a2 United States Patent
Donley et al.

US009793919B1

10) Patent No.: US 9,793,919 B1
45) Date of Patent: Oct. 17,2017

(54) COMPRESSION OF FREQUENT DATA
VALUES ACROSS NARROW LINKS

(71) Applicant: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(72) Inventors: Greggory D. Donley, San Jose, CA
(US); Vydhyanathan
Kalyanasundharam, San Jose, CA
(US); Bryan P. Broussard, Austin, TX
(US)

(73) Assignee: Advanced Micro Devices, Inc.,
Sunnyvale, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 15/373,105

(22) Filed: Dec. 8, 2016

(51) Int. CL

HO3M 7/00 (2006.01)
HO3M 7/30 (2006.01)
HO04B 1/40 (2015.01)
HO4L 27/26 (2006.01)
HO4L 1/06 (2006.01)
HO4L 1/00 (2006.01)
HO4L 25/02 (2006.01)
(52) US.CL
CPC oo HO3M 7/30 (2013.01); H04B 1/40

(2013.01); HO4L 1/0003 (2013.01); HO4L
1/0618 (2013.01); HO4L 25/0266 (2013.01):
HO4L 27/2647 (2013.01)

1105
P
Receive a Cache Line of Data for
Transmission over &
Communication Link
l 1110
P

Detenmine if Every Other Data
Block of a First Size within the
Cache Line Matches Any of One or
More Pattems

1116

First Size Yes
Blocks Match any
Pattern?

1125
o

Detenmine if Every Other Data
Block of a Second Size within the
Cache Line Maiches Any of One or
More Pattems

1130

Second Size
Biocks Mafch any
Paftem?

No

Send, Ouer the Communication
Link, the Enfire Cache Line

(58) Field of Classification Search
CPC HO3M 7/30; HO4L 25/0266; HO4L 1/0618;
HO4L 1/0003; HO4L 27/2647, HO4B 1/40
USPC 341/51; 375/220, 219, 295, 316, 267
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5974471 A 10/1999 Belt
6,115,732 A 9/2000 Oberman et al.
2009/0041100 A1* 2/2009 Kimmich HO4L 1/0003
375/220

* cited by examiner

Primary Examiner — Joseph Lauture
(74) Attorney, Agent, or Firm — Rory D. Rankin;
Meyertons, Hood, Kivlin, Kowert & Goetzel, P.C.

(57) ABSTRACT

Systems, apparatuses, and methods for compression of fre-
quent data values across narrow links are disclosed. In one
embodiment, a system includes a processor, a link interface
unit, and a communication link. The link interface unit is
configured to receive a data stream for transmission over the
communication link, wherein the data stream is generated by
the processor. The link interface unit determines if blocks of
data of a first size from the data stream match one or more
first data patterns and the link interface unit determines if
blocks of data of a second size from the data stream match
one or more second data patterns. The link interface unit
sends, over the communication link, only blocks of data
which do not match the first or second data patterns.

17 Claims, 12 Drawing Sheets

1100
»

1120
2

Send, Over the Communication
Link, Only Attemating Data Blocks
of the First Size of the Cache Ling

1135
2

Send, Over the Communication
Link, Cnly Altemating Data Blocks
ofthe SecondLsize of the Cache

ing

US 9,793,919 B1

Sheet 1 of 12

Oct. 17,2017

U.S. Patent

P
001

SjRUOAIIOT
JBHIO Wol4/0

B N

e
T i
Aiowisyy Aowspy
X &
5 ¥
oL (541
i oW
& J
¥ ¥
OFT ouqes | 2T wun AGTyun | 1 BET ouged spstodio])
yowws 1| T s ot LT yoms B0 woip]
561
h 7y N.
Y L
T7T 8yaen TGl ayae)
Y Y
A g
gif oai
(500588200 (51405502044
01T spoN GOT spoy

US 9,793,919 B1

Sheet 2 of 12

Oct. 17,2017

U.S. Patent

58¢
T

¢ Old

0t¢
JoUng en1eay

(544
Jeyng Jusues i

0l¢
{shusyed

L Hury voioseQ

4

¥

eie
Jup jogueg

0i¢
JOJUOIN QOUBLLIOLS,]

§0¢
U S0BpRIY] Yur]

e

G-
YOPms Ui0i-HA0 |

US 9,793,919 B1

Sheet 3 of 12

Oct. 17,2017

U.S. Patent

£ oid

N-YGLE slesgng
o U] (Leey 104 Y0OT =~

— ST

NELE J8sgng

>

J

v
NOLE

QGLE 1984N8 g41€ 8595 YGiE 1REgns

—N N

L A A J
Y Y Y
2048 g01€ VoLE
¥l eleg ¥o0ig eleg 500/ Bleg
\ o
-llll!.llllll

T ¥00ig BlEQ a0 Aiang \\

U isled € 404 $007

J\
s
sUr7 84087

US 9,793,919 B1

Sheet 4 of 12

Oct. 17,2017

U.S. Patent

v Sid

sy 51y
1pyoed N]
gleg puelLio)
A A
({
G557 | +ve | HOSF | G55 | BOF | epeep oo VT | oty
o M “ M
555 | V5P oo F05F | VOGF | GCFF | VORF | GO0 | TOFF
} { i
\ J L A A)
e e Y
567 057 5 0¥
o0lg] B1EQ WOGERG WOgRRG WoF 8eg
L J
N
sop
BUr7 84Yoen

US 9,793,919 B1

Sheet 5 of 12

Oct. 17,2017

U.S. Patent

G B
DeSIBE Uisled ON - 0
5.4 il =925 PUODBS 8 {0
%00/ BjBq Y083 40 jle addn 60 h
S0 Y = B7IS PUOISS & L0 .
¥00/g Bjeq 4083 Jo jleH Jeddry s e
5.4 iy = 8IS JSI 84} O h
$00/g BIR(4083 40 JieH J8dd 0 h_
$,0 1Y = 0215 JSi 2 JO 00
¥I0ig BIEQ 4oRT 0 o Jadidyy “
P [#514
_— o7g \
(0% . o1 ceurTeyors
wsled BjEq <hOPOIS S oy i peosiag
WeHEd UM | iane e sem
L J
) Y
Gig
005 Pl
age] HIpOoUT]

US 9,793,919 B1

Sheet 6 of 12

Oct. 17,2017

U.S. Patent

papaeg St tweled aifuis sy

ol

pojaele WelEd ON 0
ool Y
0c9

; o pred
0} SpUOdSaL0D Buipooug

029
GO

9 Old

5,0 Y = o0ig Bjeq 1o Aieng 0
S.4 Iy =300 BIB(408 T JO jlel Jeddf) ot
S0 If = 300/ BIEQ YO8 JO JjeH saddf} Lo
Poionjag elied ON 00

01 5p cwmmw&au B :WWWW =

009
8ie

US 9,793,919 B1

Sheet 7 of 12

Oct. 17,2017

U.S. Patent

JARIIE |

SWisled | UORIBIB(Q Wejed oK BIDBUIYIYY
SUIBE § UOHIBIBQ WalBd PaXi4 UOHBZHEIIA
Sioled ¥ JUOHOBIB(WBRBd POXi- sseqele(
UCHIBIB Wisyed JweuAg 18IS G
i) 507
SUIBYIS UOIDIBY WsYBd adA; vongeoddy

004
sigey

U.S. Patent

Oct. 17,2017

805
J

Receive a Procsssm‘-Gengraied
Data Stream for Transmission over
a Communication Link

810
3

¥

Determine if Blocks of Data of a
First Size in the Data Stream ‘f»fiaich
Cne or More First Data Patiems

Sheet 8 of 12

815
¥ J

Detsrmine If Blocks of Data of 2

Second Size in the Data Siream

Meaich One or More Sscond Data
Patterns

820
¥ o

Send, Over the Communication
Link, Only Blocks of Data which do
not Match Any of the First or
Second Data Fatterns

825
\i o

Send, Over the Communication
Link, Encoding Fiekds fo indicale
which Blocks were not Sent and fo
indicate which Patferns the Unsent
Blocks Maich

FIG. 8

800

US 9,793,919 B1

U.S. Patent Oct. 17, 2017 Sheet 9 of 12 US 9,793,919 B1

300

805
B

Determine if Any of One or More
Frequently Occuning Data Patterns
are Delected in a Given Data Word
within a Data Stream Ssfected Cver

the Communication Link

910
4)

Compress the Given Data Word
Responsive to Determining the
Given Data Word Matches a Data
Pattern from the Cne or More
Frequently Occurring Data Patlerns

FIG. 9

U.S. Patent

Oct. 17,2017

1005
A

Compress Dala Blocks within a
Data Stream if the Dala Blocks
Match a First Data Faffern

1010
¥ P

Monitor the Data Stream o
Dynamically Determine which Data
Patterms Oceur Frequently within
the Data Stream Over a First Period
of Time

1015
¥ B

Sheet 10 of 12

Compress Data Blocks within the
Data Stream If the Data Blocks
Match a Second Data Pattem
Raspansive to Defermining the
Second Data Pattern Cecurs
Frequently within the Data Stream

Ovar the First Period of Time,
wherein the Sacond Dala Paftern is

Differsnt from the First Data Pattem

FIG. 10

1000

US 9,793,919 B1

U.S. Patent

Oct. 17,2017

1105
J

Recsive a Cache Line of Data for
Transmission over @
Communication Link

1110
¥ i')

Determine if Every Other Data
Bfock of a First Size within the
Cache Line Maiches Any of One or
More Palterns

" First Size &S
Biocks Mafch any >

Sheet 11 of 12

1100

Pattemn? .~

1125
J

Determine if Every Qther Data
Biock of a Second Size within the
Cache Line Matches Any of One or
More Pafterns

“Sscond Size ™ Yes

1120
¥ s

Send, Overthe Communication
Link, Only Aitemating Data Blocks
of the First Size of the Cache Line

< Blocks Match any >
T~ Fattem? .~

1140
o

Send, Over the Communication
Link, the Entire Cachs Line

FiG. 11

1135
¥ B

Send, Over the Communication
Link, Only Alfemating Dafa Biocks
of the Second Size of the Cache
Line

US 9,793,919 B1

U.S. Patent Oct. 17,2017

05

-3,
)

Receive a Group of Data for
Transmission over a
Communication Link

1210
L4 r)

Partition the Group of Data into
Data Biocks of a First Size

71215
¥ {‘J

Determine if a Subsst of Each Data
Block Matches Any of One or More
Patterns

1220

" Subsefof Yes

Sheet 12 of 12

US 9,793,919 B1

1200

<7 Each Block Malches 9:‘ o
. FPaftern?

Send, Over the Communication
Link, the Entirety of Each Dala
Block

1240
¥ i""

Send, Over the Communication
Link, an Indication fhat the Subsef
of Each Data Block did nof Match

any ofthe One or More Palfterns

1225
¥ o

Send, Qver the Communication
Link, the Other Portion(s} of Each
Data Block without Sending the
Subset of Each Data Block

1230
-1]

Send, Over the Communicalion

Link, an indication of the Paftem

which the Subset of Each Data
Block Matched

FIG. 12

US 9,793,919 Bl

1
COMPRESSION OF FREQUENT DATA
VALUES ACROSS NARROW LINKS

BACKGROUND
Description of the Related Art

Electrical components on separate die communicate with
each other over links between the die. The bandwidth
between die is limited by physical distance, electrical char-
acteristics of off-chip connections, and the limited availabil-
ity of pins. The frequency at which data is transmitted on the
link along with the width of the link (in terms of bits of data
transferred) defines the bandwidth on the link. Increasing the
signal count or the frequency of the link are ways of
increasing the bandwidth, but both have cost and technology
implications that prevent them from scaling efficiently.

BRIEF DESCRIPTION OF THE DRAWINGS

The advantages of the methods and mechanisms
described herein may be better understood by referring to
the following description in conjunction with the accompa-
nying drawings, in which:

FIG. 1 is a block diagram of one embodiment of a
computing system.

FIG. 2 is a block diagram of one embodiment of a link
interface unit.

FIG. 3 is a diagram of one embodiment of a technique for
compressing a cache line prior to transmission on a com-
munication link.

FIG. 4 is a diagram of another embodiment of a technique
for compressing a cache line of data prior to transmission
over a link.

FIG. 5 illustrates one embodiment of a table indicating
encoding fields for compressed data blocks.

FIG. 6 illustrates examples of two encoding tables.

FIG. 7 illustrates one embodiment of a table with pattern
detection schemes implemented for different types of appli-
cations.

FIG. 8 is a generalized flow diagram illustrating one
embodiment of a method for compressing processor-gener-
ated data.

FIG. 9 is a generalized flow diagram illustrating another
embodiment of a method for compressing processor-gener-
ated data.

FIG. 10 is a generalized flow diagram illustrating one
embodiment of a method for dynamically implementing data
pattern checking of data blocks of a data stream.

FIG. 11 is a generalized flow diagram illustrating one
embodiment of a method for compressing processor-gener-
ated data.

FIG. 12 is a generalized flow diagram illustrating another
embodiment of a method for compressing processor-gener-
ated data

DETAILED DESCRIPTION OF EMBODIMENTS

In the following description, numerous specific details are
set forth to provide a thorough understanding of the methods
and mechanisms presented herein. However, one having
ordinary skill in the art should recognize that the various
embodiments may be practiced without these specific
details. In some instances, well-known structures, compo-
nents, signals, computer program instructions, and tech-
niques have not been shown in detail to avoid obscuring the
approaches described herein. It will be appreciated that for

10

20

25

30

35

40

45

50

55

60

65

2

simplicity and clarity of illustration, elements shown in the
figures have not necessarily been drawn to scale. For
example, the dimensions of some of the elements may be
exaggerated relative to other elements.

Various systems, apparatuses, methods, and computer-
readable mediums for compressing frequent data values
across narrow links are disclosed. In one embodiment, a
system includes at least a processor, a link interface unit, and
a communication link. In one embodiment, the link interface
unit is configured to receive a data stream for transmission
over the communication link, wherein the data stream is
generated by the processor. In one embodiment, the data
stream includes one or more cache lines of data. In one
embodiment, the link interface unit utilizes two different
ways of partitioning a cache line of data. The link interface
unit partitions the cache line into blocks of data of a first size
and then determines if every other block of the cache line
matches any of one or more patterns. In one embodiment,
the first size is 32 bits. In one embodiment, one of the
patterns is all of the bits equal to zero. If every other block
matches a given pattern of the one or more patterns, then the
link interface unit only sends the other blocks over the
communication link. This reduces the amount of data sent
over the communication link by one half. If every other
block does not match any of the one or more patterns, then
the link interface unit partitions the cache line into blocks of
data of a second size and then determines if every other
block of the second size of the cache line matches any of one
or more patterns. In one embodiment, the second size is 16
bits. If every other block matches a given pattern of the one
or more patterns, then the link interface unit only sends the
other blocks over the communication link. The link interface
unit also sends, over the communication link, an encoding
field to indicate which given pattern every other block
matches and to indicate the size of the block so that the
receiver can reconstruct the original data. If every other
block does not match any of the one or more patterns, then
the link interface unit sends the entire cache line of data over
the communication link.

In one embodiment, the link interface unit is configured to
monitor the data stream to dynamically determine which
data patterns occur frequently within the data stream over a
first period of time. Next, the link interface unit determines
if blocks of data of a first size within the data stream match
a third data pattern responsive to determining that the third
data pattern is a frequently occurring data pattern within the
data stream over the first period of time, wherein the third
data pattern is different from the one or more first or second
data patterns. In one embodiment, a frequently occurring
data pattern is a data pattern which occurs more than a
threshold number of times in the first period of time.

In one embodiment, the system changes the pattern detec-
tion scheme implemented to compress data based on the
type of software application being executed by the processor
(s) of the system. For example, in one embodiment, the link
interface unit implements a first pattern detection scheme
when compressing data associated with a first software
application, and the link interface unit implements a second
pattern detection scheme when compressing data associated
with a second software application, wherein the second
pattern detection scheme is different from the first pattern
detection scheme. Additionally, the link interface unit imple-
ments any number of other pattern detection schemes for
other types of software applications.

Referring now to FIG. 1, a block diagram of one embodi-
ment of a computing system 100 is shown. In one embodi-
ment, system 100 includes multiple nodes, with nodes 105

US 9,793,919 Bl

3

and 110 shown in FIG. 1. It is noted that system 100 can
include additional nodes with similar circuitry to that shown
for nodes 105 and 110. Nodes 105 and 110 are coupled
together via communication link 155. Depending on the
embodiment, communication link 155 can be a bi-direc-
tional or uni-directional link. Depending on the embodi-
ment, the width of link 155 has varying widths (e.g., 16 bits).
In one embodiment, node 105 is formed on a first integrated
circuit die and node 110 is formed on a second integrated
circuit die, with link 155 providing the interconnect between
the first and second die.

Nodes 105 and 110 are representative of any number and
type of computing nodes. Generally speaking, a node 105 or
110 is defined as an apparatus or system with at least one
computing/processing element (e.g., processor, processor
core, programmable logic device, application specific inte-
grated circuit) and at least one memory device. The at least
one computing element of the node is configured to execute
instructions and/or perform one or more types of computa-
tions (e.g., floating point, integer, memory, [/O) depending
on the embodiment. The components of each node 105 and
110 are interconnected by one or more communication buses
or fabrics (e.g., switch fabrics 135 and 140, respectively). In
one embodiment, the functionality of each node 105 and 110
is incorporated into a single integrated circuit. In another
embodiment, the functionality of each node 105 and 110 is
incorporated in a chipset on a computer motherboard. In one
embodiment, each node 105 and 110 is a stand-alone system
within a mobile computer, a desktop, a server, or other
device or system. In another embodiment, each node 105
and 110 is a socket of a multi-socket system 100. In a further
embodiment, each node 105 and 110 is a separate die of a
multi-die system 100.

In one embodiment, nodes 105 and 110 implement a
packet-based interface for communication on link 155. Gen-
erally, the packets are transmitted as one or more bit times
on link 155. In one embodiment, a given bit time can be
referenced to the rising or falling edge of a clock signal. In
another embodiment, link 155 does not include a clock
signal. Instead, the clock is recovered from detecting tran-
sitions on the data lines. In one embodiment, link 155 is
more narrow than the packet interface. In this embodiment,
a packet is spread out over many bit times on link 155.

In various embodiments, link units 115 and 120 are
configured to implement techniques to reduce (i.e., com-
press) the amount of data sent over link 155. It is noted that
link units 115 and 120 can also be referred to as link
interface units. In one embodiment, a technique for detecting
frequently occurring patterns of data in the data sent over
link 155 is implemented. On node 105, link unit 115 is
configured to determine if processor generated data which
will be conveyed over link 155 includes one or more
frequently occurring data patterns. In one embodiment, the
processor generated data which will be sent over link 155 is
stored in a buffer in link unit 115 prior to being sent over link
155. Link unit 115 is configured to construct command and
data packets for conveyance over link 155 with the proces-
sor generated data stored in the buffer. In one embodiment,
if a data pattern is detected in the data sent from processor(s)
160 to link unit 115, then the data is compressed before
being sent over link 155. In one embodiment, if the data
matches a pattern of fixed portions alternating with variable
portions, then only the variable portions of the data are sent
on link 155. For example, in one embodiment, a cache line
of data includes multiple data words, and if the upper half of
each data word matches a pattern (e.g., all zeroes), then only
the lower half of each data word is sent on link 155. In this

30

40

45

50

55

4

way, the amount of data sent on link 155 is reduced by half,
reducing power consumption and improving efficiency of
the link 155. In one embodiment, encoding fields are gen-
erated in command packets to indicate which pattern the
fixed portions matched and to indicate the size of the fixed
portions. For example, in one embodiment, the size of the
fixed portions is either 16 bits or 32 bits. In other embodi-
ments, other sizes can be utilized.

When link unit 115 or 120 receives compressed packets
sent over link 155, the link unit is configured to reconstruct
the data payload from the variable portions of data words in
the data packet and the encoding fields in the corresponding
command packet. When the control logic at the receiver is
reconstructing the data payload, if an encoding field indi-
cates that a given data pattern was detected, then the control
logic generates the fixed portions with the specified data
pattern and inserts the fixed portions in the data payload at
locations adjacent to the variable portions.

Node 105 includes at least processor(s) 160 coupled to
cache 165 and switch fabric 135. Processor(s) 160 can also
include one or more internal caches. Processor(s) 160 are
representative of any number and type of processors (e.g.,
central processing unit (CPU), graphics processing unit
(GPU)) with any number of cores. Each processor core
includes one or more execution units, cache memories,
schedulers, branch prediction circuits, and so forth. In one
embodiment, the processor(s) 160 are configured to execute
the main control software of node 105, such as an operating
system. Generally, software executed by processor(s) 160
during use can control the other components of node 105 to
realize the desired functionality of node 105. Processor(s)
160 can also execute other software, such as application
programs.

Switch fabric 135 is coupled to memory controller (MC)
125 and link unit 115. Switch fabric 135 is a communication
fabric that routes messages between the components of node
105. Memory controller 125 is coupled to memory 127,
which is representative of any number and type of memory
modules or devices. In some embodiments, memory 127
includes one or more memory devices mounted on a moth-
erboard or other carrier upon which other components of
node 105 are also mounted. In some embodiments, at least
a portion of memory 127 is implemented on the die of node
105. The memory devices used to implemented memory 127
include (but are not limited to) random access memory
(RAM), static RAM (SRAM), dynamic RAM (DRAM),
double data rate (DDR) DRAM, DDR2 DRAM, DDR3
DRAM, DDR4 DRAM, and so forth. Similar to node 105,
node 110 includes processor(s) 170, cache 175, link unit
120, switch fabric 140, and memory controller 130 coupled
to memory 132.

In various embodiments, computing system 100 can cor-
respond to any of various types of computer systems or
computing devices, including, but not limited to, a personal
computer system, desktop computer, laptop or notebook
computer, computing node, supercomputer, mobile device,
tablet, phone, smartphone, mainframe computer system,
handheld computer, workstation, network computer, watch,
wearable device, a consumer device, server, file server,
application server, storage server, web server, cloud com-
puting server, or in general any type of computing system or
device or portion thereof. It is noted that the number of
components of computing system 100 can vary from
embodiment to embodiment. There can be more or fewer of
each component/subcomponent than the number shown in
FIG. 1. Tt is also noted that computing system 100 can
include other components not shown in FIG. 1. Additionally,

US 9,793,919 Bl

5

in other embodiments, computing system 100 can be struc-
tured in other ways than shown in FIG. 1.

Turning now to FIG. 2, a block diagram of one embodi-
ment of a link interface unit 205 is shown. In one embodi-
ment, the control logic of link interface unit 205 is included
in link units 115 and 120 (of FIG. 1). In one embodiment,
link interface unit 205 includes performance monitor 210,
control unit 212, detection unit 215, transmit buffer 225, and
receive buffer 230. In other embodiments, link interface unit
205 can include other components. In various embodiments,
the control logic of link interface unit 205 can be imple-
mented using any suitable combination of software and/or
hardware. Link interface unit 205 is coupled to a switch
fabric (not shown) and to link 235 which is connected to one
or more other components.

In one embodiment, performance monitor 210 is config-
ured to monitor for frequently occurring data patterns in the
data stream being sent over link 235. If performance monitor
210 detects a frequently occurring data pattern, performance
monitor 210 sends an indication of the pattern to control unit
212. In one embodiment, control unit 212 is configured to
program the pattern(s) 220 being searched for by detection
unit 215. In one embodiment, detection unit 215 is config-
ured to search for pattern(s) 220 in the data blocks stored in
transmit buffer 225 which are being buffered prior to trans-
mission over link 235. In another embodiment, pattern(s)
220 are predetermined and fixed.

In one embodiment, detection unit 215 is configured to
detect if the data in transmit buffer 225 matches any of
pattern(s) 220. In one embodiment, patterns 220 include
multiple different sizes of data patterns. In this embodiment,
detection unit 215 looks at different sizes of data blocks in
transmit buffer 225 to determine if they match the different
sizes of data patterns 220. If detection unit 215 finds a match
for fixed portions of a cache line of data to one of data
pattern(s) 220, the fixed portions are dropped from the data
which is sent on link 235, and an encoding field is sent which
indicates that the fixed portions were dropped and indicates
which pattern the fixed portions matched. In one embodi-
ment, control unit 212 is configured to reconstruct data
which is received over link 235 and stored in receive buffer
230. For example, control unit 212 determines if fixed
portions of the cache line were dropped and determines
which pattern these fixed portions matched by retrieving an
encoding field from receive buffer 230. Control unit 212
adds these fixed portions back to the data so as to reconstruct
the original data stream.

Referring now to FIG. 3, a diagram of one embodiment of
a technique for compressing a cache line 305 prior to
transmission on a communication link. Stored within the
cache line 305 are a plurality of data words, where each data
word is a predetermined number of bits. It is noted that in
some embodiments, the data words in cache line 305 can be
one of multiple sizes. For example, in one embodiment, a
processor has a 64-bit architecture but is backward-compat-
ible with 32-bit software. Accordingly, in this embodiment,
the processor is able to process both 64-bit or 32-bit soft-
ware. In other embodiments, a processor can support other
sizes of data words.

Cache line 305 includes a number of processor generated
data blocks 310A-N, with the number of data blocks per
cache line varying from embodiment to embodiment. Data
blocks 310A-N are also referred to as variables or words.
When the data of cache line 305 is going to be sent over a
communication link (e.g., link 235 of FIG. 2), a detection
unit (e.g., detection unit 215) determines if every other data
block in data blocks 310A-N match one or more data

15

20

30

35

40

45

6

patterns. The one or more data patterns include frequently
used patterns, with the exact data patterns that the detection
unit is looking for varying from embodiment to embodi-
ment. If a pattern is detected in every other data block in data
blocks 310A-N, then the link interface unit sends only the
variable blocks of data blocks 310A-N over a communica-
tion link. If a pattern is not detected in every other data
block, then the detection unit determines if subsets 315A-N
match one or more data patterns. If a pattern is detected in
each subset 315A-N, then the link interface unit sends only
the other portions of data blocks 310A-N.

Turning now to FIG. 4, a block diagram of another
embodiment of a technique for compressing a cache line of
data prior to transmission over a link is shown. Cache line
405 includes data blocks 440, 445, 450, and 455, which are
representative of any number and size of data blocks. Cache
line 405 and optionally one or more cache lines are packed
into data packets to be sent over a communication link to a
separate die or component.

In one embodiment, the data blocks 440, 445, 450, and
455 of cache line 405 are packed into data packet 425. Data
packet 425 is representative of any size of a data packet, with
the size varying from embodiment to embodiment. Data
packet 425 includes a header 430 that indicates the type of
packet and any additional information. In one embodiment,
the data blocks of a single cache line 405 are broken into
multiple data packets 425. In another embodiment, the data
blocks of one or more cache lines are combined into a single
data packet 425. For each data block of cache line 405, a
detection unit determines if the entire data block matches
one or more patterns or if a subset of the data block matches
one or more patterns. In one embodiment, the subset is the
upper half of the data block. In other embodiments, the
subset can be other portions of the data block.

In one embodiment, the data patterns include all 1’s or all
0’s. For example, for small values stored in data blocks 440,
445, 450, and 455, the upper bits would be all 0’s. Or for
small negative values stored in data blocks 440, 445, 450,
and 455, the upper bits would be all 1°s using sign extension.
In one embodiment, if a data pattern is detected for the
subset of each data block 440, 445, 450, and 455 of cache
line 405, then the subset of the data block is not included in
data packet 425. This will result in a reduction in the amount
of data that is sent over the communication link.

As shown in data packet 425, it is assumed that each
subset 440A, 445A, 450A, and 455A of the data blocks of
cache line 405 matches a frequently used pattern, and so
only the other portions 4408, 445B, 450B, and 455B of the
data blocks of cache line 405 are included in data packet
425. Also, it is assumed that the subsets 440A, 445A, 450A,
and 455 A of the data blocks are the upper halves of each data
block and subsets 440B, 4458, 450B, and 455B are the
lower halves of each data block. In other embodiments, data
blocks can be partitioned into other sizes and/or other
numbers of subsets for the purposes of detecting patterns.

In one embodiment, encoding field 420 is generated and
included in command packet 415 to indicate if a pattern was
detected for each data block of cache line 405 and to indicate
which pattern was detected. Command packet 415 also
includes a header 418 that specifies the type of packet and
additional information. In one embodiment, a first encoding
field indicates if a pattern was detected in the entire data
block or in a subset of the data block. In one embodiment,
a second encoding field indicates which pattern of a plurality
of patterns was detected. In other embodiments, other num-
bers and types of encoding fields can be included in com-

US 9,793,919 Bl

7

mand packet 415 to encode if and how data blocks were
compressed in data packet 425.

Referring now to FIG. 5, one embodiment of a table 500
indicating encoding fields for compressed data blocks is
shown. Column 505 is a single-bit field which indicates if a
pattern was detected in the cache line, with a “1” indicating
a pattern was detected and “0” indicating no pattern was
detected. Column 510 is a two-bit field which indicates
which pattern was detected. In other embodiments, column
510 can include other numbers of bits to indicate which was
pattern was detected, depending on the total number of
patterns which are being searched for. Column 520 specifies
the pattern for each of the encodings in column 510.

In one embodiment, an encoding of “00” is used to
indicate the upper half of each data block of a first size are
all 0 bits, an encoding of “01” is used to indicate the upper
half of each data block of the first size are all 1 bits, an
encoding of “10” is used to indicate the upper half of each
data block of a second size are all 0 bits, and an encoding of
“11” is used to indicate the upper half of each data block of
the second size are all 1 bits. In one embodiment, the first
size is 64 bits and the second size is 32 bits. In other
embodiments, the first and second sizes are other numbers of
bits. If the cache line matches one of these patterns, then
upper halves of each block of the cache line are not included
in the data packet which is sent over the communication
link. When the receiver receives this data packet, the
receiver utilizes the command packet to identify if a pattern
was detected and which pattern was detected so that the
receiver can decompress the data into its original format. In
other embodiments, other encodings can be utilized to
indicate if a pattern was detected and which pattern was
detected. Additionally, in other embodiments, other numbers
and types of patterns can be searched for among the data
blocks being sent over a communication link.

In one embodiment, the combination of column 505 and
510 corresponds to encoding field 420 in command packet
415 (of FIG. 4). In this embodiment, for each cache line
being sent in one or more data packets (e.g., data packet
425), the fields in column 505 and 510 are included in the
command packet. The order of these fields in the command
packet will match the order of the cache lines in the data
packet(s).

Referring now to FIG. 6, examples of two encoding tables
are shown. Table 600 is shown on the left side of FIG. 6 to
represent an encoding scheme that is used in one embodi-
ment for compressing data sent over a communication link.
In this embodiment, encoding field 605 includes two bits to
represent four different scenarios. If the encoding field 605
is set to “007, this indicates that no pattern was detected in
the corresponding data blocks as shown in column 610 of
table 600. If the encoding field 605 is set to “01”, this
indicates that all bits in the upper half of each data block of
the cache line are equal to “0”. If the encoding field 605 is
set to “10”, this indicates that all bits in the upper half of
each data block of the cache line are equal to “1”. If the
encoding field 605 is set to “11”, this indicates that all bits
in every other data block are equal to “0”. It is noted that the
patterns which these encodings represent can be rearranged
in other embodiments. It is also noted that patterns other
than the patterns shown in table 600 can be utilized. When
any of these patterns is detected in a cache line of processor
generated data, the portions of the cache line matching the
given pattern are dropped from the data being sent over the
link. To let the receiver know which data has been dropped,
the corresponding encoding field 605 is sent over the link. In
one embodiment, the corresponding encoding field 605 is

35

40

45

8

sent in a command packet, with encoding fields sent in an
order corresponding to the order of cache lines in the data
packets being sent over the link.

In one embodiment, the three patterns represented by the
encodings in table 600 are expected to be frequently occur-
ring patterns in the processor generated data that is being
sent over a communication link. Accordingly, using the
encoding scheme shown in table 600 could result in an
efficient use of the communication link. In other embodi-
ments, when other patterns occur more frequently than those
shown in table 600, the compression scheme can be dynami-
cally adjusted so that these other patterns can be compressed
when sending processor generated data over the communi-
cation link.

Table 620, shown on the right side of FIG. 6, represents
another encoding scheme that is used in another embodi-
ment. In this embodiment, encoding field 625 includes a
single bit, which represents that a pattern was detected if the
bit="1" or that no pattern was detected if the bit="0". The
actual pattern that is used to compress the data stream can
vary from embodiment to embodiment. In one embodiment,
the pattern is predetermined based on which pattern is
expected to occur most frequently in the processor generated
data.

In another embodiment, the pattern is dynamically deter-
mined by examining the processor generated data in real-
time. In this embodiment, the pattern that is used to com-
press the data stream can vary over time. For example, a first
pattern is used for compressing the data stream over a first
period of time. Then, a performance monitor determines that
a second pattern is occurring more frequently in the data
stream than the first pattern. The system then switches to
using the second pattern for compressing the data stream
over a second period of time. In order to switch to using the
second pattern, a link interface unit at a first node sends a
message to a link interface unit at a second node to notify the
second node that the compression scheme is switching to the
second pattern for compressing data. Then, the second node
updates its control logic so that data received on the link can
be reconstructed properly.

Turning now to FIG. 7, one embodiment of a table 700
with pattern detection schemes implemented for different
types of applications is shown. In one embodiment, a system
utilizes different pattern detection schemes for different
types of software applications being executed by the pro-
cessors of the system. The different detection schemes are
shown in column 710 of table 700 for the different appli-
cation types listed in column 705. It is noted that these
examples of application types and their corresponding pat-
tern detection schemes is indicative of one embodiment. In
other embodiments, other pattern detection schemes can be
utilized and assigned to the different application types.
Additionally, other application types can also be character-
ized and assigned corresponding pattern detection schemes.

In one embodiment, the determination is based on an
analysis of workloads associated with the particular appli-
cation. For example, an analysis of a typical workload for a
given software application can be performed to determine
the most likely patterns which will be stored in the processor
generated data which is transferred over one or more com-
munication links. The analysis also determines which pat-
tern detection scheme will achieve an efficient use of the
communication links. Various different pattern detection
schemes can be utilized, with the schemes varying based on
number of patterns searched for, whether the patterns are

US 9,793,919 Bl

9

predetermined or dynamically determined, and/or which
patterns are utilized if the patterns are predetermined, and so
on.

For example, in one embodiment, a system determines
that a web server application will benefit from a dynamic
pattern detection scheme. The dynamic pattern detection
scheme refers to dynamically determining which pattern(s)
to search for in the data stream being conveyed over the
communication link(s) based on which patterns occur most
frequently in the data stream. The patterns which are
searched for can change over time as the dynamic analysis
of the data stream detects different frequently occurring
patterns in different time periods. In one embodiment, the
system also determines that database applications will utilize
a fixed pattern detection scheme with 4 patterns being
searched for, the system determines that virtualization appli-
cations will utilize a fixed pattern detection scheme with 3
patterns being searched for, and the system determines that
multimedia applications will utilize a fixed pattern detection
scheme with 1 pattern being searched for in blocks of the
data stream. A fixed pattern detection scheme refers to a
scheme with predetermined patterns being used when
searching for matches in the data stream. For example, table
500 of FIG. 5 illustrates four different predetermined pat-
terns which can be searched for in the data blocks of a data
stream being conveyed over one or more communication
links in accordance with one embodiment. These examples
of a particular pattern detection scheme for a particular
application are merely used to illustrate the ability to target
a pattern detection scheme to a specific application. In other
embodiments, the listed applications can utilize other types
of pattern detections schemes than those shown in table 700.

Referring now to FIG. 8, one embodiment of a method
800 for compressing processor-generated data is shown. For
purposes of discussion, the steps in this embodiment and
those of FIGS. 9-12 are shown in sequential order. However,
it is noted that in various embodiments of the described
methods, one or more of the elements described are per-
formed concurrently, in a different order than shown, or are
omitted entirely. Other additional elements are also per-
formed as desired. Any of the various systems or apparatuses
described herein are configured to implement method 800.

A link interface unit receives a processor-generated data
stream for transmission over a communication link (block
805). In one embodiment, the data stream includes one or
more cache lines of data from a processor cache or a cache
coupled to a processor. Next, the link interface unit deter-
mines if blocks of data of a first size in the data stream match
one or more first data patterns (block 810). In one embodi-
ment, the boundaries of the blocks of data of the first size
coincide with the boundaries of data words in a cache line
of processor-generated data.

Also, the link interface unit determines if blocks of data
of a second size in the data stream match one or more second
data patterns (block 815). In one embodiment, the first size
of data block is equal to twice the second size of data block.
For example, in one embodiment, the first size is 64 bits and
the second size is 32 bits. In this embodiment, the blocks of
second size are the upper halves of blocks of the first size.
In other embodiments, other first and second sizes are
implemented.

The first and second data patterns include frequently
occurring data patterns within the data stream. The data
stream can also be referred to as a group of data. In one
embodiment, the data stream is a cache line. In one embodi-
ment, the first and second data patterns are predetermined. In
another embodiment, the first and second data patterns are

30

40

45

10

determined dynamically based on an analysis of one or more
data streams. In a further embodiment, the first and second
data patterns are determined dynamically based on the type
of software application being executed by the system and/or
one or more other factors.

Next, the link interface unit sends, over the communica-
tion link, only blocks of data which do not match any of the
first or second data patterns (block 820). Then, the link
interface unit sends, over the communication link, encodings
to indicate which blocks were not sent and to indicate which
patterns the unsent blocks matched (block 825). After block
825, method 800 ends.

Turning now to FIG. 9, another embodiment of a method
900 for compressing processor-generated data is shown. A
system determines if any of one or more frequently occur-
ring data patterns are detected in a given data word within
a data stream selected for transmission over the communi-
cation link (block 905). In one embodiment, the data stream
is generated by one or more processors of the system. In one
embodiment, the given data word and/or a subset of the
given data word is compared to one or more frequently
occurring data patterns to determine if the given data word
and/or subset matches any of the one or more frequently
occurring data patterns. Next, the system compresses the
given data word responsive to determining the given data
word matches a data pattern from the one or more frequently
occurring data patterns (block 910). Any of various com-
pression schemes can be utilized for compressing the given
data word, depending on the embodiment. After block 910,
method 900 ends.

Referring now to FIG. 10, one embodiment of a method
1000 for dynamically implementing data pattern checking of
data blocks of a data stream is shown. A system compresses
data blocks within a data stream if the data blocks match a
first data pattern (block 1005). The system monitors the data
stream to dynamically determine which data patterns are
most frequently occurring within the data stream over a first
period of time (block 1010). After the first period of time, the
system compresses data blocks within the data stream if the
data blocks match a second data pattern responsive to
determining the second data pattern occurs frequently within
the data stream over the first period of time, wherein the
second data pattern is different from the first data pattern
(block 1015). After block 1015, method 1000 ends. In one
embodiment, it is determined that the second data pattern
occurs frequently within the data stream if the second data
pattern is detected more than a threshold number of times
over the first period of time. The threshold and the duration
of the first period of time can vary from embodiment to
embodiment, and are programmable in various embodi-
ments.

Referring now to FIG. 11, one embodiment of a method
1100 for compressing processor-generated data is shown. A
link interface unit receives a cache line of data for trans-
mission over a communication link (block 1105). Next, the
link interface unit determines if every other data block of a
first size within the cache line matches any of one or more
patterns (block 1110). If every other data block of the first
size within the cache line matches any of one or more
patterns (conditional block 1115, “yes” leg), then the link
interface unit sends, over the communication link, only
alternating data blocks of the first size of the cache line
(block 1120). For example, if the cache line includes eight
blocks, and the first, third, fifth, and seventh blocks match
any of the one or more patterns (e.g., all bits equal to “0”),
then only the second, fourth, sixth, and eighth blocks of the
cache line are sent over the communication link. Accord-

US 9,793,919 Bl

11

ingly, only half of the cache line is sent in block 1120, with
every other data block of the cache line being dropped rather
than being sent on the communication link. It should be
understood that the blocks which are dropped are the every
other blocks which matched on one of the data patterns.

If every other data block of the first size within the cache
line does not match any of the one or more patterns
(conditional block 1115, “no” leg), then the link interface
unit determines if every other data block of a second size
within the cache line matches any of one or more patterns
(block 1125). In one embodiment, the second size is equal to
half the first size. If every other data block of the second size
within the cache line matches any of one or more patterns
(conditional block 1130, “yes” leg), then the link interface
unit sends, over the communication link, only alternating
data blocks of the second size of the cache line (block 1135).
If every other data block of the second size within the cache
line does not match any of the one or more patterns
(conditional block 1130, “no” leg), then the link interface
unit sends, over the communication link, the entire cache
line (block 1140). After blocks 1120, 1135, and 1140,
method 1100 ends.

Turning now to FIG. 12, another embodiment of a method
1200 for compressing processor-generated data is shown. A
link interface unit receives a group of data for transmission
over a communication link (block 1205). In one embodi-
ment, the group of data corresponds to a cache line of data
from a processor’s internal cache or cache coupled to the
processor. The link interface unit partitions the group of data
into data blocks of a first size (block 1210). In one embodi-
ment, the first size is 64 bits. Next, the link interface unit
determines if a subset of each data block matches any of one
or more patterns (block 1215). In one embodiment, the
subset is the upper half of the data block. In other embodi-
ments, the subset is other portions of the data block. If the
subset of each data block matches any of one or more
patterns (conditional block 1220, “yes” leg), then the link
interface unit sends, over the communication link, the other
portions of each data block without sending the subset of
each data block (block 1225). For example, if the subset is
the upper half of the data block, then the link interface unit
only sends the lower half of each data block over the link.
Also, the link interface unit sends, over the communication
link, an indication of the pattern which the subset of each
data block matched (block 1230). If the subset of each data
block does not match any of the one or more patterns
(conditional block 1220, “no” leg), then the link interface
unit sends, over the communication link, the entirety of each
data block (block 1235). Also, the link interface unit sends,
over the communication link, an indication that the subset of
each data block did not match any of the one or more
patterns (block 1240). Alternatively, if the subset of each
data block does not match any of one or more patterns, then
the link interface unit can partition the group of data into
data blocks of a second size and perform blocks 1215-1220
again to see if a subset of each data block of a second size
matches any of one or more patterns. After blocks 1230 and
1240, method 1200 ends.

In various embodiments, program instructions of a soft-
ware application are used to implement the methods and/or
mechanisms previously described. The program instructions
describe the behavior of hardware in a high-level program-
ming language, such as C. Alternatively, a hardware design
language (HDL) is used, such as Verilog. The program
instructions are stored on a non-transitory computer readable
storage medium. Numerous types of storage media are
available. The storage medium is accessible by a computing

10

15

20

25

30

35

40

45

50

55

60

65

12

system during use to provide the program instructions and
accompanying data to the computing system for program
execution. The computing system includes at least one or
more memories and one or more processors configured to
execute program instructions.

It should be emphasized that the above-described embodi-
ments are only non-limiting examples of implementations.
Numerous variations and modifications will become appar-
ent to those skilled in the art once the above disclosure is
fully appreciated. It is intended that the following claims be
interpreted to embrace all such variations and modifications.

What is claimed is:

1. A system comprising:

a processor;

a link interface unit; and

a communication link;

wherein the link interface unit is configured to:

receive a data stream for transmission over the com-
munication link;

partition the data stream into blocks of data of a first
size;

send, over the communication link, first portions of the
blocks of data without sending second portions of the
blocks of data, responsive to determining the second
portions of the blocks of data match one or more first
data patterns;

generate an encoding to indicate which data pattern of
the one or more first data patterns the second por-
tions match; and

send the encoding over the communication link.

2. The system as recited in claim 1, wherein responsive to
determining a portion of each block of data of the first size
does not match any of the one or more patterns, the link
interface unit is configured to:

partition the data stream into blocks of data of a second

size; and

send, over the communication link, first blocks of the

blocks of data of the second size without sending
second blocks of the blocks of data of the second size,
responsive to determining the second blocks of the
blocks of data of the second size match one or more
first data patterns.

3. The system as recited in claim 2, wherein the data
stream is a cache line of data, and wherein the second size
is equal to half the first size.

4. The system as recited in claim 1, wherein the link
interface unit is further configured to:

monitor the data stream to dynamically determine which

data patterns occur frequently within the data stream
over a first period of time; and

determine if blocks of data of the first size within the data

stream match a second data pattern responsive to
determining the second data pattern is a frequently
occurring data pattern within the data stream over the
first period of time, wherein the second data pattern is
different from the one or more first data patterns.

5. The system as recited in claim 4, wherein a frequently
occurring data pattern is a data pattern which occurs more
than a threshold number of times in the first period of time.

6. The system as recited in claim 1, wherein the link
interface unit is further configured to:

implement a first pattern detection scheme when com-

pressing data associated with a first software applica-
tion; and

implement a second pattern detection scheme when com-

pressing data associated with a second software appli-

US 9,793,919 Bl

13

cation, wherein the second pattern detection scheme is
different from the first pattern detection scheme.

7. A method comprising:

receiving a data stream for transmission over a commu-

nication link;

partitioning, by a link interface unit, the data stream into

blocks of data of a first size;

sending, over the communication link, first blocks of the

blocks of data of the first size without sending second
blocks of the blocks of data of the first size, responsive
to determining the second blocks match one or more
first data patterns;

generating an encoding to indicate which data pattern of

the one or more first data patterns the second portions
match; and

sending the encoding over the communication link.

8. The method as recited in claim 7, wherein responsive
to determining a portion of each block of data of the first size
does not match any of the one or more patterns, the method
further comprising:

partitioning the data stream into blocks of data of a second

size; and

sending, over the communication link, first blocks of the

blocks of data of the second size without sending
second blocks of the blocks of data of the second size,
responsive to determining the second blocks of the
blocks of data of the second size match one or more
first data patterns.

9. The method as recited in claim 8, wherein the data
stream is a cache line of data, and wherein the second size
is equal to half the first size.

10. The method as recited in claim 7, further comprising:

monitoring the data stream to dynamically determine

which data patterns occur frequently within the data
stream over a first period of time; and

determining if blocks of data of the first size within the

data stream match a second data pattern responsive to
determining the second data pattern is a frequently
occurring data pattern within the data stream over the
first period of time, wherein the second data pattern is
different from the one or more first data patterns.

11. The method as recited in claim 10, wherein a fre-
quently occurring data pattern is a data pattern which occurs
more than a threshold number of times in the first period of
time.

12. The method as recited in claim 7, further comprising:

implementing a first pattern detection scheme when com-

pressing data associated with a first software applica-
tion; and

implementing a second pattern detection scheme when

compressing data associated with a second software

10

15

25

30

40

45

50

14

application, wherein the second pattern detection
scheme is different from the first pattern detection
scheme.

13. A link interface unit comprising:

one or more buffers; and

control logic;

wherein the control logic is configured to:

receive a data stream for transmission over the com-
munication link;

store the data stream in the one or more buffers;

partition the data stream into blocks of data of a first
size;

send, over the communication link, first blocks of the
blocks of data of the first size without sending
second blocks of the blocks of data of the first size,
responsive to determining the second blocks match
one or more first data patterns;

generate an encoding to indicate which data pattern the
second portions match; and

send the encoding over the communication link.

14. The link interface unit as recited in claim 13, wherein
responsive to determining a portion of each block of data of
the first size does not match any of the one or more patterns,
the link interface unit is configured to:

partition the data stream into blocks of data of a second

size; and

send, over the communication link, first blocks of the

blocks of data of the second size without sending
second blocks of the blocks of data of the second size,
responsive to determining the second blocks of the
blocks of data of the second size match one or more
first data patterns.

15. The link interface unit as recited in claim 14, wherein
the data stream is a cache line of data, and wherein the
second size is equal to half the first size.

16. The link interface unit as recited in claim 13, wherein
the link interface unit is further configured to:

monitor the data stream to dynamically determine which

data patterns occur frequently within the data stream
over a first period of time; and

determine if blocks of data of the first size within the data

stream match a second data pattern responsive to
determining the second data pattern is a frequently
occurring data pattern within the data stream over the
first period of time, wherein the second data pattern is
different from the one or more first data patterns.

17. The link interface unit as recited in claim 16, wherein
a frequently occurring data pattern is a data pattern which
occurs more than a threshold number of times in the first
period of time.

