed based on the triplet . At step S9006 , the approaches disclosed herein . 
candidate object 313 ( as defined by the atlas 315 ) is trans - Approaches described herein may be implemented with 
formed by the initial pose estimate and the transformed 5 out using colour information ( e . g . , RGB information ) relat 
candidate object is used to create an estimated image rep ing to the imaged object 102 , and may be performed based 
resentative of an image of the imaged object that would be only on an image 301 of an imaged object along with an 
acquired by the image - acquiring device 101 if the candidate atlas . 
object had a pose equivalent to the initial pose estimate . Potential applications of the approaches described herein 

At step S900c , the estimated image is compared to the 10 include : robotic arms and autonomous robots ( for example , 
for : the recognition of objects purely based on 3D geometry , image 301 representing the scene including the imaged the autonomous grasping of objects , and / or autonomous object 102 so as to produce a score for that estimated image . assembly ) ; self - localization from depth images ( for example Comparison may be by way of evaluation of a similarity by recognizing specific objects in the scene ) ; automated 

measure such as : Sum of Squared Differences , Cross Cor - 15 infrastructure inspection ( for example by comparing a 
relation , Normalised Mutual Information , etc . detected object with the geometry stored in a 3D database ) ; 
At step S900d , a refined pose estimate for the triplet , obstacle / hazardous obiect avoidance ( for example by rec 

based on the comparison of step S900c , is determined . As ognizing dangerous objects ) ; 3D gesture recognition ( for 
one example , a searching approach is employed by repeat example by recognizing hand templates in different poses ) ; 
edly varying the initial pose estimate and determining 20 rapid 3D modelling ( for example by recognizing 3D build 
whether an evaluation of an estimated image that is created ing blocks ( pipes , cubes , boxes ) and storing geometric 
according to the varied pose estimate is better or worse than relationships between them — which can be used to modify 
a previous such evaluation for that triplet . the virtual object later ) . 

At step S1000 , one of the refined pose estimates is The approaches described here quickly filter random 
selected , based on the scores of the refined pose estimates , 25 samples ( i . e . image elements ) that are contaminated by 
as being representative of the true pose of the object . The outliers via message passing . The approaches take into 
selected refined pose estimate can then be used in a variety account that objects projected into images constitute a 
of applications . contiguous region in the image , therefore using matches 

Examples of the described approaches are set out in the from spatially close pixels in the depth image is beneficial . 

below list of numbered clauses : 30 Due to the large number of outliers among the hypothesized 
matches ( the corresponding candidate locations ) , random 1 . A method of recognizing and estimating the pose of an sampling of the required 3 correct matches to determine the object given a single depth image of a scene depicting objects pose would be ineffective . The approaches therefore the object . break down the generation of promising sample sets con 2 . A method that quickly discards incorrect detections of a ons Of 35 taining 3 putative correspondences into several steps : 

the object by using pairwise compatibility between for each pixel a set of putative correspondences ( corre 
predictions and depth data . sponding candidate locations ) to surface points on the 

3 . A method to rank object and pose predictions using object ( “ object coordinates " ) are stored , which are 
inference via local message passing ( belief propaga determined based on local depth appearance . 
tion ) . 40 For two pixels ( i . e . an edge ) in a local neighbourhood a 

4 . A method to efficiently sample promising sets of pairwise compatibility between predictions is com 
putative correspondences . puted . For any sample set that contains predictions 

5 . A method that estimates an object ' s pose by detecting from this edge the likelihood of this sample being 
parts of the object in order to handle occlusions . contaminated by outliers can be computed by message 

There is described herein a method for use in estimating 45 computation and is available in the next step . 
a pose of an imaged object that comprises identifying All triplets of 3 nearby pixels in the depth image are 
candidate elements of an atlas that correspond to pixels in an considered as sample set , and initially ranked and 
image of the object , forming pairs of candidate elements , discarded based on the computed messages . The top 
and comparing the distance between the members of each ranked sample sets are evaluated using a more expen 
pair and with the distance between the corresponding pixels . 50 sive geometric fitting energy . 

As one possibility , the approach described with reference The approaches described herein have been found to work 
to FIGS . 4 and 5 may perform steps S300 to S600 for only with objects that have a non - discriminative 3d shape . Fur 
a single pair of image elements so as to enable a determi - thermore , the approaches do not need RGB images in 
nation of the suitability of candidate locations based on addition to depth data , and they can be easily implemented 
distance comparisons for the first and second image ele - 55 in data - parallel architectures ( multi - core CPUs , GPUs ) , 
ments of that pair of image elements . enabling real - time object recognition and pose estimation . 

Although only three correspondences between image ele - The approaches described herein may be implemented on 
ments and candidate locations are necessary in order to any computer and may be embodied in any appropriate form 
determine a pose estimate , the approaches described herein including hardware , firmware , and / or software , for example 
need not be limited to triplets of candidate locations for 60 on a computer readable medium , which may be a non 
example the triplets of candidate locations may be replaced transitory computer readable medium . The computer read 
with sets of candidate locations comprising more than two able medium carrying computer readable instructions 
pairs of candidate locations preferably having one candi - arranged for execution upon a processor so as to make the 
date location in common . processor carry out any or all of the methods described 

Although the image 301 may be received directly from an 65 herein . 
image - acquiring device 101 , the image 301 may have been The term computer readable medium as used herein refers 
obtained by downsampling an image obtained from an to any medium that stores data and / or instructions for 
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causing a processor to operate in a specific manner . Such a ( i ) few salient regions in range images , ( ii ) unreliable depth 
storage medium may comprise non - volatile media and / or discontinuities , and ( iii ) uninformative features and descrip 
volatile media . Non - volatile media may include , for tors . 
example , optical or magnetic disks . Volatile media may Since depth cameras report 3D geometry , and approaches 
include dynamic memory . Exemplary forms of storage 5 described herein are based on predicting 3D object coordi 
medium include , a floppy disk , a flexible disk , a hard disk , nates for pixels in the range image , the internal consistency 
a solid state drive , a magnetic tape , any other magnetic data of putative object coordinates may be assessed by compar 
storage medium , a CD - ROM , any other optical data storage ing the distance between two observed 3D points ( back 
medium , any physical medium with one or more patterns of projected from the depth map ) and the one between pre 
holes or protrusions , a RAM , a PROM , an EPROM , a 10 dicted object coordinates . Grossly deviating distances 
FLASH - EPROM , NVRAM , and any other memory chip or indicate that at least one of the predicted object coordinates 
cartridge . may be an outlier . Thus , one can easily avoid sampling and 

Detailed examples of the approaches described herein are evaluating pose hypotheses from outlier - contaminated mini 
set out below . mal sample sets by scoring this ( pairwise ) consistency 
Object Pose Recognition 15 between predictions and observed data . 

Joint object recognition and pose estimation solely from The inventor has arrived at the insight that if one inter 
range images is an important task e . g . in robotics applica - prets the object coordinate hypotheses per pixel as unknown 
tions and in automated manufacturing environments . The ( or latent ) states , then the pairwise consistency of predicted 
lack of colour information and limitations of current com - object coordinates plays the role of pairwise potentials in a 
modity depth sensors make this task a challenging computer 20 graphical model , and that , consequently , the methodology of 
vision problem , and a standard random sampling based inference in graphical models may be employed in this 
approach is time - consuming . This difficult problem may be setting in order to rank sets of putative object coordinates by 
addressed by generating promising inlier sets for pose computing respective min - marginals . In contrast to other 
estimation by early rejection of clear outliers with the help uses of graphical models with respect to images , where a 
of local belief propagation ( or dynamic programming ) . By 25 random field is defined over the entire image , approaches 
exploiting data - parallelism the approach is fast , and a com - described herein utilises many but extremely simple graphi 
putationally expensive training phase is not necessary . State - cal models whose underlying graph has exactly the size of 
of - the art performance is demonstrated on a standard dataset the required minimal sample set . 

In contrast to colour images , depth maps are usually far Robust geometric estimation is typically addressed by 
less discriminative in their appearance particularly for local 30 data - driven random sampling in computer vision . A standard 
depth image patches . A sensible and simple prior for depth top - down RANSAC - type approach for rigid object pose 
images is given by a piecewise smooth regularizer . Conse - estimation would randomly draw three object coordinate 
quently , interest point detection in depth images is not hypotheses ( not necessarily using a uniform distribution ) 
necessary and features are evaluated densely ( or quasi - and evaluate the induced pose with respect to the given data . 
densely by subsampling ) in the query image . Further , real 35 On a high level view RANSAC generates a large number of 
depth sensors exhibit several shortcomings at depth discon - pose hypotheses and subsequently ranks these . Approaches 
tinuities , such as half - occlusions and foreground fattening described herein can be employed in a bottom - up manner , 
occurring with triangulation - based sensors ( passive stereo or that is , by reversing the direction of computation so as to 
Kinect - type active stereo ) , and mixed pixels with time - of consider a large number of overlapping minimal sample sets 
flight sensors . Overall , many depth sensing technologies 40 and remove the ones clearly contaminated with outliers by 
report reliable and accurate depth values only in smooth utilizing the consistency criterion . Since the minimal sets are 
regions of the true scene geometry . Beside that , the piece - overlapping , applying the consistency criterion to a pair of 
wise smooth appearance of range images also implies that putative correspondences enables several minimal sample 
extracting a full 3D local coordinate frame is not repeatable , sets to be discarded at once . This is an elegant solution to 
but at least estimating surface normals is rather reliable . 45 generate promising sample sets for robust ( pose ) estimation 
Thus , feature extraction can be easily made invariant with in images exhibiting very few inlier correspondences . 
respect to two degrees of freedom ( i . e . the surface normal ) FIG . 6 shows exemplary results of the steps of a method 
but not reliably invariant with respect to the remaining 2D described herein . Image 601 is an input RGB image ( for 
rotation in the local tangent plane . For the same reason , illustration purposes only ) ; image 602 is an input depth 
predicting poses directly based on feature correspondences 50 image ; image 603 is a view of a trained CAD model ( an 
may lead to large uncertainties in the estimates , and there atlas ) with grayscale - coded object coordinates ; image 604 
fore the approach described herein predicts " object coordi shows the best matching object coordinates for the input to 
nates ” ( i . e . 3D vertices on the object of interest ) and com illustrate the level of false positives ; image 605 shows the 
putes more certain and accurate poses from multiple corresponding minimal feature distances , which also serve 
correspondences . 55 as unary potentials ( matching scores ) in Eq . 4 ; image 606 

Finally , objects of interest can be occluded and only be shows the smallest min - marginals Eq . 6 per pixel ; image 607 
partially visible . A sensible principle to add robustness with shows the geometric pose scores ( Eq . 11 ) after pose refine 
respect to occlusions is to employ a compositional method , ment ; and image 608 shows points of the model superim 
i . e . to detect the object and estimate its pose by detecting and posed according to the best pose estimate . 
aligning smaller parts . Due to the locally ambiguous appear - 60 In the below it is shown that the approaches described 
ance of depth images , a much higher false - positive rate may herein are capable of handling noisy sensor data while 
be expected than with colour images when matching fea - performing at several frames per second . Another challeng 
tures extracted in the query images with the ones in the ing aspect is handling objects with highly self - similar local 
training database , and it will be useful to maintain several shape appearance ( e . g . surfaces of revolution or objects with 
predictions of object coordinates per pixel to address the 65 multiple symmetries ) . 
amount of false positive matches . In summary , object detec - Before a method is described in detail , a high - level 
tion solely from depth data faces the following challenges : overview is provided : at test time the algorithm maintains a 
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set of putative matching object coordinates ( corresponding If the Euclidean distance between X , and X , deviates 
candidate locations ) for each pixel ( image element ) in the substantially from the one between X , and X , then X , and 
test image image 301 ) . Instead of sampling minimal sets of X , cannot be part of an inlier set . The exact quantification of 
correspondences required for ( rigid ) pose computation , the “ sufficiently large ” deviations depends on the depth sensor 
utility of pairs of correspondences ( pairs of candidate loca - 5 characteristics . Note that this criterion is invariant to any 
tions ) is assessed by using the consistency with the observed hypothesized pose . It can be made stronger ( more discrimi 
depth data . Triplets of correspondences ( triplets of candidate native ) by adding the compatibility of normal estimates . In 
locations ) are ranked , and finally promising ones are evalu order not to introduce extra tuning parameters of how to 

weight the distance and normal compatibility terms , meth ated using a standard geometric criterion to determine the 10 ods described herein focus on the distance based compat best - scoring object pose . 
Descriptor Computation ibility of predicted object coordinates . The loss of discrimi 

nation power by excluding normal compatibility has Given the nature of depth maps and the problem of 
detecting objects that occupy only a fraction of the image , a minimal impact on the results , since the final compatibility 

scores are based on triplets of correspondences ( triplets of dense ( or quasi - dense ) computation of descriptors may be 15 candidate locations ) as described below . Thus , a scoring used in order not to rely on unstable salient feature points . function ( compatibility score ) to assess the compatibility The descriptor to represent ( local ) geometry is based on between correspondences X , HÃ , and X , X , ( which an implicit volumetric representation of range images ( depth will play the role of pairwise potentials in the following ) is maps ) and 3D surface meshes . As one possibility , a binary 
occupancy grid is employed to compute descriptors . Other given by 
options include : a ( truncated ) signed distance function 20 
( TSDF ) , and 3D - SURF . The descriptor in the method 
described herein is a bit string of occupancies in the vicinity ( X , X , , Ý , Ý ) 
of a surface point . 

In order to obtain some degree of invariance with respect $ 42 ( Xp , Xg ; , 8g ) if | A ( Xp , Xq ; , 8g ) so 
to viewpoint changes , the z - axis of the local coordinate 25 0 otherwise 
frame at a surface point is aligned with the ( local ) surface 
normal . Given the piecewise smooth characteristic of range 
images , normals can be estimated relatively reliably for with 
most pixels ( after running a Wiener filter to reduce the 
quantization artifacts observed in triangulation - based depth 30 
sensors ) . For the same reason computation of the second A ( Xp , Xq ; ?p , 8 , ) ̂ - | | | | . - , | | - | | X , – Xall . principal direction is highly unreliable and not repeatable . 
Therefore several descriptors are computed at each surface 
point by sampling the 2D rotation in the tangential plane ( as o is the maximum noise or uncertainty level expected from 
one example , samples are taken in 20° steps resulting in 18 35 the depth sensor and matching procedure . Since the training 
descriptors per surface point ) . data is densely sampled , the value of o does not need to Instead of storing a full local occupancy grid ( centered at reflect the surface sampling density of training meshes . O a surface point ) , a subset of voxels are used ( 512 in the was set to in the below experiments . implementation described below , i . e . the descriptors are 512 Minimal Sample Set Generation bits long ) . By running feature selection on example training 
data , it was observed that only voxel positions near the 40 te 40 Rigid pose estimation requires at least three ( non - degen 
tangent plane are selected . Thus , voxel positions were ran - erate ) point - to - point correspondences . Given three such 
domly sampled in a box aligned with the tangent plane that correspondences , e . g . ApA Xp X X q X , A Ar } , a 
has half the height of the width and depth ( 8 cmx8 cmx4 cm Euclidean transformation and therefore pose estimate can be 
boxes were used ) . This means that building the descriptors computed via the Kabsch algorithm or Horn ' s method . The 
from the given depth images or training meshes is very fast . 45 task at hand is to generate a promising set of three corre 
Matching spondences from the candidate object coordinates deter 
At test time descriptors are computed for each pixel with mined for each pixel . 

valid depth and estimated surface normal in the ( sub - Randomly sampling three putative correspondences will 
sampled ) depth image , and the task is to efficiently deter - be inefficient , since the inlier ratio is very small as illustrated 
mine the set of object coordinates with similar local shape 50 in the following example : if the object of interest ( imaged 
appearance . To quantify similarity of binary strings , the object 102 ) is seen in about 5 % of the image pixels , and 10 
Hamming distance is used . An approximated nearest neigh putative correspondences are maintained per pixel ( and 
bours implementation for binary data in FLANN was used . contain a true positive for each pixel covered by the object ) , Pairwise Compatibility the inlier ratio is 0 . 5 % , and naive RANSAC sampling at a The matching step returns a list of object coordinates 55 95 % confidence level will require more than 20 million candidates ( candidate locations ) for each pixel ( image ele iterations . This value is only a coarse estimate , since it is too ment ) with attached descriptors . Even without generating a pessimistic ( e . g . by assuming a naive sampling over the full pose hypothesis it is possible to assess the quality of pairs of 
putative correspondences ( pairs of candidate locations ) by image instead of a more sophisticated sampling strategy ) 
exploiting the information contained in the range image and too optimistic ( by assuming pixels seeing the object 
( image 301 ) . If p and a are two pixels ( image elements ) in 60 have always a true positive correspondence ) at the same 
the query range image , and X , and ï are the respective time . Nevertheless , almost all random minimal sample sets 
back - projected 3D points induced by the observed depth , X , will contain at least one outlier , and the pairwise compat 
and X , are putative correspondences reported at p and q , ibility criterion described below efficiently determines 
then a necessary condition for X , X , X , HX , being promising sample sets . 
inlier correspondences is that 65 To this end min - marginals are computed via max - product 

Belief Propagation ( BP ) on a tree ( which is actually min 
| fv - fq | | - | | | , - Xall . ( 1 ) sum BP since negative logpotentials are used ) to quickly 
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discard outlier contaminated sample sets . Let { p , q , r } be a which is used to quickly determine the optimal object 
set of ( non - collinear ) pixels in the query image , let X . , se { p , coordinate predictions at pixels q and r given a prediction X , 
q , r } range over the putative object coordinates , and Øs ( X ) at pixel p . Computation of the min - marginals Upgr ( X , ) does be a unary potential ( usually based on the descriptor simi not take into account the third edge potential between pixel larity ) , then the negative log - likelihood ( energy ) of states 5 aar kelinood ( energy ) of states 5 q and r , w ( X , X , ; X , X , ) . Adding this edge to the energy ( Xy , X , X , ) according to the graphical model is Eq . 4 would require message passing over triple cliques , 

which is computationally costly . [ Message passing would be 
cubic in the number of states in such setting . ] Epgr ( Xp , Xq , Xr ) dep The min - marginals are computed densely for each pixel in 

0p ( Xp ) + $ q ( Xq ) + - ( Xx ) + 4 ( Xp , Xa ; Êp , Êq ) + 4 ( Xp , Xy ; Ñ p , Îr ) . the query image ( i . e . every pixel is the root ) , and messages 
mp + 8 , » are computed from pixel located at an offset to 
Ke { 1 , . . . , K } from p . The choice of the set { k } contains 

The Hamming distance between the descriptor extracted the 16 offsets of axis aligned and diagonal offsets at 8 and 
at pixel s and the ones returned by the ( approximate ) nearest 16 pixels distance ( which aims to trade off locality of 
neighbour search for X , is used as unary potential 0 . ( X . ) . 15 predictions and numerical stability of pose estimation ) . For 
Note that min - marginals , i . e . the quantities two edges q - > P and r - > P the predictions ( X , , X * . - > ( X ) , 

X * X , ) ) form a minimal sample set for estimating the 
rigid pose , and min - marginals are for all K ( K - 1 ) / 2 such 
triplets used to rank these minimal sample sets . The method Mpqr ( Xp ) de minxq , x , Epqr ( Xp , Xq , XY ) 20 proceeds with estimating and evaluating the pose for the top 
ranked ones ( here , 2000 are used ) as described below . 
Pose Hypotheses Evaluation for each X , can be computed via the bottom - up pass of belief Assessing the quality of a pose hypothesis by aligning the propagation on a tree rooted p . In this case only 3 corre 3D model with the range image appears to be straightfor spondences are needed to determine a pose estimate , and ward — if the poses are affected by no or minimal noise . A therefore the tree degenerates to a chain . If the minimum 25 substantial noise level can be expected in the pose hypoth sample size is larger e . g . when computing the pose of an eses , and a sensible scoring function to rank the poses needs object subject to low - parametric and ( approximately ) iso to take this into account . To this end a scoring function needs 

metric deformations a generalization of the underlying to be invariant to pose uncertainties . Since the true pose is 
graph is a star graph . effectively a latent variable , one option is to marginalize ( i . e . 

The relevant values computed during BP are the upward 30 average ) over nearby poses [ which essentially amounts to 
messages smoothing the input ] and another is to maximize over the 

latent pose . In the below , the latter option is chosen . Since 
it is not expected or assumed that many pose hypotheses will 

( 5 ) Ma - q ( Xp ) = min { & q ( Xq ) + 4 ( X ) , Xq ; Ñp , $ q } } be obtained near the true pose , no pose clustering or aver 
35 aging approaches are used . A , " classical ” geometric 

approach is used by determining an optimal alignment 
between the given 3D model points and the depth map . sent from a leaf q to the root p . Note that the min - marginals Away to assess the quality of a hypothesized pose ( or any can be expressed as latent variable in general ) is to " explain ” the data given the 

20 assumptions on the sensor noise , i . e . to formulate a respec 
tive cost function that sums ( integrates ) over the image 

Mpar ( Xp ) = min Epqr ( Xp , Xq , X , ) Xq , Xr domain . Unfortunately , this more principled formulation is 
expensive to optimize . Thus , for computational reasons , the 

= $ p ( Xp ) + Mg - p ( Xp ) + Mr - p ( Xp ) reverse direction of " explaining ” the model is used ( recall 
that up to 2000 pose hypotheses are considered at this stage ) . 
Several methods to robustly refine the pose of a point set Further , observe that the vector of messages with respect to a depth map were implemented , including 
pose refinement via ( robust ) non - linear least squares . The 
following simple alternation algorithm is efficient and effec 

ma - pet ( ma - p ( XD ) ) Xp tive : 
50 1 . Perform “ projective data association ” ( i . e . establish the 

correspondence between a model point X ; and the 
can be reused in all trees containing the ( directed ) edge back - projected depth X , with both X , and RX + T being 
q - > p , leading to substantial computational savings . For on the same line - of - sight ) , 
certain pairwise potentials y the message vector computa 2 . and update R and T using a weighted extension of the 
tion is sub - quadratic in the number of states ( i . e . putative 55 Kabsch algorithm ( also known as Wahba ' s problem ) . 
object coordinates in this setting ) , which would lead to The weights w , are derived from the smooth approxi 
further computational benefits . Unfortunately the choice of mation of the robust truncated quadratic kernel 
the pairwise potential given in Eq . 3 does not allow an 
obvious faster algorithm for message computation . Message 
computation does not only yield the value of the messages , 60 
mg - > ( X ) , but also the minimizing state 

otherwise 

?? 

45 

ilz - ) if est Pr ( e ) def ] 7 
I och 

def 1 xa - p ( Xp ) “ 2 argmin { & q ( Xq ) + 4 ( Xp , Xa ; Ñ p , Êq } Xa 65 63 wr ( e ) des pt ( e ) / e = max { 0 , 1 - ? / ? ? } , 
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and given by approximate parameters for the camera intrinsics ( since the 
calibration parameters of the range scanner are not avail 

w ; = w ( ( RX , + 7 – 8 ; ) ) ( 10 ) able ) . Consequently , the amount of occlusions in the depth 
The weights given in Eq . 10 are based on depth deviation maps may be slightly higher than in the provided meshes . 

between the transformed model point and the corresponding 5 We show as baseline methods the following approaches : 
value in the depth map . If a depth value is missing for the Spin images , Tensor matching , Drost , SVS and Tuzel . 
projected model point , that correspondence is considered an FIG . 7 shows sample frames from the ASUS Xtion 
outlier and has zero weight . is the inlier noise level and the sequences . The respective model point cloud is superim 
same value is used as for ( which is 3 mm ) . It should be noted posed on the normal - map rendered input . Correct detections 
that this algorithm does not optimize a single energy ( a 10 and poses can be seen despite large occlusions , missing 
property shared with most ICP variants using projective data depth data , and strong viewpoint changes . 

FIG . 8 shows results obtained on the Mian dataset . It can association ) . These two steps are repeated 10 times on a 
( random ) subset of 1000 model points . The final score of the be seen that the method described herein is able to handle 
pose hypothesis is evaluated on a larger subset of 10000 occlusions of up to 81 % and still give 100 % detection rates . 
model points by using a robust fitting cost , 15 It is also significant that the time required to detect a single 

object compared to the only other approaches that obtain 
similar or better detection rates , is of up to 30 times less for 

{ ( RX ; + T - X ; ) ) approaches described herein when compared with the Tuzel 
approach and up to 170 times less compared to the Drost 

20 approach . 
Experimental setup : The Mian dataset contains 50 scenes 

The pose with the lowest cost is reported and visualized with 4 models on which to perform detection . 
Implementation Notes Ground truth pose is provided for all instances of all 

Training phase : The core data used in the training stage objects . Apart from those 4 models , another model exists 
are depth images of the object ( s ) of interest ( imaged object ) 25 that was excluded in Mian ' s experiments ; hence the 
together with the respective pose data . These depth maps can approach described herein and all baselines do not include 
be generated synthetically from e . g . CAD models or cap - this object . Results are provided for two different resolutions 
tured by a depth sensor . If CAD models are rendered , the for the prediction image , 320x240 ( downsampling factor 
camera poses are generated randomly looking towards the = 2 ) , and 160x120 ( 0 = 4 ) . A smaller resolution of the 
object ' s centre of gravity . In the implementation , the real 30 predicted object coordinate image means faster computa 
depth sensor characteristics ( e . g . noise or quantization tion , but also a lower probability of finding an inlier sample 
effects ) are not simulated , which in some cases led to missed set ( and consequently returning a successful detection ) . 
correspondences in parts of the object ( e . g . the top of the Experimental results : As seen in FIG . 8 , approaches 
pipe in FIG . 6 has a substantially different appearance in described herein are able to achieve 100 % detection with up 
rendered and real depth maps ) . From these depth maps a 35 to 81 % of occlusion , with higher levels of occlusion 
target number of descriptors ( typically 32 k in these experi - approaches described herein perform similarly to the best 
ments ) are extracted by selecting a random subset of ( valid ) baselines . Learning techniques could likely be employed to 
pixels in the depth map . Random sampling is slightly biased boost the results of the approaches described herein ( in 
towards pixels in the depth map with close to fronto - parallel terms of recognition rate and possibly in run - time ) . 
surface patches . Thus , about 600 k descriptors ( 32 kx18 for 40 The results on the Mian dataset give a clear understanding 
the sampled tangent - plane rotations ) are generated and of how the approaches described herein performs , but at the 
stored . No further processing takes part at training time . same time the data is much cleaner than depth maps obtained 
Consequently , the training phase is completed within sec - by current commodity sensors . Consequently , the inventor 
onds . recorded their own data using an ASUS Xtion depth sensor 

Parallel implementation : Most steps in approaches 45 and ran a method described herein for objects with available 
described herein can be parallelized ( including descriptor CAD models ( either obtained from a 3D model database , 
extraction , matching against the database , message passing , such as the toy car and the bracket , or by approximate 
and pose evaluation ) . While no part of the algorithm was manual 3D modeling of pipe - like structures ) . When creating 
implemented on a GPU , OpenMP - based multi - processing the descriptors for the objects of interest , the depth sensor 
was used whenever possible . The input depth maps ( image 50 characteristics ( such as boundary fattening and depth quan 
301 ) are 640x480 pixels , but predicted object coordinates tization ) were not simulated . Thus , the 3D model to detect 
are computed on either 320x240 or 160x120 images ( the and the actual range images may be significantly different in 
latter one for to achieve interactive frame rates ) . On a dual their depth appearance . FIG . 7 depicts sample frames with 
Xeon E5 - 2690 system , a frame rate between 2 frames per the model point cloud superimposed on the input depth 
second ( 320x240 resolution ) or up to 10 Hz ( 160x120 ) was 55 ( rendered via its normal map ) . 
achieved . Nearest - neighbour descriptor matching is usually Computation time : Results with a CPU implementation of 
the most time consuming part . A GPU implementation is an approach described herein are presented , although a GPU 
anticipated to have real - time performance . implementation for most steps in the algorithm is straight 
Experiments forward and is expected to yield real - time performance ( 20 

Results are shown on the Mian dataset , since it is the de 60 Hz ) . The individual time contributions of the various stages 
facto baseline benchmark dataset for 3D object detection of the method described herein are as follows : 
algorithms . The inventor ' s own datasets recorded with the Descriptors ( descriptor computation ) : 9 % ; 
ASUS Xtion camera are also shown in order to demonstrate Matching ( Hamming distance based descriptor matching 
the ability of the algorithm described herein to cope with using FLANN ) : 45 % ; 
noisy inputs . Since the algorithm described above takes 65 Message passing ( for min - marginal computation ) : 24 % ; 
depth maps as input , the given meshes were converted to Ranking ( ranking / sorting according to Eq . 6 ) : 6 % ; and 
range images by rendering into 640x480 depth maps using Pose Evaluation ( including ICP ) : 16 % . 
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15 
By far the most expensive step is the feature matching making the respective selection based upon that determi 

step . The exact values vary depending on the input frame nation . 
and the object of interest , but in general feature matching 5 . The method of claim 3 , further comprising performing 
( i . e . nearest neighbour search ) consumes a dominant fraction step ( g ) for further pairs of the candidate locations so as to 
of the overall frame time . The matching time is typically 5 form further triplets of candidate locations . 
faster for object with a highly distinctive local shape appear 6 . The method of claim 5 , further comprising : 
ances than for object with redundant surface structures , since determining compatibility scores for the first and second 
in the former case the search trees tend to be more balanced . pairs of the candidate locations of each triplet ; and 

The invention claimed is : selecting a subset of the triplets based on the determined 
1 . A computer implemented method for use in estimating 10 compatibility scores . 

a pose of an imaged object , the method comprising the 7 . The method of claim 6 , wherein the step of selecting a 
following steps : subset of the triplets comprises ranking the triplets according 

a ) receiving an image made up of image elements , the to their corresponding compatibility scores and selecting a 
subset of the triplets based on the ranking . image representing , in three spatial dimensions , a scene 

including the imaged object ; 15 15 8 . The method of claim 6 , wherein the selection of a 
b ) for each of a plurality of the image elements , identi subset of the triplets based on the determined compatibility 

fying one or more corresponding candidate locations in scores is performed using graph searching . 
9 . The method of claim 6 , further comprising , for each an atlas of one or more candidate objects ; 

c ) forming a pair of image elements from the plurality of triplet in the subset of triplets , computing an initial pose 
image elements , the pair comprising a first image 20 20 estimate for the imaged object based on the respective triplet 
element and a second image element ; of candidate locations . 

10 . The method of claim 9 , further comprising , for each d ) determining a first distance between the first image 
element and the second image element ; triplet in the subset of triplets : 

e ) determining a second distance between a first candidate creating an estimated image of the imaged object based on 
location corresponding to the first image element and a 25 the initial pose estimate of that triplet ; 
second candidate location corresponding to the second comparing the estimated image with the image represent 
image element ; and ing the scene including the imaged object ; and 

f ) comparing the first and second distances . based on the comparison , determining and scoring a 
2 . The method of claim 1 , further comprising performing refined pose estimate for the triplet . 

steps ( c ) to ( f ) for one or more further pairs of image 30 30 11 . The method of claim 10 , further comprising selecting 
elements from the plurality of image elements . one of the refined pose estimates based on the scores of the 

3 . The method of claim 2 , further comprising the step of refined pose estimates . 
g ) : 12 . The method of claim 1 , wherein step ( b ) comprises , 

i ) selecting a first pair of candidate locations having first rist for each of the plurality of image elements : 
and second candidate locations corresponding to the 35 deriving a descriptor associated with the image element ; 
first and second image elements of a first of the pairs of 
image elements ; and matching that descriptor to one or more candidate loca 

ii ) selecting a second pair of candidate locations having tions in the atlas . 
13 . The method of claim 1 , wherein the image is a depth first and second candidate locations corresponding to the first and second image elements of a second of the 40 map and each image element has an intensity value that the first and second image elements of a second of the 40 mai 

pairs of image elements , represents a depth , and further wherein step ( d ) comprises 
iii ) forming a triplet of candidate locations , the triplet determining the first distance using image element intensity 

values . comprising the first pair of candidate locations and the 
second candidate location of the second pair of candi 14 . An apparatus or system arranged to perform the 
date locations . 45 method of preceding claim 1 . 

4 . The method of claim 3 , wherein at least one of step i ) 15 . A non - transitory computer - readable medium compris 
and ii ) comprises : ing machine - readable instructions arranged , upon execution 

determining a compatibility score for the respective pair by one or more processors , to cause the one or more by one or more processor 
of candidate locations based upon the comparison of processors to carry out the method of claim 1 . 
step ( f ) , and * * * * 

and 


