
THOUT MULTUMULUTTUR US009805079B2

(12) United States Patent
Joshi et al .

(10) Patent No . : US 9 , 805 , 079 B2
(45) Date of Patent : Oct . 31 , 2017

(54) EXECUTING CONSTANT TIME
RELATIONAL QUERIES AGAINST
STRUCTURED AND SEMI - STRUCTURED
DATA

(58) Field of Classification Search
None
See application file for complete search history .

(56) References Cited
U . S . PATENT DOCUMENTS

(71) Applicant : Xcalar , Inc . , San Jose , CA (US)
@ @

(72) Inventors : Vikram Joshi , San Jose , CA (US) ;
Jerene Yang , San Jose , CA (US) ; Brent
Lim Tze Hao , San Jose , CA (US) ;
Michael Brown , San Jose , CA (US)

5 , 551 , 027 A
6 , 748 , 454 B1 *

8 / 1996 Choy et al .
6 / 2004 Pohlmann G06F 9 / 542

310 / 261 . 1

(Continued)

OTHER PUBLICATIONS
(73) Assignee : Xcalar , Inc . , San Jose , CA (US)
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U . S . C . 154 (b) by 349 days .

Sumbaly et al . , “ The Big Data Ecosystem at Linkedin ” , Proceedings
of the 2013 International Conference on Management of Data ,
Sigmod , dated Jun . 22 , 2013 , 10 pages .

(Continued) (21) Appl . No . : 14 / 720 , 481

(22) Filed : May 22 , 2015 Primary Examiner — Debbie Le
(74) Attorney , Agent , or Firm — Hickman Palermo
Becker Bingham LLP (65) Prior Publication Data

US 2016 / 0055191 A1 Feb . 25 , 2016
Related U . S . Application Data

(60) Provisional application No . 62 / 040 , 547 , filed on Aug .
22 , 2014 .

(51) Int . Cl .
G06F 1730 (2006 . 01)
G06F 370484 (2013 . 01)

(52) U . S . CI .
CPC G06F 17 / 30336 (2013 . 01) ; G06F 3 / 04842

(2013 . 01) ; G06F 17 / 30321 (2013 . 01) ; G06F
17130398 (2013 . 01) ; G06F 17 / 30448

(2013 . 01) ; G06F 1730545 (2013 . 01) ; G06F
17 / 30554 (2013 . 01) ; G06F 17 / 30566

(2013 . 01) ; G06F 17 / 30622 (2013 . 01) ; G06F
17230625 (2013 . 01) ;

(Continued)

(57) ABSTRACT
Techniques are described herein for performing database
operations against location and access transparent metadata
units called fat pointers organized into globally distributed
data structures . The fat pointers are created by extracting
values corresponding to a particular key and paring each
value with a reference to the local location and server that
has the native format record containing the value . The fat
pointers may be transferred to any server in the cluster , even
if the server is different from the server that has the native
format record . In general , most operations are performed
against fat pointers rather than the native format records .
This allows the cluster to perform work against arbitrary
types of data efficiently and in a constant amount of time
despite the variable sizes and structures of records .

32 Claims , 39 Drawing Sheets

Fat Pointers for Votes from sample dataset 2004
PPT LLLLLLLL

DATABASE CLUSTER 100
SERVER 102

PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122
PROCESSOR (S) 124

CORE 230 CORE 232 CORE 234

SERVER 142
PROCESSOR (S) 144

CORE 250 CORE 252 CORE 254 | |
MEMORY 106 MEMORY 126 MEMORY 146

Local Dataset 200 - 1 Local Dataset 200 - 2 Local Dataset 200 - 3

{ Name : Jim ' s , Votes : 900
1 { Name : LaTaquer , Votes : 2020
2 { Name : Burgerplace , Votes : 33
3 { Name : San ' s , votes : 2005 , star
4 Name : Fris , votes : 2002 , sars

O Name : Pat ' s , Stars : 5 , Votes : 3
1 { Name : LePizzerie , Cat : Italian
2 Name : Burgroint , Votes : 1343
3 [Name : Soup , votes : 42 , cat : Ind

{ Name : Creamery , Votes : 234

O Name : Joe ' s , Votes : 1001 , sta
1 Name : BratHaus , Votes : 1022
2 (Name : Minnle ' s , votes : 1322 , st
3 { Name : Gungbai , votes : 1643 ,
4 { Name : Wok , votes : 123 , stars :

900 — 1001 142 , 0
— 2020 1022 142 , 1
—

33 42 1322 142 , 2 —

2005 —

102 , 0 122 , 0
102 , 1 1343 122 , 2
102 , 2 42 122 , 3 122 , 3
102 , 3 234 234 122 , 4 122 , 4
102 , 4

- - - - + FL - lti SUV
Locations 304 Values 322 Locations 324

1643 142 , 3

123 142 , 4
+ I

2002
- -

Values 302
T - - - - - - - - -

Values 342 Locations 344

US 9 , 805 , 079 B2
Page 2

(52) U . S . CI .
CPC . . GO6F 1730628 (2013 . 01) ; G06F 17 / 30631

(2013 . 01) ; G06F 17 / 30911 (2013 . 01)

(56) References Cited

U . S . PATENT DOCUMENTS
6 , 785 , 668 B1
8 , 429 , 133 B2 *

8 , 566 , 324 B1
8 , 762 , 387 B1
9 , 235 , 505 B2 *
9 , 348 , 890 B2 *

2012 / 0284255 AL
2012 / 0319876 AL
2015 / 0095345 A1 *

8 / 2004 Polo et al .
4 / 2013 Lahiri G06F 17 / 30327

707 / 665
10 / 2013 Sacco
6 / 2014 Patel et al .
1 / 2016 Khan GO6F 9 / 5016
5 / 2016 Larson GO6F 17 / 30398

11 / 2012 Schechter et al .
12 / 2012 Froemmgen
4 / 2015 Arai G06F 17 / 30321

707 / 744
2 / 2016 Joshi et al .

Garcia - Molina , Hector , “ Database Systems ” , The Complete Book ,
Second Edition , Department of Computer Science Stanford Uni
versity , dated Jun . 15 , 2008 , 84 pages .
Garcia - Molina , Hector , “ Database Systems ” , The Complete Book ,
Second Edition Chapter 20 , Parallel and Distributed Databases ,
dated Jun . 15 2008 , 52 pages .
European Patent Office , “ Search Report ” in application No . PCT /
US2015 / 046114 , dated Feb . 24 , 2016 , 30 pages .
Claims in European Application No . PCT / US2015 / 046114 , dated
Feb . 2016 , 6 pages .
Ananth Rao et al . , “ Load Balancing in Structured P2P Systems ” ,
2nd International Workshop on Peer - to - peer Systems (IPTPS ,
2003) , vol . 2735 , dated Feb . 20 , 2003 , 12 pages .
Tjan et al . , " A Data - Flow Graphical User Interface for Queryiing a
Scientific Database ” , Proceedings , IEEE Symposium on Visual
Language , dated Aug . 24 , 1993 , 6 pages .
Sumbaly et al . , “ The Big Data ” Ecosystem at LinkedIn , Sigmod ,
dated Jun . 2013 , 10 pages .
Ozsu et al . , “ Principles of Distributed Database Systems ” Third
Edition , Springer , Chapter 2 , New York , NY , dated Mar . 2 , 2011 , 32
pages .
Mitra et al . “ Relational Algebra Learning Tool ” , dated Jun . 22 ,
2009 , From the internet https : / / www . doc . ic . ac . uk / pjm / teaching / stu
dent _ projects / pm 105 _ report . pdf .
Isard et al . , “ Dryad : Distributed Data - Parallel Programs from
Sequential Building Blocks ” , Eurosys dated 2007 , vol . 23 , 14 pages .
International Searching Authority , “ Invitation to Pay Additional
Fees ” , in application No . PCT / US2015 / 046114 , dated Nov . 10 ,
2015 , 9 pages .
European Patent Office , “ Search Report ” in application No . PCT /
US2015 / 046129 , dated Oct . 29 , 2015 , 16 pages .
European Claims in application No . PCT / US2015 / 046129 , dated
Oct . 2015 , 3 pages .
Claims in application No . PCT / US2015 / 046114 , dated Nov . 2015 ,
5 pages .

2016 / 0055220 A1

OTHER PUBLICATIONS
Sumbaly et al . , “ Serving Large - Scale Batch Computed Data with
Project Voldemort ” , dated Jan . 23 , 2012 , 14 pages .
Ozsu et al . , “ Principles of Distributed Database Systems — Chapter
16 , Peer to Peer Data Management ” , In Principles of Distributed
Database Systems , Third Edition , dated Mar . 2 , 2011 , 48 pages .
Ozsu et al . , Principles of Distributed Database Systems — Chapter
14 , In Principles of Distributed Database Systems , Third Edition ,
dated Mar . 2 , 2011 , 56 pages .
Gray , Jim et al . , “ Transaction Processing : Concepts and Tech
niques — Chapter 14 , The Tuple - Oriented File System ” , concepts
and techniques , dated Jan . 1 , 1993 , 81 pages .
Giovanni , M . Sacco , “ Fast Block - Compressed Inverted Lists ” ,
Database and Expert Systems Applications , dated Sep . 3 , 2012 , 10
pages . * cited by examiner

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

US 9 , 805 , 079 B2

-

-

-

-

-

-

-

-

-

-

DISK 158

DISK 138

DISK 118

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

FLASH 152

FLASH 132

FLASH 112

-

-

-

-

-

-

-

-

-

-

-

-

SCM 150

SCM 130

SCM 110

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Sheet 1 of 39

-

-

VOLATILE MEMORY 148 MEMORY 146 PROCESSOR (S) 144
SERVER 142

VOLATILE MEMORY 128 MEMORY 126 PROCESSOR (S) 124
SERVER 122

VOLATILE MEMORY 108 MEMORY 106 PROCESSOR (S) 104 SERVER 102

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

001 NILSNTO ASVVIVU
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

wwwww

Oct . 31 , 2017

06 607

INTERNET

-

Remote Client 180

-

-

Redo

-

wwwwwwwww

- - -

.

T

-

-

- •• RC

.

-

-

-

-

-

-

-

O

•

•

•

•

•

•

•

-

-

-

-

-

-

-

-

-

-

-

-

-

-

D

-

••••

- -

-

-

- -

-

RAW DATA 176

RAW DATA 174

RAW DATA 172

-

-

-

-

-

Dataset 170
-

atent

-

Server 166

Server 164

Server 162

Fig . 1

- - - - - -

091 2 ANOS VIVO

- I

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Server 162

DATA SOURCE 160 Server 164

Server 166

RAW DATA 174

RAW DATA 176

59 | 3062513 S4 / S15516354518519521 52273524 525 / 52677328

atent

RAW DATA 172 A s2754 S5 S6 S7V

-

1

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

—

-

-

-

-

-

=

=

=

•• •• T
-

wwwwwww

Raw Dataset 170

- - -

Oct . 31 , 2017

-

INTERNET

www

FIG . 2

Sample Dataset 200

-

- - -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

. .

DATABASE CLUSTER 100 SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

. .

SERVER 122 PROCESSOR (S) 124 CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

••••••••••••

.

Sheet 2 of 39

.

-

.

-

.

-

.

-

.

MEMORY 106 VOLATILE MEMORY 108
-

-

MEMORY 146 VOLATILE MEMORY 148

MEMORY 126 VOLATILE MEMORY 128
- -

-

.

- -

-

-

-

-

-

-

-

-

-

- | -

-

.

-

+

+

-

-

.

-

. .

-

. .

Si S3 S8

S1 S12517

S23 S27 529

.

-

. .

-

-

-

-

-

-

-

—

—

-

—

—

-

-

—

—

—

—

—

—

—

—

.

•••••••

. . .

Local Dataset 200 - 1

Local Dataset 200 - 2

Local Dataset 200 - 3

. .

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

US 9 , 805 , 079 B2

-

-

-

-

Fat Pointers for Votes from sample dataset 200

FIG . 3

DATABASE CLUSTER 100 ••••••••••••••
. . .

.

. .

. . .

. .

.

. .

. . .

. .

.

. . .

. .

. . .

. .

.

. . .

.

. .

. .

. .

. .

. .

. . .

. .

.

••••••••••••••••••••••••••••••
atent

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122 PROCESSOR (S) 124 CORE 230 CORE 232 CORE 234 |

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

MEMORY 106

MEMORY 126

MEMORY 146

••••••••••••••

Oct . 31 , 2017

Local Dataset 200 - 1

Local Dataset 200 - 2

000000000000000

Local Dataset 200 - 3

O { Name : Jim ' s , Votes : 900 | 1 | { Name : LaTaquer , Votes : 2020
2 { Name : Burgerplace , Votes : 33 3 { Name : San ' s , votes : 2005 , star

| 4 { Name : Fris , votes : 2002 , sars

1 0 { Name : Pat ' s , Stars : 5 , Votes : 3

| 1 | { Name : LePizzeria , Cat : Italian 2 | { Name : Burgrjoint , Votes : 1343
3 | { Name : Soup , votes : 42 , cat : Ind
4 | { Name : Creamery , Votes : 234

lo I { Name : Joe ' s , Votes : 1001 , sta 1 | { Name : BratHaus , Votes : 1022
2 | { Name : Minnie ' s , votes : 1322 , st 3 { Name : Gungbai , votes : 1643 , 4 { Name : Wok , votes : 123 , stars :

Sheet 3 of 39

—

—

—

—

—

—

—

—

—

—

-

—

—

—

—

—

—

—

—

-

.

900

102 , 0

. .

1001

142 , 0

-

— —

-

. . .

2020

102 , 1

3 1343 1343 42 42

1022

142 , 1

.

—

122 , 0 122 , 2 122 , 2 122 , 3 122 , 3 122 , 4 122 , 4

-

. . .

33

102 , 2

1322

142 , 2

—

. .

102 , 3

—

234

1643

142 , 3

. .

2005 2002
—

. .

102 , 4

123

142 , 4

. .

—

-

-

t

-

-

-

G

1

-

-

-

-

—

—

—

+

—

-

—

—

—

—

—

Values 302

Locations 304

Values 322

Locations 324

Values 342

Locations 344

US 9 , 805 , 079 B2

. .

.

.

. . .

.

.

.

.

.

. .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

-

-

-

FIG . 4

DATABASE CLUSTER 100
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- I - -

atent

- - - - - - -

SERVER 102 PROCESSOR (S) 104 CORE 210 CORE 212 CORE 214 |

SERVER 122 PROCESSOR (S) 124 CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144
CORE 250 CORE 252 CORE 254

- - - - - - - -

MEMORY 106

MEMORY 126

MEMORY 146

- - -

Oct . 31 , 2017

- - -

Local Dataset 200 - 1

Local Dataset 200 - 2

Local Dataset 200 - 3

- - - - - -

LOCAL DHT 400 - 1
(0 - 999)

LOCAL DHT 400 - 2
(1000 - 1999)

LOCAL DHT 400 - 3
(2000 - 2999)

- - - -

H1

- - -

33

102 , 2

-

1343 | 122 , 2 |

H2

-

H1 H2 H3

H1 H

H2 H3

H3

• •

Sheet 4 of 39

•

900

102 , 0

• • •

BUFFER 444 (to Server 102)
123 142 , 4

BUFFER 404 (to Server 122)

•

BUFFER 424 (to Server 102)

• • • • •

BUFFER 406 (to Server 142)

.

3

13122 , 0

BUFFER 446 (to Server 122)

.

•

L

122 , 0 122 , 3 122 , 4

•

42 234

.

• •

:

•

2020 2005 2002

102 , 1 102 , 3 102 , 4

1001 1022 1322

•

142 , 0 142 , 1 142 , 2

• • •

BUFFER 426 (to Server 142)

•

1643

142 , 3

• • •

US 9 , 805 , 079 B2

- • •

•••••••••••••••••••••••••••••••
0

0

0

0

0

0

FIG . 5A

atent

Local DHT 400 - 1
(0 - 999)

H1

LH1
H2

33

102 , 2 122 , 0 122 , 3

Oct . 31 , 2017

H3

42

L

Sheet 5 of 39 e me mom www . com

900

102 , 0

US 9 , 805 , 079 B2

U . S . Patent

FIG . 5B

atent

Local DHT 400 - 1
(0 - 999)

Oct . 31 , 2017

H1

Oct 31 , 2017

33 3 42

102 , 2 122 , 0 122 , 3

234 123

H2

BE
122 , 4 142 , 4

??

Sheet 6 of 39

900

102 , 0

US 9 , 805 , 079 B2

FIG . 5C

U . S . Patent atent

Local DHT 400 - 1
(0 - 999)

33

server , record

H1 H2 H3

102 , 2 122 , 0 122 , 3

234 123 X5

122 , 4 142 , 4 server , record

x _ n - 2 x _ n - 1

Oct . 31 , 2017

server , record

42

L

X _ n

server , record

yo

y3

server , record

y n - 2

server , record

server , record server , record

Sheet 7 of 39

y1

server , record

y4 y5 BEBEE REBBE LESB2 , B3
y _ n - 1 yn

server , record server , record

y2

server , record

server , record

900

102 , 0

23

server , record

server , record

server , record

21 22

24 25

server , record server , record

Z _ n - 2 z _ n - 1 z _ n

server , record server , record

server , record

US 9 , 805 , 079 B2

FIG . 6A

U . S . Patent atent Oct . 31 , 2017

y = 1

x12

24 x36

-

-

-

-

-

-

-

-

-

-

-

-

+

-

-

– -

– -

– -

– -

–

–

–

–

–

–

–

–

–

—

—

—

Sheet 8 of 39

y = 0

123 x6x9

x15 | x18 | x21

X27 X30 X33

- a bele bomba

x39x42 x45

n manga - 2009
no

n7

US 9 , 805 , 079 B2

FIG . 6B

x

atent

X48

T = y = 2

Oct . 31 , 2017

y = 1

x60 X72 484

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

-

-

-

-

Sheet 9 of 39

y = 0

x51 x54x57

x63x66 x69

X75X78X81
x87 | x90 | x93

US 9 , 805 , 079 B2

FIG . 6C

LOCAL DHT 400 - 1
(0 - 999)

atent

H1 H2
- 17

y = 2

H3

"

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Oct . 31 , 2017

y = 1

x12x24 | x36

x60 x72 x84

-

+

-

+

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Sheet 10 of 39

y = 0

?
x3 | x6 | x9

x15x18x21
x27 | x30 | x33

X39 | x42x45

x51 x54 x57

x63 x66 | x69

x75 | x78 | x81

(???

???????????
x87 | x90x93

?????? | 27 28 29 Islat 7 sale 5 ???) 21 0) 2)

? ? ???????? ??? ?????????????????????????? n0 | nl | | n2 | | 13 | 14 | 15 | | n6 | 17 | 18 | n9 110 111 112 | n13 n14] n15 n16 | nl7 | n18 n19 | n20) n21 122 123 124 125 126 n27 n28) n29 130 131

US 9 , 805 , 079 B2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

I

U . S . Patent

700 700

-

—

LOCAL DHT 400 - 1
(0 - 999)

-

FIG . 7A

—

-

— —

H1 (0 - 383)
H2 (384 - 511) H3 (512 - 999)

—

418 421 505

122 , 7 102 , 9 122 , 9

—

—

-

—

-

-

-

-

-

-

-

-

-

—
—

—

-

-

—
-

—
-

-

—

—

-

—

—

—

—

1

—

—

702

—

, -

-

Oct . 31 , 2017

-

-

-

H2 (384 - 511)

-

-

110 | 1 | 0 | 0 | 0 | 1 | 0 | |

122 , 7

100 010 1 0 0 1 0 1

-

-

0

-
7

102 , 9

-

- -

D

alalalalalala

-

Sheet 11 of 39

-

Higher Bits 708 - - - - - - - 712

| Higher Bits 704
- - - - -

–

Lower Bits 706
- - - - - - - - -

Lower Bits 710 - - - - - - -

-

= = = = =

=

– –

—

–

—

H2 (384 - 511) H2 (384 - 511)

O

122 , 7

–

—

0 0

1 1

0 0

—

–

0 0
| 1

0 1 0

1 0 0

bililotolitoli
102 , 9

–

—

1

122 , 9

—

–

111111111111
—

-

—

-

Skinny Pointer Values 714

-

US 9 , 805 , 079 B2

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

FIG . 7B

atent

LOCAL DHT 400 - 1
(0 - 999)

H1 (0 - 383)
H2 (384 - 511) H3 (512 - 999)

33 b { 000 100 001 } | 3 b { 000 000 011 } 42 b { 000 101 010 }

102 , 2 122 , 0 122 , 3

E
234 b { 011 101 010 } 123 b { 001 111 011 } | 32 b { 000 100 000 }

. 122 , 4 142 , 4 102 , 8

Oct . 31 , 2017

418 b { 0 100 010 } 421 b { 0 100 1013 505 b { 1 111 001 }

122 , 7 102 , 9 122 , 9

434 b { 0 110 010 } 457 b { 1 001 001 } 393 b { 0 001 001 }

102 , 9 122 , 12 142 , 8

900 b { 110 000 100 } | 622 b { 001 111 001 } | 974 b { 111 001 110 } |

102 , 0 122 , 6 102 , 5

822 b { 100 110 110 } 723 b { 011 010 011 } | 982 b { 111 101 110 } |

102 , 7 122 , 13 142 , 11

Sheet 12 of 39

516 b { 000 000 100 } | 783 b { 100 001 111 } | 858 b { 101 011 010 }

142 , 14 122 , 16 142 , 15

555 b { 000 101 011 } 633 b { 001 111 001 } 754 b { 011 110 010 })

102 , 19 102 , 12 142 , 18

US 9 , 805 , 079 B2

U . S . Patent

FIG . 7C

atent

LOCAL DHT 400 - 1
(0 - 999)

H1 (0 - 383)
H2 (384 - 511) H3 (512 - 999)

33 b { 000 100 001 } | 3 b { 000 000 011 } 42 b { 000 101 010 }

102 , 2 122 , 0 122 , 3

234 b { 011 101 010 } 123 b { 001 111 011 } 32 b { 000 100 000 }

122 , 4 142 , 4 102 , 8

Oct . 31 , 2017

418 b { 0 100 010 } | 421 b { 0 100 101 } 505 b { 1 111001 }

122 , 7 102 , 9 122 , 9

434 b { 0 110 010 } 457 b { 1 001 001 } 393 b { 0 001 001 }

102 , 9 122 , 12 142 , 8

33EE 633 b { 001 111 001 } 783 b { 100 001 111 }

900 b { 110 000 100 }

Sheet 13 of 39

no

n1

n2

n3

516 b { 0 000 100 555 b { 0 101 011 } | 622 b { 1 101 110 }

142 , 14 102 , 19 122 , 6

633 b { 00 000 000 } 723 b { 01 011 010 } | 754 b { 01 111 001 }]

102 , 12 122 , 13 142 , 18

783 b { 0 000 000 } 822 b { 0 100 111 } | 858 b { 1 001 011 }

122 , 16 102 , 7 142 , 15

900 b { 0 000 000 } 102 , 0 974 b { 1 001 010102 , 5 982 b { 1 010 010 } 142 , 11

.

US 9 , 805 , 079 B2

FIG . SA

atent

Keys I 2048 - 4095 |

ke Keys 1024 - 2047

| Keys 0 - 1023

z ieroben

Oct . 31 , 2017 Sheet 14 of 39

E

JU 112
96

80

64

481
32

16

SERVER 102

SERVER 122

SERVER 142

500 fat pointers

1700 fat pointers

2000 fat pointers

US 9 , 805 , 079 B2

FIG . 8B

atent

Keys Keys 1401 - 40951 756 - 1400

| Keys 0 - 750

Oct . 31 , 2017

-

+

-

-

-

-

-

-

-

-

Sheet 15 of 39

-

- -

AHHHHH SERVER 102

SERVER 122 SERVER 142

1400 fat pointers

1400 fat pointers

1400 fat pointers

US 9 , 805 , 079 B2

Fat Pointers for Votes from sample dataset 900

D

•

•••••••••
•••
.

.

.

.

.

.

.

.

.

.

.

.

atent

.

•••••••••••••••

. . . .

FIG . 9A

DATABASE CLUSTER 100 SERVER 102 PROCESSOR (S) 104 CORE 210 CORE 212 CORE 214 | |

:

.

SERVER 122 PROCESSOR (S) 124

| | CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

.

uuuuuuDDD • • • • • •

. . . .

MEMORY 106 Local Dataset 900 - 1

.

MEMORY 126 Local Dataset 900 - 2

Oct . 31 , 2017

MEMORY 146 Local Dataset 900 - 3

.

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

E

.

Votes . Useful Index 902 (0 - 999)

-

. . .

Votes . Useful Index 904 (1000 - 1999) Votes . Funny Index 914 (1000 - 1999)

-

Votes . Useful Index 906 (2000 - 2999) Votes . Funny Index 916 (2000 - 2999)

. .

Sheet 16 of 39

-

.

Votes . Funny Index 912 (0 - 999)

. .

- -

DDD • •

. .

—

. . .

-

• •

. . .

. .

.

. .

.

. . DDDD

. .

US 9 , 805 , 079 B2

Fat Pointers for Votes from sample dataset 900

-

-

-

-

-

-

-

-

-

-

-

•

-

-

•

•

•

•

•

•

•

•

•

•

FIG . 9B

DATABASE CLUSTER 100
•

•

•

•

•

•

•

•

•

•

•

•

•

-

-

-

-

-

-

-

-

•

-

-

-

-

-

-

-

-

-

-

-

-

-

•

-

-

-

-

-

-

-

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

atent

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214 MEMORY 106 Local Dataset 900 - 1

SERVER 122 PROCESSOR (S) 124 CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144
CORE 250 CORE 252 CORE 254

MEMORY 126

MEMORY 146

Oct . 31 , 2017

Local Dataset 900 - 2

Local Dataset 900 - 3

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

+

–

–

–

–

–

–

| –

s

–

Votes . Useful Index 906 (1500 - 2999)

—

••

–

Votes . Useful Index 902

Votes . Useful Index 904

(0 - 750)

(751 - 1500)

Votes . Funny Index 912

Votes . Funny Index 914

(0 - 750)

(751 - 1500)

- - - - - - - - - - - - IFF - - - - - - - - - - - -

–

Votes . Funny Index 916 (1500 - 2999)
- - - - - - - - - - -

Sheet 17 of 39

– – –

-

••
US 9 , 805 , 079 B2

atent Oct . 31 , 2017 Sheet 18 of 39 US 9 , 805 , 079 B2

FIG . 10A

Sample Dataset for Album Sales 1010
{ " alpha " : { " album " : " alpha " , " artist " : " ayy " , " similar " :

[" gamma " , " theta "] , " reviews " : { " cool " : 20 , " funny " :

400 , " useful " : 49 } , " genre " : " rock " , " sales " : " $ $ $ " ,
" date " : " 2014 - 12 - 11 " } , " beta " : { " album " : " beta " , " artist " :
" bee " , " similar " : [" delta " , " iota "] , " reviews " : { " cool " :
349 , " funny " : 1000 , " useful " : 129 } , " genre " :
| " Blues " , " sales " : " $ " , " date " : " 2013 - 1 - 15 " } , " gamma " : { ! ! !

" album " : " gamma " , " artist " : " gee " , " similar " : [" alpha " , " theta "] , II . TI

" genre " : " Rock " , " sales " : " $ " , " date " : " 2014 - 9 - 30 " } ,

" delta " : { " album " : " delta " , " artist " : " dee " , " similar " :
[" iota " , " eta "] , " reviews " : { " cool " : 249 , " useful " : 457

} , " genre " : " Blues " , " sales " : " $ $ " , " date " : " 2012 - 5 - 12 " } } . . .

Sample Dataset for
Weather Reports 1020

{ " 2014 - 12 - 11 " : { " temperature " : " 58 " ,
" weather " : " sunny " } , " 2013 - 1 - 15 " : {
" temperature " : " 78 " , " weather " : " sunny " } ,
" 2014 - 9 - 30 " : { " temperature " : " 72 " ,
" weather " : " rainy " } , " 2012 - 5 - 12 " : {
" temperature " : " 68 " , " weather " : " rainy " } } . . .

Sample Dataset for Album Sales 1010 —

U . S . Patent

FIG . 10B

DATABASE CLUSTER 100

atent

D

• - - ••• •• • - ••• •

.

.

.

.

.

.

.

.

-

•

•

•

•

•

-

•

•

•

•

•

.

.

.

.

.

. . . .

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122 PROCESSOR (S) 124
CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

- ••••••••••••••••••••

_

MEMORY 126

MEMORY 146

Oct . 31 , 2017

MEMORY 106 Fields Dictionary 1002
NAME

1010 - 1

DATE 1010 - 1 GENRE 1010 - 1 SALES 1012 - 1

Fields Dictionary 1004
NAME 1010 - 2

DATE

1010 - 2
GENRE 1010 - 2 SALES 1012 - 2

Fields Dictionary 1006
NAME 1010 - 3 DATE | 1010 - 3 GENRE | 1010 - 3 SALES 1012 - 3

- - -

. . .

-

-

—

—

—

—

—

—

—

—

—

—

E

IE

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Sheet 19 of 39

- - -

—

- -

—

Local Dataset 1010 - 1 SALES Index 1012 - 1

Local Dataset 1010 - 2 SALES Index 1012 - 2

Local Dataset 1010 - 3 SALES Index 1012 - 3

- -

—

- - -

—
—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

J

- -

.

-

.

- -

.

-

.

- -

.

-

.

- -

.

-

.

-

.

-

.

-

.

-

.

- - - -

US 9 , 805 , 079 B2

- -

• • - •• • • •

• • • • • - ••• • i••••• • • • • •••• •

••••• ••••• ••••• - •• - . • • •• • •• •

• •• ••• ••••• ••••• • . • . • . • . . • - • • • • •

Sample Dataset for Album Sales 1010

••••••••••••• FIG . 10C
DATABASE CLUSTER 100

.

.

.

- - -

atent

- - - - - -

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122 PROCESSOR (S) 124
CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

- - - - - - - - - - - -

MEMORY 106 VOLATILE MEMORY 108 Fields Dictionary 1002

Oct . 31 , 2017

- - - - - - -

1010 - 1

-

MEMORY 126 VOLATILE MEMORY 128 Fields Dictionary 1004
NAME

1010 - 2

Albums . DATE 1014 - 2
GENRE 1010 - 2 SALES 1012 - 2

Weather . DATE 1022 - 2
WEATHER | 1020 - 2

MEMORY 146 VOLATILE MEMORY 148 Fields Dictionary 1006
NAME

1010 - 3

Albums . DATE 1014 - 3
GENRE 1010 - 3 SALES 1012 - 3

Weather . DATE 1022 - 3
WEATHER 1020 - 3

- - - -

NAME Albums . DATE GENRE SALES Weather . DATEL WEATHER
- - -

1014 - 1 1010 - 1 1012 - 1 1022 - 1 1020 - 1

••

- - - - - - - -

Sheet 20 of 39

-

. . . .

- -

-

—

—

—

—

—

—

—

—

-

-

—

—

—

—

-

- - -

-

- -

Local Dataset 1010 - 1 SALES Index 1012 - 1 Albums . DATE Index 1014 - 1

Local Dataset 1010 - 2 SALES Index 1012 - 2 Albums . DATE Index 1014 - 2

Local Dataset 1010 - 3 SALES Index 1012 - 3 Albums . DATE Index 1014 - 3

-

-

- - - - -

1

1

- - - - - -

Local Dataset 1020 - 1 Weather . DATE Index 1022 - 1 TEMP Index 1024 - 1

Local Dataset 1020 - 2 Weather . DATE Index 1022 - 2 TEMP Index 1024 - 2

Local Dataset 1020 - 3 Weather . DATE Index 1022 - 3 TEMP Index 1024 - 3

- - - - - - - -
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Sample Dataset for Weather Reports 1020

US 9 , 805 , 079 B2

Sample Dataset for Album Sales 1010 –

atent

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

FIG . 11A

ATABASE CLUSTER 100
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- -

-

-

-

- - - - - - -

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122 PROCESSOR (S) 124
CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

-

- - -

-

-

-

- - - -

-

-

-

-

MEMORY 106 TAG Dictionary 1002

MEMORY 126 TAG Dictionary 1004

MEMORY 146 TAG Dictionary 1006

Oct . 31 , 2017

-

-

-

-

- - -

—

—

—

—

-

-

-

-

- -

-

-

-

-

-

Local Dataset 1010 - 2 SALES Index 1012 - 2 Albums . DATE Index 1014 - 2

Local Dataset 1010 - 1 SALES Index 1012 - 1 Albums . DATE Index 1014 - 1
- - - - - -

– – HIGI

Local Dataset 1010 - 3 SALES Index 1012 - 3 Albums . DATE Index 1014 - 3

-

- -

-

-

-

- -

—

—

-

—

—

—

—

—

—

—

—

-

- - - - - - - - -

-

—

Local Dataset 1020 - 1 Weather . DATE Index 1022 - 1 TEMP Index 1024 - 1

-

Local Dataset 1020 - 2 Weather . DATE Index 1022 - 2 TEMP Index 1024 - 2

Sheet 21 of 39

Local Dataset 1020 - 3 Weather . DATE Index 1022 - 3 TEMP Index 1024 - 3

—

-

—

-

—
-

-

-

-

-

-

-

-

-

-

-

- It It

–

–

–

–

–

–

–

–

–

–

–

–

H

+

–

–

–

–

–

–

–

–

–

–

–

–

- - -

Join DATES Results 1102 - 1

Join DATES Results 1102 - 2

Join DATES Results 1102 - 3

-

-

- - - -

- •• - •• - • • • • • •

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

Sample Dataset for Weather Reports 1020 —

US 9 , 805 , 079 B2

Sample Dataset for Album Sales 1010

•

•

-

•

-

•

I

•

•

•

FIG . 11B

DATABASE CLUSTER 100
•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-

•

-

•

•

i

•

•

i

-

i

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

-

•

•

•

•

i

•

I

•

i

•

•

•

•

•

•

•

•

•

•

atent

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122 PROCESSOR (S) 124
CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144
CORE 250 CORE 252 CORE 254

-

MEMORY 106 TAG Dictionary 1002

MEMORY 126 TAG Dictionary 1004

MEMORY 146 TAG Dictionary 1006

.

Oct . 31 , 2017

. . .

—

-

-

.

Local Dataset 1010 - 1 SALES Index 1012 - 1 Albums . DATE Index 1014 - 1

Local Dataset 1010 - 2 SALES Index 1012 - 2 Albums . DATE Index 1014 - 2

Local Dataset 1010 - 3 SALES Index 1012 - 3 Albums . DATE Index 1014 - 3

L

. .

- - - -

.

-

- - - - - - - - - - - - - -

- _ - _ - _ - _

- - - - - - - - - - - - - - - - - -

.

- -

.

-

Local Dataset 1020 - 1 Weather . DATE Index 1022 - 1 TEMP Index 1024 - 1

Local Dataset 1020 - 2 Weather . DATE Index 1022 - 2 TEMP Index 1024 - 2

Local Dataset 1020 - 3 Weather . DATE Index 1022 - 3 TEMP Index 1024 - 3

Sheet 22 of 39

- - - - -

—

—

—

—

—

.

-

-

-

-

- 1

t

–

–

–

–

–

- -

–

-

–

-

-

-

-

H

+

–

–

–

–

–

–

–

–

–

–

–

- - - - -

.

Join DATES Results 1102 - 1 SALES Result Index 1104 - 1 TEMP Result Index 1106 - 1

Join DATES Results 1102 - 2 SALES Result Index 1104 - 2 TEMP Result Index 1106 - 2

Join DATES Results 1102 - 3 SALES Result Index 1104 - 3 TEMP Result Index 1106 - 3

. . . .

•

i

•

•

•

•

•

.

.

.

.

.

.

.

. .

.

. .

. . .

Sample Dataset for Weather Reports 1020

US 9 , 805 , 079 B2

Sample Dataset for Album Sales 1010

O DI

FIG . 11C

DATABASE CLUSTER 100
. . .

.

atent

.

.

.

.

.

.

. . .

SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

SERVER 122 PROCESSOR (S) 124 CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144
CORE 250 CORE 252 CORE 254

. . .

•••••••••••

. . .

MEMORY 106

. .

MEMORY 126 Field Dictionary 1004

MEMORY 146 Field Dictionary 1006

. .

Oct . 31 , 2017

Field Dictionary 1002

. .

-

- It

I

—

-

-

-

••••••••••

+

. . . .

–

. .

Local Dataset 1010 - 1 SALES Index 1012 - 1 Albums . DATE Index 1014 - 1

Local Dataset 1010 - 2 SALES Index 1012 - 2 Albums . DATE Index 1014 - 2

Local Dataset 1010 - 3 SALES Index 1012 - 3 Albums . DATE Index 1014 - 3

.

–

. .

–

.

.

.

.

.

.

.

-

- -

- -

- -

- -

- -

- - - - - - - - -

- - -

-

.

.

.

- - - - - - - - - - - - - - -

Local Dataset 1020 - 3

.

.

-
Local Dataset 1020 - 1 Weather . DATE Index 1022 - 1

.

Sheet 23 of 39

.

Local Dataset 1020 - 2 Weather . DATE Index 1022 - 2

.

. .

Weather . DATE Index 1022 - 3

. . .

EH

. . . .

Join DATES Results 1102 - 1 SALES Result Index 1104 - 1

Join DATES Results 1102 - 2 SALES Result Index 1104 - 2

Join DATES Results 1102 - 3 SALES Result Index 1104 - 3

. . .

••••••••••• • •

. . . .

DISK 118

DISK 138

DISK 158

.

Serialized TEMP Index 1024 - 1 Serialized TEMP Result Index 1106 - 1

Serialized TEMP Index 1024 - 2 Serialized TEMP Result Index 1106 - 2

Serialized TEMP Index 1024 - 3 Serialized TEMP Result Index 1106 - 3

. . .

US 9 , 805 , 079 B2

. .

••••••••••• •••••••••••••
-

-

-

-

-

-

-

-

-

-

-

-

-

•••••••••••

Sample Dataset for Weather Reports 1020

Sample Dataset for Album Sales 1010 –

- ••••••••••••• ••• FIG . 11D

DATABASE CLUSTER 100 SERVER 102 PROCESSOR (S) 104
CORE 210 CORE 212 CORE 214

atent

SERVER 122 PROCESSOR (S) 124
CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144
CORE 250 CORE 252 CORE 254

: UUU

MEMORY 106 Field Dictionary 1002

MEMORY 126 Field Dictionary 1004

MEMORY 146 Field Dictionary 1006

Oct . 31 , 2017

-

-

E

t

–

–

-

-

.

-

-

-

—

—

—

—

—

-

-

—

—

—

—

Local Dataset 1010 - 1

Local Dataset 1010 - 2

Local Dataset 1010 - 3

—

-

+

H

-

UUUUU

Local Dataset 1020 - 1

Local Dataset 1020 - 2

Local Dataset 1020 - 3

—

—

—

—

+

—

—

—

—

—

—

—

SALES Result Index 1104 - 1

SALES Result Index 1104 - 2

SALES Result Index 1104 - 3

Sheet 24 of 39

UUDU ULUUUUUUU UUUUUU

DISK 118

DISK 138

DISK 158

Serial SALES Result Index 1104 - 1

Serial SALES Result Index 1104 - 2

Serial SALES Result Index 1104 - 3

.

.

. .

.

.

.

.

.

.

. .

. .

.

.

.

. .

.

.

.

.

. .

. .

.

.

.

.

.

. .

.

. .

.

.

.

. .

.

.

.

.

.

. .

. .

.

.

.

.

.

.

.

. .

.

. .

.

.

.

.

.

.

. . .

.

.

.

.

.

.

. .

. .

.

. . .

.

. .

. .

US 9 , 805 , 079 B2

Sample Dataset for Weather Reports 1020

Sample Dataset for Album Sales 1010 –

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

FIG . 11E

DATABASE CLUSTER 100
-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

atent

SERVER 102 PROCESSOR (S) 104 CORE 210 CORE 212 CORE 214 | |

SERVER 122 PROCESSOR (S) 124 CORE 230 CORE 232 CORE 234

SERVER 142 PROCESSOR (S) 144 CORE 250 CORE 252 CORE 254

•••••••••••••••••

MEMORY 106 Field Dictionary 1002

MEMORY 126 Field Dictionary 1004

MEMORY 146 Field Dictionary 1006

Oct . 31 , 2017

-

-

-

-

.

H

-

-

-

—

—

—

—

—

-

—

—

—

Local Dataset 1010 - 1

Local Dataset 1010 - 2

Local Dataset 1010 - 3

Local Dataset 1020 - 1

Local Dataset 1020 - 2

Local Dataset 1020 - 3

••

L

-

-

-

-

—

—

—

—

—

+

-

-

-

-

-

-

-

-

-

-

-

-

-

—

—

—

—

—

—

-

—

—

—

—

SALES Result Index 1104 - 2

SALES Result Index 1104 - 3

SALES Result Index 1104 - 1 WEATHER Result Index 1108 - 1

Sheet 25 of 39

WEATHER Result Index 1108 - 2

WEATHER Result Index 1108 - 3

DISK 118

DISK 138

DISK 158

Serial SALES Result Index 1104 - 1

Serial SALES Result Index 1104 - 2

Serial SALES Result Index 1104 - 3

US 9 , 805 , 079 B2

••
•••••••••••••••••••••••• Sample Dataset for Weather Reports 1020

atent

CLI 1202

GUI 1204

REST 1206

10

Oct . 31 , 2017

API 1208

the entry Other servers in cluster 1214

U

RODB 1210

Sheet 26 of 39

MICROKERNEL 1212 Database Server 1200 FIG . 12

US 9 , 805 , 079 B2

atent Oct . 31 , 2017 Sheet 27 of 39 US 9 , 805 , 079 B2

Dependency Graph 1300

653 35 3 1010
Albums
Sample
Dataset

1012
SALES
Index

1014
Albums .
DATE
Index

1022
Weather .
DATE
Index

1024
TEMP
Index

1020
Weather
Sample
Dataset

FASJ 1302
(JOIN by DATES)

Resulting Data Containers
.

FASJ 1306
(SORT by DATES)

Resulting Data Containers
Schema 1314

+ Album . DATE Key
+ Weather . DATE Key

FIG . 13A

atent Oct . 31 , 2017 Sheet 28 of 39 | US 9 , 805 , 079 B2

Dependency Graph 1300

1010
Albums
Sample
Dataset

1012 .
SALES
Index

1014
Albums .
DATE
Index

1022 .
Weather .
DATE
Index

1024
TEMP
Index

1020
Weather
Sample
Dataset

FASJ 1302 .
JOIN by DATES

Resulting Data Containers

FASJ 1306
SORT by DATES

Resulting Data Containers FASI 1308
SORT by SALES

Resulting Data Containers
Schema 1314

+ Album . DATE Key
+ Weather . DATE Key

Schema 1316
+ SALES Key

FIG . 13B

atent Oct . 31 , 2017 Sheet 29 of 39 US 9 , 805 , 079 B2

Dependency Graph 1300

1012 1020 E SEBE 1010
Albums
Sample
Dataset

SALES
Index

1014
| Albums .
DATE
Index

1022
Weather .
DATE

1024
TEMP
Index

Weather
Sample
Dataset Index

W

FASJ 1302
(JOIN by DATES)

Resulting Data Containers

FASJ 1306
(SORT by DATES)

Resulting Data Containers FASI 1308
SORT by SALES

(Resulting Data Containers)
Schema 1314

+ Album . DATE Key
+ Weather . DATE Key

Schema 1316
+ SALES

FASJ 1310
(FILTER by WEATHER (" rainy "))

Resulting Data Containers
FASJ 1312

(FILTER by WEATHER (" sunny "))
Resulting Data Containers

Schema 1318 - 1
+ WEATHER

Schema 1318 - 2
+ WEATHER

FIG . 13C

atent Oct . 31 , 2017 Sheet 30 of 39 US 9 , 805 , 079 B2

Dependency Graph 1300

05083 1010
Albums
Sample
Dataset

1012 1014
SALES | | Albums .
Index DATE

Index

1022
Weather .
DATE
Index

1024
TEMP
Index

1020
Weather
Sample
Dataset

FASJ 1302
(JOIN by DATES)

Resulting Data Containers

FASJ 1308
(SORT by SALES)

Resulting Data Containers

FASJ 1306
(SORT by DATES)

Resulting Data Containers

Schema 1314
+ Album . DATE Key

+ Weather . DATE Key Schema 1316
+ SALES

FASJ 1310
(FILTER by WEATHER (" rainy "))

Resulting Data Containers

FASJ 1312
FILTER by WEATHER (" sunny ")

Resulting Data Containers

FASJ 1324
FILTER by GENRE (" blues ")
Resulting Data Containers

FASJ 1326
FILTER by GENRE (" rock ")
Resulting Data Containers Schema 1318 - 1

+ WEATHER

FASJ 1320
FILTER by GENRE (" blues ")
Resulting Data Containers

FASJ 1322
FILTER by GENRE (" rock ")
Resulting Data Containers

Schema 1318 - 2
+ WEATHER

Schema 1328 - 1
+ GENRE

Schema 1328 - 2
+ GENRE

Schema 1328 - 3 V Schema 1328 - 4
+ GENRE + GENRE FIG . 13D

atent Oct . 31 , 2017 Sheet 31 of 39 US 9 , 805 , 079 B2

Dependency Graph 1300

1010
Albums
Sample
Dataset $ 35 36 3 1012 1014

SALES | | Albums .
Index DATE

Index

1022
Weather .
DATE
Index

1024
TEMP
Index

1020
Weather
Sample
Dataset

FASJ 1302
(JOIN by DATES)

Resulting Data Containers

FASJ 1304
(SOR NAX TEMP)
Resulting Data
Containers

FASI 1308
(SORT by SALES)

Resulting Data Containers

FASJ 1306
(SORT by DATES)

Resulting Data Containers

Schema 1314
+ Album . DATE Key
+ Weather . DATE Key Schema 1316

+ SALES

FASJ 1310
(FILTER by WEATHER (" rainy "))

Resulting Data Containers

FASJ 1312
(FILTER by WEATHER (" sunny "))

Resulting Data Containers

TI FASJ 1324
(FILTER by GENRE (" blues "))
Resulting Data Containers

FASJ 1326
(FILTER by GENRE (" rock "))
Resulting Data Containers Schema 1318 - 1

+ WEATHER

FASJ 1320
(FILTER by GENRE (" blues "))
Resulting Data Containers

FASJ 1322
(FILTER by GENRE (" rock "))
Resulting Data Containers

Schema 1318 - 2
+ WEATHER

.

Schema 1328 - 1
GENRE

Schema 1328 - 2
+ GENRE

Schema 1328 - 3
+ GENRE

Schema 1328 - 4
+ GENRE FIG . 13E

arom was won . co atent Oct . 31 , 2017 Sheet 32 of 39 US 9 , 805 , 079 B2

FIG . 14 Semantic Network

0 . 5

1402
Albums . DATES

1404
Weather . DATES

0 . 2 0 . 2

0 - 0 - 0 1406
SALES 1408

WEATHER

0 . 4

1410
GENRE

FIG . 15A

U . S . Patent atent

New Data From Local Datastore ZZZZZZZZZZZ
X % Loaded

Your records look like such :

Oct . 31 , 2017

Summary Total Size : - - Num Recs : - - Max Rec : - -

Max Num Fields : - -

Avg Sz : - -

Avg Num Fields : - -

min - - : - - min - - : - -

album : - - - artist : - - -

similar : [album : - - - , album : - - - , album : - - - , . . .]

reviews : {

cool : xx funny : XXX O useful : XXX

Sheet 33 of 39

wwwwwwwwwwwwwwwwww

-

w

Done

genre : - - - sales : - - - date : - - -

US 9 , 805 , 079 B2

1506

1510

1514

FIG . 15B

1518 |

1508

1512

1516

1520

atent

Header Row 1500 <

sum album

date date

sales sales

. . .

|

Native Format Records (JSON)

Oct . 31 , 2017

1 . alpha

2014 - 12 - 11

$ $ $

{ " album " : " alpha " , " artist " : " ayy " ,
" similar " : [" gamma " , " theta "] , " reviews " : { " cool " : 20 , " funny " : 400 , " useful " : 49 } ,

" genre " : " rock " , " sales " : " $ $ $ " , " date " : " 2014 - 12 - 11 " } { " album " : " beta " , " artist " : " bee " ,
" similar " : [" delta " , " iota ") , " reviews " : { " cool " : 349 , " funny " : 1000 ,
" useful " : 129 } , " genre " : " Blues " , " sales " : " $ " , " date " : " 2013 - 1 - 15 " }

2 . beta

2013 - 1 - 15

Data Items 1502

Sheet 34 of 39

3 . gamma

{ " album " : " gamma " , " artist " : " gee " , " similar " : [" alpha " , " theta ") , " genre " : " Rock " , " sales " : " $ " , " date " : " 2014 - 9 - 30 " }

2014 - 9 - 30

4 . delta

2012 - 5 - 12

$ $

" album " : " delta " , " artist " : " dee " , " similar " :
[" iota " , " eta ") , " reviews " : { " cool " : 249 ,

" useful " : 457 } , " genre " : " Blues " , " sales " :
" $ $ " , " date " : " 2012 - 5 - 12 " } Records 1504

US 9 , 805 , 079 B2

1514 1514 L

1514

1522 1522

1514

FIG . 15C

1526 1526 |

1516

1528

1524

atent

album . date

sales

genre

weather

Native Format Records Native Format Records (Sample Set 1000) (Sample Set 1010)

weather . date

Oct . 31 , 2017

$ $ $

rock

2014 - 12 - 11

sunny

{ - - - - - - - - - - - - - - }

{ - - - - - - - - - - - - - - }

$ $

blues

2012 - 5 - 12

rainy

- - - - - - - - - - - >

- - - - - - - -

Sheet 35 of 39

rock

2014 - 9 - 30

rainy

{ -

- - - - }

{ - - - - - - - - -

blues

2013 - 1 - 15

sunny

- - - - - - - - - - - }

- - - - - - - - - - - { - - - - - - - - - - - - - - }

Records 1526

US 9 , 805 , 079 B2

FIG . 16

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

–

-

-

–

-

atent

–

ROM

SERVER 1630

–

DISPLAY
1612

MAIN MEMORY
1606

STORAGE DEVICE
1610

–

1628
us . Parent couscous

1608

– – –

INTERNET

Oct . 31 , 2017

– –

ISP

BUS

INPUT DEVICE
1614

1602

1626

Sheet 36 of 39

CURSOR CONTROL
1616

PROCESSOR
1604

NETWORK

COMMUNICATION INTERFACE
1618

| LINK)

LOCAL NETWORK 1622

1600

1620

-

–

–

–

–

–

–

–

–

–

–

–

HOST
1624

US 9 , 805 , 079 B2

atent Oct . 31 , 2017 Sheet 37 of 39 US 9 , 805 , 079 B2

FIG . 17A Extract Records 1702
(FILTER by FAILURE)

Device _ ID GPS FAILURE registration _ id

108 0
- - + - - + - - -

23644 40 . 748440 ,
- 73 . 984559 112

113

System . TIME Results
{ " message _ id " : " 1 : 0408 " } ,

{ " error " : " Unavailable " } - - - - - - -
15 : 16 . 2348 | { " message _ id " : " 1 : 0402 " }

{ " message _ id " : " 1 : 0402 " }
{ " message _ id " : " 1 : 0408 " } , 15 : 16 . 2349 { " error " : " 237 " }
{ " message _ id " : " 1 : 0408 " } ,

{ " error " : " unavailable " }

33345

108 40 . 748440 ,
- 73 . 984559

o

-

-

112 40 . 748440 ,
- 73 . 984559 15 : 16 . 2353 0

- 113 - - 45548

112 40 . 748440 ,
- 73 . 984559 15 : 16 . 2362 { " message _ id " : " 1 : 0400 " } 23647

Result Records 1704 –

Device ID GPS System . TIME Results FAILURE

108

108 40 . 748440 ,
- 73 . 984559 15 : 16 . 2349

{ " message _ id " : " 1 : 0408 " } ,
{ " error " : " Unavailable " }

{ " message _ id " : " 1 : 0408 " } ,
{ " error " : " 237 " }

{ " message _ id " : " 1 : 0408 " } ,
| { " error " : " unavailable " } ooo 112 40 . 748440 ,

- 73 . 984559 15 : 16 . 2353

Enriched Schema 1706

Device ID GPS System . TIME FAILURE Results . error

108 0 Unavailable

Results
{ " message _ id " : " 1 : 0408 " } ,

{ " crror " : " Unavailable " }
{ " message _ id " : " 1 : 0408 " } ,

{ " error " : " 237 " }
{ " message _ id " : " 1 : 0408 " } ,

{ " crror " : " unavailable " }

40 . 748440 ,
- 73 . 984559 108 15 : 16 . 2349 237 oo 112 40 . 748440 ,
- 73 . 984559 15 : 16 . 2353 unavailable

FIG . 17B

Schema 1712

Schema 1714

Device _ ID

GPS

System . TIME

FAILURE

Results . error

WEATHER | Weather . Date

Zip code

atent

108

Unavailable

94111

Sunny Windy

108

15 : 16 . 2349

237

40 . 748440 , - 73 . 984559 40 . 748440 , - 73 . 984559

94132

2014 - 12 - 11 2014 - 1 - 12 2014 - 12 - 21

oo

112

15 : 16 . 2353

unavailable

Rainy

94111

Oct . 31 , 2017

WEATHER Weather . Date

Zip code

1716 Force Function JOIN " Zip code " field with the " GPS " field Force Function JOIN " Weather . Date " field and " System . Date "

Sheet 38 of 39

System . TIME

GPS

Device _ ID

|

FAILURE

Results . error

1718 Combine Schema 1712 with Schema 1714

WEATHER
Dates

Location

Device _ ID

FAILURE

Results . error

US 9 , 805 , 079 B2

atent Oct . 31 , 2017 Sheet 39 of 39 US 9 , 805 , 079 B2

1802
Albums
Dataset = 1804 1806

SALES DATE
Distributed | Distributed

Index Index
1808
Sort = = 1810 /

Sort
1812
DATE

Distributed
Index

1814
Weather
Dataset =

1816
Join by DATES

1820
SORT by SALES

Results 1818
DATES fat pointers

Results 1822
SALES fat pointers

1824
FILTER by WEATHER

Results 1826
WEATHER fat pointers

1828
Delete -

- -

1834
Delete

1830
FILTER by GENRE

Results 1832
GENRE fat pointers

Keys 1314
(DATES)

Keys 1316
(SALES)

Keys 1318
(WEATHER)

Keys 1328
(GENRE)

FIG . 18

US 9 , 805 , 079 B2

5
Al

EXECUTING CONSTANT TIME size of the data (terabytes to petabytes) and the heteroge
RELATIONAL QUERIES AGAINST neous nature of the files . A dataset consisting of big data may

STRUCTURED AND SEMI - STRUCTURED comprise numerous files with many different key - value
DATA pairs . For example , consider the following file .

{ { Name : Jon , Date : Sep . 1 , 2014)
BENEFIT CLAIM { Name : Ben , Date : Sep . 2 , 2014 }

{ Name : Erin , Date : Sep . 3 , 2014 , Phone : 555 - 1234 }
This application claims the benefit of Provisional Appli Here , there are three records , with two key - value pairs in

cation 62 / 040 , 547 , filed Aug . 22 , 2014 , the entire contents of each record . Specifically , there are two records with key
which is hereby incorporated by reference as if fully set forth 10 value pairs for the keys “ name ” and ” date ” , while the third
herein , under 35 U . S . C . $ 119 (e) . record contains key - value pairs for the keys “ name ” , “ date ” ,

This application is related to U . S . patent application Ser . and “ phone ” .
No . 14 / 720 , 498 entitled “ Data Driven Relational Algorithm In a typical database , tables are stored on disk and
Formation for Execution Against Big Data ” , filed May 22 , portions of each table are loaded into volatile memory in
2015 , the contents of which are incorporated by reference in 15 order to respond to queries . The speed at which a given
their entirety for all purposes as if fully set forth herein . database server is able to answer a query is based , at least in

part , on how long it takes to load the necessary rows into
FIELD OF THE INVENTION volatile memory . The speed of responding to a query may be

improved by indexing a table first based on a column , and
The present invention relates to data storage and retrieval 20 then reading the index to determine what rows should be

techniques in a database cluster , and more specifically to a loaded into volatile memory . Because less rows need to be
computer implemented method for creating and executing a read into volatile memory , the speed of loading the table is
query algorithm against large quantities of semi - structured improved .
and structured data . In a clustered database system , multiple “ nodes ” have

25 access to the same on - disk copy of a database . The speed of
BACKGROUND responding to a query may be improved by partitioning a

database object (index and table) , and assigning each par
A typical relational database is organized into structured tition to a different server . After a particular server reads a

tables . The tables have records stored in each row , and the particular partitioned index , that particular server loads the
fields associated with each record are organized into col - 30 corresponding rows from the corresponding table partition .
umns . Users and applications retrieve information from the Once loaded into volatile memory , the data items may
tables by making queries to the database that search one or remain cached in volatile memory so that subsequent
more tables for content that meets certain criteria . These accesses to the same data items will not incur the overhead
queries may be drafted to look for trends in data that explain of accessing a disk .
or predict the occurrence of a particular phenomenon . 35 Loading records from “ big data ” takes a significant

For example , assume a banking executive creates a low amount of time that varies from algorithm to algorithm due
risk lending package for car buyers , but the car buyers to the varying amount of useful data and the varying length
simply are not purchasing the lending package . A marketing of the records being loaded . Once the data is loaded into a
analyst may consult a sales database to determine how to cluster , the data may be stored in corresponding caches .
increase sales . The marketing analyst could query a sales 40 However , having servers working on cached data in parallel
database containing similar lending packages over the is less likely to improve performance because the distribu
course of previous years to determine trends in packages that tion of records across the cluster must change for each
sell well . An example query that may be issued for this database operation . Redistributing the data for each opera
purpose may have the following form in SQL : tion usually involves cross - server communication for a more

SELECT sales , dates , risk FROM lendingPKG _ sal - 45 favorable distribution . The metaphorical concept that “ data
es _ table ORDER BY date ; has mass ” effectively communicates that transferring large

After sorting the sales by date , the marketing analyst may amounts of heterogeneously structured data around a cluster
notice that high risk packages sell best during the summer is a slow , inefficient processes .
months and low risk packages sell best during the winter The approaches described in this section are approaches
months . Based on this trend , the marketing analyst may 50 that could be pursued , but not necessarily approaches that
report that lending packages should be tailored to sell to car have been previously conceived or pursued . Therefore ,
buyers for a particular season . unless otherwise indicated , it should not be assumed that any

Arriving at a hypothesis that correlates risk with the time of the approaches described in this section qualify as prior
of year requires creating a query to a specific table in a art merely by virtue of their inclusion in this section .
database having the required fields to test this correlation . In 55
this example , the records containing “ sales ” , “ date ” , and BRIEF DESCRIPTION OF THE DRAWINGS
" risk ” are pulled from data already organized into columns
labeled “ sales ” , “ date ” , and “ risk ” . In the drawings :

Unfortunately , a single database containing these fields FIG . 1 is a block diagram that depicts a database cluster
may not exist . When the necessary databases do not already 60 according to one embodiment ;
exist , a data analyst may attempt to ascertain trends from FIG . 2 is a block diagram illustrating a raw dataset
large quantities of data , referred to as “ big data " without sampled into segments for loading into a database cluster ;
having the data organized into a single table that may be FIG . 3 is a block diagram illustrating a selected set of
queried to readily show trends in the data . key - value pairs transformed into fat pointers ;

Big data may comprise thousands or even hundreds of 65 FIG . 4 is a block diagram illustrating values from a
thousands of files that are organized into different data selected key being organized into a globally distributed data
structures . Navigating this data may be difficult due to the structure of fat pointers ;

US 9 , 805 , 079 B2

FIG . 5A is a block diagram illustrating a local portion of FIG . 15B is a block diagram illustrating a user interface
a globally distributed data structure with only one page in for exploring schema of big data ;
each linked list ; FIG . 15C is a block diagram illustrating a user interface

FIG . 5B is a block diagram that illustrates adding a page for exploring schema of big data after a few operations have
to a local portion of the globally distributed data structure ; 5 been performed ;

FIG . 5C is a block diagram illustrating a local portion of FIG . 16 is a block diagram illustrating a computer system
a globally distributed data structure after all fat pointers have that may be used to implement the techniques described
been added to their respective linked lists ; herein ;

FIG . 6A is a block diagram illustrating a linked list from FIG . 17A is a block diagram illustrating a selected golden
a local portion of a globally distributed data structure being 10 schema by drilling down to useful records in a dataset ;
transformed into a b + tree ; FIG . 17B is a block diagram illustrating a selected golden

FIG . 6B is a bock diagram illustrating creating high tier schema by combining a first schema with a second schema ;
directory structure for a b + tree in a parallel process ; and

FIG . 6C is a block diagram illustrating a b + tree after the FIG . 18 is a block diagram illustrating how data structures
directory nodes have been combine to create the full tree 15 may be added and deleted in an ad hoc manner during batch
structure ; processing .

FIG . 7A is a block diagram illustrating the values of three
fat pointers encoded into skinny pointers ; DETAILED DESCRIPTION

FIG . 7B illustrates how the number of bits required to
store the values in skinny pointers may vary ; 20 In the following description , for the purposes of expla

FIG . 7C is a block diagram illustrating a hash log trans - nation , numerous specific details are set forth in order to
formed into a b + tree ; provide a thorough understanding of the present invention .

FIG . 8A is a box diagram illustrating how a server in the It will be apparent , however , that the present invention may
cluster counts key values to determine how to adjust a range be practiced without these specific details . In other
based distributed hash table (DHT) ; 25 instances , well - known structures and devices are shown in

FIG . 8B shows how the count may be evenly distributed block diagram form in order to avoid unnecessarily obscur
across three servers ; ing the present invention .

FIG . 9A is a block diagram illustrating a cluster with two General Overview
distributed indexes hashed using the same range based DHT ; Techniques are described herein for creating and execut

FIG . 9B is a block diagram illustrating a cluster with two 30 ing a relational query algorithm against large quantities of
distributed indexes rebalanced using the same range based semi - structured and structured data , hierarchical data , vari
DHT ; able sized data , and data with blobs of arbitrary information

FIG . 10A is an example of the semi - structured format of (text , images , etc .) . While the techniques described herein
two sample datasets ; are often described solely in terms of semi - structured data ,

FIG . 10B is a block diagram illustrating a dictionary of 35 the techniques may also be implemented using structured
unique fields as data is loaded from one dataset ; data , hierarchical data , variable sized data , and data with

FIG . 10C is a block diagram illustrating a dictionary of blobs of arbitrary information (text , images , etc .) or any
fields as data is loaded from two sample datasets ; combination thereof . The techniques covered here extend

FIG . 11A is a block diagram illustrating a distributed relation algebra that is strictly defined for tuples to hierar
result set after a JOIN operation ; 40 chical data and documents . For example , we allow joins on

FIG . 11B is a block diagram illustrating distributed result nested records , arrays within a hierarchy , and objects within
indexes created based on the distributed result set ; arrays .

FIG . 11C is a block diagram illustrating transferring Creating an algorithm involves loading , from one or more
globally distributed data structures from memory to disk ; source computing devices into a cluster , a sample population

FIG . 11D is a block diagram illustrating refreshing a 45 of records , and allowing a user to interact with those records
system state ; at speeds that keep the user ' s attention . Interacting involves

FIG . 11E is a block diagram illustrating creating a dis - receiving commands to perform database operations from a
tributed result index based on a field used in multiple set number of low - level database operations and displaying
database operations ; at least some schemas from the results of those operations .

FIG . 12 is a block diagram illustrating system software in 50 Performing database operations at speeds that keep the
each database server ; user ' s attention is enabled by a large portion of the memories

FIG . 13A is a dependency graph illustrating a client ' s of the cluster being devoted to many globally distributed
interactive exploration of one or more datasets ; data structures that each store values corresponding to a key .

FIG . 13B is a dependency graph illustrating how results A set number of low - level database operations may be
of a parent database operation may be used as input for a 55 performed against these distributed data structures . These
child database operation ; low level database operations include FILTERS , AGGRE

FIG . 13C is a dependency graph illustrating how a field GATES , SORTS , and JOINS . Interface components for
used in multiple database operations may be used to gener creating commands that use these low - level database opera
ate a distributed result index ; tions are provided to the user , so the user may intuitively use

FIG . 13D is a dependency graph illustrating how a golden 60 these operations .
schema is tracked ; Techniques are also described herein for using a depen

FIG . 13E is a dependency graph illustrating what opera - dency graph as an interface component . The results of a
tion chains are executed in batch mode ; " parent " database operation may be used as the input of a

FIG . 14 is block diagram illustrating an example semantic " child ” database operation . By chaining multiple database
network for suggesting field names to a client ; 65 operations together , the results of each successive child

FIG . 15A is a block diagram illustrating a user interface database operation produce a more unified set of schemas .
for selecting useful keys in a JSON object during load ; The algorithm is ultimately created by reverse engineering

US 9 , 805 , 079 B2

PUPUN

the database operations performed to obtain a set of one or Microkernel
more unified schemas that the user indicates as useful . A microkernel (not shown) executes on each server 102 ,

During algorithm formation , the user may create or 122 , 142 to generate and maintain three numbers of interest
update individual records in the sample population to arti - to the cluster : Node IDs (NID) , cluster - wide unique IDs
ficially create values , so the reverse engineered database 5 (XID) , and database object IDs (OID) . Each NID is an
operations can have specific conditions that are likely to identification number given to each server in a cluster , e . g .
occur in the large quantities of semi - structured and struc - 102 , 122 , 142 . NIDs are preferably sequential for simplicity
tured data . purposes . Specifically , for the purpose of explanation , it

Executing this algorithm involves parsing data from the shall be assumed that the NIDs for servers 102 , 122 , 142 , are
large quantities of data into data containers . The data that is 10 0 , 1 , 2 , respectively .
extracted corresponds to the useful schemas indicated by the As shall be described in greater detail hereafter , using
user . Data containers including native format datasets and NIDs , XIDs and OIDs , a system designer or third party
distributed data structures are created as they are necessary programmer can interact with the cluster 100 as if interact
and deleted as soon as they are no longer necessary to use ing with a single server 102 . Upon receiving a command , a
memories of the cluster in an efficient manner . The database 15 single server transparently propagates the command to the
operations are performed in an optimized manner by not other servers in the cluster to handle the various cluster - wide
repeating any operations that create the same result set of operations , such as creating an object or executing a data
records and re - ordering database operations so they use the base operation against an object .
same input data containers efficiently . Generating XIDs
System Overview 20 An XID refers to a cluster - wide unique identifier for a

Referring to FIG . 1 , it is a block diagram that depicts a transaction or an object . XIDs may be used to generate
database cluster 100 according to one embodiment . In the globally unique numbers locally without distributed locking
embodiment illustrated in FIG . 1 , remote client computer They may be used for transactions or anything that requires
180 has access to the database cluster 100 through the a unique ID . Tables , meta - data , instances of objects , etc . , all
Internet . Data source 160 comprises either a local or dis - 25 use XIDs . XIDs may also be persisted and reliably reused
tributed file system , making cluster 100 shared nothing or after crashes depending on the types of objects being
distributed shared with respect to an entire set of files referred to .
distributed across three servers 162 , 164 , 166 . These files XIDs are generated sequentially using the node ID as the
may be accessed by any server 102 , 122 , 142 in the database high order bits and a unique number local to a particular
cluster 100 . Data source 160 may represent a variety of 30 server for the lower order bits . For example , 021 , 022 , 023
different vendors that grant access to files stored on persis - could represent discrete XIDs within Node 0 (i . e . server
tent storage media . Examples of data sources include , but 102) . Generating XIDs in this manner enables transactions
are not limited to , Amazon S3 servers , HDFS servers , to acquire globally unique handles efficiently using node
network accessible sensors , data warehouses , client file local calls . Any transaction in the cluster may be distributed .
systems , and other repositories of data . 35 Having each XID labeled by the server that generated the

Database servers 102 , 122 and 142 respectively have local transaction allows multiple distributed operations , each with
memory 106 , 126 and 146 and one or more processors 104 , its own XID , to run concurrently in the cluster .
124 and 144 , where each processor may have one or more Generating Database Object Identifiers
cores . In the illustrated embodiment , local memories 106 , different OID is generated and maintained to uniquely
126 , 146 respectively comprise one form of volatile memory 40 identify tables , trees and other data structures in the cluster .
108 , 128 , 148 and three forms of non - volatile memory An OID may be generated using a two phase commit
(Storage Class Memory 110 , 130 , 150 ; flash 112 , 132 , 152 ; process , where the server generating the database object is
and hard disk 118 , 138 , 158) . In alternative embodiments , referred to as the object generation master . The object
each node may have combinations of one or more of these , generation master gets an XID for creating a database object
or other forms of volatile and non - volatile memories . 45 locally . The object generation master then uses the XID as

Remote client 180 may execute a command line interface , an OID and sends a message comprising the OID to the other
a graphic user interface , or a REST endpoint to interact with servers in the cluster . A two - phase commit ensures that each
any server 102 , 122 , 142 . In embodiments that employ a server has the same OID for an object to be populated with
REST endpoint , the client 180 is preferably configured to data according to methods described herein .
send and receive JSON files , but the client 180 may be 50 Memory Hierarchy and Auto - Tiering
configure to receive and return other file types such as Modern severs are equipped with fast non - volatile
comma separate values (. csv) or an SQL dump (. sql) . memory as well as volatile memory . As shown in FIG . 1 , a
Irrespective of whether the remote client 180 uses a GUI , single server may have volatile memory 108 , 128 , 148 such
CLI , or rest endpoint , the remote client 180 communicates as DRAM , and non - volatile memory that can be tiered in
with a given database server using an API . 55 order of performance . For example , storage class memory

In some embodiments , the cluster size may dynamically 110 , 130 , 150 may be used as the highest tier of non - volatile
change based on information received from remote client memory , flash memory 112 , 132 , 152 used in the next
180 . Thus , database servers 102 , 122 , 142 may be part of a highest tier of non - volatile memory , and hard disks 118 , 138 ,
cluster of 256 servers , but the user has selected three servers 158 used as the third highest tier of non - volatile memory .
to perform work on a particular dataset 170 . In certain 60 Under this architecture , data is stored using all forms of
situations , the cluster size may be increased to handle a memory in a tiered fashion . Database objects are initially
computationally intensive or I / O intensive workload . created and stored in volatile memory 108 , 128 , 148 . As

In some embodiments , the cluster may include a fixed additional objects are created , less used objects are pushed
number of on - premises database servers . In these embodi - to the next tier of memory (SCM 110 , 130 , 150) . As the
ments , a GUI , CLI , or REST endpoint may execute locally 65 SCMs begin to fill up , flash memories 112 , 132 , 152 are
on a server within the cluster 100 or execute locally on an employed . As the flash memories begin to fill up , hard disks
on - premises computer within the internal network . 118 , 138 , 158 are employed .

pro

US 9 , 805 , 079 B2

Data may be stored differently depending on the type of The schemas used to organize data within a dataset may
media , but the data is not stored differently in terms of be determined no matter how the dataset is structured
backup . There is no need to mirror data because the under - (structured , semi - structured , or heterogeneously structured) .
lying raw data 172 , 174 , 176 is stored in data source 160 . If Initial Format Scan of the Dataset
some data is lost from volatile memory when a server or 5 After receiving the location of the dataset 170 consisting
cluster fails , the data may be quickly regenerated based on ed based on of raw data 172 , 174 , 176 , a server 102 in the cluster 100
a minimal redo log 190 that logs operations and meta - data . performs automated discovery of the format of one or more
Datasets files located at the data source 160 . The dataset 170 may

As used herein , the term " dataset ” refers to the entire body contain one or more large files , a directory of smaller files ,
of raw data to which an algorithm is ultimately to be applied . 10 or some large and some small files . The format is determined

for each file . Formats include , but are not limited to , SQL As shall be explained in detail hereafter , the amount of data dumps , comma separated values , JSON objects , XML , or in a dataset is typically too large to be used during the any combination thereof . Data format discovery also construction of the algorithm . Consequently , techniques are includes determining whether the data is compressed . described hereafter in which algorithms are iteratively con - 1 n - 15 Examples of compressed formats include GZIP , TAR , or any
structed based on a sample taken from the dataset . Because other form of compression .
the sample is significantly smaller than the dataset itself , the Choosing a Sample of Raw Data
iterations of constructing the algorithm consume signifi - A percentage of the apportioned memory (generally
cantly less computational resources that would be the case if 10 - 25 %) is allotted to store a representative sample of the
the iterations were performed directly against the raw data . 20 dataset . For example , if 2 . 25 TB of memory was provisioned
Provisioning the Cluster to Load a Sample for dataset 170 , 0 . 25 TB of memory may be apportioned to

A big data dataset can easily be one petabyte of data . obtaining a sample of the raw data 172 , 174 , 176 . This
Assume each server in cluster 100 has 128 GB of DRAM percentage is kept relatively small in order to keep a large
and 1 TB of SCM . A fixed portion of the memory is selected percentage of memory available for metadata (for example ,
and apportioned for a particular user to sample a dataset 170 25 hash tables , logs , index trees , etc .) creation later described .
consisting of raw data 172 , 174 , 176 . For example , a user A random sample of the raw data 172 , 174 , 176 is taken
may malloc 2 . 25 TB of memory in cluster 100 for sampling to give the user an understanding of the field names used in
dataset 170 . Using the auto - tiering previously described , this the dataset 170 . According to one embodiment , a pseudo
means all of the volatile memories 108 , 128 , 148 will be random algorithm is used to determine what portions of the
used and a portion of each of the SCMs 110 . 130 . 150 is 30 dataset 170 will be loaded as a sample . The parameters

required to obtain a sample include the amount of memory used . allocated for loading raw data , the size of the dataset 170 , a Receiving a Pointer to Data Source seed value , and the average size of the files being sampled . Next , a server 102 from the cluster 100 receives a location
of the data source from the remote client 180 . The location 35 in the cluster that did the initial format scan chooses between

Based on the average size of the files being sample , a server
may reference to any type of file system that stores large sampling the raw data using (a) file granular sampling or (b)
amounts of data . Examples of sources for storing large block granular sampling based on artificially designated
amounts of data include , but are not limited to , RDBMS , blocks . Each of these techniques shall be described in
HDFS , Amazon S3 , and local file systems . APIs may be greater detail hereafter .
leveraged to interface with these systems . For the purpose of 40 The pseudo random selection is preserved in redo log 190
explanation , it shall be assumed that remote client 180 to allow the user to increase the sample size at a future time
specifies dataset 170 from data source 160 , which consists of without throwing away the current sample or introducing
raw data 172 , 174 , 176 from servers 162 , 164 and 166 , duplicate entries into the existing sample .
respectively . File Granular Sampling
Heterogenously Structured Datasets 45 Often , datasets are composed of thousands of compressed

The structure of a dataset 170 refers to the fields used to small files (~ 64 MB) each containing data records in JSON ,
define and organize data items within the dataset . Types of CSV , or other formats . When file granular sampling is used ,
structures include , but are not limited to , row - column , the file names are first organized into an ordered set . Next ,
comma separated values , and files organized into a specific a pseudorandom selection of positions within this set are
schema . Heterogeneously - structured data refers to a dataset 50 chosen . The files whose positions are chosen are then loaded
that does not fit well within a structured data framework . into memory .
Heterogeneously structured data may include files organized For example , FIG . 2 is a block diagram illustrating a raw
into many different structures . For example , one file may be dataset sampled into segments for loading into a database
organized into rows and columns , and then a second file may cluster . Raw data 172 , 174 , and 176 may comprise thousands
be organized into key - value pairs (semi - structured data) . In 55 of compressed small files . Based on a pseudorandom algo
particular , semi - structured data may include files with rithm , files labeled as segments S1 , S3 , S8 , S11 , S12 , S17 ,
irregularities within the data structure . For example , one file S23 , S27 , and S29 are selected as sample files to represent
may contain the data items for “ NAME ” and “ ZIPCODE ” , dataset 170 .
and then half - way through the file , the data changes to Block Granular Sampling
“ NAME ” and “ CITY ” . A file containing records organized 60 Occasionally datasets are composed of a handful of very
into key - value pairs may also be missing some key - value large files (~ 128 GB) which also contain data records in
pairs for some records . For example , three records in the JSON , CSV , or other formats . Here , an individual file may
same file may contain “ NAME1 , CITY 1 ” , “ CITY2 ” without exceed the amount of allocated memory . If file granular
a name , and “ NAME3 ” without a city . Third , semi - struc - sampling were used , the loaded sample is likely to have a
tured data may contain fields nested into other fields . For 65 non - uniform random skew and not be representative of the
example , a record may contain " { NAME , FRIENDS user ' s total dataset . Instead , a fixed block size , B , is first
{ NAME , NAME } } . ” chosen (~ 64 MB) . Files from the user ' s dataset are divided

Data

US 9 , 805 , 079 B2
10

into N blocks . (If the total dataset size is D , then N = D / B) . The syntactic schema of a record includes information
For example , in FIG . 2 , dataset 170 may comprise three files regarding the keys and the primitive types of values paired
as separated by raw data 172 , 174 , 176 . The dataset 170 is with the keys . For example , the record above is a JSON divided into 27 blocks (S1 , S2 , S3 , S4 , S5 , S6 , S7 , S8 , S9 ,
S11 , S12 , S13 , S14 , S15 , S16 , S17 , S18 , S19 , S21 , S22 , S23 , 5 object containing three keys { name : (string) , votes (int) ,
S24 , S25 , S26 , S27 , S28 , S29) . A pseudorandom selection of 5 category (string) } .
blocks is chosen from the segmented blocks . Blocks labeled In some embodiments , the load operation plan designates
as segments S1 , S3 , S8 , S11 , S12 , S17 , S23 , S27 , and S29 segments with the same or similar schema to the same
are selected as sample files to represent dataset 170 . server . For example , segments with the { name : (string) ,

Block granular sampling introduces the possibility that a votes (int) , category (string) } schema may be assigned to a
record may straddle a block boundary . To deal with this first server , while segments with a { name : (string) , votes
situation , a record is limited to a maximum record size (~ 16 (int) , stars (int) } schema may be assigned to a second server .
MB) which must be less than the block size divided by two In some embodiments , the server creating the load opera
(R _ max = B / 2) . Records that exceed the maximum record tion plan distributes these schemas based on a user selecting
size or which straddle across a block boundary are thrown a particular key . Segments having a particular key are all
out . loaded into the same server . For example , if a user selects the Block granular sampling also introduces the possibility " category ” key , then the system knows to load all segments that a user record may not begin on a block boundary . In this with this " category ” key into the same server or subset of situation , depending on the source data format , the server servers . performing the sampling detects the outermost record in
order to determine when a block boundary splits a record . 20 * 20 Assigning Segments Based on the Pre - Existing Locality of
For example , assume the following JSON objects straddle a
block boundary between S2 and S3 . If a sample of dataset 170 was previously loaded into the

cluster then , then the previously loaded sample does not
have to be re - loaded into the cluster 100 . The server creating

[. . . { " name " : " mike ” “ friends ” :] = S2 25 the load operation plan may scan a log of previously loaded
[{ " name " : " vikram ” } } , { " name " : " jerene ” “ Friends ” : { " name " : data to determine if data already resides within the multi
” brent " } } . . .] = S3 node cluster 100 . The sample dataset 200 is divided accord

ing to the manner in which it was previously divided on the
During load , the server loading the data tracks whether the cluster 100 , and any segments of the sample dataset that do
JSON object delimiters , “ f ” and “ Y ” , are balanced . Where 30 not already reside on the cluster 100 are determined . These
there is an imbalance , the record " name " : " Vikram ” is leftover segments may then be distributed across the cluster
ignored , and the next record in the segment is used . This also 100 .
requires a maximum record size which must be less than For example , a user may initially have allocated 2 . 00 TB
B / 2 . of memory for a particular dataset 170 , which leads to 0 . 20
Increasing the Number of Servers in a Cluster for Load 35 TB of memory used to load a sample dataset . The load

The cluster may temporarily employ more servers for operation may result in loading S1 , S3 , S11 , S2 , S23 , S27 .
loading the data . For example , cluster 100 may employ four After interacting with the data , the user determines how to
servers for loading dataset 170 . This may be useful if the allocate an additional 0 . 25 TB of memory for interacting
cluster is configured for computational performance instead with this dataset 170 , which leads to an additional 0 . 05 TB
of input / output operations per second (IOPS) . The tempo - 40 of memory used to load the sample dataset . Rather than
rary four server cluster can be deployed to load the data and loading every segment from the new sample S1 , S3 , S8 , S11 ,
run ETL (extract transform load) operations . Running ETL S12 , S17 , S23 , S27 , S29 , into memory , the load operation
can potentially filter out the noise and publish only relevant plan may only include loading the missing segments S8 ,
data into the cluster . Once the load is complete the cluster S17 , and S29 . These segments may be distributed across the
size can be reduced such that the working set now resides in 45 cluster .
the memory hierarchy of the smaller set of servers . Assigning Contiguous Segments to the Same Server
Distributing Work of the Load After random sampling , some segments may come from

For the purpose of explanation , it shall be assumed that a contiguous set of blocks . The server creating the load
server 120 performed the initial format discovery . Referring operation plan assigns contiguous segments , if they exist , to
to FIG . 2 , server 102 establishes a unique OID for a sample 50 the same server . Hard disks have the best performance using
dataset 200 of dataset 170 . The server 102 creates a load sequential IO rather than randomly accessing data located at
operation plan for the segments S1 , S3 , S8 , S11 , S12 , S17 , different areas throughout the disk . Thus , having the hard
S23 , S27 , S29 , chosen in the previous step . The load previous sten The load disk perform reads in a single pass increases load operation
operation plan optimizes which segments are assigned to performance .
which server based on a series of factors . 55 For example , segments S11 and S12 are selected from a
Assigning Segments Based on Schema contiguous set of blocks . Because these segments come

During the initial format scan of the records , sampled from contiguous blocks , they are assigned to be loaded by
segments are scanned for a syntactic schema . For example , the same server 122 .
a particular record may consist of a JSON object : Parallelizing Cluster Servers with Source Servers

60 Loading the sample dataset 200 is performed in parallel
by a plurality of servers 102 , 122 , 142 in the cluster 100 .
When the data source 160 has a file system distributed across

" name " : " Jim ' s ” , multiple servers 162 , 164 , 166 , the segments from those
" votes " : " 900 " , source servers 162 , 164 , 166 can be coordinated with the " category " : " steakhouse ”

65 loading operation of the cluster servers 102 , 122 , 142 , so
each server avoids competing IO operations . In this
example , the server creating the load operation plan assigns :

US 9 , 805 , 079 B2
12

the segments S1 , S3 , S8 from server 162 to server 102 , pushed into a lower tier of memory . A multicore processor
the segments S11 , S12 , S17 from server 164 to server 122 , (preferably 16 - 32 core machine) can divide the work of

and reading multiple compressed segments in parallel . However ,
the segments S23 , S27 , S29 from server 166 to server 142 . the amount of memory available on a single server is fixed .
Loading is executed by servers in parallel both at the data 5 Thus , compression is used to maximize the use of the

SO source 160 and at the receiving cluster 100 . This optimiza available memory at the expense of putting a higher load on tion prevents a single server from choosing between requests the cores of the machine .
from multiple servers . For example , the sample dataset may Static Data , Dynamic Metadata include three different segments S11 , S12 , S17 from a single According to one embodiment , local datasets are not server 164 . The first segment S11 contains blocks addressed 10 + transported between servers after load . For example , in FIG . 1 - 50 , a second segment S12 contains blocks addressed 2 dataset 200 - 1 , which is loaded on server 102 , is not 51 - 100 , and a third segment S17 contains blocks addressed thereafter transported to servers 122 or 142 . 1000 - 1050 . Because these segments are all assigned to the
same server 122 , the data source server 164 reads blocks Once segments are read into a target server , the segment
1 - 100 in a single scan . and then blocks 1000 - 1050 in a 15 never moves thereafter . Instead , metadata referred to as fat
second scan . pointers (later described) are created and transferred around

If some of the segments from the same source server 164 the cluster for performing database operations . The fat
were to have been assigned to different cluster severs , the pointers reference particular records within the dataset that
blocks could have been extracted in an inefficient order . can be used to display an entire record . However , as the
Server 164 could have served a request for blocks 1 - 50 from 20 amount of metadata increases , there are fewer and fewer
segment S11 to server 122 ; then served a second request for reasons to refer back to the original dataset because fat
blocks 1000 - 1050 from segment S17 to server 142 , and then pointers already exist for any data needed for a particular
finish by serving blocks 51 - 100 from segment S12 to server database operation .
122 . However , because all blocks for the source server 164 If the client indicates that the sample size should be
are sent to the same cluster server 122 , the source server 164 25 enlarged , additional servers may be added to the cluster .
does not have to choose between IO requests . However , the old segments are not rebalanced using the Assigning the Load of Each Segment to Different Cores additional servers . Instead , the new data is mapped to the

The server creating the load operation plan may utilize the new server , and the system scales in a linear fashion . Even various cores available at each server when assigning seg if a server is added to the cluster and no new segments are
ments . Referring to FIG . 2 , each server 102 , 122 , 142 in the 30 added , the segments are not rebalanced across the cluster . cluster has a processor with three cores (210 , 212 , 214) , The system architecture may scale linearly irrespective of (230 , 232 , 234) , (250 , 252 , 254) , respectively . Loading the record size or the amount of data in the sample population sample dataset 200 may be split into nine threads , so the
cores may execute in parallel . because transferring messages among nodes is performed
Segment S1 is loaded by a thread running on core 210 ; 35 W . 35 with discrete sized meta - data (fat pointers) instead of the
Segment S3 is loaded by a thread running on core 212 ; variable size raw data records .
Segment S8 is loaded by a thread running on core 214 ; Indexing Values During Load Based on User Selection of a
Segment S11 is loaded by a thread running on core 230 ; aded by a thread running on core 230 Key
Segment S12 is loaded by a thread running on core 232 ; In some embodiments , the client is given the opportunity
Segment S17 is loaded by a thread running on core 234 ; 40 to select keys or field names after the initial format scan of
Segment S23 is loaded by a thread running on core 250 ; the raw data 172 , 174 , 176 . According to one embodiment ,
Segment S27 is loaded by a thread running on core 252 ; the key selection operation involves displaying some of the

and records from the dataset 170 to the user at remote client 180 .
Segment S29 is loaded by a thread running on core 254 . The user is provided an interface with controls that allow the
In embodiments where the segments are being com - 45 user to point and click keys that are of interest . The keys or

pressed as they are loaded , the separate cores running fields selected are received from remote client 180 at a
the load operation also increase the performance by particular server 102 . The values of that key are then sorted
compressing the segments in parallel . in a cluster - wide object called a distributed index . The

Loading Segments into Contiguous Local Datasets number of distinct keys that may be indexed is limited by the
Segments S1 , S3 , S8 , S11 , S12 , S17 , S23 , S27 , S29 , are 50 space initially provisioned for sampling the dataset 170 .

part of a single distributed database object . However , each Thus , a server may receive input of multiple key selections ,
server maintains a different portion of the database object in but if there is insufficient memory to index all of the selected
a local dataset . A local dataset is composed of a set of dataset keys , then the system only indexes a subset of the selected
segments . For each server , the dataset segments assigned to keys .
a particular target server are loaded and compressed into a 55 In some embodiments , an index may be created in
single local dataset as contiguous blocks in their native response to a command to perform a database operation on
source format . one or more particular keys before performing the database

Compressing data into dataset segments increases the operation . Even if the entire sample population is not
performance of the cluster in terms of latency because more entirely loaded into the system , a user may send commands
database objects may be stored in volatile memory when 60 to perform database operations on raw data that is loaded
every object is compressed . Even though reading com - into the system . The system begins indexing a key based on
pressed data is slower than reading uncompressed data , the the received command , and dynamically continues to create
cluster benefits from having more data located in higher tier the index on the data as the data is being loaded . The system
(i . e . faster) memory . For example , local dataset 200 - 1 fits may even perform the database operation on the portion of
entirely in volatile memory 108 . If segments S1 , S3 , and S8 65 the index created from the partially loaded data . Commands
were not compressed , then segment S8 may not fit in volatile for specific database operations such as SORTS and JOINS
memory 108 with segments S1 and S3 and would have to be may trigger index creation before performing the database

14
US 9 , 805 , 079 B2

13
operation , while other commands such as AGGREGATES scalable (additional servers may be easily added) because
and FILTERS may be performed without creating an index the cluster relies on very little communication among nodes
first . to perform database operations .

Although a user may indicate a key of interest during the Using a Globally Distributed Data Structure as an Index
load operation , the indicated key is not necessarily treated as 5 According to one embodiment , a globally distributed data
a primary key . Thus , while the key may in fact be indexed structure is created as a “ metadata ” index for the “ data ” that during load operation , the index may be temporary . For has been compressed into the local datasets . Instead of example , the index of a key selected during the load opera transferring records from local datasets between servers tion may later be overwritten by the system if the user fails within database cluster 100 , data items corresponding to a to use the key to manipulate the data . Thus , according to one 10 particular key from the local datasets are used to create embodiment , there is no primary key assigned during the globally distributed data structures . The data structures are load operation .
Globally Distributed Data Structure created and deleted as memory permits with portions being

The globally distributed data structure , used for distrib transferred around the cluster , compressed and decom
uted indexes , distributed result sets , and distributed result 15 pressed , and used as input and output for database opera
indexes refers to a distributed hash table (DHT) with sepa tions .
rate chaining of pages rather than individual entries . Each For the purpose of explanation , assume that server 102 is
globally distributed data structure organizes metadata cor requested , by a user or an application , to create an index for
responding to a particular key . A global range based DHT is the key “ KEY1 ” . Initially , the server 102 creates an OID for
used to distribute entries to a particular host server of a 20 the not - yet - created index structure for the key “ KEY1 ” . As
plurality of host servers in a cluster , and then the entries are records from the segments 51 , S3 , S8 , S11 , S12 , S17 , S23 ,
distributed again to a particular linked list of a plurality of S27 , S29 are loaded into local datasets , the servers that
linked lists within the particular host server using a local receive the records scan the records for key - value pairs
range based DHT . Separate chaining of pages refers to how where the key name is “ KEY1 ” . After discovering a key
each linked list stores data items in discrete sized nodes that 25 name “ KEY1 ” , the server parses the value from the key to
usually corresponds to a page size . A chain of nodes may be place an index entry for the record into an index structure .
referred to as a “ log ” for a particular range of values For example , if the value is " 900 " , then “ 900 ” is placed in
corresponding to the data items in those nodes . When the an index tree for KEY1 .
particular range of values corresponds to a particular range According to one embodiment , the index entry for a
based hash , then that chain of nodes may be referred to as 30 particular key / value pair contains both the value and a
a " hash log . ” The entries within a particular log may be pointer to the record that contains the value . For example ,
sorted based on values from the entries or even transformed the index entry for value “ 900 ” also includes a reference to
into a b + tree , but in a preferred embodiment , the data the record that contains the “ KEY1 " : " 900 " key / value pair .
structure is only partially sorted (by range based hashing) According to one embodiment , the index entries are “ fat
during creation . 35 pointers ” . Techniques are described later herein for opti
Any server may request that any particular log be scanned mally encoding fat - pointers .

using a globally maintained range based hash function for Fat Pointer
determining the server (s) that have the log , and then using As used herein , the term “ fat pointer ” refers to a globally
a locally maintained range based hash function to determine unique identifier that minimally comprises : (a) a value that
the particular linked list (s) within the server that contain the 40 comes from a particular record , and (b) the expected loca
log . tion , in the cluster , of the particular record containing the
Most database operations performed against big data are value . In one embodiment , the expected location of a record

performed against an entire range of records rather than is defined in two dimensions : (1) a server identification ,
searching for one record in particular . For example , most NID , identifying the server hosting the record (NID is
users are not interested in finding the one record that 45 unique relative to the other servers in the cluster) and (2) a
corresponds to John Doe with employeeID " 12345 . ” record identification , Rip , identifying the record number
Instead , they would be interested in all records that corre - (Rp is unique relative to the number of records stored within
spond to “ employees in San Francisco " or " employees with the server that contains the corresponding record) .
blue eyes . ” Initially creating a fully sorted index is a waste As shall be described in greater detail hereafter , a fat
of computational resources because a range of records is 50 pointer may or may not contain the key value of the record
scanned for each database operation . In other words , the to which the fat pointer points . Fat pointers that do not
number of sought after entries ‘ m ' is often on the scale of the contain the key value of the corresponding record are
total number of entries , ‘ n ’ , so searching through many referred to herein as value - less fat pointers .
records , ' n ' , for many sought after entries , m , is efficient FIG . 3 is a block diagram illustrating a selected set of
compared to searching through many records ' n ' for one 55 key - value pairs transformed into fat pointers . In this
sought after record , m = 1 . example , a user has selected “ votes ” as the key for which to

Creating a partially sorted index has a significant benefit create an index structure . As servers 102 , 122 , and 142
of reducing the record length to a discrete size , and further respectively load records into local datasets 200 - 1 , 200 - 2 ,
divides the work required to scan large portions by a factor 200 - 3 , the servers 102 , 122 and 142 index the data based on
' p ' that corresponds to the number of range based hashes 60 the value contained in the " votes ” key - value pair . For
created for the data structure . The factor ' p ' is scalable with example , in record “ O ” in local dataset 200 - 1 , the “ Votes "
the number of nodes in the cluster . The actual number of key is associated with the value “ 900 ” . For record “ O ” ,
records that are scanned O (n / p) approaches the theoretical server 102 creates an index entry that includes the key value
number of records that are required to be scanned " m " by “ 900 ” and a fat pointer . In the illustrated example , the fat
increasing the number of servers in the cluster (i . e . by 65 pointer for record “ O ” specifies a NID of 102 (indicating that
increasing ' p ' , the computational efficiency approaches O (1) the record is located on server 102) , and an RID of 0 ,
because O (n / p > O (m)) . The system architecture is highly indicating that the record is at position 0 for dataset 200 . The

15
US 9 , 805 , 079 B2

16
same mapping is created for every value , within sample hash corresponds to 0 - 99 and a second hash corresponds to
dataset 200 , associated with the key " votes " . 100 - 199 , then a SORT of values between 50 and 150 would

The values 302 correspond to the values for the votes key require sorting both the first hash and the second hash .
in the local dataset 200 - 1 ; the location data 304 corre Similarly , the join operation is preferably preceded by a sort
sponds to the locations of the data in local dataset 200 - 1 5 operation , so multiple cores make work on the join in
in server 102 . parallel . For example , if a JOIN operation is joining values

The values 322 correspond to the values for the votes key from 50 to 150 between two tables , then the values between
in the local dataset 200 - 2 ; the location data 324 corre 0 - 99 may be sorted for the two tables using two different
sponds to the locations of the data in local dataset 200 - 2 cores . In parallel , the values for 100 - 199 may be sorted for
in server 122 . 10 the two tables using two additional cores for a total of four

The values 342 correspond to the values for the votes key cores . After the sort operations , the join operation may be
in the local dataset 200 - 3 ; the location data 344 corre performed for values from 50 - 99 using one core and from
sponds to the locations of the data in local dataset 200 - 3 100 - 150 using another core . The ability for a large number
in server 142 . of threads of execution running on multiple cores , sorting in

Deferred Transmittal of Fat Pointers 15 parallel , or doing joins in parallel , makes these servers
The fat pointers are then each assigned to a particular perform database operations extremely fast .

server in the cluster using a range partitioned distributed FIGS . 5A - 5C are block diagrams illustrating generating a
hash table . The fat pointers are sent from the server that locally distributed data structure of fat pointers . Assume the
creates the entries to the server that has been assigned the pages of this index structure store fat pointers in groups of
range into which the key value of the entry falls . In distrib - 20 three or less . FIG . 5A illustrates a local hash table with only
uting the index entries , the same hash function or range one page in each hash . Initially , each page is filled to its
assignments are used by every server in the cluster , so that maximum capacity . For example , the first hash H1 has a leaf
all index entries that have the same key value will be sent to node of three fat pointers containing values “ 3 ” , “ 33 ” , and
the same server , regardless of which server creates the “ 234 ” .
entries . For example , a fat pointer with the key value “ 900 ” 25 Once a new fat pointer is added to this hash , an additional
may be assigned to a server that hosts all fat pointers with page is added as presented in FIG . 5B . A fat pointer with the
key values from 0 - 999 . When a key value hashes to the local value “ 42 ” is added to the hash H1 , so the hash H1 has two
server , an entry that includes the fat pointer is placed in the pagesa first page containing fat pointers with values “ 3 ” ,
locally distributed data structure . When the fat pointer “ 33 ” , and “ 234 " and a second page containing values “ 42 ” ,
hashes to another server in the cluster , the fat pointer is sent 30 “ 123 ” . A pointer is created at the end of each page to
to a buffer for transporting the fat pointer to the other server . reference the next page . Thus , after the fat pointer containing

FIG . 4 is a block diagram illustrating a selected key being the value “ 234 ” , a pointer references the next page starting
organized into a distributed index of fat pointers . The values with the fat pointer containing the value “ 42 ” .
“ 33 ” and “ 900 ” hash to the local server 102 , so they are Pages of fat pointers are added as presented in FIG . 5C as
immediately placed in the local index structure 402 . There 35 they are received from the servers that created them . In FIG .
are no values that hash to server 122 , so buffer 404 is empty . 5C , fat pointers with the values x , y , and z , are added to the
Values “ 2020 ” , “ 2005 ” , and “ 2002 ” all hash to server 142 , locally distributed data structure , indicating that x values
so these values are sent to a buffer 406 for transporting to hash to the H1 slot , y values hash to the H2 slot , and z values
that server . hash to the H3 slot . A pointer may be placed at the end of

Sets of fat pointers are buffered on a per - destination server 40 each hash log to the first page of the next hash , so the hash
basis . When enough entries accumulate in a buffer to allow table may be read as a single continuous log . For example ,
a network efficient transfer (~ 128 KB) , the set of buffered at the end of the last page in the H1 log containing x _ n , a
entries are then sent to the appropriate destination server . For pointer may reference the first page of the next hash H2
example , assume three fat pointers with values “ 1001 ” , containing y1 . Similarly , at the end of the H2 log , another
“ 1022 " , and " 1322 ” in server 142 contain enough data in 45 pointer may reference the first page of the H3 log .
buffer 446 for a network efficient transfer . These three fat Alternative Embodiments for Locally Distributed Data
pointers are sent in one message to server 122 . Upon receipt , Structures
each destination server then inserts the entries locally into a For range based database operations , the data structure
locally distributed data structure . above provides an ideal balance between minimally sorting
Building Locally Distributed Data Structures 50 data and efficiently maintaining the data in memory . In

In a preferred embodiment , the locally distributed data alternative embodiments , all or a portion of a locally dis
structure is a local range based hash table . When a set of fat tributed data structure may be optimized for searching for
pointers reach a target server , the fat pointers are placed into discrete values . Techniques described herein may be applied
a local hash table . Large pages get created sequentially in the to create , transform , or copy all or a portion of a locally
local hash table to create a link list of pages for each hash . 55 distributed data structure into a b - tree or b + tree . The b - tree
The hash to link - list structure works well for any values that and b + tree provide discrete search and sort benefits at the
are naturally stored in a sorted order , such as logs that store cost of using additional memory to create directory struc
data by date and / or time . ture .
When a query (using a cursor) needs a range of data for For example , the H1 slot has a hash log in FIG . 5C that

one of the database operations , the hash values that corre - 60 may be transformed into a b + tree . In one approach , the hash
sponds to the range of the cursor are identified , and then log is sorted using a sorting algorithm (such as merge sort) ,
sorted . Many operations do not require data to be sorted , but and then the directory structure of a b + tree is created in
for those that do , the sort is performed in response to layers . The first layer of directory nodes are added by
receiving a specific database operation . For example , the allocating memory for each directory node on an as need
SORT and JOIN operations may require one or more local 65 basis . A first directory node is created and the largest entry
hashes to be sorted in order to produce results corresponding from the first leaf node (42) is inserted into the first address
to values within those hash ranges . For example , if a first of the first directory node . Then the last entry of the next leaf

17
US 9 , 805 , 079 B2

18
node (x5) is added to the next address of the directory node , The value of the first fat pointer (x12) in the next leaf node
and so on . Once a directory node is full , additional space is n4 is added to the 1st level directory node because
allocated for the next directory node in the first layer . 4 = x * 4?y can be solved with y having a maximum value

If more than one directory node is created as a result of of 1 , when x = 1 , y = 1 . . . and so forth .
extracting the largest entry from each leaf node , another 5 Mathmatical Notation
layer of directory nodes is created using the same algorithm Let the set of keys be K = { x0 , x1 , x2 , . . . , xm } where
of extracting the largest entry from each first layer directory xisxi + 1 since we only write the serialized tree in a sorted
node to create a second layer of directory nodes . Layers are manner and m represents the last value that is used as key .
created until a layer includes only one directory node , In this example , the number of fat pointers in a fully packed
known as the root node . 10 leaf node is three . Thus , each node n has three values that are

Unfortunately , this process is sequential and may not used as keys :
normally benefit from many cores working in parallel on
different threads to create the b + tree . The entries of a higher { x3n » { 3n + 1 » * 3n + 2 } where n €Z , Osn < m / 3
level directory node require the entries of the lower level The following notation defines whether a value X , is
directory nodes to be complete . Additionally , some entries 15 used in a directory node .
are read multiple times . For example , the entry “ 42 is read
in both the construction of the leaf node (during sorting) and x , 7€ Z s . t . n = xb * y & Vy ' > y€ 2 , 7x ' e Z s . t . n = xb?y
then later during creation of the first directory node . Reading In laymen ' s terms , this means that each sequentially
the same entries multiple times may be computationally numbered leaf node n can be plugged into the equation
expensive if the entries for a particular node have already 20 n = xbºy , where b is the branching factor , and solved for the
been paged out . max integer value of y such that x and y are both integers .

A preferable approach for creating a B + tree includes Creating High Tier Directory Nodes with Zero Data Move
determining the number of data entries in a particular log , ment
and then using multiple threads to construct multiple por In the following example the branching , b , is 4 (rather
tions of the B + tree in parallel . Each leaf node has space for 25 than the 256 we use in our database) , but the number of fat
a set number of entries (usually to fit within the size of a pointers packed in each leaf node is still three . FIG . 6B is a
page , i . e . 4 KB) , and each directory also node has space for bock diagram illustrating creating a directory structure for a
a set number of entries (usually also to fit within the size of b + tree in a parallel process . In FIG . 6B , a second thread is
a page , i . e . 4 KB) , so a formula may be used to construct assigned the second forty - eight entries , which is a contigu
directory nodes using the first entry of each leaf node . Each 30 ous range of leaf nodes (16 - 31) .
sorted leaf node n _ i , is placed in the following the equation The value x48 from the first fat pointer in the node n16 is
to maximize the value of y : placed as a key and n _ i = x4 y can be solved with y having

a maximum value . The same algorithm is continued to n _ i = xb?y , determine whether the value x _ i in the first fat pointer of
where n _ i is the leaf node number , x is any constant integer , 35 each leaf node may be used as key in a directory node in the
b is the amount of branching at any directory node , and the tree .
maximum integer y determines where the value for first fat For example , for node seventeen , n = 16 :
pointer in the leaf node , n , is placed in the index structure . 16 = x * 4ºy ,
Preferably , each server has directory nodes that have 255 x = 16 , y = 0
branches , which requires maximizing y in the equation 40 X = 4 , y = 1
n _ i = x * 255 ̂ y . However , for simplicity the example has a x = 1 , y = 2
branching factor of only four . The solution with the largest y value 2 indicates that a key

FIG . 6A is a bock diagram illustrating creating a first derived from the value from the first fat pointer in the node
directory structure for a b + tree in a parallel process . There may be placed in a higher tier directory node . In this
are a total of ninety - six entries for a total of thirty - two leaf 45 example , y = 2 when x = 2 , so a key x48 derived from the first
nodes . Each leaf node is numbered sequentially (no , nl , fat pointer in the leaf node n16 is in the y = 2 layer . The value
n2 , . . .) as it is scanned . In FIG . 6A , a first thread is assigned x48 may be placed as a root node without an intermediate
the first forty - eight entries , which is a contiguous range of node to point to yet . Continuing on :
leaf nodes (0 - 15) . The value of the first fat pointer (x51) in the next leaf node

The leaf node n0 (starting with the fat pointer [3 , 102 , 2]) 50 n17 is added to the oth level directory node because
is the first leaf node , so a pointer is made to this leaf 17 = x * 4 ̀ y can be solved with y having a maximum
node , but no values are used from this node in a value of 0 , when x = 17 , y = 0 ;
directory node . The value of the first fat pointer (x54) in the next leaf node

The value in the first fat pointer (' 123 ') in the second leaf n18 is added to the oth level directory node because
node nl is added to the oth level directory node because 55 18 = x * 4 y can be solved with y having a maximum
1 = x * 4 ̂ y can be solved with y having a maximum value value of 0 , when x = 18 , y = 0 ;
of 0 , when x = 1 , y = 0 . The value of the first fat pointer (x57) in the next leaf node

Assuming more data is placed in fat pointers in this n19 is added to the oth level directory node because
example : 19 = x * 4ºy can be solved with y having a maximum

The value of the first fat pointer (x6) in the next leaf node 60 value of 0 , when x = 19 , y = 0 ;
n2 is added to the oth level directory node because The value of the first fat pointer (x60) in the next leaf node
1 = x * 4 ' y can be solved with y having a maximum value n20 is added to the 1st level directory node because
of 0 , when x = 2 , y = 0 ; 20 = x * 4 ' y can be solved with y having a maximum

The value of the first fat pointer (x9) in the next leaf node value of 1 , when x = 5 , y = 1 . . . and so forth
n3 is added to the oth level directory node because 65 With the 1st level directory node filled in , a reference may be
1 = x * 4 y can be solved with y having a maximum value made from the root node containing x48 to the 1st level
of 0 , when x = 3 , y = 0 ; and directory node containing x60 .

US 9 , 805 , 079 B2
19

Finally , once all of the directory nodes for both threads are some embodiments , the fat pointers are encoded into skinny
complete , the two threads can be combine together . FIG . 6C pointers . The word length of the metadata is reduced to the
is a block diagram illustrating a b + tree created using a smallest number of bits possible using packing and encoding
parallel construction process . By dividing up the creation of techniques described herein .
the b + tree among two or more threads using a single 5 Creating a Skinny Pointer by Removing High Order Bits
formula , the entries in the b + tree only need to be scanned In some embodiments , the values in fat pointers may
once . Furthermore , the entries are scanned in a parallel inserted in a globally distributed data structure as 64 - bit
fashion , so a large amount of work is completed in a fraction integers . However , simply by traversing the data structure
of the time . holding the fat pointers , some of the high order bits stored
Balancing Directory Nodes in B + Trees Created in Parallel 10 within the fat - pointer may be determined . By removing

The amount of data packed into the leaf nodes may result these high order bits from the value portion of a fat - pointer ,
in hanging directory nodes . For example , adding a node n32 a fat pointer may be encoded in a more compact format .
to the index structure (resulting in entry X96 added as a y = 2 FIG . 7A is a block diagram illustrating a process for
level node because x = 2 , y = 2) , there would need to be one encoding three fat pointers in a compact format . For refer
directory nodes added to the tree that is not filled with 15 ence , the ranges from a range based hash function a page of
entries . In cases where a directory node other than the root fat pointers are depicted as integer values in area 700 . The
node is not fully packed , the directory nodes may be same range based hash and page of fat pointers is illustrated
rebalanced with the sibling nodes in order to make the tree in area 702 with some integers depicted in binary . The higher
a legal B + - Tree . In this example , a new level y = 1 directory order bits 704 corresponding to the range based hash are
node would be added to the tree , and the directory structure 20 highlighted to show their similarity to the higher order bits
would be rebalanced so at least nodes n28 - n32 have their 708 of the page . The higher order bits 708 are removed from
own y = 1 level directory node . the fat pointers in the page in area 712 because these bits are

Note that the directory portion of a B + - Tree is actually a storing redundant information .
B - Tree . Thus , the same techniques may be applied to a Globally Distributed Data Structure of Skinny Pointers
B - tree . 25 The number of bits required for storing values may be
Serializing “ Cold ” Index Structures for Persisting different based on the parent directory structure . FIG . 7B

Index structures that are not being used by the users or illustrates how the number of bits required to store the values
applications interacting with the cluster are referred to as in fat pointers may vary from hash log to hash log .
" cold . ” Cold index structures are moved from volatile The value range in the H1 hash log is constrained by
memory to a lower tier memory media as the volatile 30 0 - 383 and has 384 possible values . Therefore , each
memory fills up . The additional space in the volatile memory skinny pointer in the linked list of pages only requires
(or higher tier storage media) is then used to create and store ceil (log , 384) = 9 bits to encode values in these nodes .
“ hotter " data . These cold trees may be written to disk based The value range in the H2 hash log is constrained by
media . 384 - 511 and has 128 possible values . Therefore , each

Disk based medias read and write data on a circular platter 35 skinny pointer in the linked list of pages only requires
that rotates past a device called a read / write head . The ceil (log2128) = 7 bits to encode values in these nodes .
read / write head can move to different areas on the platter The value range in the H3 hash log is constrained by
with an actuator arm , but reading and writing by only 512 - 999 and has 488 possible values . Therefore , each
rotating the platter is much faster . When data is moved from skinny pointer in the linked list of pages only requires
a random access media to a disk based media , accessing data 40 ceil (log , 488) = 9 bits to encode values in these nodes .
becomes more efficient if the data is stored in linear arrays The number of bits saved for a hash based structure may be
because disk read / write head stays stationary while the increased by decreasing the ranges produced by the range
platter rotates . based hash function (s) .

In some embodiments , when index structures are stored One subtle implication of this key encoding scheme is the
on disk for auto - tiering purposes (or merely to persist the 45 savings based on the type of the index structure used . In the
data) , sorted / unsorted fat pointers are stored in a linear array case where a log is transformed into a b + tree , as the height
on disk with accompanying metadata for their organization . of a b + tree grows , the range indicated by the directory nodes
In the case of a b + tree , the serialized structures written to above the leaf nodes shrinks on average . This in turn
disk includes only the leaf nodes . The directory nodes are increases the number of bits that can be saved on average by
removed from the data structure , so the entire index structure 50 encoding values from fat pointers into skinny pointers . For
may be persisted quickly and with a minimum amount of example , FIG . 7C is a block diagram illustrating a hash log
metadata movement . transformed into a b + tree . The directory node with the

If a cold index structure becomes useful or “ hot ” , it may values 633 , 783 , and 900 truncates the required word length
be moved back to a higher tier of memory media . Using the for skinny pointers in each leaf node . The leaf nodes no , n2 ,
same algorithm , the hash table for the index may be recre - 55 and n3 only require 7 - bits to encode values in each skinny
ated when the index is moved back to the high performance pointer because the ranges of possible values in these pages
random access memory or storage media . are less than 128 - bits . The leaf node nl only requires 8 - bits
Internal Data Represenation of Fat Pointers to encode values in each skinny pointer because the range of

In some embodiments , the value encoding of a fat pointer possible values in this page is less than 256 - bits . To deter
is a 64 - bit number , and the location encoding of a fat pointer 60 mine the value of a fat pointer stored by a skinny pointer , the
is a 64 - bit number . There is metadata stored at the root of lowest possible value for the page is added to the value
each local structure explains how to interpret this 128 - bit stored in the skinny pointer Skinny pointers may be returned
integer . back to fat pointers for transfer to other nodes using this

While this 128 - bit index may be used to quickly ascertain formula .
a value from a record and the location of a record in the 65 Packing Location Data of a Fat Pointer
cluster , these fat pointers take up a significant amount of The location encoding of a fat pointer contains the server
memory . To more efficiently use memory in the system , in ID (NID) on which the record is present and the record ID

US 9 , 805 , 079 B2
21 22

within the node that encodes the data . Assuming a cluster 8B shows how the count may be evenly distributed across
size of n , ceil (log2 n) bits are reserved for storing the server three servers . The range based DHT is adjusted to reflect this
ID (where function ceil stands for ceiling) . The rest of the new range partitioning .
location encoding is dedicated to storing a Recorded that is The fat pointers are transferred in groups to sibling
unique on an individual node . In some embodiments , a 5 servers according to the new DHT . For example , fat pointers
record ID is a monotonically increasing number beginning from server 102 are sent to 122 , and fat pointers from server
from 0 that is incremented each time a new record is loaded 122 are sent to server 142 .
into that particular node . If each node can store up to a Deferred Load Balancing of Fat Pointers

In some embodiments , indexes are created during load , so maximum of r records , then ceil (logz r) bits are reserved to 10 further data may be loaded after the initial index structure is store the Rid . In total , location encoding requires (ceil (log2 created . Rather than load balancing each time new fat n) + ceil (log , r)) bits . pointers enter a distributed index , the fat pointers may be Probabilistic Location Encoding of Fat Pointers accumulated in a graph such as FIG . 8A . The DHT is not
In some embodiments , the location of a record within a fat adjusted until the fat pointers assigned to a particular server

pointer may be encoded by generalizing the expected loca - 15 reach a policy threshold amount . Ranges may be temporarily
tion of a record . For example , the location encoding may locked in order to ship fat pointers between servers . The cost
include only the node that is expected to host the record of locking down this data should be offset by the increase in
Once a server receives a request for a record based on a fat performance of rebalancing the fat pointers .
pointer with this type of encoding , the server searches for the This temporary locking and transferring of fat pointers is
record in its local dataset for that record . According to this 20 relatively quick because it is only the transfer of metadata .
embodiment , more memory is preserved in each node The large records of data (stored in the local datasets) are not
because less information is stored . However , the storage being shipped around cluster because the metadata need not
method is computationally more expensive because a server reside on the same server as the data .
must perform a search both within the index structure and at Using the Same DHT for Multiple Unique Keys
the node that is expected to host the record . 25 When creating additional distributed indexes , the same

In some embodiments , location encoding may include adjustable range based DHT may be used for distributing the
probabilistic approaches . In a probabilistic approach , a loca new fat pointers . Because the keys are hashed in a similar
tion encoding may only include higher order bits of a row ID manner , data items with the same key values are stored on
to narrow down a possible location in an expected server the same server . FIG . 9A is a block diagram illustrating a
location . In other probabilistic approaches , a fat pointer may 30 cluster with two index structures hashed using the same
include a percentage instruction of how much to of a local range based DHT . The first distributed index has a unique
dataset should be scanned before reverting to a more sys key " VOTES . USEFUL ” selected for indexing in a unique
tematic approach of searching for a record . Probabilistic distributed index . An initial range based DHT is created for
approaches may include combinations of these approaches distributing the VOTES . USEFUL values from the sample
and other probabilistic approaches known in the art . 35 set for the first data source .

With probabilistic encoding , a server in the cluster is able the range of VOTES . USEFUL in server 102 is 0 - 999 for
to shrink the size of a fat pointer from 128 bits down to tree 902
ceil (log 2 p) + ceil (log 2 a) where p is the bit length of the the range of VOTES . USEFUL in server 122 is 1000 - 1999
probabilistic encoding scheme , and ? is the average range for tree 904
size of keys on the bottom - most layer of a B + tree ' s internal 40 the range of VOTES . USEFUL in server 102 is 2000 - 2999
nodes . for tree 906
Segfault Tolerance The second sample dataset also has a unique key

When the location of a fat pointer is incorrect , the server VOTES . FUNNY selected for indexing in a unique distrib
given the task of producing the record can search any u ted index . The same range based DHT is used to distribute
number of nodes on the cluster to find the record based on 45 the fat pointers for the VOTES . FUNNY fat pointers .
the value contained in the fat pointer rather than the location the range of VOTES . FUNNY in server 102 is 0 - 999 for
data . The index structure hosting the fat pointer contains the tree 912
key from which value came and the dataset from which the the range of VOTES . FUNNY in server 122 is 1000 - 1999
value came . Given this general knowledge , any computer for tree 914
may issue a command to search the cluster sequentially or in 50 the range of VOTES . FUNNY in server 102 is 2000 - 2999
parallel for the record for that particular dataset that contains for tree 916
that key - value pair . As a result , corresponding VOTES from the sample set
Load Balancing Fat Pointers in a Second Pass Process from the first unique field and the second unique field are
As described when explaining FIG . 4 , fat pointers are loaded into the same server . Even if the DHT is adjusted

distributed across the cluster according to a range based 55 because a skewed distribution causes the number of fat
distributed hash table (“ DHT ”) . The initial distribution of fat pointers in a particular server to reach a threshold level , the
pointers may result in a skewed distribution of data across corresponding VOTES fat pointers from both index struc
the cluster . The function used for the DHT may be adjustable tures are transferred among the servers together . FIG . 9B is
to balance an abnormal distribution of data . a block diagram illustrating a cluster with two index struc

FIG . 8A is a box diagram illustrating how a server in the 60 tures rebalanced using the same range based DHT . The
cluster counts keys to determine how to adjust the DHT . A rebalancing results in different ranges assigned to each
server in the cluster counts the keys from each fat pointer server .
into small evenly spaced ranges . For example , FIG . 8A the range of VOTES . USEFUL from tree 902 and
shows the server 102 counting each value into ranges of 16 . VOTES . FUNNY from tree 912 in server 102 is 0 - 750
The server then takes the integral of this count and separates 65 the range of VOTES . USEFUL from tree 904 and
the small ranges into evenly spaced large ranges based on VOTES . FUNNY from tree 914 in server 122 is 751
the number of nodes used in the cluster . For example , FIG . 1500

US 9 , 805 , 079 B2
23 24

the range of VOTES . USEFUL from tree 906 and server 102 , 122 , 142 in the cluster 100 , so the OID location
VOTES . FUNNY from tree 916 in server 142 is 1500 refers to the local portion of the database object . Since each
2999 server only populates a local dictionary , fields from the same

Value Arrays as Entries in Globally Distributed Data Struc dataset are likely recorded in the dictionaries of multiple
tures servers .

An entry in a globally distributed data structure may In FIG . 10B , only one key (SALES) has been selected by
include a value array rather than only one fat pointer or the user , so only one key has been published to an index
skinny pointer . A value array contains one or more fat (distributed across 1012 - 1 , 1012 - 2 , 1012 - 3) at this time . The
pointers and / or immediate values that together form a rest of the key - value pairs are only accessible by searching

the local datasets 1010 - 1 , 1010 - 2 , 1010 - 3 . record . For example , the output of a JOIN operation includes 10 Field dictionary 1002 records the Album fields including a result set organized in a globally distributed data structure NAME , DATE , and GENRE , as located in local dataset where every entry has a two element value array . The first 1010 - 1 and the field SALES as located in a local element in the value array is a fat pointer to a record from portion of distributed index 1012 - 1
a first dataset , and the second element in the value array is Field dictionary 1004 records the Album fields NAME , a fat pointer to a record from a second dataset . The joined 15 DATE , and GENRE , as located in local dataset 1010 - 2
record is represented by the union of the records referred to and the field SALES as located in a local portion of
by both fat pointers in the value array . distributed index 1012 - 2

Value arrays may contain one or more immediate values Field dictionary 1006 records the Album fields NAME ,
as an element in the array . In some embodiments , immediate DATE , and GENRE , as located in local dataset 1010 - 3
values are included when the cluster receives a command 20 and the field SALES as located in a local portion of
that indicates the user desires to augment a schema . For distributed index 1012 - 3
example , the cluster may receiving a command for creating The dictionary of unique fields aggregates the fields of
a key VOTES . SUM from VOTES . FUNNY + VOTES . USE - every sample dataset uploaded to the cluster . These sample
FUL . In this example , each value array may contain a fat datasets may be uploaded by different users or by the same
pointer for VOTES . FUNNY in the first element , a fat pointer 25 user . FIG . 10C is a block diagram illustrating a dictionary of
for VOTES . USEFUL in the second element , and an imme - fields from two sample datasets . The first sample dataset
diate value of the sum of the value from the fat pointer in 1010 is from the raw data source of album sales in FIG . 10A
VOTES . FUNNY and the value from the fat pointer in and is distributed into local datasets 1010 - 1 , 1010 - 2 , 1010 - 3 .
VOTES . USEFUL . The second sample dataset 1020 is from a raw data source

In some embodiments , a value array may be encoded to 30 of weather reports from FIG . 10A and is distributed into
compact the size of one element based on a value or location local datasets 1020 - 1 , 1020 - 2 , 1020 - 3 . SALES distributed
from a fat pointer in another element . For example , when index 1012 - 1 , 1012 - 2 , 1012 - 3 and DATE distributed index
each value array entry is created based on a JOIN operation 1014 - 1 , 1014 - 2 , 1014 - 3 are created based off of the sample
with the condition that two keys have the same value , the dataset 1010 of album sales . DATE distributed index 1022
value may only be contained in one fat pointer , while the 35 1 , 1022 - 2 , 1022 - 3 and TEMP distributed index 1024 - 1 ,
other fat pointer is truncated to only contain the location of 1024 - 2 , 1024 - 3 are created based on the weather sample
the second record . Similarly , when each value array entry is dataset 1020 .
created based on a database operation that augments the Reduced Operation Database
schema of a record using two or more keys from the same The cluster 100 is configured to perform a reduced set of
record , the location of the record may only be recorded in 40 operations on the keys located in the dictionary of fields or
one fat pointer , while the other fat pointer (s) contain the on the results of a previous operation . The database opera
additional value (s) . tions are performed against data as stored in the local
Creating a Dictionary of Fields During Load datasets or against data as stored in fat pointers . In a

During load , a server assigned to load a particular record preferred embodiment , each server in the cluster is config
also parses the distinct fields in each record that it loads . The 45 ured to receive one of four operations for performing on all
distinct fields discovered in each record are loaded into a of the data items corresponding to a particular field from a
dictionary of unique field names . The field names are stored particular dataset . The four operations include FILTERS ,
in a dictionary of fields as fat pointers in a radix tree data AGGREGATES , SORTS and JOINS (FASJ) .
structure with the key being the unique name of the field and FIG . 12 is a block diagram illustrating system software in
the value being the OID of the object that contains the key . 50 each database server . In the embodiment illustrated in FIG .
The distinct names may be hierarchy specific (NAME = 12 , a server 1200 (for example 102 , 122 , 142) receives input
FRIENDS . NAME) ; schema specific ({ NAME , from a command line interface 1202 , a graphic user interface
FRIENDS } + { FRIENDS , NAME }) ; dataset specific 1204 , or a REST endpoint 1206 . The REST endpoint 1206
(NAME from sample set X + NAME from sample set Y) ; is preferably configured to receive and return JSON files , but
primitive type specific (NAME (int) # NAME (string)) ; or 55 the system may be configured to receive and return other file
unspecific . types such as CSV . One or more of these interfaces 1202 ,

FIG . 10A is an example of the format the two sample 1204 , 1206 executes on a client computer , and the interface
datasets 1010 , 1020 . These datasets may be granted an OID communicates with the database server 102 through an API
through the microkernel . Additionally , an index may be 1208 .
created and granted an OID through the microkernel . Thus , 60 Application Programming Interface 1208 provides a set of
the OID location of a particular field may be an index or routines , protocols , and tools for building software to
dataset . employ the database cluster 100 . The API 1208 provides

FIG . 10B is a block diagram illustrating an example commands for importing and exporting data , and for per
dictionary of unique fields after the Album sample dataset forming database operations such as filters , aggregates ,
1010 is loaded . Fields are extracted from dataset 1010 and 65 sorts , and joins .
recorded in a field dictionaries 1002 , 1004 , 1006 . An inde The reduced operation database engine 1210 divides work
pendent dictionary 1002 , 1004 , 1006 is located on each specified by input received into a combination of one or

US 9 , 805 , 079 B2
25 26

tions

more basic database operations comprising : filters , aggre - tions . Fat pointers in the distributed result set are determined
gates , sorts , and joins . A separate execution plan is then based on the database operation received , and distributed in
created for each different operation . The work for each the same type of globally distributed data structure as
particular operation is distributed to other servers 1214 in described in FIGS . 3 - 5C .
the cluster 100 based on the execution plan . Each operation 5 FIG . 11A is a block diagram illustrating a distributed
is performed atomically on data items parsed from one or result set after a join operation . The resulting distributed
more sample datasets . In some embodiments , hardware is result set 1102 of fat pointers is stored in a globally distrib
configured in each server to optimize the execution of uted data structure with a value array of fat pointers for each
specific operations such as filters , sorts , aggregates , and entry . The first element in the value array of fat pointers has
joins . 10 an Albums . DATE result fat pointer , and the second element
Constant Response Times for Performing Database Opera in the value array of fat pointers has the Weather . DATE

result fat pointer . Each value array of fat pointers in distrib
Records from semi - structured datasets have a variable uted result set 1102 is distributed into local data structures

record size . Because there is little control over record size , 1102 - 1 , 1102 - 2 , and 1102 - 3 by hashing the value that was
scanning large amounts of records for each database opera - 15 equal between the two keys using a global range based hash
tion could cause a user to lose interest in exploring the function to determine the appropriate server , and then hash
schemas of a sample dataset . A database operation that takes ing the value that was equal between to the two keys using
more than thirty or so seconds is generally considered a long a local range based hash function to determine which log to
running operation . For example , the cluster may receiving a add the entry to .
command for performing against the ALBUMS sample 20 Iterative Operations on Distributed Result Sets
dataset to AGGREGATE by GENRE . The GENRE field has The process may be repeated in an iterative process of (1)
not been indexed , so the entire sample dataset 1010 is receiving an operation to be performed against data in a
scanned . distributed result set and (2) creating a child distributed

However , the system has many reasons , described herein , result set of fat pointers with the results from the parent
to create globally distributed data structures before they are 25 distributed result set .
needed , so the database operations may be performed FIG . 13A is a dependency graph illustrating a client ' s
against fat pointers rather than the native format records . interactive exploration of one or more datasets . The initial
When each server performs work against a globally distrib - nodes 1010 , 1012 , 1014 , 1022 , 1024 , and 1020 represent
uted data structure , only values corresponding to the appro data containers created during load . At block 1302 the
priate key are scanned , so that records that do not contain 30 cluster 100 performed an FASJ operation in this case a
values corresponding to a particular key are skipped entirely . JOIN operation) as previously described . A server 102 in the
This allows the cluster to perform work against arbitrary cluster 100 then received a command from the user to
types of data in a constant amount of time despite the perform a SORT operation . Using the distributed result set
variable size of the records . 1102 from the JOIN operation , the user performs a SORT

For example , in FIG . 10C a few keys (SALES , DATE) 35 Operation on the joined DATES column of the JOIN opera
were selected by a user as relevant from sample dataset tion to get sorted results at node 1306 . The cluster may
1010 . The keys were indexed accordingly , and distributed perform this SORT operation against the fat pointers from
indexes were created . the distributed result set 1102 - 1 , 1102 - 2 , 1102 - 3 .

Fat pointers for the SALES field are in distributed index After the operation is complete , a server in the cluster
1012 - 1 , 1012 - 2 , 1012 - 3 40 records the keys that were used in this chain of operations .

Fat pointers for the Albums . DATE field are in distributed For example , at block 1314 , the keys for Album . DATE and
index 1014 - 1 , 1014 - 2 , 1014 - 3 Weather . DATE are recorded as useful .

The user also desired to see if there is a relationship Efficient Use of Distributed Structures
between album sales and temperature on the date the album The system does not need to create a new distributed
was released , so the user also selected a few keys (DATE , 45 result set for all operations . In some situations , the system
TEMP) as relevant from the sample of the weather reports may be configured to take one or more previously created
dataset 1020 . distributed result sets and manipulate the fat pointers in the

Fat pointers for the Weather . DATE field are in distributed distributed result set in response to a database operation . For
index 1022 - 1 , 1022 - 2 , 1022 - 3 example , a SORT operation does not require a new distrib

Fat pointers for the TEMP field are in distributed index 50 uted result set . Instead , the system may take the distributed
1024 - 1 , 1024 - 2 , 1024 - 3 result set 1102 of the parent operation and sort the fat

The user then performs a JOIN operation on the sample pointers contained in that globally distributed data structure .
datasets 1010 , 1020 based on the condition that the Thus , the system image depicted in FIG . 11A may accurately
Albums . DATE key equals the Weather . DATE key . Rather depict the resulting data containers both at node 1302 and at
than scanning all of the records in datasets 1010 and 1020 , 55 node 1306 .
the Album . dates distributed index 1014 - 1 , 1014 - 2 , 1014 - 3 Using Globally Distributed Data Structures as Result
and Weather . dates index 1022 - 1 , 1022 - 2 , 1022 - 3 are evalu - Indexes
ated based on the join predicate Albums . DATE = Weather . The fields originally selected by the user may be con
DATE tained in records referenced by fat pointers in the distributed
Using Globally Distributed Data Structures for Result Sets 60 result set . For example , the JOIN by DATES result set 1102

Each server in the cluster 100 performs their portion of may only contains values for DATES , but the records
work and creates one or more distributed result sets of fat referenced by the fat pointers in the result set also contain
pointers based on the operation received . The distributed fields for SALES and TEMPERATURE . An index may be
result sets may be used in subsequently received database created using the subset of records contained in the distrib
operations . A globally distributed data structure is created 65 uted result set . Because these distributed indexes are created
with a unique OID generated from microkernel 1212 , so a based on records referred to in a distributed result set , they
distributed result set may be referenced in subsequent opera are referred to herein as result indexes .

27
US 9 , 805 , 079 B2

28
FIG . 11B is a block diagram illustrating distributed result In some embodiments , cold globally distributed data

indexes created based on the distributed result set from the structures may simply be deleted from the cluster . If a
join operation with the condition of structure becomes useful after being deleted , the structure
Albums . DATE = Weather . DATE . may be remade from scratch using data contained in local

Sales results index 1104 - 1 , 1104 - 2 , 1104 - 3 contains an 5 datasets or a parent globally distributed data structure .
index of the records with a SALES field referenced by In some embodiments , the globally distributed data struc
the fat pointers in the distributed result set 1102 - 1 , tures corresponding to a specific system state may be
1102 - 2 , 1102 - 3 expressly removed by a user . A dependency graph 1300 in

Temp results index 1106 - 1 , 1106 - 2 , 1106 - 3 contains an FIG . 13E has a control that enables a user to select a target
index of the records with a TEMP field referenced by 10 node 1304 from the graph and cause the system state that
the fat pointers in the distributed result set 1102 - 1 , corresponds to the target node from the graph to be dis
1102 - 2 , 1102 - 3 carded without causing any system states that correspond to

Result indexes may also be used in subsequent operations . any nodes that are connected to the target node to be
For example , a user may wish to compare SALES to discarded . For example , the resulting data container for the
TEMPERATURE , so a server 102 in the cluster 100 receives 15 result set shown at node 1304 may be removed from the
a command to perform the database operation SORT by dependency graph without affecting the other nodes .
SALES for the results of the JOIN operation . The cluster Refreshing the System State
performs the operation against fat pointers in the SALES In some embodiments , the user is given the option to
result index 1104 - 1 , 1104 - 2 , 1104 - 3 rather than performing remove all parent structures with respect to a distributed
the operation against the SALES distributed index 1012 - 1 , 20 result set from the memories of a cluster . The system
1012 - 2 , 1012 - 3 or the native format local datasets 1010 , attempts to keep around 90 % of the memory occupied by
1020 . indexes and result sets . Removing all parent structures

After performing the operation , a server in the cluster significantly reduces the amount of memory in use , so the
updates the dependency graph from FIG . 13A . FIG . 13B is system may create new globally distributed data structures
a dependency graph illustrating a client ' s interactive explo - 25 from that point .
ration of one or more datasets after performing the SORT As described in the previous sections , parent structures
operation on the SALES distributed result index At node may be manipulated to preserve memory or removed one
1308 , the SORT by SALES operation is recorded in the by - one by either persisting them or by deleting them from
dependency graph . At node 1314 , the keys for getting the the system to make way for new memory structures . These
results of the SORT by SALES operation are recorded as 30 systems provide valuable ways to preserve as much memory
useful . as possible without deleting the structures that make this
Removing Globally Distributed Data Structures from system run extremely fast . However , at some point , the user
Memory may decide that the current result set provides all of the

The memory available in a particular cluster is finite . schema information that is needed . Thus , the superset of fat
Globally distributed data structures are serialized and per - 35 pointers preserved in all of those additional parent structures
sisted on disk as memory limits are approached . Slower are no longer needed .
performance disk storage 118 , 138 , 158 may be available FIG . 11D is a block diagram illustrating refreshing the
within the servers 102 , 122 , 142 in the cluster 100 or in one system state by removing parent structures . The system
or more storage devices or services outside the cluster 100 . image maintains the local data structures for the SALES

Structures that are less frequently used are removed 40 result index 1104 - 1 , 1104 - 2 , 1104 - 3 , but the other distributed
before structures that are more frequently used . These struc - indexes , distributed result sets , and distributed result indexes
tures are said to contain " cold " data . Future subordinate have been removed . The system also maintains the infor
indexes may not be created if a field is cold . The threshold mation represented by the dependency graph in FIG . 13B .
rate of use required for a particular structure or field to be Thus , if any removed data structures need to be recreated ,
cold may be defined by policy . 45 the system has the history of database operations required to

FIG . 11C is a block diagram illustrating transferring the recreate these globally distributed data structures .
TEMP field index structures from memory to disk . As In some embodiments , the user may be given the option
previously described , disk based storage operates faster on to persist the current distributed result set by writing that
serialized data . A globally distributed data structure may be distributed result set to disk in addition to refreshing the
serialized by scanning only nodes that contain fat pointers or 50 system state . This involves serializing the local structures
skinny pointers . An example of this type of scan may be 1104 - 1 , 1104 - 2 , 1104 - 3 and writing them to disk as depicted
illustrated by flowing the flow of the linked lists in FIG . 5C . in FIG . 11D . Persisting the system state may also involve
The serialized data is then transferred to disk . For example : persisting (sending to disk) the chain of database operations
Local indexes 1024 - 1 , 1106 - 1 are serialized by server 102 used to arrive at that distributed result set (i . e . FIG . 11B) .

and transferred to disk 118 55 If a user ends a session at this point , the local datasets may
Local indexes 1024 - 2 , 1106 - 2 are serialized by server 122 be recreated by using a pre - configured pseudorandom algo

and transferred to disk 138 rithm and seed for extracting datasets 1010 , 1020 from the
Local indexes 1024 - 3 , 1106 - 3 are serialized by server 142 one or more source computing devices . Then the sorted

and transferred to disk 158 distributed result set index 1104 may be recreated in
If a serialized data structure is needed by a user , the 60 memory using the persisted data . Alternatively , the user may

serialized data structure is loaded in memory and re - hashed choose to have any other version of the system state recre
at the appropriate nodes . The range based hashing used to ated by choosing a state from the dependency graph in FIG .
separate the linked lists may be stored in the head node of 11B .
the serialized structure . Alternatively , the structure may be Creating Indexes Based on Use in Database Operations
rehashed according to a configured hash function . If neces - 65 A server in the cluster tracks which fields are continually
sary , directory nodes may be recreated using a sorted seri - used in database operations either at a threshold amount or
alized data structure as described in FIGS . 6A - 6C . at a threshold rate . A globally distributed data structure may

29
US 9 , 805 , 079 B2

30
be created to index a particular field that is continually used never used , so the TEMP field may be automatically
in received database operations . removed from the golden schema if it was previously added .

For example , after performing the sort on SALES data , a In some embodiments , a golden schema created for one
user may not have discovered any useful correlation client may be stored so other users may access that golden
between TEMP and SALES . However , the user may look 5 schema . The other users may use that original golden
back to the raw format weather data to discover that a schema as a starting point for their particular problem , and
WEATHER field is also included in the weather sample set create a new golden schema based on that original golden
1020 . To test whether there is any correlation between the schema after interacting with the big data dataset and adding
WEATHER field and the SALES field , the cluster may or removing fields from that golden schema .
receive a command from the user to perform a FILTER " Discovering Golden Schema by Drilling Down to Useful
operation for a particular value in the WEATHER field such Records
as " rainy . ” After performing this operation , the user may Big data presents a unique problem for requesting data
desire to perform a similar FILTER operation on another items from a dataset because the potentially useful keys and
particular value in the WEATHER field such as “ sunny . ” 16 values are unknown to the user . The user is searching the
As the cluster performs these operations , a server in the dataset (s) for trends and phenomena that could be used in a

cluster tracks that the WEATHER field has been used in report or model . The data has some structure , but the
multiple operations . As a background process , the cluster detailed structure of each record is unknown to the user at
may create a distributed result index for the WEATHER key the time the user wishes to start requesting data . Colum
based off of the results of SORT by SALES operation . FIG . 20 narizing an entire dataset requires too much computational
11E is a block diagram illustrating a result index created work and ends up giving the user information overload . All
based on database operations received from a user . The of the keys from a sample dataset are too numerous for a user
WEATHER distributed result index 1108 - 1 , 1108 - 2 , 1108 - 3 to process and discern meaningful relationships between the
is created from distributed result set 1102 . The second filter keys . At the same time , pure columnarization causes the user
operation FILTER by WEATHER (“ sunny ”) may be per - 25 to lose valuable information regarding how the information
formed by masking results from the WEATHER result is organized within particular schemas (i . e . whether the data
index . is nested) .

These operations are also recorded in the dependency To prevent this loss of information , results of a database graph presented in FIG . 13C . At nodes 1310 and 1312 , the operation may be displayed to the user with an accompa
FILTERS performed on the WEATHER field are recorded . 30 nying indication of the schema corresponding to one or more The cyclic process indicates that multiple operations are result records . After displaying the schema , the cluster may performed even though only one result index needs to be receive further commands that indicate to the cluster how to created . The keys required for this chain of operations are
recorded at nodes 1318 - 1 and 1318 - 2 . The additional keys homogenize one or more schema .
required for each operation include the WEATHER field 35 In some embodiments , the fields from each record are
referred to at nodes 1318 - 1 , 1318 - 2 . stored as related to a schema . Each field may have more than
Golden Schema one schema associated with it in the dictionary of fields . As

The fields selected by a particular client or added based on the cluster performs more and more chained database opera
use in database operations received from a particular client tions , there are less schemas associated with the useful keys
may be stored in a data structure referred to as the golden 40 in the golden schema . By drilling down to a subset of
schema . During load an initial golden schema is created database records out of a plurality of database records , a
from user selected keys . For example , primary user may also drill down to a manageable number

the SALES key may be stored in the golden schema when of schema . After performing the database operations , a
creating the SALES index 1012 subset of records are displayed to the user . Displaying the

the Albums . DATE key may be stored in the golden 45 results of these database operations allows a user to see
schema when creating the Albums . DATE index patterns in the schemas that are in the result records . Patterns

the Weather . DATE key may be stored in the golden may include similar key names or whether the keys are
schema when creating the Weather . DATE index nested .

the TEMP key may be stored in the golden schema when In particular , performing Filters , Aggregates , and Sorts
creating the TEMP index 50 allows the cluster to extract records that have meaningful

As the cluster performs operations based off of commands schema in the context of a user ' s problem . FIG . 17A is a
received from the user , the keys required in these operations block diagram illustrating patterns in schema discovered
may be added to the golden schema . For example , the after performing a database operation on a network log
DATES fields at node 1314 , the SALES field at node 1316 , dataset by . The database operation FILTER by FAILURE
and the WEATHER field at node 1318 are of particular 55 extracts records with a FAILURE key value . After perform
interest to the user in this example , so they are stored in a ing the operation , the schemas with the key “ registratio
" golden schema . ” n _ ID " are removed from the displayed results because the

The golden schema is not limited to a particular dataset . results do not contain any records that have that key .
For example , the golden schema in the example from FIGS . Additional schema information may be added to the dataset .
13A - 13C includes fields from both the albums sample 60 At area 1706 , the cluster receives a command indicating that
dataset 1010 and the weather sample dataset 1020 . the “ Results . error ” key should be added to the golden

Conceptually , the golden schema is an internal data struc - schema . Values relating to the “ Results . error ” key are parsed
ture that keeps track of keys useful to a particular client . and a new distributed index is created using the values in
Fields that are selected by a particular client as useful but “ Results . error ” to insert fat pointers in the globally distrib
never actually used in a database operation received from 65 uted data structure . After extracting “ Results . error , " the
that client may be removed from that user ' s golden schema . results column may be removed from the dataset if it is no
For example , in the 13A - 13C example , the TEMP index was longer used in database operations .

32
US 9 , 805 , 079 B2

31
Force Function Operations A JOIN operation followed by a condition requiring FAIL

In some embodiments , database operations may be per URE = 1 , reveals that the sample population does not contain
formed to combine one or more schemas even though the any failures . Failures occur so infrequently that increasing
schemas do not contain similar values . A big data dataset the sample size is not likely to help the user find a FAIL
contains keys with values of different primitive types , but 5 URE = 1 record . In this case , the user may add a record to the
similar meanings . The values corresponding to a first par current sample population that includes a value representing
ticular key in a first particular schema may be correlated the failure event (FAILURE = 1) . with the values of a second particular key in a second Once a particular record with a defined schema is deter particular schema by performing a force function JOIN . mined , a server in the cluster may receive a command to FIG . 17B is a block diagram illustrating how a force 10 change the failure value of a single record to “ 1 ” . Now , when function join may be used to join a device log dataset with the user sends the FILTER command with the condition of a weather dataset . The system provides for user defined FAILURE = 1 , at least one record is joined . The user may use functions and casting functions in conjunction with the JOIN
database operation , so values organized by any key may additional keys from one or more schemas that exist after the
combined . User defined functions and / or casting functions 15 ?o nctions 15 join to develop a more advanced algorithm based on the
used in conjunction with a join operation are collectively joined datasets .
referred to as force functions joins . Additional embodiments Publishing Field Names to a Semantic Network
may include force functions for other operations . The system The superset of all field names stored in user specific
tracks use of force function operations performed on each golden schemas , may be published to a globally maintained
schema , so the system can apply those force function 20 a semantic network .
operations during batch processing . Weighted relationships are created among field names

Schema 1712 has fields including device ID , GPS , Sys - based on field relationships of :
tem . TIME , Failure , and Results . error . Schema 1714 has Coming from the same dataset , schema , or record
fields including WEATHER , weather . Date , and zip code . At Being part of a nested schema , and having a parent or
area 1716 , the cluster performs a a force function JOIN 25 child relationship
operation of the fields of “ zip code ” and “ GPS ” using a user Name collision
defined function and a JOIN of the fields “ Weather . Date ” User received join operations
and " System . TIME ” using another user defined function . At Coming from the same golden schema
area 1718 , the schemas are combined . The device logs Suggesting Field Names to the Client Based on the Semantic
schema 1712 is enriched by additional keys provided in the 30 Network
weather schema 1714 . Keys that were previously not com - The relationships stored in the semantic network may be
parable such as “ Results . error ” and “ WEATHER ” are com - used to suggest further field names that may be useful in a
parable . particular user ' s golden schema .

For example , the WEATHER key may be sorted to For example , assume a second user previously selected
determine particular weather patterns that cause specific 35 the GENRE field as interesting when exploring the structure
device failures . Alternatively , specific weather types (rainy , of sample dataset 1000 . Because this GENRE field comes
windy) may be filtered , so further comparisons may be made from the same dataset 1000 as the SALES field and the
with smaller datasets . This may result in further “ drilling DATE field that have already been determined as interesting
down ” and / or additional JOIN operations . The results of a to the primary user , a server in the cluster may suggest the
JOIN operation allow for further FILTER , AGGREGATE , 40 GENRE field to the current user based on the weighted
and SORT database operations to perform the drilling down relationship of GENRE to other fields in the sample dataset
process iteratively . By performing additional joins , a user for album sales .
may even join data from a third schema with data from the FIG . 14 is an example semantic network for suggesting
first two schemas . field names to a client . The user received join operation
Inserting and Updating Records During Algorithm Forma - 45 represents the strongest weighted relationship between node
tion 1402 and node 1404 . The relationship exists from a user

In some situations , a user may desire to generate a query received join operation and a name collision . The relation
based off of a schema , but a particular value within the ships including nodes 1402 , 1406 and 1404 , 1408 represent
schema does not exist in the sample population initially the weakest recognized relationships because the fields
loaded into the cluster . For example , the values may occur 50 come from the same dataset , schema , or record . The nodes '
so infrequently that the sample dataset fails to include a 1406 , 1410 relationship represents an intermediate strength
record that contains these values . Thus , in algorithm forma relationship because the fields both come from the same
tion mode , users are given the tools to add values or records dataset , schema , or record , and the relationship exists in
that act as a starting point for the parent database operations another user ' s golden schema .
(i . e . a join) . The later dependent database operations may 55 Based on the GENRE recommendation , the user may test
take the user to a completely different set of records . whether there is any correlation between the WEATHER
However , for algorithm formation purposes , the records field and the GENRE field in terms of album SALES . A
themselves are not important , only the chain of database server in the cluster may receive an operation from the
operations are important . The chain of database operations primary user to perform FILTERs for particular values in the
allow the system to construct an algorithm by reverse 60 WEATHER field such as " rainy ” and “ sunny ” along with
engineering the database operations performed on the FILTERs for particular values in the GENRE field such as
sample dataset (s) . “ rock ” and “ blues . "

For example , in a random sample of device logs , a user These operations are all published to the dependency
may attempt to cross reference server failures with data from graph presented in FIG . 13D . At nodes 1320 , 1322 , 1324 ,
a weather dataset . An algorithm that cross references the 65 1326 , the FILTERS performed on the GENRE field are
datasets should include a JOIN operation . However , the user recorded . The keys required for this chain of operations are
needs a record containing a failure as a part of the algorithm . recorded at nodes 1328 - 1 , 1328 - 2 , 1328 - 3 , 1328 - 4 . In par

Sa

33
US 9 , 805 , 079 B2

34
ticular , the keys required additionally include the GENRE groups of servers . The threads executing FASJ combination
field . Each permutation of a combination of filters may be at node 1308 are then further split to perform FASJ opera
displayed to the user . tions at node 1310 with node 1312 , and nodes 1320 - 1326 in

FILTER by GENRE (“ rock ”) and FILTER by WEATHER parallel . The five discrete FASJ combinations were recorded
(“ rainy ”) and SORTED by SALES during the interactive exploration process , so no additional

FILTER by GENRE (“ rock ”) and FILTER by WEATHER programming is required by the user .
(“ sunny ' ') and SORTED by SALES Query Parsing , Plan Optimization , Scheduling and Execu

FILTER by GENRE (“ blues ”) and FILTER by WEATHER tion
(“ rainy ”) and SORTED by SALES Once the algorithm is generated , the servers act as a read

FILTER by GENRE (“ blues ”) and FILTER by WEATHER 10 only database with source computing devices storing the
(“ sunny ”) and SORTED by SALES data and server computing devices performing the filter ,

Based on these operations , the user may notice a corre aggregate , sort , and join operations against that data . All or
lation in the data that can be further modeled in batch mode . portions of the big data datasets are loaded into local datasets
For example , there may be a correlation between “ blues ” sequentially , so the data can be processed incrementally . The
album sales and " rainy ” weather . The user may also notice 15 local datasets in this portion of the process hold significantly
a correlation between “ rock ” album sales and " sunny ” more records than the local datasets in the query formation
weather . phase . Because the system has “ the golden schema ” , key
Dependency Graph Used for Batch Mode values pairs are only parsed from records that belong to

For each key in the golden schema , there is an associated schemas that make up the golden schema . Consequently , the
algorithm of database operations explaining how to get that 20 local datasets are only loaded based on the golden schema
key in batch mode . Multiple operation chains may be stored set of parsed keys . Essentially , the system filters out fields
in a dependency graph . The interconnections or lack thereof that are unused when creating the local datasets at the time
found in a dependency graph may be used to optimize data is read from one or more source computing devices .
execution of the algorithms in batch mode . Batch mode is The query is executed against data in an ad - hoc manner
entered once a user or client indicates one or more operation 25 based on the query execution plan . The " ad hoc ” manner
chains should be run in batch . refers to how distributed indexes , distributed result sets , and

For example , FIG . 13E illustrates how a particular user distributed result indexes can be created and deleted accord
explored two datasets . The dependency graph 1300 in FIG . ing to a plan derived from the algorithm formation stage .
13E may be displayed as a graphic user interface in some Specifically , globally distributed data structures are only
embodiments . A server in the cluster records many different 30 created or available in memory when they are needed .
operation chains in the dependency graph . The client may The algorithm plan may also be used to determine the
expressly select multiple operation chains as useful for points at which distributed indexes , distributed result sets ,
running against a big data dataset in batch or the non - and distributed result indexes may be deleted . These struc
removed nodes (everything except 1304) in the dependency tures are typically deleted immediately after every database
graph may be used for creating an algorithm to be performed 35 operation that uses the data in these structures is complete .
against the big data dataset in batch . The algorithm plan may also be used to determine the

The first operation chain includes FASJ combinations of points at which each dataset may be deleted . At some point
nodes 1302 and 1306 the local datasets are no longer necessary because all input

The second operation chain includes FASJ combinations values are located in a globally distributed data structure .
of nodes 1302 , 1308 , 1310 , 1320 40 Additionally , if all of the necessary input values are located

The third operation chain includes FASJ combinations of in a globally distributed data structure , the output in any
nodes 1302 , 1308 , 1310 , 1322 future distributed result sets may not require a location value

The fourth operation chain includes FASJ combinations in the fat pointers . The value arrays for a distributed result
of nodes 1302 , 1308 , 1312 , 1324 set would only include immediate values .

The fifth operation chain includes FASJ combinations of 45 FIG . 18 is a block diagram illustrating how data structures
nodes 1302 , 1308 , 1312 , 1326 may be added and deleted in an ad hoc manner . The Album

The four keys added to the schema at nodes 1314 , 1316 , dataset 1802 or a portion thereof is loaded into the cluster
1318 , and 1328 collectively make the golden schema that and the Weather dataset is loaded into the cluster . As data is
needs to be parsed from the big data dataset . The keys in the being pulled into the system , a SALES index 1804 and a
golden schema and the algorithm developed using these 50 DATE index 1806 are being created for the Records dataset ,
operation chains can be used to model correlations in the and a DATE index is created for the Weather dataset .

The first operation to be performed is sort operations
In batch mode , the cluster 100 may use the dependency 1808 , 1810 on the DATE distributed index 1806 , 1812

graph to perform an optimized algorithm . In a typical shot respectively . This operation may be performed as the data is
in the dark approach , a first algorithm would be written to 55 being loaded . In some embodiments , the sort operation is
parse values related to the key at node 1314 ; a second performed after load . After the loading operation is com
algorithm would be written to parse the key at node 1316 ; a plete , the join operation 1816 is performed between the two
third algorithm would be written to parse the key at node DATE distributed indexes 1806 , 1812 . After fully perform
1318 ; and a fourth algorithm would be written to parse the ing the join operation , the DATE distributed indexes 1806 ,
key for node 1328 . However , here a single algorithm is 60 1812 are deleted from the volatile memories of the cluster .
written to parse keys at nodes 1314 , 1316 , 1318 , and 1328 The resulting DATES fat pointers 1818 of the JOIN
and many of the steps of the algorithm may be performed in operation and the SALES distributed index 1804 are used as
parallel . inputs in the SORT by SALES database operation . The

For example , in the algorithm FASJ operation at node operation may be performed by cross - referencing the record
1302 may be performed by each server in the cluster in a 65 locations in the fat pointers of the SALES index with the
distributed manner . FASJ combination at node 1306 and record locations in the fat pointers of the DATES index , and
1308 may be performed in parallel by separate servers or removing any SALES fat pointers that do not correspond to

data .

US 9 , 805 , 079 B2
35 36

result fat pointers 1818 . The SALES distributed index may Only a finite number of rows may be displayed to the user
be sorted during load or immediately after load , so only the at any given time . Thus , the native records only need to be
cross - referencing needs to occur , or alternatively , the sorting parsed as the user scrolls or clicks the next page of rows . The
operation may be performed against the resulting data . Thus , process of displaying a data item as a user moves to a page
the SALES distributed index 1804 becomes the resulting 5 that requires the data item may be referred to herein as
SALES fat pointers 1822 by removing records that were “ demystification . ”
removed by the JOIN operation 1816 . In some embodiments , the native format records may be

The results 1822 of the SORT by SALES operation 1820 hidden from the user . A user may click on a particular row
or record in the native format column to display a particular are used in conjunction with the Weather local datasets 1814

as input in the FILTER by WEATHER operations 1824 . The 10 native format record . This process may also be referred to as
a form of demystification . The demystification process is a two arrows represent that two filter operations may be result of the underlying fat pointer system . The order of rows performed in parallel : (1) FILTER by WEATHER (“ rainy ”) displayed on a particular page is often the result of the fat and (2) FILTER by WEATHER (“ sunny ”) . Once the filter pointers from a single distributed index or distributed result operations are complete , the results 1822 of the SORT by DORT by 15 set . A server in the cluster does follow the fat pointer to the SALES operation 1820 may be deleted . Additionally , no 1on 1820 may be deleted . Additionally , no referenced record until necessary .

other calls are made to the WEATHER local datasets 1814 , The particular field names 1506 . 1510 . 1514 may be
so the WEATHER local datasets 1814 may be deleted 1828 . selected during load or pulled from the native format records

The results 1826 of the FILTER by WEATHER opera - by drag and drop , clicking , or some other interactive means .
tions 1824 are used in conjunction with the Albums local 20 In some embodiments these field names may also be typed
datasets 1802 as input in the FILTER by GENRE operations as in a natural language search bar . Beside every field name
1830 . The two arrows represent that two filter operations 1506 , 1510 , 1514 , is a menu button 1508 , 1512 , 1516 . The
may be performed in parallel : (1) FILTER by GENRE menu button provides tools for operating on the field . In
(“ rock ”) and (2) FILTER by GENRE (“ blues ”) . Once the addition to filters , aggregates , sorts , and joins the menu
filter operations are complete , the results 1832 of the FIL - 25 button may also provide functions that may be executed
TER by WEATHER operations 1824 may be deleted . Addi - through a combination of one or more of these operations .
tionally , no other calls are made to the Album local datasets Some built - in functions include , but are not limited to :
1802 , so the Album local datasets 1802 may be deleted 1834 . Mathematical Functions :

All of these operations together provide data from the ABSO) , MODO , POWER () , ROUNDO) , TRUNCO) ,
keys at nodes 1314 , 1316 , 1318 , 1328 that were determined 30 SINO , COSO) , TANO) , ASINO) , ACOSO) , ATANO ,
in the query formation stage . The distinct result sets may be SINHO) , COSHO) , TANHO) , SQRT () , EXPO) , LNO) ,
used to create separate four separate graphs , models , reports , LOG () , CEILC) , FLOOR () , SIGN () ,
or even tables for visualization purposes . The distinct result NANVLO implemented using libm as appropriate ;
sets include : String and RegEx Functions :
WEATHER (“ sunny ') & & GENRE (“ blues ”) 35 INITCAP) , LOWER () , UPPER () , CONCAT () ,
WEATHER (“ sunny ") & & GENRE (“ rock ”) LPADC) , RPADC) , LTRIM () , RTRIM () ,
WEATHER (" rainy ') & & GENRE (“ blues ”) REPLACE () , SUBSTR () , LENGTH () , INSTR () ,
WEATHER (“ rainy ' ') & & GENRE (“ rock ”) REGEX () , TO _ CHARO) , TO _ NUMBERO - string
In addition the data could all simply be normalized and functions implemented using libc (string . h) as appro

exported in a single format such as traditional table format 40 priate , and regular expression functions implemented
for exporting to another program . Other programs include using libc (regex . h) as appropriate ;
machine learning programs , traditional database programs Group Functions :
that allow for more traditional query based languages , or AVGO) , COUNT () , MAX () , MINO) , SUMO) , CORRO) ,
third party analysis software . MEDIANO) , STDDEVO , VARIANCE () ,
Reduced Operation Database GUI 45 Data and Time Functions :

The reduced operation database graphic user interface ADD _ MONTHS () , LAST _ DAY () , MONTHS _ BE
comprises multiple pages for selecting datasets and interac TWEEN () , NEW _ TIME () , NEXT _ DAY () , SYS
tively exploring the structure of the datasets according to the DATEO) , GREATESTO) , LEASTO) , TO _ CHARO) ,
workflow previously described . Some useful features of TO _ DATE () , ROUNDO) , TRUNCO — implemented
these pages are described herein in further detail . 50 using librt (time . h) , as appropriate .

FIG . 15A is a block diagram illustrating a user interface The graphic user interface also provides an area 1518 ,
for selecting useful keys in a JSON object during load . Each 1520 for adding more field names and performing operations
field has a clickable box next to the field name . Fields may and functions using these field names . Database operations
be clicked or selected to indicate that these fields should be may be input using a natural language engine in the header
displayed in column format . This window may be updated 55 row ; terms and connectors ; keyboard , mouse , and touch
several times during load as new field names are discovered . screen combinations ; buttons and menus , or any combina
The selections input by the user may also be used as an tion thereof .
indicator to create distributed indexes as previously FIG . 15C is a block diagram illustrating a user interface
described . for exploring schema of semi - structured data after a few

FIG . 15B is a block diagram illustrating a user interface 60 operations have been performed . The user dragged and
for exploring schema of semi - structured data . The user dropped the DATE key from the weather sample dataset
interface comprises a spreadsheet with native format records 1020 onto the DATE key for the album sample dataset 1010
in the right most column 1504 . Any field from a native to create the joined field name 1514 . Input was received
format record may be added to the spread sheet as a column . through the graphic user interface menu button 1516 to
A header row 1500 shows the field names selected by the 65 SORT by the SALES data items . The user also added fields
user , and the data items with those field names are displayed for WEATHER and GENRE to the spreadsheet . Using the
in the rows below 1502 . text bar area 1526 and the menu button 1528 , the user may

US 9 , 805 , 079 B2
37 38

input a FILTER operation for GENRE data items by “ rock ” Computer system 1600 further includes a read only
or " blues ” . Using the text bar area 1522 and the menu button memory (ROM) 1608 or other static storage device coupled
area 1524 the user may input a FILTER operation for to bus 1602 for storing static information and instructions
WEATHER data items by “ sunny " or " rainy . ” After review for processor 1604 . A storage device 1610 , such as a
ing these correlations the user may save each set of dis - 5 magnetic disk , optical disk , or solid - state drive is provided
played results to run in batch . and coupled to bus 1602 for storing information and instruc

In some embodiments , a user sends a command to the tions .
cluster to perform a first database operation . The first Computer system 1600 may be coupled via bus 1602 to a
database operation is performed against a dataset to create a display 1612 , such as a cathode ray tube (CRT) , for dis
first distributed result set of fat pointers . The first result set 10 playing information to a computer user . An input device
is displayed to a user , but the user may send a command to 1614 , including alphanumeric and other keys , is coupled to
perform a second database operation against data other than bus 1602 for communicating information and command
the first result set . This data may include data from the selections to processor 1604 . Another type of user input
dataset or data from a different data set . The second database device is cursor control 1616 , such as a mouse , a trackball ,
operation is performed to create a second set of fat pointers . 15 or cursor direction keys for communicating direction infor
The first result set is displayed along with the second result mation and command selections to processor 1604 and for
set . The user may then review the schemas contained in each controlling cursor movement on display 1612 . This input
result set , and perform further operations that may combine device typically has two degrees of freedom in two axes , a
the result sets through an inner or outer JOIN , perform first axis (e . g . , x) and a second axis (e . g . , y) , that allows the
further operations on a single result set , or jump back to a 20 device to specify positions in a plane .
previous operation based on information obtained from the Computer system 1600 may implement the techniques
schemas . described herein using customized hard - wired logic , one or

In some embodiments , tables and graphic user interfaces more ASICs or FPGAs , firmware and / or program logic
depicting tables are displayed in a web browser . A larger which in combination with the computer system causes or
portion of the table is rendered than what is displayed . When 25 programs computer system 1600 to be a special - purpose
a user scrolls , the table smoothly scrolls pixel by pixel rather machine . According to one embodiment , the techniques
than cell by cell . Additional portions of the table are ren - herein are performed by computer system 1600 in response
dered as the user scrolls farther through the table , so the user to processor 1604 executing one or more sequences of one
may continue smoothly scrolling . or more instructions contained in main memory 1606 . Such
Hardware Overview 30 instructions may be read into main memory 1606 from

According to one embodiment , the techniques described another storage medium , such as storage device 1610 .
herein are implemented by one or more special - purpose Execution of the sequences of instructions contained in main
computing devices . The special - purpose computing devices memory 1606 causes processor 1604 to perform the process
may be hard - wired to perform the techniques , or may steps described herein . In alternative embodiments , hard
include digital electronic devices such as one or more 35 wired circuitry may be used in place of or in combination
application - specific integrated circuits (ASICs) or field pro - with software instructions .
grammable gate arrays (FPGAs) that are persistently pro The term " storage media ” as used herein refers to any
grammed to perform the techniques , or may include one or non - transitory media that store data and / or instructions that
more general purpose hardware processors programmed to cause a machine to operate in a specific fashion . Such
perform the techniques pursuant to program instructions in 40 storage media may comprise non - volatile media and / or
firmware , memory , other storage , or a combination . Such volatile media . Non - volatile media includes , for example ,
special - purpose computing devices may also combine cus - optical disks , magnetic disks , or solid - state drives , such as
tom hard - wired logic , ASICs , or FPGAs with custom pro storage device 1610 . Volatile media includes dynamic
gramming to accomplish the techniques . The special - pur memory , such as main memory 1606 . Common forms of
pose computing devices may be desktop computer systems , 45 storage media include , for example , a floppy disk , a flexible
portable computer systems , handheld devices , networking disk , hard disk , solid - state drive , magnetic tape , or any other
devices or any other device that incorporates hard - wired magnetic data storage medium , a CD - ROM , any other
and / or program logic to implement the techniques . optical data storage medium , any physical medium with

For example , FIG . 16 is a block diagram that illustrates a patterns of holes , a RAM , a PROM , and EPROM , a FLASH
computer system 1600 upon which an embodiment of the 50 EPROM , NVRAM , any other memory chip or cartridge .
invention may be implemented . Computer system 1600 Storage media is distinct from but may be used in con
includes a bus 1602 or other communication mechanism for junction with transmission media . Transmission media par
communicating information , and a hardware processor 1604 ticipates in transferring information between storage media .
coupled with bus 1602 for processing information . Hard - For example , transmission media includes coaxial cables ,
ware processor 1604 may be , for example , a general purpose 55 copper wire and fiber optics , including the wires that com
microprocessor . prise bus 1602 . Transmission media can also take the form

Computer system 1600 also includes a main memory of acoustic or light waves , such as those generated during
1606 , such as a random access memory (RAM) or other radio - wave and infra - red data communications .
dynamic storage device , coupled to bus 1602 for storing Various forms of media may be involved in carrying one
information and instructions to be executed by processor 60 or more sequences of one or more instructions to processor
1604 . Main memory 1606 also may be used for storing 1604 for execution . For example , the instructions may
temporary variables or other intermediate information dur initially be carried on a magnetic disk or solid - state drive of
ing execution of instructions to be executed by processor a remote computer . The remote computer can load the
1604 . Such instructions , when stored in non - transitory stor - instructions into its dynamic memory and send the instruc
age media accessible to processor 1604 , render computer 65 tions over a telephone line using a modem . A modem local
system 1600 into a special - purpose machine that is custom - to computer system 1600 can receive the data on the
ized to perform the operations specified in the instructions . telephone line and use an infra - red transmitter to convert the

39
US 9 , 805 , 079 B2

40
data to an infra - red signal . An infra - red detector can receive distributing the sample population across one or more
the data carried in the infra - red signal and appropriate target computing devices of a plurality of computing
circuitry can place the data on bus 1602 . Bus 1602 carries devices ;
the data to main memory 1606 , from which processor 1604 prior to receiving a request to perform a particular data
retrieves and executes the instructions . The instructions 5 base operation , creating a globally distributed data
received by main memory 1606 may optionally be stored on structure as an index for a particular key ;
storage device 1610 either before or after execution by wherein the globally distributed data structure comprises
processor 1604 . a plurality of locally distributed data structures for the

Computer system 1600 also includes a communication particular key ;
interface 1618 coupled to bus 1602 . Communication inter - 10 wherein creating the globally distributed data structure
face 1618 provides a two - way data communication coupling includes :
to a network link 1620 that is connected to a local network identifying a set of records , each of which has at least
1622 . For example , communication interface 1618 may be one value that corresponds to the particular key ;
an integrated services digital network (ISDN) card , cable 1 for each record of the set of records , performing the
modem , satellite modem , or a modem to provide a data steps of :
communication connection to a corresponding type of tele creating a fat pointer to the record based , at least in
phone line . As another example , communication interface part , on :
1618 may be a local area network (LAN) card to provide a a given value in the record that corresponds to the
data communication connection to a compatible LAN . Wire - 20 particular key ; and
less links may also be implemented . In any such implemen a location of the record on a target computing
tation , communication interface 1618 sends and receives device of the plurality of computing devices ;
electrical , electromagnetic or optical signals that carry digi based on the given value , sending the fat pointer to
tal data streams representing various types of information . a host computing device in the plurality of com
Network link 1620 typically provides data communica - 25 puting devices ; tion through one or more networks to other data devices . For in response to receiving the fat pointer at the host example , network link 1620 may provide a connection computing device , performing the steps of : through local network 1622 to a host computer 1624 or to identifying a locally distributed data structure for data equipment operated by an Internet Service Provider the particular key ; (ISP) 1626 . ISP 1626 in turn provides data communication 30

services through the world wide packet data communication storing the fat pointer , within the locally distrib
network now commonly referred to as the " Internet ” 1628 . uted data structure , based on the given value ;
Local network 1622 and Internet 1628 both use electrical , in response to receiving the request to perform the
electromagnetic or optical signals that carry digital data particular database operation , determining that the
streams . The signals through the various networks and the 35 request makes reference to the particular key ; and
signals on network link 1620 and through communication generating a response to the request based , at least in
interface 1618 , which carry the digital data to and from part , on information obtained from the globally
computer system 1600 , are example forms of transmission distributed data structure for the particular key .
media . 2 . The method of claim 1 , wherein the sending the fat

Computer system 1600 can send messages and receive 40 pointer to the host computing device in the plurality of
data , including program code , through the network (s) , net - computing devices includes :
work link 1620 and communication interface 1618 . In the aggregating the fat pointer with a set of one or more fat
Internet example , a server 1630 might transmit a requested pointers that are assigned to the host computing device ;
code for an application program through Internet 1628 , ISP and
1626 , local network 1622 and communication interface 45 sending the set of one or more fat pointers in a single
1618 . message to the host computing device .

The received code may be executed by processor 1604 as 3 . The method of claim 2 , wherein the target computing
it is received , and / or stored in storage device 1610 , or other device sends the set of one or more fat pointers to the host
non - volatile storage for later execution . computing device in response to the target computing device

In the foregoing specification , embodiments of the inven - 50 determining that set of one or more fat pointers meets a
tion have been described with reference to numerous spe threshold data size .
cific details that may vary from implementation to imple - 4 . The method of claim 1 , wherein the storing the fat
mentation . The specification and drawings are , accordingly , pointer , within the locally distributed data structure , based
to be regarded in an illustrative rather than a restrictive on the given value includes :
sense . The sole and exclusive indicator of the scope of the 55 assigning the fat pointer to a linked list of a plurality of
invention , and what is intended by the applicants to be the linked lists ;
scope of the invention , is the literal and equivalent scope of wherein each linked list in the plurality of linked lists
the set of claims that issue from this application , in the contains one or more pages of fat pointers ;
specific form in which such claims issue , including any wherein each page of the one or more pages contains fat
subsequent correction . 60 pointer data corresponding to the particular key .

5 . The method of claim 4 , wherein the method further
What is claimed is : comprises :
1 . A method comprising : after generating the response to the request , receiving a
assigning each record of a plurality of records to a plurality of requests to perform a plurality of database

corresponding segment of a plurality of segments ; 65 operations ; and
based on a pseudorandom algorithm , selecting a subset of in response to determining that the plurality of requests

the plurality of segments as a sample population ; fail to make reference to the particular key , transferring

US 9 , 805 , 079 B2

5 5

15

20

the locally distributed data structure from memory to releasing the lock on the fat pointers in the globally
disk by reading each linked list of the plurality of linked distributed data structure .
lists serially onto disk . 10 . The method of claim 1 ,

6 . The method of claim 4 , wherein the method further wherein the sending the fat pointer to the host computing
comprises : device in the plurality of computing devices includes :

determining work required by the request may be per identifying an existing globally distributed data struc
formed against a set of particular values corresponding ture based on a second key ;
to the particular key ; determining a range based distributed hash table used

in response to determining work required by the request for the existing globally distributed data structure ;
may be performed against the set of particular values , and
sorting a particular linked list containing fat pointers sending the fat pointer to the host computing device

within a range of values that include the set of using the ranged based distributed hash table ;
particular values ; wherein the particular database operation joins values

constructing a first portion of a b + tree from the fat 15 from the particular key with values from the second
pointer data in the particular linked list ; key ; and

constructing , in parallel with the constructing of the wherein generating the response includes :
first portion of the b + tree , a second portion of the using the host computing device , locally performing
b + tree from the fat pointer data in the particular the particular database operation against locally dis
linked list ; and tributed data structures for the second key and the

combining the first portion and the second portion into particular key .
a combined b + tree . 11 . The method of claim 1 , wherein the particular data

7 . The method of claim 1 , wherein the storing the fat base operation is selected from a group consisting of a filter ,
pointer , within the locally distributed data structure , based an aggregate , a sort , and a join .
on the given value includes : 25 12 . The method of claim 1 , wherein the method further

determining a particular page in the locally distributed comprises :
data structure for the given value based on the given selecting the particular key , from among a plurality of
value falling within a range of values ; keys , as the key for which to build the globally dis

determining a shortened word length required to encode tributed data structure based , at least in part , on receiv
the range of values for the particular page ; and 30 ing the particular key in a selection from a user .

based on the determining , encoding the given value of the 13 . The method of claim 1 , wherein the method further
fat pointer in the word length . comprises :

8 . The method of claim 1 , wherein the generating the selecting the particular key , from among a plurality of
response includes : keys , as the key for which to build the globally dis

using a first host computing device , identifying a particu - 35 tributed data structure based , at least in part , on the
lar fat pointer that meets a condition in the request ; particular key being part of another request received

based on a particular location of a particular record from a user to perform one or more database opera
contained in the particular fat pointer , sending a mes tions .
sage , from the host computing device to a particular 14 . The method of claim 1 , wherein the method further
target computing device , for a particular key value from 40 comprises :
the particular record ; selecting the particular key , from among a plurality of

using the particular target computing device , creating an keys , as the key for which to build the globally dis
output fat pointer based on the particular key value tributed data structure based , at least in part , on the
from the particular record and the particular location of particular key being in a result set of another database
the particular record ; and 45 operation .

based on the particular key value , sending the output fat 15 . A method comprising :
pointer to a second host computing device in the receiving a request to perform a database operation ;
plurality of computing devices . performing the database operation to produce a first result

9 . The method of claim 1 , set corresponding to a particular key ;
wherein sending the fat pointer to the host computing 50 distributing the first result set in a globally distributed data

device in the plurality of computing devices includes : structure ;
determining the host computing device based on a wherein the globally distributed data structure comprises

range based distributed hash table ; a plurality of locally distributed data structures for the
in response to a particular host computing device particular key ;

storing a threshold data size of fat pointers , adjusting 55 wherein distributing includes , for each record in the first
a particular range corresponding to the particular result set , performing the steps of :
host computing device to include less fat pointers ; creating a fat pointer to the record based , at least in part ,

wherein the adjusting causes a set of fat pointers to on :
correspond a different host computing device than a given value in the record that corresponds to the
the host computing device ; particular key ; and

creating a lock on the fat pointers contained in the a location of the record on a target computing device
globally distributed data structure to prevent other of a plurality of computing devices ;
requests from accessing data through the globally based on the given value , sending the fat pointer to a
distributed data structure ; host computing device in the plurality of computing

based on the adjusting , sending the set from the par - 65 devices ;
ticular host computing device to the different host in response to receiving the fat pointer at the host
computing device ; and computing device , performing the steps of :

43

30

US 9 , 805 , 079 B2
44

identifying a locally distributed data structure for the or more fat pointers to the host computing device in response
particular key ; and to the target computing device determining that set of one or

storing the fat pointer , within the locally distributed more fat pointers meets a threshold data size .
data structure , based on the given value . 20 . The one or more non - transitory storage media of claim

16 . The method of claim 15 , wherein the method further 5 17 , wherein the storing the fat pointer , within the locally
comprises : distributed data structure , based on the given value includes : determining work required by a second database opera assigning the fat pointer to a linked list of a plurality of tion may be performed against the particular key ; and linked lists ; each given computing device in the plurality of comput wherein each linked list in the plurality of linked lists ing devices performing work against values in the fat 10 contains one or more pages of fat pointers ; pointers of a respective locally maintained locally wherein each page of the one or more pages contains fat distributed data structure of the plurality of locally

distributed data structures for the particular key . pointer data corresponding to the particular key .
17 . One or more non - transitory storage media storing 21 . The one or more non - transitory storage media of claim

instructions which , when executed by one or more comput - 15 20 1520 , further causing performance of the steps of :
ing devices , cause performance of a method comprising the after generating the response to the request , receiving a
steps of : plurality of requests to perform a plurality of database

assigning each record of a plurality of records to a operations ; and
corresponding segment of a plurality of segments ; in response to determining that the plurality of requests

based on a pseudorandom algorithm , selecting a subset of 20 fail to make reference to the particular key , transferring
the plurality of segments as a sample population ; the locally distributed data structure from memory to

distributing the sample population across one or more disk by reading each linked list of the plurality of linked
target computing devices of a plurality of computing lists serially onto disk .
devices ; 22 . The one or more non - transitory storage media of claim

prior to receiving a request to perform a particular data - 25 20 , further causing performance of the steps of :
base operation , creating a globally distributed data determining work required by the request may be per
structure as an index for a particular key ; formed against a set of particular values corresponding

wherein the globally distributed data structure comprises to the particular key ;
a plurality of locally distributed data structures for the in response to determining work required by the request
particular key ; may be performed against the set of particular values ,

wherein creating the globally distributed data structure sorting a particular linked list containing fat pointers
includes : within a range of values that include the set of
identifying a set of records , each of which has at least particular values ;
one value that corresponds to the particular key ; constructing a first portion of a b + tree from the fat

for each record of the set of records , performing the 35 pointer data in the particular linked list ;
steps of : constructing , in parallel with the constructing of the
creating a fat pointer to the record based , at least in first portion of the b + tree , a second portion of the

part , on : b + tree from the fat pointer data in the particular
a given value in the record that corresponds to the linked list ; and

particular key ; and 40 combining the first portion and the second portion into
a location of the record on a target computing a combined b + tree .

device of the plurality of computing devices ; 23 . The one or more non - transitory storage media of claim
based on the given value , sending the fat pointer to 17 , wherein the storing the fat pointer , within the locally

a host computing device in the plurality of com - distributed data structure , based on the given value includes :
puting devices ; 45 determining a particular page in the locally distributed

in response to receiving the fat pointer at the host data structure for the given value based on the given
computing device , performing the steps of : value falling within a range of values ;
identifying a locally distributed data structure for determining a shortened word length required to encode

the particular key ; the range of values for the particular page ; and
storing the fat pointer , within the locally distrib - 50 based on the determining , encoding the given value of the

uted data structure , based on the given value ; fat pointer in the word length .
in response to receiving the request to perform the 24 . The one or more non - transitory storage media of claim

particular database operation , determining that the 17 , wherein the generating the response includes :
request makes reference to the particular key ; and using a first host computing device , identifying a particu
generating a response to the request based , at least in 55 lar fat pointer that meets a condition in the request ;

part , on information obtained from the globally based on a particular location of a particular record
distributed data structure for the particular key . contained in the particular fat pointer , sending a mes

18 . The one or more non - transitory storage media of claim sage , from the host computing device to a particular
17 , wherein the sending the fat pointer to the host computing target computing device , for a particular key value from
device in the plurality of computing devices includes : 60 the particular record ;

aggregating the fat pointer with a set of one or more fat using the particular target computing device , creating an
pointers that are assigned to the host computing device ; output fat pointer based on the particular key value
and from the particular record and the particular location of

sending the set of one or more fat pointers in a single the particular record ; and
message to the host computing device . 65 based on the particular key value , sending the output fat

19 . The one or more non - transitory storage media of claim pointer to a second host computing device in the
18 , wherein the target computing device sends the set of one plurality of computing devices .

45

17 .

US 9 , 805 , 079 B2
46

25 . The one or more non - transitory storage media of claim selecting the particular key , from among a plurality of
17 , keys , as the key for which to build the globally dis
wherein sending the fat pointer to the host computing tributed data structure based , at least in part , on the

device in the plurality of computing devices includes : particular key being part of another request received
determining the host computing device based on a 5 from a user to perform one or more database opera

range based distributed hash table ; tions . in response to a particular host computing device 30 . The one or more non - transitory storage media of claim
storing a threshold data size of fat pointers , adjusting 17 . further causing performance of the steps of :
a particular range corresponding to the particular selecting the particular key , from among a plurality of host computing device to include less fat pointers ; 10 keys , as the key for which to build the globally dis wherein the adjusting causes a set of fat pointers to
correspond a different host computing device than tributed data structure based , at least in part , on the
the host computing device ; particular key being in a result set of another database

creating a lock on the fat pointers contained in the operation .
globally distributed data structure to prevent other 15 . 31 . One or more non - transitory storage media storing
requests from accessing data through the globally instructions which , when executed by one or more comput
distributed data structure ; ing devices , cause performance of a method comprising the

based on the adjusting , sending the set from the par steps of :
ticular host computing device to the different host receiving a request to perform a database operation ;

performing the database operation to produce a first result computing device ; and
releasing the lock on the fat pointers in the globally set corresponding to a particular key ;

distributed data structure . distributing the first result set in a globally distributed data
26 . The one or more non - transitory storage media of claim structure ;

wherein the globally distributed data structure comprises
wherein the sending the fat pointer to the host computing 25 a plurality of locally distributed data structures for the

device in the plurality of computing devices includes : particular key ;
identifying an existing globally distributed data struc wherein distributing includes , for each record in the result

ture based on a second key ; set , performing the steps of :
determining a range based distributed hash table used creating a fat pointer to the record based , at least in part ,

for the existing globally distributed data structure ; 30 on :
and a given value in the record that corresponds to the

sending the fat pointer to the host computing device particular key ; and
using the ranged based distributed hash table ; a location of the record on a target computing device

wherein the particular database operation joins values of a plurality of computing devices ;
from the particular key with values from the second 35 based on the given value , sending the fat pointer to a
key ; and host computing device in the plurality of computing

wherein generating the response includes : devices ;
using the host computing device , locally performing in response to receiving the fat pointer at the host

the particular database operation against locally dis computing device , performing the steps of :
identifying a locally distributed data structure for the tributed data structures for the second key and the 40

particular key . particular key ; and
27 . The one or more non - transitory storage media of claim storing the fat pointer , within the locally distributed

17 , wherein the particular database operation is selected data structure , based on the given value .

from a group consisting of a filter , an aggregate , a sort , and 32 . The one or more non - transitory storage media of claim
us 31 , further causing performance of the steps of : a join .

28 . The one or more non - transitory storage media of claim determining work required by a second database opera
17 , further causing performance of the steps of : tion may be performed against the particular key ; and

selecting the particular key , from among a plurality of each given computing device in the plurality of comput
keys , as the key for which to build the globally dis ing devices performing work against values in the fat

pointers of a respective locally maintained locally tributed data structure based , at least in part , on receiv - 50 distributed data structure of the plurality of locally ing the particular key in a selection from a user .
29 . The one or more non - transitory storage media of claim distributed data structures for the particular key .

17 , further causing performance of the steps of : * * * * *

