
| HAO WAKAT I AKITEL UT AT UNITAT MAI MULT US009792043B2

(12) United States Patent
Subramanian et al .

(10) Patent No . :
(45) Date of Patent :

US 9 , 792 , 043 B2
Oct . 17 , 2017

(54) METHODS AND SYSTEMS FOR
EFFICIENTLY STORING DATA

(71) Applicant : NETAPP , INC . , Sunnyvale , CA (US)
(72) Inventors : Ananthan Subramanian , San Ramon ,

CA (US) ; Anil Paul Thoppil ,
Sunnyvale , CA (US) ; Sunitha Sunil
Sankar , Cupertino , CA (US) ; Cheryl
Marie Thompson , Sunnyvale , CA (US)

9 , 612 , 768 B2 4 / 2017 Katiyar et al .
9 , 613 , 046 B1 4 / 2017 Xu et al .

2003 / 0115439 A1 * 6 / 2003 Mahalingam . . GO6F 17 / 30079
712 / 1

2010 / 0281230 A1 * 11 / 2010 Rabii G06F 3 / 0605
711 / 165

2012 / 03 17337 A1 * 12 / 2012 Johar GO6F 12 / 0246
711 / 103

2012 / 0330903 Al 12 / 2012 Periyagaram et al .
2013 / 0297872 A1 * 11 / 2013 Hyde , II GO6F 3 / 0611

711 / 117
2017 / 0031772 A12 / 2017 Subramanian et al .
2017 / 0031940 A12 / 2017 Subramanian et al .
2017 / 0068472 Al 3 / 2017 Periyagaram et al . (73) Assignee : NETAPP , INC . , Sunnyvale , CA (US)

OTHER PUBLICATIONS
(*) Notice : Subject to any disclaimer , the term of this

patent is extended or adjusted under 35
U . S . C . 154 (b) by 107 days .

(21) Appl . No . : 14 / 994 , 924
(22) Filed : Jan . 13 , 2016

Non - Final Ofice Action on co - pending U . S . Appl . No . 14 / 994 , 971
dated Apr . 27 , 2017 .

* cited by examiner
(65) Prior Publication Data

US 2017 / 0199675 A1 Jul . 13 , 2017
Primary Examiner — Gary W Cygiel
(74) Attorney , Agent , or Firm — Klein , O ' Neill & Singh ,
LLP

(57)
(51) Int . Cl .

G06F 3 / 06 (2006 . 01)
G06F 12 / 02 (2006 . 01)

(52) U . S . CI .
CPC GO6F 3 / 0608 (2013 . 01) ; G06F 3 / 065

(2013 . 01) ; G06F 3 / 067 (2013 . 01) ; G06F
3 / 0619 (2013 . 01) ; G06F 3 / 0652 (2013 . 01) ;
G06F 370665 (2013 . 01) ; G06F 12 / 0253

(2013 . 01)
(58) Field of Classification Search

None
See application file for complete search history .

ABSTRACT
Methods and systems for a networked storage environment
are provided . One method includes scanning a first data
structure by a processor executing instructions out of a
memory for a storage operating system to determine whether
any data chunk of a first object stored at a first storage tier
is referenced by the storage operating ; when the storage
operating system references a certain number of data
chunks , the processor using an object staging data structure
to identify a second object that is in the process of being built
with space for transferring the certain number of data chunks
from the first object to the second object ; and updating
information regarding the second object at a transfer log
with location information of the certain number of data
chunks at the first storage tier .

(56) References Cited
U . S . PATENT DOCUMENTS

9 , 558 , 073 B2
9 , 575 , 974 B2

1 / 2017 Cantwell et al .
2 / 2017 Muthyala et al . 20 Claims , 13 Drawing Sheets ets

Start
B6023602

Scan a reference count data structure for
identifying an object that can be re

packaged or deleted during a garbage
collection operation B604

Garbage Collection Repackaging

Verify if object is free to be
deleted B606

Identify blocks within the
object that are being used
by the file system B612

Place the object with a
group for garbage

collection
B608

Identify an object that is
being built B614

Delete the group of objects
and update reference
count and the object ID

data structure
B610

Update container file and
insert PVBN in the transfer
log for the re - packaged

object B616

Use transfer log to service
any read requests while

the new object is still being
built 8618

600

naman

annann manna

nanna
anna

wanna wanna

wanna
RAANSA

OMA

Storage Tenant 140

1

100

U . S . Patent

wwwwwwwww

wwwwwwww

Wwwwwwwwwwwwwww

wwwwwww wwwwwww

atent

Management Console 132

Client 116A
WXXXXXXX

Client 116N
HENRE

mm

+ + +

MYYYYYYTY
mi wo wo wo w

MAN

XXXXXX

Storage System 108

+ + XXXXXXXXXXXYYAXWXYOKTYAXYXY + AT + + +

LXXARIOKEXXXL D

vaman
Connection System 110

Oct . 17 , 2017

Storage Operating System

www

KERALA

www
????????????

134

MAKAKAKAKAKAKKAKASAN

Storage Provider 124

Host System 102N

130A

130N

??

wawwamama

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

wwwwwwwwwwwwwwwww wwwwwwwwwwwwwww

wwwwwwwwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww

Host OS 145

Guest OS 104A

wwwwwwwwww

wwwwwwwww
????????????????????????

Guest OS 104N

Host OS 145 . Hieronde . . . Guest

ATITI ' TITO ' TITO
wwwwwwwwwwwwww

Sheet 1 of 13

Application 142

WP

102A

.

+

1

1

+

+

+

+

+ +

+

+

+ +

+ 1

1

+ 0 + 1

+ 0 + 1

+ 0 + 1

+ 0 + 1

+

+ +

+

+ +

+

+ +

+ +

+

+

+ +

+

+

+ +

+

11800 120

124

SSD) 112 HDD

wwwwwwwwwwwwww

VMM 106

DEAD

Object Based Storage
WWWWWWWWWWWWWWWWWWW

Performance Tier

128

ROKAKALOKEXKAKO

Hardware Resources 120

Capacity Tier

?? ????

FIG . 1

US 9 , 792 , 043 B2

US 9 , 792 , 043 B2

200

FIG . 2A

wwwwwwwwwwww
MITT

en

me
t

een man

128 Capacity Tier

one at
w

w .

wanan awan

na wana w w w w

www . www . www

mmmm I

Mam mana

E BOC 300N

-

Module 218 . 3 Management
momm

na

W YTYYTYWYD

Object
Based
Storage

124

na na

0000 00000000000000

URAKKAU S

GARANCIA

wwwwwwwwwwwww

hananana

TTT

wanan

Oooo ' ng ' no ano ang

T

216 . 3 Module Storage
Eck

214 . 3 Module Network
TT T

uwa

MAMA MARA

EXOGODNOSTKOWODO

10

MAN

Sheet 2 of 13

- -

wwwwwwwwww wwwwwww

10 . In no TOTOO , TO ID DIITO , TO OD T

ID OO OOOOOOOOO wowowowowowowowowowow

wwws

617

204 . N Client

216 . 2 Module Storage
OBODAN doon

214 . 2 Module Network

www

WAUMU

wwwowowowowowowowow

Fabric 210 Switching Cluster

206 Network

Storage Tenant 140

TOO

OOTDT TOOOT
:

Module 218 . 2 Management
KATAKAN

www

not
m

208 . 2 NODE

I

M

Oct . 17 , 2017

204 . 1 Client

617

TT

m

moooooo
m

wuduk

IA

WANAN . ARA

wwwwwwwwwwwwwwwwww

-

need

-

12

29

TAT -

TRT TA

COTTORIPOROTTERRETROTTOIRERERE TEREDE

EDIDIE

TH17

121

216 . 1 Module Storage

DZI Jepi Old abejois

Module Network

ARARAANAMAN

wwwwwwww

mem

www

Towwwwww

CATATATATATATATTOO

mem

NA

mamamang

atent

momencem

mendimenawawaammen

132

1 zoz

208 . 1 NODE

Module 218 . 1 Management

Console Management
??

-

-

-

-

*

*

*

* -

- -

* * * * * *

atent Oct . 17 , 2017 Sheet 3 of 13 US 9 , 792 , 043 B2

134

FILE SYSTEM MANAGER
per 1600

240
1

URAL

w

PROTOCOL LAYER 242 te zod w STORAGE ACCESS
LAYER 244 w

O do dood o w

EURUUUUUUUUUUUU w CARACOCACOLOCACHARACAO from -

>

KERXW * * * * * * * * * * * XXARXADDAFRXX * XX * * * * XARARET .

I WALAWWAAAAAAAAAAAAAAAAAAAAAAM ???????????????????? w het om hina o ww wwwnnnnnnnnnnnnnnnn bilen doodet
7

w LU o
doo O -

w

ww 242A 242B2420 242D GOAD boot doo 12444 2440 w

w w
wwwwwwwwww wwwwwwww OKKAR DOULO

AAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAADIO

de su

ww
NETWORK

ACCESS LAYER
246

STORAGE
DRIVERS

248
dedo
ved www w

TO / FROM
CLIENTS

TO / FROM STORAGE
PERFORMANCE AND
CAPACITY TIER)

FIG . 2B

atent Oct . 17 , 2017 Sheet 4 of 13 US 9 , 792 , 043 B2

META - DATA SECTION 302
mon mot minne mono innan mann mano man mano more money on monen mons

TYPE 304
SIZE 306
TIME STAMPS 308
UID 310
GID 312
X INODE 314 POINTER 316
DATA SECTION 318

FIG . 3

atent Oct . 17 , 2017 Sheet 5 of 13 US 9 , 792 , 043 B2

WPWWWVXPWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW

INODE 402

RARARAAARRRAARUKATE . waarnemann POINTER
405

* POINTER
405 ponor

XXXKUXXKS ? ?????????? I
mogos

ut
oood

INDIRECT BLOCK
404

INDIRECT BLOCK
404

oooooo
oo LEVEL 1

BLOCKS
o POINTER

405
POINTER

405
POINTER

405
is POINTER

405 OOOOO
TT TTTTT ITTTTT TTTTTTTTTTT ITT IITTI TT IITTIT IITTI TITT ITTTTT OTTIR , Thymn non nom

* mengenai progra
0 WWW www

100 LEVELO
BLOCKS wwwwwwwwwww

DATA
BLOCK

406

DATA
BLOCK
406

DATA
BLOCK

406 wwwwwwwwww
DATA
BLOCK

406
- - - LL24 . DULL / SOUL2449 ??? ??? ??? ??? ???? wwwwww

FILE A 400 S tk . 1 .

FIG . 4

U . S . Patent atent Oct . 17 , 2017 Sheet 6 of 13 US 9 , 792 , 043 B2

CLOS LLLLLLLL

wwww 240

:

. . .

wwwww ww

PRODU wwwwwwwww ww
File System Manager

Write Allocator Buffer Cache Tiering Policy
504 Manager

500 508 Temperature
Tracker
506

PVBN Hash
502 CP Module

510

L . . .

wwwwwww

wwwwwww

www wwwwwww

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww w wwwwwwwwwwwwwwwwwwwwwwwwwwww

244B

www Object
Tracker

TLOG
512

Data Read
Engine
513

??????????????? TTTTTTTTTTTT

TELLOTTTTTTTT . . nn - - - - 520 .

One . n o W wwwwww

Transfer Module
244A ww ???????????? Storage
Driver
248A ODOROOOOOOOOOOOO .

Repackaging
Garbage
Collection
Module

Compressioni
De - compression Module

516 wwwwwwwwwwwwwwwwwwwwwwwwwww w wwwwwwwww nononnnnnnnnnnnnnnnnnnnnnnnnnnnnn 517
Ewwwwwwwwwwwwww

. .

Communication
Module
518

20

non

Annwwwwwwwww WWWWWWWWWWWWWWWWWWw w n nnnnnnnnnnnnnnnnnn nn

Wwwwwwwwwwwwwww Performance Tier
112 To / From Capacity Tier 128

FIG . 5A

atent Oct . 17 , 2017 Sheet 7 of 13 US 9 , 792 , 043 B2

??? ?? ??? ?? ??? : ???? = ??? ???? ?? ?????????????????????????????? ??? . ????? . ???? . ????

BIN # BAD SLOT

520 KKKKKKKKKKKK
PVBN for

Capacity Tier
128 WWWWWWW 520A 520B 5200

BIN #
3 Bits RAID 4K Block Number

KKKKKKKK wwwwwwwwwwwwwwwww
PVBN for

Performance
Tier 112 519

519A 519B

Object 1 Object N
Object Reference

Count Data
Structure 521 00000 mit F9YYYYY wwwwww Museum - TV WWW w

wwwwwwwwwwwwwwwwwwww ???????

Object ID 1 Object IDN - - - - - - - - wwwwwwwwwww OOOOOOOOO
WE W NAS M A MAN [Bit Setting) [Bit Setting)

523 Object ID Data Structure

www ww www . . wewe mwenyewe w

B

B

ww OID Seg No State Ref 00000000 AARS wwwwww B

B

ww www www W ??? ????? ????? ????? ????? TIT . ITT ITTIT TIIT TITT

525 Object Meta Data Structure

FIG . 5B

Patent Oct . 17 , 2017 Sheet 8 of 13 US 9 , 792 , 043 B2

FBN Array 531A W w

Offset F1
Slot 0

CG Size 8KB XXXXXX Offset F2 wwwwwwwwwwwwwwwwwwwwwwwwww Slot 1 535
Slot 1

Slot 2

Header 531 CG Size 16KB Offset F3
Slot 3 * * *

Slot 3 Slot 4 EES 89 ww ww WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW Slot 3 Slot 5

Slot 3 Slot 6
[Slot 01

Data 4KB / Slot Context Offset F1

Data 529 Compressed [Slot 1 Data 8KB
Offset F2

wwwwwwwwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwww

Compressed [Slot 3] Data 16KB wwwwwwwwwww Offset F3

FIG . 5C

atent Oct . 17 , 2017 Sheet 9 of 13 US 9 , 792 , 043 B2

Object Staging Data Structure
532

Object ID State Len } { LOG FBNV
532A 5328 15320 532D minn m mmm

w

ETIRETTORETRO Despencar - nos Teen

12 Build
w wwwwwwwwwwwwwwww wwwwww wwwwwww wwwwwwwwwwwwwwwwwwwwwwww

42 Ready VZOL
www

ills Fly H on ?????? GUARAUN * * * 049 R WWWWWW pooooooooooooooooooo
SS SE]

PVBNO
SSD
PVBN

OSS
NgAd SSD

PVBNN
R2000 . OXOD . O . . O Wood DORUR

PVBN
20 22

non non 10 non non 000 000 000

Object Ready 534 Object Being Built 536

ZLG 2011
non nmnn

FIG . 5D

FIG . 5E
540

mmmmmmmmmmmmmmmmm i mm www n We
Capacity Tier 128

ANNARS DABC6934FE 3
wwwwwwwwwwwwwwwwwwwwww

Awan . . . / s [r] / 2 [1
552

Loooooooooooo WOWOWO Word

099 € 3 €690910
ONO3S anni8 OWEN 2190 L

wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww ww !

www n nmn
w

OZOL 757 1101
1000 no no no no , 000 0000 0000 000 000 000 000 000 000 no 0000 000 000 000 000 0 0 000 000 000

1023 yo 218 wood 9€ ONSOLETY sen
Old Ref State BTID SEQ NO Qlo

Object Meta File
VDU . ww w maanananananananananana

- 548 548

non nano 700 o In m 000

formeren 546 Slot 5 Obj ID 101 001
5

0000 nanono .

w w BTUUID = OXDABC6934FE
BTID = 757 formwona 544 { 1 } { ? ????
Wowww wwwwwwwwwwwwwwwwwwwww

YO + 1 + 1 + 1 + + + + - - - * * - - * * * * * * * * * *
zos +

Yoooooo

US 9 , 792 , 043 B2 Sheet 10 of 13 Oct . 17 , 2017 U . S . Patent atent

us parent cusut som en av atent Oct . 17 , 2017 Sheet 11 of 13 1902 US 9 , 792 , 043 B2

Q Start
B602 B602

LOU0442EELSU44444LESSL4444444EUSLU44444UUUUUU444444USU ELSLOZ000440SLLLSL4444 4 4444 44444EGULL

Scan a reference count data structure for
identifying an object that can be re

packaged or deleted during a garbage
collection operation B604

WWWKKKKKKKKKKKKKKKKK

Garbage Collection Repackaging

????????????????????????????????????? ponovno popo CONDO O OOOOOOOOOOOOOOOOO

Verify if object is free to be
deleted B606

Identify blocks within the
object that are being used
by the file system B612 TAARISSA KAIKKISKA *

buwwwwwwwwwwwwwwwww w ww wwwwwww wwwwwwwwww

Place the object with a
group for garbage

collection
B608

* * * * * * * * * * * * * * * * *

Identify an object that is
being built B614

GOOOUUU12000000000 ????????????????? ??????

Delete the group of objects
and update reference
count and the object D

data structure
B610

mwn Update container file and
insert PVBN in the transfer
log for the re - packaged

object B616
wwwwwwwwwwwwwwwwwwwwwwwwwwww

Woooooooooooooooooooooo ooooo Oooooooooooooooooooong

Use transfer log to service
any read requests while

the new object is still being
built 8618

wwwwwwwwwwwwwwwww wwwwwwww

600 FIG . 6

* *

4

+ + +

? + + + + , A

+

+ + + + +

+ + + + + A

L L ,

MEMORY 704

U . S . Patent

THAT

STORAGE OPERATING SYSTEM 134

atent

www . armentervernetworrency

PROCESSOR 702A
PROCESSOR 7028

+

+ + + + +

1

+ + +
1

+ + + +

“ ?

,

LE + + + + + + +

+ + + 44

??

?
7708

Oct . 17 , 2017

+ + + +

PPT

+ + + + + + + . .

INTEND
;

NETWORK ADAPTER 70

CLUSTER ACCESS ADAPTER

STORAGE ADAPTER 716

LOCAL STORAGE

712

= = ? ? ? ? ? ? ? ? = = THANNAHEATHAAAAAAAAAAAAA

STEMPERTHWESTEINHAPHHHHHHHHHH

73

CNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNICANNEWS

Sheet 12 of 13

tttttttt
THREFFEERITI LIFE ,

WELLELETTER

PHAMPLE

+ AA - 1A +

TO / FROM CLIENTS 204 . 1 / 204 . N |

???????????

CONFIGURATION DATA STRUCTURE

TO / FROM STORAGE 112 / 128

- -

?? :

TO / FROM CLUSTER SWITCHING FABRIC 210
-

14

208 . 1

FIG . 7

US 9 . 792 , 043 B2

atent Oct . 17 , 2017 Sheet 13 of 13 US 9 , 792 , 043 B2

YAMAKAKAKAKAKAKAKAKAKAKAKAKAK AAKAKAKAKAKAKAKAK KANAKAN KAKAKAKAKAK Kiwi

MEMORY 800
PROCESSOR

INSTRUCTIONS
806 * 802

wer

Moon OTTO O
awren

O O
L

805
+ . . . + . . . + , 4 , + , , + , 4 , + 1 , + 1 , + 1 , 1 , 1 , XXXXXXX XXXXXXXX XXXXXXXX XXKXKXK + K + 1 , KKKKKKKKK _ KRE

ganananananananawiam w anaweneen winAnananananana

VO DEVICE
MASS

STORAGE
810 2 wwwwwww WURMEKAAKKAAKKAAKAKAKAKA

NETWORK
ADAPTER

812 808 wavutus

wwwwwwwwwwwwwwwwwwwwwwww wwwwwwwwwwwwwww

WW

TO / FROM NETWORK

FIG . 8

US 9 , 792 , 043 B2

METHODS AND SYSTEMS FOR
EFFICIENTLY STORING DATA

FIG . 8 shows an example of a processing system , used
according to one aspect of the present disclosure .

TECHNICAL FIELD DETAILED DESCRIPTION
ç

The present disclosure relates to networked storage envi - As a preliminary note , the terms " component ” , “ module ” ,
ronments , and more particularly , to efficiently storing data at " system , ” and the like as used herein are intended to refer to
object based data stores . a computer - related entity , either software - executing general

purpose processor , hardware , firmware and a combination
BACKGROUND 10 thereof . For example , a component may be , but is not limited

to being , a process running on a hardware processor , a
Various forms of storage systems are used today . These hardware processor , an object , an executable , a thread of

forms include direct attached storage , network attached execution , a program , and / or a computer .
storage (NAS) systems , storage area networks (SANs) , and By way of illustration , both an application running on a
others . Storage systems are commonly used for a variety of 15 server and the server can be a component . One or more
purposes , such as providing multiple users with access to components may reside within a process and / or thread of
shared data , backing up data and others . execution , and a component may be localized on one com

A storage system typically includes at least one comput - puter and / or distributed between two or more computers .
ing system (may also be referred to as a “ server ” or “ storage Also , these components can execute from various computer
server ”) executing a storage operating system configured to 20 readable media having various data structures stored
store and retrieve data on behalf of one or more client thereon . The components may communicate via local and / or
computing systems at one or more storage devices . The remote processes such as in accordance with a signal having
storage operating system exports data stored at storage one or more data packets (e . g . , data from one component
devices as a storage volume . A storage volume is a logical interacting with another component in a local system , dis
data set which is an abstraction of physical storage , com - 25 tributed system , and / or across a network such as the Internet
bining one or more physical mass storage devices or parts with other systems via the signal) .
thereof into a single logical storage object . Continuous Computer executable components can be stored , for
efforts are being made to efficiently store data . example , at non - transitory , computer readable media includ

ing , but not limited to , an ASIC (application specific inte
BRIEF DESCRIPTION OF THE DRAWINGS 30 grated circuit) , CD (compact disc) , DVD (digital video

disk) , ROM (read only memory) , floppy disk , hard disk ,
The various features of the present disclosure will now be EEPROM (electrically erasable programmable read only

described with reference to the drawings of the various memory) , memory stick or any other storage device , in
aspects disclosed herein . In the drawings , the same compo - accordance with the claimed subject matter .
nents may have the same reference numerals . The illustrated 35 In one aspect , methods and systems for a networked
aspects are intended to illustrate , but not to limit the present storage environment are provided . One method includes
disclosure . The drawings include the following Figures : scanning a first data structure by a processor executing

FIG . 1 shows an example of an operating environment for instructions out of a memory for a storage operating system
the various aspects disclosed herein ; to determine whether any data chunk of a first object stored

FIG . 2A shows an example of a clustered storage system , 40 at a first storage tier is referenced by the storage operating ;
used according to one aspect of the present disclosure ; when the storage operating system references a certain

FIG . 2B shows an example of a storage operating system , number of data chunks , the processor using an object staging
used according to one aspect of the present disclosure ; data structure to identify a second object that is in the

FIG . 3 shows an example of an inode , used according to process of being built with space for transferring the certain
one aspect of the present disclosure ; 45 number of data chunks from the first object to the second

FIG . 4 shows an example of a buffer tree , used according object ; and updating information regarding the second
to one aspect of the present disclosure ; object at a transfer log with location information of the

FIG . 5A shows a block diagram of a file system manager ; certain number of data chunks at the first storage tier .
according to one aspect of the present disclosure ; System 100 :

FIG . 5B shows the format for physical volume block 50 FIG . 1 shows an example of a networked storage envi
numbers (PVBNS) for a performance storage tier and a ronment 100 (also referred to as system 100) , for imple
capacity storage tier , an object reference count data struc - menting the various adaptive aspect of the present disclo
ture , an object ID data structure and an object meta data sure . System 100 may include a plurality of computing
structure ; according to one aspect of the present disclosure ; devices 102A - 102N (may also be referred to individually as

FIG . 5C shows an example of a format for storing data at 55 a host platform / system 102 or simply as server 102) com
an object store , according to one aspect of the present municably coupled to a storage system (or storage server)
disclosure ; 108 that executes a storage operating system 134 via a

FIG . 5D shows an example of using an object staging data connection system 110 such as a local area network (LAN) ,
structure ; wide area network (WAN) , the Internet and others . As

FIG . 5E shows an example of retrieving an object from an 60 described herein , the term “ communicably coupled ” may
object data store , according to one aspect of the present refer to a direct connection , a network connection , or other
disclosure ; connections to enable communication between devices .

FIG . 6 shows a process for garbage collection and repack As an example , host system 102A may execute a plurality
aging an object , according to one aspect of the present of virtual machines (VMs) in a virtual environment that is
disclosure ; 65 described below in detail . Host 102N may execute one or

FIG . 7 shows an example of a storage system node , more application 142 , for example , a database application
according to one aspect of the present disclosure ; and (for example , Oracle application) , an email application

US 9 , 792 , 043 B2

(Microsoft Exchange) and others that use the storage system 112 or the capacity tier 128 based on a request . The request
108 to store information . Host 102N also executes an may be based on file - based access protocols , for example ,
operating system 145 , for example , a Windows based oper the Common Internet File System (CIFS) protocol or Net
ating system , Linux , Unix and others (without any deroga - work File System (NFS) protocol , over TCP / IP . Alterna
tion of any third party trademark rights) . 5 tively , the request may use block - based access protocols , for

Clients 116A - 116N (may be referred to as client (or user) example , iSCSI and SCSI encapsulated over Fibre Channel
116) are computing devices that can access storage space at (FCP) .
the storage system 108 . A client can be the entire system of To facilitate access to storage space , the storage operating
a company , a department , a project unit or any other entity . system 134 implements a file system that logically organizes
Each client is uniquely identified and optionally , may be a 10 stored information as a hierarchical structure for files /
part of a logical structure called a storage tenant 140 . The directories / objects at the storage devices . Each “ on - disk ” file
storage tenant 140 represents a set of users (may be referred may be implemented as set of blocks configured to store
to as storage consumers) for a storage provider 124 (may information , such as text , whereas a directory may be
also be referred to as a cloud manager , where cloud com - implemented as a specially formatted file in which other files
puting is being utilized) . Where a storage provider 124 is 15 and directories are stored . These data blocks are organized
being used , the client accesses storage through the storage within a volume block number (VBN) space that is main
provider . It is noteworthy that the adaptive aspects of the tained by a file system of the storage operating system 134
present disclosure are not limited to using a storage provider described below in detail . The file system may also assign
or a storage tenant and may be implemented for direct client each data block in the file a corresponding “ file offset ” or file
access . 20 block number (FBN) . The file system typically assigns

In one aspect , storage system 108 has access to a first set sequences of FBNs on a per - file basis , whereas VBNs are
of mass storage devices 118 - 120 within at least one storage assigned over a larger volume address space . The file system
subsystem 112 that is referred to as a performance tier , a organizes the data blocks within the VBN space as a logical
hybrid storage device system . The mass storage devices 118 volume . The file system typically consists of a contiguous
may include solid state drives (SSDs) , while the mass 25 range of VBNs from zero to n , for a file system of size n - 1
storage devices 120 may include writable storage device blocks .
media such as hard disk drives (HDD) , magnetic disks , An example of storage operating system 134 is the Data
video tape , optical , DVD , magnetic tape , and any other ONTAPTM storage operating system available from NetApp ,
similar media adapted to store information . The storage Inc . that implements a Write Anywhere File Layout (WAFL)
devices 118 - 120 may be organized as one or more groups of 30 file system (without derogation of any trademark rights of
Redundant Array of Independent (or Inexpensive) Disks NetApp Inc .) . Of course , the various aspects disclosed
(RAID) . The various aspects disclosed are not limited to any herein are not limited to any specific file system type and
particular storage device type or storage device configura - maybe implemented by other file systems .
tion . The storage operating system 134 may further implement

The storage system also has access to an object based 35 a storage module (for example , a RAID system for perfor
storage 124 at a capacity tier 128 . The term object as defined mance tier 112) that manages the storage and retrieval of the
herein means a chunk of data (having one or more blocks of information to and from storage devices in accordance with
data) is written together in an object storage tier . The object input / output (1 / 0) operations . When accessing a block of a
based storage 124 may be slower than the performance tier file in response to servicing a client request , the file system
112 storage . In one aspect , data stored at the object store 124 40 specifies a VBN that is translated at the file system / RAID
is managed using an object identifier and an offset value system boundary into a disk block number (DBN) location
within the object , as described below in detail . The capacity on a particular storage device (disk , DBN) within a RAID
tier 128 may be used in a cloud based environment . The group of the physical volume . Each block in the VBN space
adaptive aspects described herein however are not limited to and in the DBN space is typically fixed , e . g . , 4 k bytes (kB) ,
the cloud based environment . 45 in size ; accordingly , there is typically a one - to - one mapping

As an example , the storage system 108 may provide a set between the information stored on the disks in the DBN
of logical storage volumes (or logical unit numbers (LUNS)) space and the information organized by the file system in the
that presents storage space to clients and VMs for storing VBN space .
information . Each volume may be configured to store data A requested block is retrieved from a storage device and
files (or data containers or data objects) , scripts , word 50 stored in a buffer cache of a memory of the storage system
processing documents , executable programs , and any other 108 as part of a buffer tree of the file . The buffer tree is an
type of structured or unstructured data . From the perspective internal representation of blocks for a file stored in the buffer
of one of the client systems , each volume can appear to be cache and maintained by the file system . Broadly stated and
a single drive . However , each volume can represent storage as described below in detail , the buffer tree has an inode at
space at one storage device , an aggregate of some or all of 55 the root (top - level) of the file , as described below .
the storage space in multiple storage devices , a RAID group , An inode is a data structure used to store information ,
or any other suitable set of storage space . such as metadata , about a file , whereas the data blocks are

The storage operating system 134 organizes storage space structures used to store the actual data for the file . The
at the performance tier 112 as one or more " aggregate ” , information in an inode may include , e . g . , ownership of the
where each aggregate is identified by a unique identifier and 60 file , access permission for the file , size of the file , file type
a location . Within each aggregate , one or more storage and references to locations on disk of the data blocks for the
volumes are created whose size can be varied . A qtree , file . The references to the locations of the file data are
sub - volume unit may also be created within the storage provided by pointers , which may further reference indirect
volumes . As a special case , a qtree may be an entire storage blocks that , in turn , reference the data blocks , depending
volume . 65 upon the quantity of data in the file . Each pointer may be

The storage system 108 may be used to store and manage embodied as a VBN to facilitate efficiency among the file
information at storage devices in either the performance tier system and the RAID system when accessing the data .

US 9 , 792 , 043 B2

m

Volume information (volinfo) and file system information system , referred to as a hypervisor server or VMM server
(fsinfo) blocks specify the layout of information in the file and VMs 130A - 130N are presented at one or more com
system , the latter block including an inode of a file that puting systems .
includes all other inodes of the file system (the inode file) . It is noteworthy that different vendors provide different
Each logical volume (file system) has an fsinfo block that is 5 virtualization environments , for example , VMware Corpo
preferably stored at a fixed location within , e . g . , a RAID ration , Microsoft Corporation and others . Data centers may
group . The inode of the fsinfo block may directly reference have hybrid virtualization environments / technologies , for
(point to blocks of the inode file or may reference the example , Hyper - V and hypervisor based virtual environ indirect blocks of the inode file that , in turn , reference direct ment . The generic virtualization environment described blocks of the inode file . Within each direct block of the inode 10 above with respect to FIG . 1 may be customized depending file are embedded inodes , each of which may reference on the virtual environment to implement the aspects of the indirect blocks that , in turn , reference data blocks (also
shown as LO blocks) of a file . An example of an inode and present disclosure . Furthermore , VMM 106 (or VIL 122)
a buffer tree are provided below . may execute other modules , for example , a storage driver ,

In a typical mode of operation , a client transmits one or 15 het e or 15 network interface and others , the details of which are not
more input / output (I / O) commands , such as a CFS or NFS germane to the aspects described herein and hence have not
request , over connection system 110 to the storage system been described in detail . The virtualization environment
108 . Storage system 108 receives the request , issues one or may use different hardware and software components and it
more I / O commands to storage devices to read or write the is desirable for one to know an optimum / compatible con
data on behalf of the client system , and issues a CIFS or NFS 20 figuration .
response containing the requested data over the network 110 In one aspect , system 100 provides a management console
to the respective client system . 132 for configuring and managing the various components
As an example , system 100 may also include a virtual of system 100 . As an example , the management console may

machine environment where a physical resource is time - be implemented as or include one or more application
shared among a plurality of independently operating pro - 25 programming interface (API) . The APIs may be imple
cessor executable virtual machines (VMs) . Each VM maym ented as REST APIs , where REST means “ Representa
function as a self - contained platform , running its own oper - tional State Transfer ” . REST is a scalable system used for
ating system (OS) and computer executable , application building web services . REST systems / interface may use
software . The computer executable instructions running in a HTTP (hyper - text transfer protocol) or other protocols for
VM may be collectively referred to herein as " guest soft - 30 communicating .
ware . ” In addition , resources available within the VM may Although storage system 108 is shown as a stand - alone
be referred to herein as " guest resources . ” system , i . e . a non - cluster based system , in another aspect ,

The guest software expects to operate as if it were running storage system 108 may have a distributed architecture ; for
on a dedicated computer rather than in a VM . That is , the example , a cluster based system that is described below in
guest software expects to control various events and have 35 detail with respect to FIG . 2A .
access to hardware resources on a physical computing Clustered System :
system (may also be referred to as a host platform) which Before describing the various aspects of the present
maybe referred to herein as " host hardware resources " . The disclosure , the following describes a clustered networked
host hardware resource may include one or more processors , storage environment 200 . FIG . 2A shows a cluster based
resources resident on the processors (e . g . , control registers , 40 storage environment 200 having a plurality of nodes oper
caches and others) , memory instructions residing in ating as resources to store data on behalf of clients at either
memory , e . g . , descriptor tables) , and other resources (e . g . , the performance tier 112 or the capacity tier 128 .
input / output devices , host attached storage , network Storage environment 200 may include a plurality of client
attached storage or other like storage) that reside in a systems 204 . 1 - 204 . N as part of or associated with storage
physical machine or are coupled to the host platform . 45 tenant 140 , a clustered storage system 202 (similar to storage

Host platform 102A includes / provides a virtual machine system 108) and at least a network 206 communicably
environment executing a plurality of VMs 130A - 130N that connecting the client systems 204 . 1 - 204 . N , the management
may be presented to client computing devices / systems console 132 , the storage (or cloud) provider 124 and the
116A - 116N . VMs 130A - 130N execute a plurality of guest clustered storage system 202 . It is noteworthy that these
OS 104A - 104N (may also be referred to as guest OS 104) 50 components may interface with each other using more than
that share hardware resources 120 . Application 142 may be one network having more than one network device .
executed within VMs 130 . As described above , hardware The clustered storage system 202 includes a plurality of
resources 120 may include storage , CPU , memory , I / O nodes 208 . 1 - 208 . 3 , a cluster switching fabric 210 , and a
devices or any other hardware resource . plurality of mass storage devices in the performance tier

In one aspect , host platform 102A interfaces with a virtual 55 112 . 1 - 112 . 3 (similar to performance tier 112) . The nodes
machine monitor (VMM) 106 , for example , a processor may also store data at capacity tier 128 , as described below
executed Hyper - V layer provided by Microsoft Corporation in detail .
of Redmond , Wash . , a hypervisor layer provided by Each of the plurality of nodes 208 . 1 - 208 . 3 is configured
VMWare Inc . , or any other type . VMM 106 presents and to include a network module , a storage module , and a
manages the plurality of guest OS 104A - 104N executed by 60 management module , each of which can be implemented as
the host platform 102 . The VMM 106 may include or a processor executable module . Specifically , node 208 . 1
interface with a virtualization layer (VIL) 122 that provides includes a network module 214 . 1 , a storage module 216 . 1 ,
one or more virtualized hardware resource to each OS and a management module 218 . 1 , node 208 . 2 includes a
104A - 104N . network module 214 . 2 , a storage module 216 . 2 , and a

In one aspect , VMM 106 is executed by host platform 65 management module 218 . 2 , and node 208 . 3 includes a
102A with VMs 130A - 130N . In another aspect , VMM 106 network module 214 . 3 , a storage module 216 . 3 , and a
may be executed by an independent stand - alone computing management module 218 . 3 .

US 9 , 792 , 043 B2

The network modules 214 . 1 - 214 . 3 include functionality “ layers ” executed by one or both of network module 214 and
that enable the respective nodes 208 . 1 - 208 . 3 to connect to storage module 216 . These layers include a file system
one or more of the client systems 204 . 1 - 204 . N (or the manager 240 that keeps track of a hierarchical structure of
management console 132) over the computer network 206 . the data stored in storage devices and manages read / write
The network modules handle file network protocol process - 5 operation , i . e . executes read / write operation on storage in
ing (for example , CFS , NFS and / or iSCSI requests) . The response to client 204 . 1 / 204 . N requests , as described below
storage modules 216 . 1 - 216 . 3 connect to one or more of the in detail .
storage devices at the performance tier and / or the capacity Storage operating system 134 may also include a protocol
tier and process I / O requests . Accordingly , each of the layer 242 and an associated network access layer 246 , to
plurality of nodes 208 . 1 - 208 . 3 in the clustered storage server 10 allow node 208 . 1 to communicate over a network with other
arrangement provides the functionality of a storage server . systems , such as clients 204 . 1 / 204 . N . Protocol layer 242

The management modules 218 . 1 - 218 . 3 provide manage may implement one or more of various higher - level network
ment functions for the clustered storage system 202 . The protocols , such as SAN (e . g . iSCSI) (242A) , CIFS (242B) ,
management modules 218 . 1 - 218 . 3 collect storage informa NFS (242C) , Hypertext Transfer Protocol (HTTP) (not
tion regarding storage devices . 15 shown) , TCP / IP (not shown) and others (242D) .

A switched virtualization layer including a plurality of Network access layer 246 may include one or more
virtual interfaces (VIFs) 219 is provided to interface drivers , which implement one or more lower - level protocols
between the respective network modules 214 . 1 - 214 . 3 and to communicate over the network , such as Ethernet . Inter
the client systems 204 . 1 - 204 . N , allowing storage space at actions between clients ' and mass storage devices are illus
the storage devices associated with the nodes 208 . 1 - 208 . 3 to 20 trated schematically as a path , which illustrates the flow of
be presented to the client systems 204 . 1 - 204 . N as a single data through storage operating system 134 .
shared storage pool . The storage operating system 134 may also include a

The clustered storage system 202 can be organized into storage access layer 244 and an associated storage driver
any suitable number of storage virtual machines (SVMs) layer 248 to allow storage module 216 to communicate with
(may be referred to as virtual servers (may also be referred 25 a storage device . The storage access layer 244 may imple
to as “ SVMs ”) , in which each SVM represents a single ment a higher - level storage protocol , such as RAID (redun
storage system namespace with separate network access . A dant array of inexpensive disks) (244A) , a S3 layer 244B to
SVM may be designated as a resource on system 200 . Each access the capacity tier 128 described below in detail , and
SVM has a client domain and a security domain that are other layers 244C . The storage driver layer 248 may imple
separate from the client and security domains of other 30 ment a lower - level storage device access protocol , such as
SVMs . Moreover , each SVM is associated with one or more FC or SCSI . The storage driver layer 248 may maintain
VIFs 219 and can span one or more physical nodes , each of various data structures (not shown) for storing information
which can hold one or more VIFs and storage associated regarding storage volume , aggregate and various storage
with one or more SVMs . Client systems can access the data devices .
on a SVM from any node of the clustered system , through 35 As used herein , the term " storage operating system ”
the VIFs associated with that SVM . generally refers to the computer - executable code operable

Each of the nodes 208 . 1 - 208 . 3 is defined as a computing on a computer to perform a storage function that manages
system to provide application services to one or more of the data access and may , in the case of a node 208 . 1 , implement
client systems 204 . 1 - 204 . N . The nodes 208 . 1 - 208 . 3 are data access semantics of a general purpose operating system .
interconnected by the switching fabric 210 , which , for 40 The storage operating system can also be implemented as a
example , may be embodied as a Gigabit Ethernet switch or microkernel , an application program operating over a gen
any other type of switching / connecting device . eral - purpose operating system , such as UNIX® or Windows

Although FIG . 2A depicts an equal number (i . e . , 3) of the XP® , or as a general - purpose operating system with con
network modules 214 . 1 - 214 . 3 , the storage modules 216 . 1 - figurable functionality , which is configured for storage
216 . 3 , and the management modules 218 . 1 - 218 . 3 , any other 45 applications as described herein .
suitable number of network modules , storage modules , and In addition , it will be understood to those skilled in the art
management modules may be provided . There may also be that the disclosure described herein may apply to any type of
different numbers of network modules , storage modules , special - purpose (e . g . , file server , filer or storage serving
and / or management modules within the clustered storage appliance) or general - purpose computer , including a stand
system 202 . For example , in alternative aspects , the clus - 50 alone computer or portion thereof , embodied as or including
tered storage system 202 may include a plurality of network a storage system . Moreover , the teachings of this disclosure
modules and a plurality of storage modules interconnected can be adapted to a variety of storage system architectures
in a configuration that does not reflect a one - to - one corre - including , but not limited to , a network - attached storage
spondence between the network modules and storage mod environment , a storage area network and a storage device
ules . In another aspect , the clustered storage system 202 may 55 directly - attached to a client or host computer . The term
only include one network module and storage module . “ storage system ” should therefore be taken broadly to

Each client system 204 . 1 - 204 . N may request the services include such arrangements in addition to any subsystems
of one of the respective nodes 208 . 1 , 208 . 2 , 208 . 3 , and that configured to perform a storage function and associated with
node may return the results of the services requested by the other equipment or systems . It should be noted that while
client system by exchanging packets over the computer 60 this description is written in terms of a write any where file
network 206 , which may be wire - based , optical fiber , wire system , the teachings of the present disclosure may be
less , or any other suitable combination thereof . utilized with any suitable file system , including a write in

Storage Operating System : place file system .
FIG . 2B illustrates a generic example of storage operating Inode Structure :

system 134 (FIG . 1) executed by node 208 . 1 , according to 65 FIG . 3 shows an example of an inode structure 300 (may
one aspect of the present disclosure . In one example , storage also be referred to as inode 300) used to store data at the
operating system 134 may include several modules , or performance tier 112 according to one aspect of the present

US 9 , 792 , 043 B2
10

disclosure . Inode 300 may include a meta - data section 302 blocks used to hold data in a VVOL ; that is , the LO data
and a data section 318 . The information stored in the blocks of the container file contain all blocks used by a
meta - data section 302 of each inode 300 describes a file and , VVOL . L1 (and higher) indirect blocks of the container file
as such , may include the file type (e . g . , regular , directory or reside in the aggregate and , as such , are considered aggre
object) 304 , size 306 of the file , time stamps (e . g . , access 5 gate blocks . The container file is an internal (to the aggre
and / or modification) 308 for the file and ownership , i . e . , user g ate) feature that supports a VVOL ; illustratively , there is
identifier (UID 310) and group ID (GID 312) , of the file . The one container file per VVOL . The container file is a hidden
metadata section 302 may also include a X - inode field 314 file (not accessible to a user) in the aggregate that holds
with a pointer 316 that references another on - disk inode every block in use by the VVOL .
structure containing , e . g . , access control list (ACL) infor - 10 When operating in a VVOL , VVBN identifies a FBN
mation associated with the file or directory . location within the file and the file system uses the indirect

The contents of data section 318 of each inode 300 may blocks of the hidden container file to translate the FBN into
be interpreted differently depending upon the type of file a PVBN location within the physical volume , which block
(inode) defined within the type field 304 . For example , the can then be retrieved from disk .
data section 318 of a directory inode structure includes 15 File System 240 :
meta - data controlled by the file system , whereas the data FIG . 5A shows a block diagram of the file system man
section of a " regular inode " structure includes user - defined ager 240 , according to one aspect of the present disclosure .
data . In this latter case , the data section 318 includes a The file system manager 240 includes a write allocator 504
representation of the data associated with the file . Data that allocates blocks for writing data . A buffer cache 500 is
section 318 of a regular on - disk inode file may include user 20 used to cache data . A PVBN hash module 502 is used to
data or pointers , the latter referencing , for example , 4 KB cache in - copies of blocks indexed by an aggregate identifier
data blocks for storing user data at a storage device . and a PVBN . The use of the PVBNs are described below in

Inode structure 300 may have a restricted size (for detail .
example , 122 bytes) . Therefore , user data having a size that A temperature tracker module 506 of the file system 240
is less than or equal to 64 bytes may be represented , in its 25 tracks the “ temperature ” of stored data . Hot data is data that
entirety , within the data section of an inode . However , if the is frequently accessed , based on a duration that is defined by
user data is greater than 64 bytes but less than or equal to , the file system manager 240 . Cold data is data that is not
for example , 64 kilobytes (KB) , then the data section of the frequently accessed . The temperature tracker 506 interfaces
inode comprises up to 16 pointers , each of which references with the read path to record read hits and determines read
a 4 KB block of data stored at a disk . Moreover , if the size 30 patterns . The temperature tracker 506 also interfaces with a
of the data is greater than 64 kilobytes but less than or equal tiering policy manager 508 that determines how stored data
to 64 megabytes (MB) , then each pointer in the data section is tiered , i . e . stored at SSDs 118 , HDD 120 or capacity tier
318 of the inode references an indirect inode that contains 128 . The tiering policy manager 508 may store tiering
1024 pointers , each of which references a 4 KB data block policies that may be used to ascertain where data is to be
on disk . 35 stored . This information is provided to the temperature

Buffer Tree : tracker 506 . The temperature tracker 506 hooks into the
FIG . 4 is an example of an inode buffer tree of a data buffer cache 500 and PVBN hash 502 to determine which

container that may be used by the storage operating system blocks get accessed and how often . Data stored at the
134 . The buffer tree is an internal representation of blocks performance tier 112 that is categorized as cold may be
for a data container (e . g . , file A 400) loaded into a buffer 40 transferred to the capacity tier 128 .
cache and maintained by the file system 240 . A root (top - A consistency point (CP) module 510 is used to manage
level) inode 402 , such as an embedded inode , references CP operations . In one aspect , when cold data is to be moved
indirect (e . g . , Level 1) blocks 404 . The indirect blocks (and to the capacity tier , the data is marked as dirty . The CP
inode) contain pointers 405 that ultimately reference data module 510 then pushes the dirty data into a transfer log
blocks 406 used to store the actual data of file A . That is , the 45 metadata structure 512 (also referred to as TLOG 512) that
data of file A 400 are contained in data blocks and the is described below in detail . The data is moved to the
locations of these blocks are stored in the indirect blocks of capacity tier 128 via a transfer module 514 and a commu
the file . Each Level 1 indirect block _ 404 may contain nication module 518 .
pointers to many data blocks . According to the " write The TLOG 512 enables data to be buffered while an
anywhere ” nature of the file system , these blocks may be 50 object is still being created , as described below in detail . The
located anywhere at the storage devices . TLOG 512 may also be used to service read requests for

In one aspect , the file system 240 allocates blocks , and blocks that have not yet been moved to the capacity tier 128
frees blocks , to and from a virtual volume (may be referred but are in the process of being sent i . e . while an object is
to as VVOL) of an aggregate . The aggregate , as mentioned being built . Blocks associated with an object in the TLOG
above , is a physical volume comprising one or more groups 55 512 are freed only after they have been safely stored and
of storage devices , such as RAID groups , underlying one or depending on capacity tier properties , verified that they have
more VVOLs of the storage system . The aggregate has its been stored successfully .
own physical volume block number (PVBN) space and In one aspect , an object tracker 520 finds free usable
maintains metadata , such as block allocation bitmap struc - capacity tier PVBNs efficiently . This is performed by using
tures , within that PVBN space . Each VVOL also has its own 60 an object identifier (ID) map that tracks used and unused
virtual volume block number (VVBN) space and maintains object IDs . The object ID map is a data structure that is
metadata , such as block allocation bitmap structures , within described below in detail with respect to FIG . 5B .
that VVBN space . Typically , PVBNs are used as block The object tracker 520 ensures that an object is freed
pointers within buffer trees of files (such as file 400) stored when it is no longer needed . This is enabled by a reference
in a VVOL . 65 count data structure that is also described below in detail
As an example , a VVOL may be embodied as a container with respect to FIG . 5B . The object tracker 520 tracks the

file in an aggregate having LO (data) blocks that comprise all reference count of objects in the capacity tier 128 to ensure

US 9 , 792 , 043 B2
12

that the object is not freed until the object is not needed or of the present disclosure . The data structure 523 stores all the
referenced . For example , if an object is created using 600 4 object IDs and have a bit setting indicating if the object ID
KB blocks , then the object ’ s reference count at the container is currently being used . The data structure 523 is used to
file is 600 . As the file system deletes or overwrites user data , determine unused object IDs .
the reference count is reduced at the container file . When the 5 FIG . 5B further shows an object metadata structure 525
reference count becomes zero , the object is considered safe (maybe referred to as a data structure 525) stored at perfor to be freed during garbage collection by a repackaging mance tier 112 , according to one aspect . The data structure
garbage collection module 517 (may also be referred to as 525 is used to translate a capacity tier PVBN to an object ID
module 517) , described below in detail . and offset . The data structure 525 includes an object ID , a In one aspect , the object tracker 520 assists module 517 10 sequence number , a BTID (buffer ID of a container file) , a by providing information regarding objects that may have state for the object and a reference count . The state of the become fragmented i . e . an object instead of having X object may be used to indicate if an object includes com number of blocks , only has Y number of blocks , where Y is
less than X . For example , if the object can store 1024 blocks pressed or uncompressed data chunks . The reference infor
of data and only has 100 blocks of data that is referenced by 15 mation may be used to ascertain if an object is a candidate
the container file , then the object may be considered frag for repackaging , as described below in detail .
mented and a candidate for repackaging that is described Object Format 527 :
below with respect to FIG . 6 . This may occur because the file FIG . 5C shows an example of an object format 527 ,
system 240 may free certain data or delete certain data over according to one aspect of the present disclosure . The object
time . In one aspect , the object tracker 520 provides a ratio 20 format 527 includes a header segment 531 and a data
of current reference count and an original reference count for segment 529 . The header segment 531 may be configured to
the object to module 517 . When the ratio is low , module 517 include a container file FBN for the data chunk stored at a
may initiate the repackaging process described below in certain object slot . In one aspect , an array of FBN for each
detail . slot are stored in the header segment of the object , shown as

The data read engine 513 is used fetch data from the 25 531A . The FBN array 531A may store an identifier for the
capacity tier 128 in response to read requests . The compres - container file and the VVBN for the data stored within a slot .
sion module 516 manages compression / de - compression of In another aspect , this information may be stored at a slot data stored at the capacity tier . Compression module 516 context with the stored data , as shown in FIG . 5C . may be used to compress the data chunks using one or more Object format 527 may also be used for storing data using compression group size , for example , 8 KB , 12 KB , 16 KB 30 30 a plurality of compression group sizes as well as uncom or any other size . The same object format is used for storing pressed data chunks , according to one aspect of the present data chunks that are compressed or uncompressed as disclosure . As an example , the compression group size may described below with respect to FIG . 5C . be 8 KB , 16 KB , 32 KB or any other size . The header The communication module 518 provides S3 APIs that
are used to interface with capacity tier storage . The APIs 35 segment 531 maps an object slot number to an offset value
may customized based on the storage vendor providing the in the data segment 529 . For example , offset F1 , slot # 0 540
capacity tier storage . indicates that a first chunk of uncompressed data is stored

The RAID layer 244A using a storage driver 248A , for starting at offset F1 . As mentioned above , the header seg
example , a Fibre Channel driver is used to access the ment 531A may also include information regarding the
performance tier . 40 container file FBN that references the data stored at offset

Data Structure Format : F1 . In another aspect , the slot context stored at the slot may
FIG . 5B shows a format of a capacity tier PVBN 520 and be used to store the container file FBN information .

a RAID PVBN 519 . The first few bits 520A (for example , 3 In one aspect , the header segment 531 may also be used
bits) of the capacity tier PVBN indicates that the PVBN is to indicate the compression group size . Thus as shown in
for the capacity tier 128 . The object _ ID (may also be 45 section 535 a compression group is 8 KB . The compressed
referred to as object ID) 520B provides a unique object chunk starts at offset F2 , with slot 1 . Slot 2 points to slot 1
identifier , for example , as a 34 bit value . A slot number 520C indicating that the slot 2 data is part of the compressed chunk
may be represented as a 10 bit value . The slot number 520C that starts from offset F2 .
indicates the location of a block within the object . As an In section 533 , the compression group size is 16 KB . In
example , one object may include 1024 , 4 KB blocks . The 50 this section , the compressed data chunk begins at offset F3
slot number indicates where a block is within that object and slots 4 , 5 and 6 all point to slot F3 from where the
having a plurality of blocks . compressed group begins .

The RAID PVBN type is indicated by a bit value shown In one aspect , to retrieve a compressed block , the data
as 519A and the RAID block number is represented by read engine 513 reads the header , obtains the starting slot
519B . 55 number of the compression group and then reads the actual

FIG . 5B also shows an example of an object reference offset of the compression group . The data is then read from
count data structure 521 (may also be referred to as data the offset and decompressed by the compression / de - com
structure 521) . The data structure 521 may be stored at the pression module 516 . In one aspect , the starting slot number
performance tier 112 and includes an entry for every object of the compression group also stores information regarding
For example , data structure 521 may include a 32 bit entry 60 the compression type or group size .
for every object and counts the number of slots that are in To retrieve uncompressed data , the data read engine 513
use by the file system 240 . This count is used to trigger the can simply obtain the slot number from an object metadata
garbage collection process or the repackaging process structure and retrieve the data .
described below with respect to FIG . 6 . In one aspect , the object format 527 enables using a same

FIG . 5B also shows an object ID data structure / map 523 65 format for storing data chunks that are compressed using
(may be referred to as data structure 523) that may also be more than one compression group size as well as uncom
stored at the performance tier 112 , according to one aspect pressed data .

US 9 , 792 , 043 B2
13 14

Object Staging Data Structure 532 : may determine that it may be better to wait for the object to
When data has to be written to the capacity tier 128 , an be completely free rather than to repackage . In another

object is built to include a plurality of data chunks , for aspect , if a volume is being deleted , module 517 may not
example , 4 KB chunks of data . The object is tracked using repackage any data blocks .
the object staging data structure 532 (FIG . 5D) . Once one or 5 In block B604 , the object tracker 520 scans data structure
more objects have been built , the object data is transferred 521 to identify a candidate for garbage collection or repack to the capacity tier 128 . The storage policy of the capacity aging . The object tracker 520 reviews the reference count for
tier 128 may dictate that the storage operation be verified , each data block of an object . If all the reference counts for before freeing up the space used by the transferred object at an object are zero , the object is identified to be a candidate TLOG 512 . for garbage collection . The garbage collection process is FIG . 5D shows an example of using the object staging described with respect to blocks B606 - B610 . structure 532 and the TLOG 512 , according to one aspect of
the present disclosure . The TLOG 512 shows that one object When the reference count for only some of the blocks is
534 is ready and object 536 is still in the process of being zero , then the object may be a candidate for repackaging . For
built . The built and in - process objects are tracked by the 15 example , assume that an object that has a capacity for
object staging structure 532 which stores the object ID in storing 1024 4 KB blocks and only 20 blocks are being
column 532A , the state of the object in column 532B (i . e . referenced and the rest are zero . Then the object may be a
build or ready) , the length of the object (i . e . the number of candidate for repackaging such that the referenced chunks
blocks that are already in the object) in column 532C and a are moved to another object . The threshold value for deter
TLOG FBN in column 532D . For example , object 12 is in 20 mining if an object is a candidate for repackaging is based
the process of being built and has three blocks of data at the on a number of data blocks that are currently being refer
TLOG FBN 0 , 1 , 2 . The object 42 is ready with 1024 blocks . enced . The threshold value may be configurable and set
The SSD PVBN is stored at the respective FBN of the based on a storage operating environment . The repackaging
TLOG indicating the PVBN of the performance tier where process is described below with respect to blocks B612
the data for a chunk resides . 25 B618 .

In one aspect , the TLOG 512 may be used to find an For an object identified for garbage collection in block
object that is not complete and can be used for repackaging B606 , the object tracker 520 verifies if the object ID is still
a fragmented object . When used for packaging , the TLOG being used . If the object ID is not being used , then nothing
512 provides the PVBN of the object store 124 , because the needs to be done .
data chunks for the object are already at the object store 124 30 The verification in block B606 is performed by checking
and does not have to be transferred from the performance data structure 523 to determine if the object ID for the object
tier 112 has been freed or is still being used . This helps to determine

Capacity Tier Access : if the object still exists at the capacity tier 128 and can be
FIG . 5E shows an example of accessing data chunks from deleted using garbage collection . This decouples the garbage

the capacity tier 128 and using the object metadata structure 35 collection process from file system operations because once
548 (similar to data structure 525 , shown in FIG . 5B and the system knows an object is completely free , then the
described above) . A read request provides a volume infor - object can be deleted at an optimum time without impacting
mation V1 (shown as 542) . V1 is the user data container in the performance of the file system or the capacity tier 128 .
a volume . Using V1 , the container file for the volume is In block B608 , the object tracker 5520 notifies module
retrieved (544) . The container file has a BTID (buffer ID of 40 517 of the object identified for garbage collection . Module
a container file) of 757 and a unique identifier (BTUUID) of 517 maintains a list (not shown) of objects that can be
OXDABC6934FE . The container file points to an object deleted . The list may include one or more objects for
PVBN (546) that provides an object ID 101 and slot 5 . and slot 5 . deletion . The object group is deleted from the capacity tier

The object ID is shown in the object metafile 548 . As 128 in block B610 . The object metadata structure 525 [or
described above , the object metafile 548 includes an object 45 548 , FIG . 5D) is updated and the garbage collection process
ID , a sequence number , a BTID , a state for the object and a ends .
reference count . The state of the object may be used to For repackaging , the object tracker 520 identifies the
indicate if a data chunk is compressed or uncompressed . The object based on the reference count using data structure 519 .
object name is then shown in block 550 , which points to the In block B612 , the blocks within the object that are being
actual object 552 in the capacity tier 128 . 50 referenced by the container file for the volume are identified .

FIG . 6 shows a process for garbage collection and repack - This information may be obtained from the object header
aging an object , according to one aspect of the present described above with respect to FIG . 5C . The object header
disclosure . The process begins in block B602 , when com - provides the FBNs of the container file that reference
plete objects have been stored at the capacity tier 128 . Some specific data blocks of the object . In another aspect , the
of the objects may have data that the file system 240 does not 55 FBNs are obtained from the slot context . Once the number
reference any more . In that case , the objects may be deleted of blocks that need to be moved or repackaged are identified ,
by module 517 . module 517 in block B614 , finds an object that is in the

In other cases , one or more object may become frag - process of being built . This information is obtained from
mented i . e . may have blocks that are no longer referenced by TLOG 512 using the staging data structure 532 , described
the file system 240 . In that case , the object may be repack - 60 above in detail .
aged by module 517 . To repackage the object , the data Once the object that is being built is identified , in block
blocks that are being used by the file system 240 are moved B616 , the container file for the object is updated with the
to another object that may be in the process of being built . new object ' s PVBN . The object staging data structure 532 is
The TLOG 512 is then used to find the appropriate object , also updated such that the TLOG FBN (532D) points to a
as described below in detail . 65 capacity tier PVBN where the data is stored . Thereafter ,

In one aspect , based on user environment , where a user once the object is built , the object written to the capacity tier
may have to pay for reads to an object store , module 517 128 . The object metadata structure 525 and the TLOG 512

15
US 9 , 792 , 043 B2

16
are updated indicating the entire object with the repackaged The local storage 713 comprises one or more storage
data blocks is at the capacity tier 128 . devices utilized by the node to locally store configuration

It is noteworthy that the reference count for the old object information for example , in a configuration data structure
becomes zero , after data blocks are moved to the new object . 714 .
Thus , the old object now becomes a candidate for garbage 5 The cluster access adapter 712 comprises a plurality of
collection described above in detail . ports adapted to couple node 208 . 1 to other nodes of cluster

While the new object is still being built , if a read request 202 . In the illustrative aspect , Ethernet may be used as the
is received , then in block B618 , the object staging data clustering protocol and interconnect media , although it will
structure 532 provides the PVBN for the capacity tier 128 be apparent to those skilled in the art that other types of
where the data blocks are stored . 10 protocols and interconnects may be utilized within the

It is noteworthy that the file system 240 remains consis - cluster architecture described herein . In alternate aspects
tent during repackaging and there is no need to perform any where the network modules and storage modules are imple
file system recovery operations , even if the system has to be mented on separate storage systems or computers , the clus
rebooted during the repackaging operations . In one aspect , ter access adapter 712 is utilized by the network / storage
by using the TLOG to point to the capacity tier 128 , the 15 module for communicating with other network / storage
performance tier 112 is not affected by the repackaging . The modules in the cluster 202 .
data blocks from the capacity tier 128 is only read when the Each node 208 . 1 is illustratively embodied as a dual
new object is ready to be written at the capacity tier . This is processor storage system executing the storage operating
efficient and hence desirable . system 134 that preferably implements a high - level module ,

In one aspect , methods and systems for a networked 20 such as a file system 240 , to logically organize the infor
storage environment having multiple storage tiers are pro mation as a hierarchical structure of named directories and
vided . As an example , one method includes scanning a first files at storage 112 / 128 . However , it will be apparent to
data structure (521 , FIG . 5B) by a processor executing those of ordinary skill in the art that the node 208 . 1 may
instructions out of a memory for a storage operating system alternatively comprise a single or more than two processor
(134 , FIG . 1) to determine whether any data chunk of a first 25 systems . Illustratively , one processor 702A executes the
object stored at a first storage tier (i . e . the capacity tier 128) functions of the network module on the node , while the other
is referenced by the storage operating system . The first data processor 702B executes the functions of the storage mod
structure maintains a reference count for each data chunk of ule .
the first object indicating if the storage operating system is The memory 704 illustratively comprises storage loca
using any data chunk . When the storage operating system 30 tions that are addressable by the processors and adapters for
references a certain number of data chunks , the processor storing programmable instructions and data structures . The
uses an object staging data structure (532 , FIG . 5D) to processor and adapters may , in turn , comprise processing
identify a second object that is in the process of being built elements and / or logic circuitry configured to execute the
with space for transferring the certain number of data chunks programmable instructions and manipulate the data struc
from the first object to the second object , where the object 35 tures . It will be apparent to those skilled in the art that other
staging data structure stores a unique identifier for the processing and memory means , including various computer
second object , and an indicator providing a status for the readable media , may be used for storing and executing
second object indicating that the object is being built . program instructions pertaining to the disclosure described
Thereafter , the method further includes updating informa - herein .
tion regarding the second object (536 , FIG . 5D) at a transfer 40 The storage operating system 134 portions of which is
log (512 , FIG . 5D) with location information of the certain typically resident in memory and executed by the processing
nu number of data chunks at the first storage tier . elements , functionally organizes the node 208 . 1 by , inter

The method further includes using the transfer log for alia , invoking storage operation in support of the storage
responding to any read request for data associated with the service implemented by the node .
certain number of data chunks , before all the data chunks of 45 In one aspect , data that needs to be written is first stored
the second object are stored at the first storage tier . at a buffer location of memory 704 . Once the buffer is

The method also includes verifying that no data chunk of written , the storage operating system acknowledges the
the first object is being referenced by the storage operating write request . The written data is moved to NVRAM storage
system ; determining if an object identifier for the first object and then stored persistently either at the performance tier
is still being used ; and identifying the first object as a 50 112 or the capacity tier 128 .
candidate for deletion . A second data structure (523 , FIG . The network adapter 710 comprises a plurality of ports
5B) maintains object identifiers for all objects of the first adapted to couple the node 208 . 1 to one or more clients
storage tier with an indicator indicating if each object 2 04 . 1 / 204 . N over point - to - point links , wide area networks ,
identifier is currently being used . virtual private networks implemented over a public network

Storage System Node : 55 (Internet) or a shared local area network . The network
FIG . 7 is a block diagram of a node 208 . 1 that is adapter 710 thus may comprise the mechanical , electrical

illustratively embodied as a storage system comprising of a and signaling circuitry needed to connect the node to the
plurality of processors 702A and 702B , a memory 704 , a network . Each client 204 . 1 / 204 . N may communicate with
network adapter 710 , a cluster access adapter 712 , a storage the node over network 206 (FIG . 2A) by exchanging discrete
adapter 716 and local storage 713 interconnected by a 60 frames or packets of data according to pre - defined protocols ,
system bus 708 . such as TCP / IP .

Processors 702A - 702B may be , or may include , one or The storage adapter 716 cooperates with the storage
more programmable general - purpose or special - purpose operating system 134 executing on the node 208 . 1 to access
microprocessors , digital signal processors (DSPs) , program information requested by the clients . The information may
mable controllers , application specific integrated circuits 65 be stored on any type of attached array of writable storage
(ASICs) , programmable logic devices (PLDs) , or the like , or device media such as video tape , optical , DVD , magnetic
a combination of such hardware devices . tape , bubble memory , electronic random access memory ,

17
US 9 , 792 , 043 B2

18
micro - electro mechanical and any other similar media underlying technical architecture (e . g . , servers , storage , net
adapted to store information , including data and parity works) , enabling convenient , on - demand network access to
information . However , as illustratively described herein , the a shared pool of configurable computing resources that can
information is preferably stored at storage device 212 . 1 . The be rapidly provisioned and released with minimal manage
storage adapter 716 comprises a plurality of ports having 5 ment effort or service provider interaction . The term “ cloud ”
input / output (I / O) interface circuitry that couples to the is intended to refer to the Internet and cloud computing
storage devices over an I / O interconnect arrangement , such allows shared resources , for example , software and infor
as a conventional high - performance , Fibre Channel link mation to be available , on - demand , like a public utility .
topology . Typical cloud computing providers deliver common busi

Processing System : 10 ness applications online which are accessed from another
FIG . 8 is a high - level block diagram showing an example web service or software like a web browser , while the

of the architecture of a processing system 800 that may be software and data are stored remotely on servers . The cloud
used according to one aspect . The processing system 800 computing architecture uses a layered approach for provid
can represent host system 102 , management console 132 , ing application services . A first layer is an application layer
clients 116 , 204 or storage system 108 . Note that certain 15 that is executed at client computers . In this example , the
standard and well - known components which are not ger - application allows a client to access storage via a cloud .
mane to the present aspects are not shown in FIG . 8 . After the application layer , is a cloud platform and cloud

The processing system 800 includes one or more proces infrastructure , followed by a “ server ” layer that includes
sor (s) 802 and memory 804 , coupled to a bus system 805 . hardware and computer software designed for cloud specific
The bus system 805 shown in FIG . 8 is an abstraction that 20 services , for example , the capacity tier 128 is accessible as
represents any one or more separate physical buses and / or a cloud service . Details regarding these layers are not
point - to - point connections , connected by appropriate germane to the embodiments disclosed herein .
bridges , adapters and / or controllers . The bus system 805 , Thus , a method and apparatus for efficiently storing data
therefore , may include , for example , a system bus , a Periph - at a capacity tier in a networked storage environment have
eral Component Interconnect (PCI) bus , a HyperTransport 25 been described . Note that references throughout this speci
or industry standard architecture (ISA) bus , a small com - fication to “ one aspect ” (or “ embodiment ”) or " an aspect ”
puter system interface (SCSI) bus , a universal serial bus mean that a particular feature , structure or characteristic
(USB) , or an Institute of Electrical and Electronics Engi described in connection with the aspect is included in at least
neers (IEEE) standard 1394 bus (sometimes referred to as one aspect of the present disclosure . Therefore , it is empha
“ Firewire ”) . 30 sized and should be appreciated that two or more references

The processor (s) 802 are the central processing units to " an aspect ” or “ one aspect " or " an alternative aspect " in
(CPUS) of the processing system 800 and , thus , control its various portions of this specification are not necessarily all
overall operation . In certain aspects , the processors 802 referring to the same aspect . Furthermore , the particular
accomplish this by executing software stored in memory features , structures or characteristics being referred to may
804 . A processor 802 may be , or may include , one or more 35 be combined as suitable in one or more aspects of the
programmable general - purpose or special - purpose micro - disclosure , as will be recognized by those of ordinary skill
processors , digital signal processors (DSPs) , programmable in the art .
controllers , application specific integrated circuits (ASICs) , While the present disclosure is described above with
programmable logic devices (PLDs) , or the like , or a com - respect to what is currently considered its preferred aspects ,
bination of such devices . 40 it is to be understood that the disclosure is not limited to that
Memory 804 represents any form of random access described above . To the contrary , the disclosure is intended

memory (RAM) , read - only memory (ROM) , flash memory , to cover various modifications and equivalent arrangements
or the like , or a combination of such devices . Memory 804 within the spirit and scope of the appended claims .
includes the main memory of the processing system 800 .
Instructions 806 may be used to implement the process steps 45 What is claimed is :
of FIGS . 5C and 6A described above , may reside in and 1 . A machine implemented method , comprising :
execute (by processors 802) from memory 804 . scanning a first data structure by a processor executing

Also connected to the processors 802 through the bus instructions out of a memory for a storage operating
system 805 are one or more internal mass storage devices system to determine whether any data chunk with one
810 , and a network adapter 812 . Internal mass storage 50 or more blocks of data of a first object having a
devices 810 may be , or may include any conventional plurality of data chunks stored at a first storage tier is
medium for storing large volumes of data in a non - volatile referenced by the storage operating system ;
manner , such as one or more magnetic or optical based disks . wherein the first data structure maintains a reference
The network adapter 812 provides the processing system count for each data chunk of the first object indicating
800 with the ability to communicate with remote devices 55 if the storage operating system is still using any data
(e . g . , storage servers) over a network and may be , for chunk and the first data structure is used to determine
example , an Ethernet adapter , a Fibre Channel adapter , or whether the first object is fragmented and ready for
the like . repackaging when a certain number of data chunks of

The processing system 800 also includes one or more the first object are referenced by the storage operating
input / output (1 / 0) devices 808 coupled to the bus system 60 system or whether the first object is ready for deletion
805 . The I / O devices 808 may include , for example , a when no data chunk of the first object is being refer
display device , a keyboard , a mouse , etc . enced by the storage operating system ;

Cloud Computing : when the storage operating system references the certain
The system and techniques described above are applicable number of data chunks , the processor using an object

and useful in the upcoming cloud computing environment . 65 staging data structure to identify a second object that is
Cloud computing means computing capability that provides in the process of being built with enough space to
an abstraction between the computing resource and its repackage the certain number of data chunks from the

20

US 9 , 792 , 043 B2
19 20

first object to the second object and using the second when the storage operating system references the certain
object to store the certain number of data chunks ; number of data chunks , the processor using an object

wherein the object staging data structure stores a unique staging data structure to identify a second object that is
identifier for identifying the second object , an indicator in the process of being built with enough space to
providing a status of the second object indicating that 5 repackage the certain number of data chunks from the
the object is being built , a length of the second object first object to the second object and using the second
indicating a number of existing data blocks that are object to store the certain number of data chunks ;
included in the second object and a transfer log file wherein the object staging data structure stores a unique
block number for providing a location within the trans identifier for identifying the second object , an indicator
fer log where the existing data blocks of the second 10 providing a status of the second object indicating that
object are stored ; and wherein the transfer log is a the object is being built , a length of the second object
temporary data structure that uses the object staging indicating a number of existing data blocks that are
data structure to determine when the second object is included in the second object and a transfer log file
complete for storing the second object at the first block number for providing a location within the trans
storage tier with the certain number of data chunks of 15 fer log where the existing data blocks of the second
the first object ; and object are stored ; and wherein the transfer log is a

updating information regarding the second object at the temporary data structure that uses the object staging
transfer log with location information of the certain data structure to determine when the second object is
number of data chunks at the first storage tier . complete for storing the second object at the first

2 . The method of claim 1 , further comprising : 20 storage tier with the certain number of data chunks of
using the transfer log for responding to any read request the first object ; and

for data associated with the certain number of data update information regarding the second object at the
chunks , before the second object is stored at the first transfer log with location information of the certain
storage tier . number of data chunks at the first storage tier .

3 . The method of claim 1 , wherein the second object 25 9 . The non - transitory , storage medium of claim 8 , wherein
includes a data chunk stored at a second storage tier and the the machine executable code further causes the machine to :
second object is transferred to the first storage tier after a use the transfer log for responding to any read request for
certain number of objects , each with a plurality of data data associated with the certain number of data chunks ,
chunks are ready for transfer to the first storage tier . before the second object is stored at the first storage

4 . The method of claim 3 , wherein the first data structure , 30 tier .
the object staging structure and the transfer log are stored at 10 . The non - transitory , storage medium of claim 8 ,
the second storage tier having storage devices that are faster wherein the second object includes a data chunk stored at a
than the first storage tier storage devices . second storage tier and the second object is transferred to the

5 . The method of claim 1 , further comprising : first storage tier after a certain number of objects , each with
verifying using the object staging data structure that no 35 a plurality of data chunks are ready for transfer to the first

data chunk of the first object is being referenced by the storage tier .
storage operating system ; 11 . The non - transitory , storage medium of claim 10 ,

determining if an object identifier for the first object is still wherein the first data structure , the object staging structure
being used ; and and the transfer log are stored at the second storage tier

identifying the first object as a candidate for deletion . 40 having storage devices that are faster than the first storage
6 . The method of claim 5 , wherein a second data structure tier storage devices .

maintains object identifiers for all objects of the first storage 12 . The non - transitory , storage medium of claim 8 ,
tier with an indicator indicating if each object identifier is wherein the machine executable code further causes the
currently being used . machine to :

7 . The method of claim 5 , wherein the first object is 45 verify using the object staging data structure that no data
deleted with at least another object as part of a background chunk of the first object is being referenced by the
garbage collection process , executed by the processor . storage operating system ;

8 . A non - transitory , machine readable medium having determine that an object identifier for the first object is
stored thereon instructions comprising machine executable still being used ; and
code which when executed by a machine , causes the 50 identify the first object as a candidate for deletion .
machine to : 13 . The non - transitory , storage medium of claim 12 ,

scan a first data structure by a processor executing instruc - wherein a second data structure maintains object identifiers
tions out of a memory for a storage operating system to for all objects of the first storage tier with an indicator
determine whether any data chunk with one or more indicating if each object identifier is currently being used .
blocks of data of a first object having a plurality of data 55 14 . The non - transitory , storage medium of claim 12 ,
chunks stored at a first storage tier is referenced by the wherein the first object is deleted with at least another object
storage operating system ; as part of a background garbage collection process , executed

wherein the first data structure maintains a reference by the processor .
count for each data chunk of the first object indicating 15 . A system , comprising :
if the storage operating system is still using any data 60 a memory containing machine readable medium compris
chunk and the first data structure is used to determine ing machine executable code having stored thereon
whether the first object is fragmented and ready for instructions for a storage operating system ; and a
repackaging when a certain number of data chunks of processor module coupled to the memory , the processor
the first object are referenced by the storage operating module configured to execute the machine executable
system or whether the first object is ready for deletion 65 code to :
when no data chunk of the first object is being refer scan a first data structure to determine whether any data
enced by the storage operating system ; chunk with one or more blocks of data of a first object

10

US 9 , 792 , 043 B2
21 22

having a plurality of data chunks stored at a first storage update information regarding the second object at the
tier is referenced by the storage operating system ; transfer log with location information of the certain

wherein the first data structure maintains a reference number of data chunks at the first storage tier .
count for each data chunk of the first object indicating 16 . The system of claim 15 , wherein the processor module
if the storage operating system is still using any data 5 further executes the machine executable code to :
chunk and the first data structure is used to determine use the transfer log for responding to any read request for whether the first object is fragmented and ready for
repackaging when a certain number of data chunks of data associated with the certain number of data chunks ,
the first object are referenced by the storage operating before the second object is stored at the first storage
system or whether the first object is ready for deletion tier .
when no data chunk of the first object is being refer 17 . The system of claim 15 , wherein the second object
enced by the storage operating system ; includes a data chunk stored at a second storage tier and the

when the storage operating system references the certain second object is transferred to the first storage tier after a
number of data chunks , using an object staging data certain number of objects , each with a plurality of data
structure to identify a second object that is in the chunks are ready for transfer to the first storage tier .
process of being built with enough space to repackage 15 18 . The system of claim 15 , wherein the processor module the certain number of data chunks from the first object further executes the machine executable code to : to the second object and using the second object to store verify using the object staging data structure that no data the certain number of data chunks ;

wherein the object staging data structure stores a unique chunk of the first object is being referenced by the
identifier for identifying the second object , an indicator 20 storage operating system ;
providing a status of the second object indicating that determine that an object identifier for the first object is no
the object is being built , a length of the second object longer being used ; and
indicating a number of existing data blocks that are identify the first object as a candidate for deletion . included in the second object and a transfer log file 19 . The system of claim 18 , wherein a second data block number for providing a location within the trans - 25 str 25 structure maintains object identifiers for all objects of the fer log where the existing data blocks of the second first storage tier with an indicator indicating if each object object are stored ; and wherein the transfer log is a identifier is currently being used . temporary data structure that uses the object staging
data structure to determine when the second object is 20 . The system of claim 18 , wherein the first object is
complete for storing the second object at the first 30 deleted with at least another object as part of a background
storage tier with the certain number of data chunks of garbage collection process , executed by the processor .
the first object ; and * * * * *

