United States Patent

US009792043B2

(12) (10) Patent No.: US 9,792,043 B2
Subramanian et al. 45) Date of Patent: Oct. 17,2017
(54) METHODS AND SYSTEMS FOR 9,612,768 B2 4/2017 Katiyar et al.
EFFICIENTLY STORING DATA 9,613,046 Bl 4/2017 Xu et al.
2003/0115439 Al1* 6/2003 Mahalingam GOGF 17/30079
H . 712/1
(71) Applicant: NETAPP, INC., Sunnyvale, CA (US) 2010/0281230 AL* 112010 Rabii GOSF 3/0605
. . 711/165
(72) InVeIltOI'S Ananthan Sll.bramanlan5 S.an Ramon’ 2012/0317337 Al * 12/2012 Joha_r """"""""" G06F 12/0246
CA (US); Anil Paul Thoppil, 711103
Sunnyvale, CA (US); Sunitha Sunil 2012/0330903 Al 12/2012 Periyagaram et al.
Sankar, Cupertino, CA (US); Cheryl 2013/0297872 Al* 11/2013 Hyde, II GOGF 3/0611
Marie Thompson, Sunnyvale, CA (US) 71L/117
2017/0031772 Al 2/2017 Subramanian et al.
(73) Assignee: NETAPP, INC., Sunnyvale, CA ([JS) 2017/0031940 Al 2/2017 Subramanian et al.
2017/0068472 Al 3/2017 Periyagaram et al.
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 OTHER PUBLICATIONS
U.S.C. 154(b) by 107 days.
Non-Final Ofice Action on co-pending U.S. Appl. No. 14/994,971
(21) Appl. No.: 14/994,924 dated Apr. 27, 2017.
(22) Filed: Jan. 13, 2016 * cited by examiner
(65) Prior Publication Data Primary Examiner — Gary W Cygiel
US 2017/0199675 Al Jul. 13, 2017 (74) Attorney, Agent, or Firm — Klein, O’Neill & Singh,
LLP
(51) Imt.CL
GOGF 3/06 (2006.01) (57) ABSTRACT
GOGF 12/02 (2006.01) Methods and systems for a networked storage environment
(52) US.ClL are provided. One method includes scanning a first data
CPC o GO6F .3/ 0608 (2013.01); G061.7 3/065 structure by a processor executing instructions out of a
(2013.01); G06.F 3/067 (2013.01):; G06Pj memory for a storage operating system to determine whether
3/0619 (2013.01); GO6F 3/. 652 (2013.01): any data chunk of a first object stored at a first storage tier
GOGF 3/0665 (2013.01); GOGF 12/0253 is referenced by the storage operating; when the storage
. . . (2013.01) operating system references a certain number of data
(58) Field of Classification Search chunks, the processor using an object staging data structure
None to identify a second object that is in the process of being built
_ .) p 2
See application file for complete search history. with space for transferring the certain number of data chunks
. from the first object to the second object; and updating
(56) References Cited information regarding the second object at a transfer log
U.S. PATENT DOCUMENTS with location information gf the certain number of data
chunks at the first storage tier.
9,558,073 B2 1/2017 Cantwell et al.
9,575,974 B2 2/2017 Muthyala et al. 20 Claims, 13 Drawing Sheets

Start
B602 B602

Scan a reference count data structure for
identifying an object that can be re-
packaged or deleted during a garbage
collection operation B804

Garbage Collection

Repackaging

Verify if object is free to be
deleted B60G

Identify blocks within the
object that are being used
by the file system B&12

!

|

Piace the object with a
group for garbage
collection

Beog

I

Identify an object that is
being built B614

l

Delete the group of objects
and update reference
count and the object ID
data structure
B619

600

Update container file and
insert PVBN in the transfer
log for the re-packaged
object B§16

l

Use transfer log to service
any read requests while
the new object is still being
built 8618

US 9,792,043 B2

Sheet 1 of 13

Oct. 17,2017

U.S. Patent

AIIE

181 SoUBLIOLIS

s81) Auoeden
8¢l

BZT se0Inosey SiempieH

x4} T
A 901 WINA
NFOT ArZA0) I | p— 75T uoneoyddy
50 ® e 8 <W%mﬂMQ —
188N5) S¥T SO IS0H

el
wieisAg Buneisdo
afrioig

fZAREIN NS
ebeicig

80T
wesis abeiois

NOtt
RO

voil
sy

eus | obeloig

NZoT weshg 1804

Ve 1 9losunn
swsbeuepy

US 9,792,043 B2

Sheet 2 of 13

Oct. 17,2017

U.S. Patent

CCllle

€ale

¢ Yle

1oEnpow
sbring

A4

A A4
SNPOW
HIOMIDN

& 802
SOON

¢ Slo SINPAn
swsbeuspy

¥

CgL7 SINPO
wawebeury

SInpoN |

sheioig

eric
SINPOK

HIOMIBN

Bugonms

I

=
[
iy
s
3
k4

6ie
HiA

Lgle
s[npow
sbeiolg

&
K 4

L'vle

B

8jnpo

HIOMBN

L)0¢
00N

["GTZ enpon

wswsbeuepy

eI
Jai) Almeden

16!3!
NT0L
1uB10

L' P02
e

Storage Tenant 140]

|
I
I
!
]

I9DIAGIE

sbeing

€l
|108U07)
wawsbeuepy

U.S. Patent

Oct. 17,2017

Sheet 3 of 13

US 9,792,043 B2

134
FILE SYSTEM MANAGER 24
=
PROTQCOL LAYER 242 | | STORAGE ACCESS
e ; LAYER Z44
5 |
o o
S ? N T g { [T
A H oA S H
F F } i
N £ i 3 e
° s R | o R
242A/24281242G)) 4oy | | 2441 244B | | o44c
T
NETWORK C STORAGE
ACCESS LAYER ’ ; DRIVERS
246 § i 248
! s
vy
TOFROM TOFROM STORAGE
CLIENTS [PERFORMANCE AND
CAPACITY TIER]

FIG. 2B

U.S. Patent Oct. 17, 2017 Sheet 4 of 13 US 9,792,043 B2

300

META-DATA SECTION 02

TYPE 304

size 306

TIME STAMPS 308
uiD 310

GID 312
X INODE 314 LPOINTER 316

DATA SECTION 318

FIG. 3

U.S. Patent

LEVEL 1
BLOCKS

LEVELC
BLOCKS

Oct. 17,2017

Sheet 5 of 13

INODE 402

405

POINTER |

POINTER

405

INDIRECT BLOCK

RN

US 9,792,043 B2

INDIRECT BLOCK

404 404
POINTER | | .| POINTER POINTER |, POINTER
405 405 405 405
DATA DATA DATA DATA
BLOCK BLOCK BLOCK BLOCK
406 406 4086 406
EILE A 400

FIG. 4

U.S. Patent Oct. 17, 2017 Sheet 6 of 13 US 9,792,043 B2

File System Manager 240
Write Allocator Tiering Polic
Buffer Cache 504 M 9 Y
8L 9 anager
500
- 508
Temperature
Tracker
506
PVEN Hash _—
502 CP Module
510
2448
R Object TLOG Data Read
A Tracker Sig Engine
E 520 513
D Transfer Module
2444 219
R?éi?;ggeng Compression/
De-compression Module
Sto_r age Collection P Qﬁé ' !
Diriver . :
SA8A KModule
217 Communication
fModule
518
Performance Tier l
112 TofFrom Capacity Tier 128

FIG. 5A

U.S. Patent Oct. 17, 2017 Sheet 7 of 13 US 9,792,043 B2

BIN# OBJID SLOT PYBN for
7 Capacity Tier
520 520A 5208 520C 128
BIN# FVBN for
. RAID 4K Block Number
/// 3 Bits Performance
519 Tier 112
519A 2128
Object 1 Chject N
Object Reference
V4 . Count Data
521 Oty _INj-10]1]~]N Structure
Objectidt ¢ Cbject ID N
o 1
BitSetingl | IBit Setting]
7
523 Object 1D Data Structure
OID 1Seq Nol BTID State Ref
Ve
525 Object Meta Data Structure

FIG. 5B

U.S. Patent Oct. 17, 2017 Sheet 8 of 13 US 9,792,043 B2

—3
FBN Array 531A
Offset F1
Slot O
_.;)
CG Size 8KB QOffset F2
L Siot 1
0}
W3
Slot 1
© 3 Slot 2
> 3
8 CG Size 16KB Offset F3
& Slot 3
O
T
Slot 3
) Slot 4
ap]
X
Siot3
Slots
Siot 3
[Slot 0]
o Data 4KB/Slot Context Offset F1
N
jte)
Compressed [Slot 1] Data 8KB
g pressed [Slot 1] Data Offset F2
-
Compressed [Slot 3] Data 16KB
S Offeet F3
527

FIG. 5C

U.S. Patent

Oct. 17,2017

Sheet 9 of 13

Object Staging Data Structure

US 9,792,043 B2

532
Object ID Siate Len TLOG FBN
532A 5328 532C 532D
12 Build 3
42 Ready 1024
g 112 N Giii2
Lo
SSD S8D SSD
35D SSD
VBN PVEBN PVBN
i B
PVBN O PVBN N 20 71 99
Object Ready 534 Object Being Built 536
TLOG 512

FiG. 5D

U.S. Patent

Oct. 17,2017

Sheet 10 of 13

US 9,792,043 B2

V1 o 542
Container File
BTID =757 544
BTUUID = OxDABCOO4FE
001 Obj ID 101 Slot 5 — 546
/548
Object Meta File
OiD SEQNO BTID State Old Ref
35 1 812 OK 1023
101 3 757 oK 1020
Object Neme BTUUID _SEQNO — 550
DABCBO34FE 3
(—— 552
O 1 2 3 4 5

Capacity Tier 128

DABCBY34FE_3

540

FIG. 5k

U.S. Patent Oct. 17, 2017 Sheet 11 of 13 US 9,792,043 B2

L BBE02

Scan a reference count data structure for
identifying an object that can be re-
packaged or deleted during a garbage
collection operation B604

Garbage Collection Repackaging

; :

identify blocks within the
object that are being used
by the file system B612

; i

Place the object with a
group for garbage

Verify if object is free fo be
deleted B6OG

identify an object that is

collection being built 8814
B603 i
Delete the group of objects Update container file and
and update reference insert PVBN in the transfer
count and the object ID log for the re-packaged
data structure object B616

BG610 i

Use transfer log to service
any read requests while
the new object is still being
built B618

600 FIG. 6

US 9,792,043 B2

Sheet 12 of 13

Oct. 17,2017

U.S. Patent

JARIIE
L'80¢
L.
(7 ¥
OIHaY
8ZLIZL 1 RO THNLONYLS VLV NF02/T T0¢
FOVHOL - NOILYHNOIEINOD SINIITD
OH/0 WOH4/0L WOHH/OL
M Wi M
HILdVaY SSIODV T T T
JOVHOLS HALSNTO N MHOMLIN
204
a— 701 VUL
vel HOSSIOO0Hd HOSSH00H
WILSAS
ONLLYHIAO
JOVHOLS
TO7 AHOWINW

U.S. Patent Oct. 17, 2017 Sheet 13 of 13 US 9,792,043 B2

800
PROCESSOR MEMORY 804
INSTRUCTIONS
802 806
(895

- g

] MASS NETWORK

1O DEVICE STORAGE ADAPTER

808 810 812

TOFROM NETWORK

FIG. 8

US 9,792,043 B2

1
METHODS AND SYSTEMS FOR
EFFICIENTLY STORING DATA

TECHNICAL FIELD

The present disclosure relates to networked storage envi-
ronments, and more particularly, to efficiently storing data at
object based data stores.

BACKGROUND

Various forms of storage systems are used today. These
forms include direct attached storage, network attached
storage (NAS) systems, storage area networks (SANs), and
others. Storage systems are commonly used for a variety of
purposes, such as providing multiple users with access to
shared data, backing up data and others.

A storage system typically includes at least one comput-
ing system (may also be referred to as a “server” or “storage
server”) executing a storage operating system configured to
store and retrieve data on behalf of one or more client
computing systems at one or more storage devices. The
storage operating system exports data stored at storage
devices as a storage volume. A storage volume is a logical
data set which is an abstraction of physical storage, com-
bining one or more physical mass storage devices or parts
thereof into a single logical storage object. Continuous
efforts are being made to efficiently store data.

BRIEF DESCRIPTION OF THE DRAWINGS

The various features of the present disclosure will now be
described with reference to the drawings of the various
aspects disclosed herein. In the drawings, the same compo-
nents may have the same reference numerals. The illustrated
aspects are intended to illustrate, but not to limit the present
disclosure. The drawings include the following Figures:

FIG. 1 shows an example of an operating environment for
the various aspects disclosed herein;

FIG. 2A shows an example of a clustered storage system,
used according to one aspect of the present disclosure;

FIG. 2B shows an example of a storage operating system,
used according to one aspect of the present disclosure;

FIG. 3 shows an example of an inode, used according to
one aspect of the present disclosure;

FIG. 4 shows an example of a buffer tree, used according
to one aspect of the present disclosure;

FIG. 5A shows a block diagram of a file system manager;
according to one aspect of the present disclosure;

FIG. 5B shows the format for physical volume block
numbers (PVBNs) for a performance storage tier and a
capacity storage tier, an object reference count data struc-
ture, an object ID data structure and an object meta data
structure; according to one aspect of the present disclosure;

FIG. 5C shows an example of a format for storing data at
an object store, according to one aspect of the present
disclosure;

FIG. 5D shows an example of using an object staging data
structure;

FIG. 5E shows an example of retrieving an object from an
object data store, according to one aspect of the present
disclosure;

FIG. 6 shows a process for garbage collection and repack-
aging an object, according to one aspect of the present
disclosure;

FIG. 7 shows an example of a storage system node,
according to one aspect of the present disclosure; and

10

20

25

30

40

45

55

65

2

FIG. 8 shows an example of a processing system, used
according to one aspect of the present disclosure.

DETAILED DESCRIPTION

As a preliminary note, the terms “component”, “module”,
“system,” and the like as used herein are intended to refer to
a computer-related entity, either software-executing general
purpose processor, hardware, firmware and a combination
thereof. For example, a component may be, but is not limited
to being, a process running on a hardware processor, a
hardware processor, an object, an executable, a thread of
execution, a program, and/or a computer.

By way of illustration, both an application running on a
server and the server can be a component. One or more
components may reside within a process and/or thread of
execution, and a component may be localized on one com-
puter and/or distributed between two or more computers.
Also, these components can execute from various computer
readable media having various data structures stored
thereon. The components may communicate via local and/or
remote processes such as in accordance with a signal having
one or more data packets (e.g., data from one component
interacting with another component in a local system, dis-
tributed system, and/or across a network such as the Internet
with other systems via the signal).

Computer executable components can be stored, for
example, at non-transitory, computer readable media includ-
ing, but not limited to, an ASIC (application specific inte-
grated circuit), CD (compact disc), DVD (digital video
disk), ROM (read only memory), floppy disk, hard disk,
EEPROM (electrically erasable programmable read only
memory), memory stick or any other storage device, in
accordance with the claimed subject matter.

In one aspect, methods and systems for a networked
storage environment are provided. One method includes
scanning a first data structure by a processor executing
instructions out of a memory for a storage operating system
to determine whether any data chunk of a first object stored
at a first storage tier is referenced by the storage operating;
when the storage operating system references a certain
number of data chunks, the processor using an object staging
data structure to identify a second object that is in the
process of being built with space for transferring the certain
number of data chunks from the first object to the second
object; and updating information regarding the second
object at a transfer log with location information of the
certain number of data chunks at the first storage tier.

System 100:

FIG. 1 shows an example of a networked storage envi-
ronment 100 (also referred to as system 100), for imple-
menting the various adaptive aspect of the present disclo-
sure. System 100 may include a plurality of computing
devices 102A-102N (may also be referred to individually as
a host platform/system 102 or simply as server 102) com-
municably coupled to a storage system (or storage server)
108 that executes a storage operating system 134 via a
connection system 110 such as a local area network (LAN),
wide area network (WAN), the Internet and others. As
described herein, the term “communicably coupled” may
refer to a direct connection, a network connection, or other
connections to enable communication between devices.

As an example, host system 102A may execute a plurality
of virtual machines (VMs) in a virtual environment that is
described below in detail. Host 102N may execute one or
more application 142, for example, a database application
(for example, Oracle application), an email application

US 9,792,043 B2

3

(Microsoft Exchange) and others that use the storage system
108 to store information. Host 102N also executes an
operating system 145, for example, a Windows based oper-
ating system, Linux, Unix and others (without any deroga-
tion of any third party trademark rights).

Clients 116A-116N (may be referred to as client (or user)
116) are computing devices that can access storage space at
the storage system 108. A client can be the entire system of
a company, a department, a project unit or any other entity.
Each client is uniquely identified and optionally, may be a
part of a logical structure called a storage tenant 140. The
storage tenant 140 represents a set of users (may be referred
to as storage consumers) for a storage provider 124 (may
also be referred to as a cloud manager, where cloud com-
puting is being utilized). Where a storage provider 124 is
being used, the client accesses storage through the storage
provider. It is noteworthy that the adaptive aspects of the
present disclosure are not limited to using a storage provider
or a storage tenant and may be implemented for direct client
access.

In one aspect, storage system 108 has access to a first set
of mass storage devices 118-120 within at least one storage
subsystem 112 that is referred to as a performance tier, a
hybrid storage device system. The mass storage devices 118
may include solid state drives (SSDs), while the mass
storage devices 120 may include writable storage device
media such as hard disk drives (HDD), magnetic disks,
video tape, optical, DVD, magnetic tape, and any other
similar media adapted to store information. The storage
devices 118-120 may be organized as one or more groups of
Redundant Array of Independent (or Inexpensive) Disks
(RAID). The various aspects disclosed are not limited to any
particular storage device type or storage device configura-
tion.

The storage system also has access to an object based
storage 124 at a capacity tier 128. The term object as defined
herein means a chunk of data (having one or more blocks of
data) is written together in an object storage tier. The object
based storage 124 may be slower than the performance tier
112 storage. In one aspect, data stored at the object store 124
is managed using an object identifier and an offset value
within the object, as described below in detail. The capacity
tier 128 may be used in a cloud based environment. The
adaptive aspects described herein however are not limited to
the cloud based environment.

As an example, the storage system 108 may provide a set
of'logical storage volumes (or logical unit numbers (LUNs))
that presents storage space to clients and VMs for storing
information. Each volume may be configured to store data
files (or data containers or data objects), scripts, word
processing documents, executable programs, and any other
type of structured or unstructured data. From the perspective
of one of the client systems, each volume can appear to be
a single drive. However, each volume can represent storage
space at one storage device, an aggregate of some or all of
the storage space in multiple storage devices, a RAID group,
or any other suitable set of storage space.

The storage operating system 134 organizes storage space
at the performance tier 112 as one or more “aggregate”,
where each aggregate is identified by a unique identifier and
a location. Within each aggregate, one or more storage
volumes are created whose size can be varied. A qtree,
sub-volume unit may also be created within the storage
volumes. As a special case, a qtree may be an entire storage
volume.

The storage system 108 may be used to store and manage
information at storage devices in either the performance tier

10

15

20

25

30

35

40

45

50

55

60

65

4

112 or the capacity tier 128 based on a request. The request
may be based on file-based access protocols, for example,
the Common Internet File System (CIFS) protocol or Net-
work File System (NFS) protocol, over TCP/IP. Alterna-
tively, the request may use block-based access protocols, for
example, iISCSI and SCSI encapsulated over Fibre Channel
(FCP).

To facilitate access to storage space, the storage operating
system 134 implements a file system that logically organizes
stored information as a hierarchical structure for files/
directories/objects at the storage devices. Each “on-disk” file
may be implemented as set of blocks configured to store
information, such as text, whereas a directory may be
implemented as a specially formatted file in which other files
and directories are stored. These data blocks are organized
within a volume block number (VBN) space that is main-
tained by a file system of the storage operating system 134
described below in detail. The file system may also assign
each data block in the file a corresponding “file offset™ or file
block number (FBN). The file system typically assigns
sequences of FBNs on a per-file basis, whereas VBNs are
assigned over a larger volume address space. The file system
organizes the data blocks within the VBN space as a logical
volume. The file system typically consists of a contiguous
range of VBNs from zero to n, for a file system of size n-1
blocks.

An example of storage operating system 134 is the Data
ONTAP™ storage operating system available from NetApp,
Inc. that implements a Write Anywhere File Layout (WAFL)
file system (without derogation of any trademark rights of
NetApp Inc.). Of course, the various aspects disclosed
herein are not limited to any specific file system type and
maybe implemented by other file systems.

The storage operating system 134 may further implement
a storage module (for example, a RAID system for perfor-
mance tier 112) that manages the storage and retrieval of the
information to and from storage devices in accordance with
input/output (I/O) operations. When accessing a block of a
file in response to servicing a client request, the file system
specifies a VBN that is translated at the file system/RAID
system boundary into a disk block number (DBN) location
on a particular storage device (disk, DBN) within a RAID
group of the physical volume. Each block in the VBN space
and in the DBN space is typically fixed, e.g., 4 k bytes (kB),
in size; accordingly, there is typically a one-to-one mapping
between the information stored on the disks in the DBN
space and the information organized by the file system in the
VBN space.

A requested block is retrieved from a storage device and
stored in a buffer cache of a memory of the storage system
108 as part of a buffer tree of the file. The buffer tree is an
internal representation of blocks for a file stored in the buffer
cache and maintained by the file system. Broadly stated and
as described below in detail, the buffer tree has an inode at
the root (top-level) of the file, as described below.

An inode is a data structure used to store information,
such as metadata, about a file, whereas the data blocks are
structures used to store the actual data for the file. The
information in an inode may include, e.g., ownership of the
file, access permission for the file, size of the file, file type
and references to locations on disk of the data blocks for the
file. The references to the locations of the file data are
provided by pointers, which may further reference indirect
blocks that, in turn, reference the data blocks, depending
upon the quantity of data in the file. Each pointer may be
embodied as a VBN to facilitate efficiency among the file
system and the RAID system when accessing the data.

US 9,792,043 B2

5

Volume information (volinfo) and file system information
(fsinfo) blocks specify the layout of information in the file
system, the latter block including an inode of a file that
includes all other inodes of the file system (the inode file).
Each logical volume (file system) has an fsinfo block that is
preferably stored at a fixed location within, e.g., a RAID
group. The inode of the fsinfo block may directly reference
(point to) blocks of the inode file or may reference the
indirect blocks of the inode file that, in turn, reference direct
blocks of the inode file. Within each direct block of the inode
file are embedded inodes, each of which may reference
indirect blocks that, in turn, reference data blocks (also
shown as L0 blocks) of a file. An example of an inode and
a buffer tree are provided below.

In a typical mode of operation, a client transmits one or
more input/output (I/O) commands, such as a CFS or NFS
request, over connection system 110 to the storage system
108. Storage system 108 receives the request, issues one or
more [/O commands to storage devices to read or write the
data on behalf of the client system, and issues a CIFS or NFS
response containing the requested data over the network 110
to the respective client system.

As an example, system 100 may also include a virtual
machine environment where a physical resource is time-
shared among a plurality of independently operating pro-
cessor executable virtual machines (VMs). Each VM may
function as a self-contained platform, running its own oper-
ating system (OS) and computer executable, application
software. The computer executable instructions running in a
VM may be collectively referred to herein as “guest soft-
ware.” In addition, resources available within the VM may
be referred to herein as “guest resources.”

The guest software expects to operate as if it were running
on a dedicated computer rather than in a VM. That is, the
guest software expects to control various events and have
access to hardware resources on a physical computing
system (may also be referred to as a host platform) which
maybe referred to herein as “host hardware resources”. The
host hardware resource may include one or more processors,
resources resident on the processors (e.g., control registers,
caches and others), memory (instructions residing in
memory, e.g., descriptor tables), and other resources (e.g.,
input/output devices, host attached storage, network
attached storage or other like storage) that reside in a
physical machine or are coupled to the host platform.

Host platform 102A includes/provides a virtual machine
environment executing a plurality of VMs 130A-130N that
may be presented to client computing devices/systems
116A-116N. VMs 130A-130N execute a plurality of guest
OS 104A-104N (may also be referred to as guest OS 104)
that share hardware resources 120. Application 142 may be
executed within VMs 130. As described above, hardware
resources 120 may include storage, CPU, memory, 1/O
devices or any other hardware resource.

In one aspect, host platform 102 A interfaces with a virtual
machine monitor (VMM) 106, for example, a processor
executed Hyper-V layer provided by Microsoft Corporation
of Redmond, Wash., a hypervisor layer provided by
VMWare Inc., or any other type. VMM 106 presents and
manages the plurality of guest OS 104A-104N executed by
the host platform 102. The VMM 106 may include or
interface with a virtualization layer (VIL) 122 that provides
one or more virtualized hardware resource to each OS
104A-104N.

In one aspect, VMM 106 is executed by host platform
102A with VMs 130A-130N. In another aspect, VMM 106
may be executed by an independent stand-alone computing

10

20

25

30

35

40

45

50

55

60

65

6

system, referred to as a hypervisor server or VMM server
and VMs 130A-130N are presented at one or more com-
puting systems.

It is noteworthy that different vendors provide different
virtualization environments, for example, VMware Corpo-
ration, Microsoft Corporation and others. Data centers may
have hybrid virtualization environments/technologies, for
example, Hyper-V and hypervisor based virtual environ-
ment. The generic virtualization environment described
above with respect to FIG. 1 may be customized depending
on the virtual environment to implement the aspects of the
present disclosure. Furthermore, VMM 106 (or VIL 122)
may execute other modules, for example, a storage driver,
network interface and others, the details of which are not
germane to the aspects described herein and hence have not
been described in detail. The virtualization environment
may use different hardware and software components and it
is desirable for one to know an optimum/compatible con-
figuration.

In one aspect, system 100 provides a management console
132 for configuring and managing the various components
of'system 100. As an example, the management console may
be implemented as or include one or more application
programming interface (API). The APIs may be imple-
mented as REST APIs, where REST means “Representa-
tional State Transfer”. REST is a scalable system used for
building web services. REST systems/interface may use
HTTP (hyper-text transfer protocol) or other protocols for
communicating.

Although storage system 108 is shown as a stand-alone
system, i.e. a non-cluster based system, in another aspect,
storage system 108 may have a distributed architecture; for
example, a cluster based system that is described below in
detail with respect to FIG. 2A.

Clustered System:

Before describing the various aspects of the present
disclosure, the following describes a clustered networked
storage environment 200. FIG. 2A shows a cluster based
storage environment 200 having a plurality of nodes oper-
ating as resources to store data on behalf of clients at either
the performance tier 112 or the capacity tier 128.

Storage environment 200 may include a plurality of client
systems 204.1-204.N as part of or associated with storage
tenant 140, a clustered storage system 202 (similar to storage
system 108) and at least a network 206 communicably
connecting the client systems 204.1-204.N, the management
console 132, the storage (or cloud) provider 124 and the
clustered storage system 202. It is noteworthy that these
components may interface with each other using more than
one network having more than one network device.

The clustered storage system 202 includes a plurality of
nodes 208.1-208.3, a cluster switching fabric 210, and a
plurality of mass storage devices in the performance tier
112.1-112.3 (similar to performance tier 112). The nodes
may also store data at capacity tier 128, as described below
in detail.

Each of the plurality of nodes 208.1-208.3 is configured
to include a network module, a storage module, and a
management module, each of which can be implemented as
a processor executable module. Specifically, node 208.1
includes a network module 214.1, a storage module 216.1,
and a management module 218.1, node 208.2 includes a
network module 214.2; a storage module 216.2, and a
management module 218.2, and node 208.3 includes a
network module 214.3, a storage module 216.3, and a
management module 218.3.

US 9,792,043 B2

7

The network modules 214.1-214.3 include functionality
that enable the respective nodes 208.1-208.3 to connect to
one or more of the client systems 204.1-204.N (or the
management console 132) over the computer network 206.
The network modules handle file network protocol process-
ing (for example, CFS, NFS and/or iSCSI requests). The
storage modules 216.1-216.3 connect to one or more of the
storage devices at the performance tier and/or the capacity
tier and process /O requests. Accordingly, each of the
plurality of nodes 208.1-208.3 in the clustered storage server
arrangement provides the functionality of a storage server.

The management modules 218.1-218.3 provide manage-
ment functions for the clustered storage system 202. The
management modules 218.1-218.3 collect storage informa-
tion regarding storage devices.

A switched virtualization layer including a plurality of
virtual interfaces (VIFs) 219 is provided to interface
between the respective network modules 214.1-214.3 and
the client systems 204.1-204.N, allowing storage space at
the storage devices associated with the nodes 208.1-208.3 to
be presented to the client systems 204.1-204.N as a single
shared storage pool.

The clustered storage system 202 can be organized into
any suitable number of storage virtual machines (SVMs)
(may be referred to as virtual servers (may also be referred
to as “SVMs”), in which each SVM represents a single
storage system namespace with separate network access. A
SVM may be designated as a resource on system 200. Each
SVM has a client domain and a security domain that are
separate from the client and security domains of other
SVMs. Moreover, each SVM is associated with one or more
VIFs 219 and can span one or more physical nodes, each of
which can hold one or more VIFs and storage associated
with one or more SVMs. Client systems can access the data
on a SVM from any node of the clustered system, through
the VIFs associated with that SVM.

Each of the nodes 208.1-208.3 is defined as a computing
system to provide application services to one or more of the
client systems 204.1-204.N. The nodes 208.1-208.3 are
interconnected by the switching fabric 210, which, for
example, may be embodied as a Gigabit Ethernet switch or
any other type of switching/connecting device.

Although FIG. 2A depicts an equal number (i.e., 3) of the
network modules 214.1-214.3, the storage modules 216.1-
216.3, and the management modules 218.1-218.3, any other
suitable number of network modules, storage modules, and
management modules may be provided. There may also be
different numbers of network modules, storage modules,
and/or management modules within the clustered storage
system 202. For example, in alternative aspects, the clus-
tered storage system 202 may include a plurality of network
modules and a plurality of storage modules interconnected
in a configuration that does not reflect a one-to-one corre-
spondence between the network modules and storage mod-
ules. In another aspect, the clustered storage system 202 may
only include one network module and storage module.

Each client system 204.1-204.N may request the services
of one of the respective nodes 208.1, 208.2, 208.3, and that
node may return the results of the services requested by the
client system by exchanging packets over the computer
network 206, which may be wire-based, optical fiber, wire-
less, or any other suitable combination thereof.

Storage Operating System:

FIG. 2B illustrates a generic example of storage operating
system 134 (FIG. 1) executed by node 208.1, according to
one aspect of the present disclosure. In one example, storage
operating system 134 may include several modules, or

10

15

20

25

30

35

40

45

50

55

60

65

8

“layers” executed by one or both of network module 214 and
storage module 216. These layers include a file system
manager 240 that keeps track of a hierarchical structure of
the data stored in storage devices and manages read/write
operation, i.e. executes read/write operation on storage in
response to client 204.1/204.N requests, as described below
in detail.

Storage operating system 134 may also include a protocol
layer 242 and an associated network access layer 246, to
allow node 208.1 to communicate over a network with other
systems, such as clients 204.1/204.N. Protocol layer 242
may implement one or more of various higher-level network
protocols, such as SAN (e.g. iSCSI) (242A), CIFS (242B),
NFS (242C), Hypertext Transfer Protocol (HTTP) (not
shown), TCP/IP (not shown) and others (242D).

Network access layer 246 may include one or more
drivers, which implement one or more lower-level protocols
to communicate over the network, such as Ethernet. Inter-
actions between clients’ and mass storage devices are illus-
trated schematically as a path, which illustrates the flow of
data through storage operating system 134.

The storage operating system 134 may also include a
storage access layer 244 and an associated storage driver
layer 248 to allow storage module 216 to communicate with
a storage device. The storage access layer 244 may imple-
ment a higher-level storage protocol, such as RAID (redun-
dant array of inexpensive disks) (244A), a S3 layer 244B to
access the capacity tier 128 described below in detail, and
other layers 244C. The storage driver layer 248 may imple-
ment a lower-level storage device access protocol, such as
FC or SCSI. The storage driver layer 248 may maintain
various data structures (not shown) for storing information
regarding storage volume, aggregate and various storage
devices.

As used herein, the term “storage operating system”
generally refers to the computer-executable code operable
on a computer to perform a storage function that manages
data access and may, in the case of a node 208.1, implement
data access semantics of a general purpose operating system.
The storage operating system can also be implemented as a
microkernel, an application program operating over a gen-
eral-purpose operating system, such as UNIX® or Windows
XP®, or as a general-purpose operating system with con-
figurable functionality, which is configured for storage
applications as described herein.

In addition, it will be understood to those skilled in the art
that the disclosure described herein may apply to any type of
special-purpose (e.g., file server, filer or storage serving
appliance) or general-purpose computer, including a stand-
alone computer or portion thereof, embodied as or including
a storage system. Moreover, the teachings of this disclosure
can be adapted to a variety of storage system architectures
including, but not limited to, a network-attached storage
environment, a storage area network and a storage device
directly-attached to a client or host computer. The term
“storage system” should therefore be taken broadly to
include such arrangements in addition to any subsystems
configured to perform a storage function and associated with
other equipment or systems. It should be noted that while
this description is written in terms of a write any where file
system, the teachings of the present disclosure may be
utilized with any suitable file system, including a write in
place file system.

Inode Structure:

FIG. 3 shows an example of an inode structure 300 (may
also be referred to as inode 300) used to store data at the
performance tier 112 according to one aspect of the present

US 9,792,043 B2

9

disclosure. Inode 300 may include a meta-data section 302
and a data section 318. The information stored in the
meta-data section 302 of each inode 300 describes a file and,
as such, may include the file type (e.g., regular, directory or
object) 304, size 306 of the file, time stamps (e.g., access
and/or modification) 308 for the file and ownership, i.e., user
identifier (UID 310) and group ID (GID 312), of the file. The
metadata section 302 may also include a X-inode field 314
with a pointer 316 that references another on-disk inode
structure containing, e.g., access control list (ACL) infor-
mation associated with the file or directory.

The contents of data section 318 of each inode 300 may
be interpreted differently depending upon the type of file
(inode) defined within the type field 304. For example, the
data section 318 of a directory inode structure includes
meta-data controlled by the file system, whereas the data
section of a “regular inode” structure includes user-defined
data. In this latter case, the data section 318 includes a
representation of the data associated with the file. Data
section 318 of a regular on-disk inode file may include user
data or pointers, the latter referencing, for example, 4 KB
data blocks for storing user data at a storage device.

Inode structure 300 may have a restricted size (for
example, 122 bytes). Therefore, user data having a size that
is less than or equal to 64 bytes may be represented, in its
entirety, within the data section of an inode. However, if the
user data is greater than 64 bytes but less than or equal to,
for example, 64 kilobytes (KB), then the data section of the
inode comprises up to 16 pointers, each of which references
a 4 KB block of data stored at a disk. Moreover, if the size
of'the data is greater than 64 kilobytes but less than or equal
to 64 megabytes (MB), then each pointer in the data section
318 of the inode references an indirect inode that contains
1024 pointers, each of which references a 4 KB data block
on disk.

Buffer Tree:

FIG. 4 is an example of an inode buffer tree of a data
container that may be used by the storage operating system
134. The buffer tree is an internal representation of blocks
for a data container (e.g., file A 400) loaded into a buffer
cache and maintained by the file system 240. A root (top-
level) inode 402, such as an embedded inode, references
indirect (e.g., Level 1) blocks 404. The indirect blocks (and
inode) contain pointers 405 that ultimately reference data
blocks 406 used to store the actual data of file A. That is, the
data of file A 400 are contained in data blocks and the
locations of these blocks are stored in the indirect blocks of
the file. Fach Level 1 indirect block 404 may contain
pointers to many data blocks. According to the “write
anywhere” nature of the file system, these blocks may be
located anywhere at the storage devices.

In one aspect, the file system 240 allocates blocks, and
frees blocks, to and from a virtual volume (may be referred
to as VVOL) of an aggregate. The aggregate, as mentioned
above, is a physical volume comprising one or more groups
of storage devices, such as RAID groups, underlying one or
more VVOLs of the storage system. The aggregate has its
own physical volume block number (PVBN) space and
maintains metadata, such as block allocation bitmap struc-
tures, within that PVBN space. Each VVOL also has its own
virtual volume block number (VVBN) space and maintains
metadata, such as block allocation bitmap structures, within
that VVBN space. Typically, PVBNs are used as block
pointers within buffer trees of files (such as file 400) stored
in a VVOL.

As an example, a VVOL may be embodied as a container
file in an aggregate having 1.0 (data) blocks that comprise all

25

35

40

45

50

55

65

10

blocks used to hold data in a VVOL; that is, the LO data
blocks of the container file contain all blocks used by a
VVOL. L1 (and higher) indirect blocks of the container file
reside in the aggregate and, as such, are considered aggre-
gate blocks. The container file is an internal (to the aggre-
gate) feature that supports a VVOL,; illustratively, there is
one container file per VVOL. The container file is a hidden
file (not accessible to a user) in the aggregate that holds
every block in use by the VVOL.

When operating in a VVOL, VVBN identifies a FBN
location within the file and the file system uses the indirect
blocks of the hidden container file to translate the FBN into
a PVBN location within the physical volume, which block
can then be retrieved from disk.

File System 240:

FIG. 5A shows a block diagram of the file system man-
ager 240, according to one aspect of the present disclosure.
The file system manager 240 includes a write allocator 504
that allocates blocks for writing data. A buffer cache 500 is
used to cache data. A PVBN hash module 502 is used to
cache in-copies of blocks indexed by an aggregate identifier
and a PVBN. The use of the PVBNSs are described below in
detail.

A temperature tracker module 506 of the file system 240
tracks the “temperature” of stored data. Hot data is data that
is frequently accessed, based on a duration that is defined by
the file system manager 240. Cold data is data that is not
frequently accessed. The temperature tracker 506 interfaces
with the read path to record read hits and determines read
patterns. The temperature tracker 506 also interfaces with a
tiering policy manager 508 that determines how stored data
is tiered, i.e. stored at SSDs 118, HDD 120 or capacity tier
128. The tiering policy manager 508 may store tiering
policies that may be used to ascertain where data is to be
stored. This information is provided to the temperature
tracker 506. The temperature tracker 506 hooks into the
buffer cache 500 and PVBN hash 502 to determine which
blocks get accessed and how often. Data stored at the
performance tier 112 that is categorized as cold may be
transferred to the capacity tier 128.

A consistency point (CP) module 510 is used to manage
CP operations. In one aspect, when cold data is to be moved
to the capacity tier, the data is marked as dirty. The CP
module 510 then pushes the dirty data into a transfer log
metadata structure 512 (also referred to as TLOG 512) that
is described below in detail. The data is moved to the
capacity tier 128 via a transfer module 514 and a commu-
nication module 518.

The TLOG 512 enables data to be buffered while an
object is still being created, as described below in detail. The
TLOG 512 may also be used to service read requests for
blocks that have not yet been moved to the capacity tier 128
but are in the process of being sent i.e. while an object is
being built. Blocks associated with an object in the TLOG
512 are freed only after they have been safely stored and
depending on capacity tier properties, verified that they have
been stored successfully.

In one aspect, an object tracker 520 finds free usable
capacity tier PVBNs efficiently. This is performed by using
an object identifier (ID) map that tracks used and unused
object IDs. The object ID map is a data structure that is
described below in detail with respect to FIG. 5B.

The object tracker 520 ensures that an object is freed
when it is no longer needed. This is enabled by a reference
count data structure that is also described below in detail
with respect to FIG. 5B. The object tracker 520 tracks the
reference count of objects in the capacity tier 128 to ensure

US 9,792,043 B2

11

that the object is not freed until the object is not needed or
referenced. For example, if an object is created using 600 4
KB blocks, then the object’s reference count at the container
file is 600. As the file system deletes or overwrites user data,
the reference count is reduced at the container file. When the
reference count becomes zero, the object is considered safe
to be freed during garbage collection by a repackaging/
garbage collection module 517 (may also be referred to as
module 517), described below in detail.

In one aspect, the object tracker 520 assists module 517
by providing information regarding objects that may have
become fragmented i.e. an object instead of having X
number of blocks, only has Y number of blocks, where Y is
less than X. For example, if the object can store 1024 blocks
of'data and only has 100 blocks of data that is referenced by
the container file, then the object may be considered frag-
mented and a candidate for repackaging that is described
below with respect to FIG. 6. This may occur because the file
system 240 may free certain data or delete certain data over
time. In one aspect, the object tracker 520 provides a ratio
of current reference count and an original reference count for
the object to module 517. When the ratio is low, module 517
may initiate the repackaging process described below in
detail.

The data read engine 513 is used fetch data from the
capacity tier 128 in response to read requests. The compres-
sion module 516 manages compression/de-compression of
data stored at the capacity tier. Compression module 516
may be used to compress the data chunks using one or more
compression group size, for example, 8 KB, 12 KB, 16 KB
or any other size. The same object format is used for storing
data chunks that are compressed or uncompressed as
described below with respect to FIG. 5C.

The communication module 518 provides S3 APIs that
are used to interface with capacity tier storage. The APIs
may customized based on the storage vendor providing the
capacity tier storage.

The RAID layer 244A using a storage driver 248A, for
example, a Fibre Channel driver is used to access the
performance tier.

Data Structure Format:

FIG. 5B shows a format of a capacity tier PVBN 520 and
a RAID PVBN 519. The first few bits 520A (for example, 3
bits) of the capacity tier PVBN indicates that the PVBN is
for the capacity tier 128. The object_ID (may also be
referred to as object ID) 520B provides a unique object
identifier, for example, as a 34 bit value. A slot number 520C
may be represented as a 10 bit value. The slot number 520C
indicates the location of a block within the object. As an
example, one object may include 1024, 4 KB blocks. The
slot number indicates where a block is within that object
having a plurality of blocks.

The RAID PVBN type is indicated by a bit value shown
as 519A and the RAID block number is represented by
519B.

FIG. 5B also shows an example of an object reference
count data structure 521 (may also be referred to as data
structure 521). The data structure 521 may be stored at the
performance tier 112 and includes an entry for every object.
For example, data structure 521 may include a 32 bit entry
for every object and counts the number of slots that are in
use by the file system 240. This count is used to trigger the
garbage collection process or the repackaging process
described below with respect to FIG. 6.

FIG. 5B also shows an object ID data structure/map 523
(may be referred to as data structure 523) that may also be
stored at the performance tier 112, according to one aspect

25

30

40

45

55

12

of'the present disclosure. The data structure 523 stores all the
object IDs and have a bit setting indicating if the object ID
is currently being used. The data structure 523 is used to
determine unused object IDs.

FIG. 5B further shows an object metadata structure 525
(maybe referred to as a data structure 525) stored at perfor-
mance tier 112, according to one aspect. The data structure
525 is used to translate a capacity tier PVBN to an object ID
and offset. The data structure 525 includes an object ID, a
sequence number, a BTID (buffer ID of a container file), a
state for the object and a reference count. The state of the
object may be used to indicate if an object includes com-
pressed or uncompressed data chunks. The reference infor-
mation may be used to ascertain if an object is a candidate
for repackaging, as described below in detail.

Object Format 527:

FIG. 5C shows an example of an object format 527,
according to one aspect of the present disclosure. The object
format 527 includes a header segment 531 and a data
segment 529. The header segment 531 may be configured to
include a container file FBN for the data chunk stored at a
certain object slot. In one aspect, an array of FBN for each
slot are stored in the header segment of the object, shown as
531A. The FBN array 531A may store an identifier for the
container file and the VVBN for the data stored within a slot.
In another aspect, this information may be stored at a slot
context with the stored data, as shown in FIG. 5C.

Object format 527 may also be used for storing data using
a plurality of compression group sizes as well as uncom-
pressed data chunks, according to one aspect of the present
disclosure. As an example, the compression group size may
be 8 KB, 16 KB, 32 KB or any other size. The header
segment 531 maps an object slot number to an offset value
in the data segment 529. For example, offset F1, slot #0 540
indicates that a first chunk of uncompressed data is stored
starting at offset F1. As mentioned above, the header seg-
ment 531A may also include information regarding the
container file FBN that references the data stored at offset
F1. In another aspect, the slot context stored at the slot may
be used to store the container file FBN information.

In one aspect, the header segment 531 may also be used
to indicate the compression group size. Thus as shown in
section 535 a compression group is 8 KB. The compressed
chunk starts at offset F2, with slot 1. Slot 2 points to slot 1
indicating that the slot 2 data is part of the compressed chunk
that starts from offset F2.

In section 533, the compression group size is 16 KB. In
this section, the compressed data chunk begins at offset F3
and slots 4, 5 and 6 all point to slot F3 from where the
compressed group begins.

In one aspect, to retrieve a compressed block, the data
read engine 513 reads the header, obtains the starting slot
number of the compression group and then reads the actual
offset of the compression group. The data is then read from
the offset and decompressed by the compression/de-com-
pression module 516. In one aspect, the starting slot number
of the compression group also stores information regarding
the compression type or group size.

To retrieve uncompressed data, the data read engine 513
can simply obtain the slot number from an object metadata
structure and retrieve the data.

In one aspect, the object format 527 enables using a same
format for storing data chunks that are compressed using
more than one compression group size as well as uncom-
pressed data.

US 9,792,043 B2

13

Object Staging Data Structure 532:

When data has to be written to the capacity tier 128, an
object is built to include a plurality of data chunks, for
example, 4 KB chunks of data. The object is tracked using
the object staging data structure 532 (FIG. 5D). Once one or
more objects have been built, the object data is transferred
to the capacity tier 128. The storage policy of the capacity
tier 128 may dictate that the storage operation be verified,
before freeing up the space used by the transferred object at
TLOG 512.

FIG. 5D shows an example of using the object staging
structure 532 and the TLOG 512, according to one aspect of
the present disclosure. The TLOG 512 shows that one object
534 is ready and object 536 is still in the process of being
built. The built and in-process objects are tracked by the
object staging structure 532 which stores the object ID in
column 532A, the state of the object in column 532B (i.e.
build or ready), the length of the object (i.e. the number of
blocks that are already in the object) in column 532C and a
TLOG FBN in column 532D. For example, object 12 is in
the process of being built and has three blocks of data at the
TLOG FBN 0, 1, 2. The object 42 is ready with 1024 blocks.
The SSD PVBN is stored at the respective FBN of the
TLOG indicating the PVBN of the performance tier where
the data for a chunk resides.

In one aspect, the TLOG 512 may be used to find an
object that is not complete and can be used for repackaging
a fragmented object. When used for packaging, the TLOG
512 provides the PVBN of the object store 124, because the
data chunks for the object are already at the object store 124
and does not have to be transferred from the performance
tier 112.

Capacity Tier Access:

FIG. 5E shows an example of accessing data chunks from
the capacity tier 128 and using the object metadata structure
548 (similar to data structure 525, shown in FIG. 5B and
described above). A read request provides a volume infor-
mation V1 (shown as 542). V1 is the user data container in
a volume. Using V1, the container file for the volume is
retrieved (544). The container file has a BTID (buffer ID of
a container file) of 757 and a unique identifier (BTUUID) of
0XDABC6934FE. The container file points to an object
PVBN (546) that provides an object ID 101 and slot 5.

The object ID is shown in the object metafile 548. As
described above, the object metafile 548 includes an object
1D, a sequence number, a BTID, a state for the object and a
reference count. The state of the object may be used to
indicate if a data chunk is compressed or uncompressed. The
object name is then shown in block 550, which points to the
actual object 552 in the capacity tier 128.

FIG. 6 shows a process for garbage collection and repack-
aging an object, according to one aspect of the present
disclosure. The process begins in block B602, when com-
plete objects have been stored at the capacity tier 128. Some
of'the objects may have data that the file system 240 does not
reference any more. In that case, the objects may be deleted
by module 517.

In other cases, one or more object may become frag-
mented i.e. may have blocks that are no longer referenced by
the file system 240. In that case, the object may be repack-
aged by module 517. To repackage the object, the data
blocks that are being used by the file system 240 are moved
to another object that may be in the process of being built.
The TLOG 512 is then used to find the appropriate object,
as described below in detail.

In one aspect, based on user environment, where a user
may have to pay for reads to an object store, module 517

10

25

40

45

50

55

65

14

may determine that it may be better to wait for the object to
be completely free rather than to repackage. In another
aspect, if a volume is being deleted, module 517 may not
repackage any data blocks.

In block B604, the object tracker 520 scans data structure
521 to identify a candidate for garbage collection or repack-
aging. The object tracker 520 reviews the reference count for
each data block of an object. If all the reference counts for
an object are zero, the object is identified to be a candidate
for garbage collection. The garbage collection process is
described with respect to blocks B606-B610.

When the reference count for only some of the blocks is
zero, then the object may be a candidate for repackaging. For
example, assume that an object that has a capacity for
storing 1024 4 KB blocks and only 20 blocks are being
referenced and the rest are zero. Then the object may be a
candidate for repackaging such that the referenced chunks
are moved to another object. The threshold value for deter-
mining if an object is a candidate for repackaging is based
on a number of data blocks that are currently being refer-
enced. The threshold value may be configurable and set
based on a storage operating environment. The repackaging
process is described below with respect to blocks B612-
B618.

For an object identified for garbage collection in block
B606, the object tracker 520 verifies if the object ID is still
being used. If the object ID is not being used, then nothing
needs to be done.

The verification in block B606 is performed by checking
data structure 523 to determine if the object ID for the object
has been freed or is still being used. This helps to determine
if the object still exists at the capacity tier 128 and can be
deleted using garbage collection. This decouples the garbage
collection process from file system operations because once
the system knows an object is completely free, then the
object can be deleted at an optimum time without impacting
the performance of the file system or the capacity tier 128.

In block B608, the object tracker 5520 notifies module
517 of the object identified for garbage collection. Module
517 maintains a list (not shown) of objects that can be
deleted. The list may include one or more objects for
deletion. The object group is deleted from the capacity tier
128 in block B610. The object metadata structure 525 [or
548, FIG. 5D] is updated and the garbage collection process
ends.

For repackaging, the object tracker 520 identifies the
object based on the reference count using data structure 519.
In block B612, the blocks within the object that are being
referenced by the container file for the volume are identified.
This information may be obtained from the object header
described above with respect to FIG. 5C. The object header
provides the FBNs of the container file that reference
specific data blocks of the object. In another aspect, the
FBNs are obtained from the slot context. Once the number
of'blocks that need to be moved or repackaged are identified,
module 517 in block B614, finds an object that is in the
process of being built. This information is obtained from
TLOG 512 using the staging data structure 532, described
above in detail.

Once the object that is being built is identified, in block
B616, the container file for the object is updated with the
new object’s PVBN. The object staging data structure 532 is
also updated such that the TLOG FBN (532D) points to a
capacity tier PVBN where the data is stored. Thereafter,
once the object is built, the object written to the capacity tier
128. The object metadata structure 525 and the TLOG 512

US 9,792,043 B2

15

are updated indicating the entire object with the repackaged
data blocks is at the capacity tier 128.

It is noteworthy that the reference count for the old object
becomes zero, after data blocks are moved to the new object.
Thus, the old object now becomes a candidate for garbage
collection described above in detail.

While the new object is still being built, if a read request
is received, then in block B618, the object staging data
structure 532 provides the PVBN for the capacity tier 128
where the data blocks are stored.

It is noteworthy that the file system 240 remains consis-
tent during repackaging and there is no need to perform any
file system recovery operations, even if the system has to be
rebooted during the repackaging operations. In one aspect,
by using the TLOG to point to the capacity tier 128, the
performance tier 112 is not affected by the repackaging. The
data blocks from the capacity tier 128 is only read when the
new object is ready to be written at the capacity tier. This is
efficient and hence desirable.

In one aspect, methods and systems for a networked
storage environment having multiple storage tiers are pro-
vided. As an example, one method includes scanning a first
data structure (521, FIG. 5B) by a processor executing
instructions out of a memory for a storage operating system
(134, FIG. 1) to determine whether any data chunk of a first
object stored at a first storage tier (i.e. the capacity tier 128)
is referenced by the storage operating system. The first data
structure maintains a reference count for each data chunk of
the first object indicating if the storage operating system is
using any data chunk. When the storage operating system
references a certain number of data chunks, the processor
uses an object staging data structure (532, FIG. 5D) to
identify a second object that is in the process of being built
with space for transferring the certain number of data chunks
from the first object to the second object, where the object
staging data structure stores a unique identifier for the
second object, and an indicator providing a status for the
second object indicating that the object is being built.
Thereafter, the method further includes updating informa-
tion regarding the second object (536, FIG. 5D) at a transfer
log (512, FIG. 5D) with location information of the certain
number of data chunks at the first storage tier.

The method further includes using the transfer log for
responding to any read request for data associated with the
certain number of data chunks, before all the data chunks of
the second object are stored at the first storage tier.

The method also includes verifying that no data chunk of
the first object is being referenced by the storage operating
system; determining if an object identifier for the first object
is still being used; and identifying the first object as a
candidate for deletion. A second data structure (523, FIG.
5B) maintains object identifiers for all objects of the first
storage tier with an indicator indicating if each object
identifier is currently being used.

Storage System Node:

FIG. 7 is a block diagram of a node 208.1 that is
illustratively embodied as a storage system comprising of a
plurality of processors 702A and 702B, a memory 704, a
network adapter 710, a cluster access adapter 712, a storage
adapter 716 and local storage 713 interconnected by a
system bus 708.

Processors 702A-702B may be, or may include, one or
more programmable general-purpose or special-purpose
microprocessors, digital signal processors (DSPs), program-
mable controllers, application specific integrated circuits
(ASICs), programmable logic devices (PLDs), or the like, or
a combination of such hardware devices.

10

15

20

25

30

35

40

45

50

55

60

65

16

The local storage 713 comprises one or more storage
devices utilized by the node to locally store configuration
information for example, in a configuration data structure
714.

The cluster access adapter 712 comprises a plurality of
ports adapted to couple node 208.1 to other nodes of cluster
202. In the illustrative aspect, Ethernet may be used as the
clustering protocol and interconnect media, although it will
be apparent to those skilled in the art that other types of
protocols and interconnects may be utilized within the
cluster architecture described herein. In alternate aspects
where the network modules and storage modules are imple-
mented on separate storage systems or computers, the clus-
ter access adapter 712 is utilized by the network/storage
module for communicating with other network/storage-
modules in the cluster 202.

Each node 208.1 is illustratively embodied as a dual
processor storage system executing the storage operating
system 134 that preferably implements a high-level module,
such as a file system 240, to logically organize the infor-
mation as a hierarchical structure of named directories and
files at storage 112/128. However, it will be apparent to
those of ordinary skill in the art that the node 208.1 may
alternatively comprise a single or more than two processor
systems. Illustratively, one processor 702A executes the
functions of the network module on the node, while the other
processor 702B executes the functions of the storage mod-
ule.

The memory 704 illustratively comprises storage loca-
tions that are addressable by the processors and adapters for
storing programmable instructions and data structures. The
processor and adapters may, in turn, comprise processing
elements and/or logic circuitry configured to execute the
programmable instructions and manipulate the data struc-
tures. It will be apparent to those skilled in the art that other
processing and memory means, including various computer
readable media, may be used for storing and executing
program instructions pertaining to the disclosure described
herein.

The storage operating system 134 portions of which is
typically resident in memory and executed by the processing
elements, functionally organizes the node 208.1 by, inter
alia, invoking storage operation in support of the storage
service implemented by the node.

In one aspect, data that needs to be written is first stored
at a buffer location of memory 704. Once the buffer is
written, the storage operating system acknowledges the
write request. The written data is moved to NVRAM storage
and then stored persistently either at the performance tier
112 or the capacity tier 128.

The network adapter 710 comprises a plurality of ports
adapted to couple the node 208.1 to one or more clients
204.1/204.N over point-to-point links, wide area networks,
virtual private networks implemented over a public network
(Internet) or a shared local area network. The network
adapter 710 thus may comprise the mechanical, electrical
and signaling circuitry needed to connect the node to the
network. Each client 204.1/204. N may communicate with
the node over network 206 (FIG. 2A) by exchanging discrete
frames or packets of data according to pre-defined protocols,
such as TCP/IP.

The storage adapter 716 cooperates with the storage
operating system 134 executing on the node 208.1 to access
information requested by the clients. The information may
be stored on any type of attached array of writable storage
device media such as video tape, optical, DVD, magnetic
tape, bubble memory, electronic random access memory,

US 9,792,043 B2

17

micro-electro mechanical and any other similar media
adapted to store information, including data and parity
information. However, as illustratively described herein, the
information is preferably stored at storage device 212.1. The
storage adapter 716 comprises a plurality of ports having
input/output (I/O) interface circuitry that couples to the
storage devices over an I/O interconnect arrangement, such
as a conventional high-performance, Fibre Channel link
topology.

Processing System:

FIG. 8 is a high-level block diagram showing an example
of the architecture of a processing system 800 that may be
used according to one aspect. The processing system 800
can represent host system 102, management console 132,
clients 116, 204 or storage system 108. Note that certain
standard and well-known components which are not ger-
mane to the present aspects are not shown in FIG. 8.

The processing system 800 includes one or more proces-
sor(s) 802 and memory 804, coupled to a bus system 805.
The bus system 805 shown in FIG. 8 is an abstraction that
represents any one or more separate physical buses and/or
point-to-point connections, connected by appropriate
bridges, adapters and/or controllers. The bus system 805,
therefore, may include, for example, a system bus, a Periph-
eral Component Interconnect (PCI) bus, a HyperTransport
or industry standard architecture (ISA) bus, a small com-
puter system interface (SCSI) bus, a universal serial bus
(USB), or an Institute of Electrical and Electronics Engi-
neers (IEEE) standard 1394 bus (sometimes referred to as
“Firewire”).

The processor(s) 802 are the central processing units
(CPUs) of the processing system 800 and, thus, control its
overall operation. In certain aspects, the processors 802
accomplish this by executing software stored in memory
804. A processor 802 may be, or may include, one or more
programmable general-purpose or special-purpose micro-
processors, digital signal processors (DSPs), programmable
controllers, application specific integrated circuits (ASICs),
programmable logic devices (PLDs), or the like, or a com-
bination of such devices.

Memory 804 represents any form of random access
memory (RAM), read-only memory (ROM), flash memory,
or the like, or a combination of such devices. Memory 804
includes the main memory of the processing system 800.
Instructions 806 may be used to implement the process steps
of FIGS. 5C and 6A described above, may reside in and
execute (by processors 802) from memory 804.

Also connected to the processors 802 through the bus
system 805 are one or more internal mass storage devices
810, and a network adapter 812. Internal mass storage
devices 810 may be, or may include any conventional
medium for storing large volumes of data in a non-volatile
manner, such as one or more magnetic or optical based disks.
The network adapter 812 provides the processing system
800 with the ability to communicate with remote devices
(e.g., storage servers) over a network and may be, for
example, an Ethernet adapter, a Fibre Channel adapter, or
the like.

The processing system 800 also includes one or more
input/output (I/0O) devices 808 coupled to the bus system
805. The I/O devices 808 may include, for example, a
display device, a keyboard, a mouse, etc.

Cloud Computing:

The system and techniques described above are applicable
and useful in the upcoming cloud computing environment.
Cloud computing means computing capability that provides
an abstraction between the computing resource and its

10

15

20

25

30

35

40

45

50

55

60

65

18

underlying technical architecture (e.g., servers, storage, net-
works), enabling convenient, on-demand network access to
a shared pool of configurable computing resources that can
be rapidly provisioned and released with minimal manage-
ment effort or service provider interaction. The term “cloud”
is intended to refer to the Internet and cloud computing
allows shared resources, for example, software and infor-
mation to be available, on-demand, like a public utility.

Typical cloud computing providers deliver common busi-
ness applications online which are accessed from another
web service or software like a web browser, while the
software and data are stored remotely on servers. The cloud
computing architecture uses a layered approach for provid-
ing application services. A first layer is an application layer
that is executed at client computers. In this example, the
application allows a client to access storage via a cloud.
After the application layer, is a cloud platform and cloud
infrastructure, followed by a “server” layer that includes
hardware and computer software designed for cloud specific
services, for example, the capacity tier 128 is accessible as
a cloud service. Details regarding these layers are not
germane to the embodiments disclosed herein.

Thus, a method and apparatus for efficiently storing data
at a capacity tier in a networked storage environment have
been described. Note that references throughout this speci-
fication to “one aspect” (or “embodiment”) or “an aspect”
mean that a particular feature, structure or characteristic
described in connection with the aspect is included in at least
one aspect of the present disclosure. Therefore, it is empha-
sized and should be appreciated that two or more references
to “an aspect” or “one aspect” or “an alternative aspect” in
various portions of this specification are not necessarily all
referring to the same aspect. Furthermore, the particular
features, structures or characteristics being referred to may
be combined as suitable in one or more aspects of the
disclosure, as will be recognized by those of ordinary skill
in the art.

While the present disclosure is described above with
respect to what is currently considered its preferred aspects,
it is to be understood that the disclosure is not limited to that
described above. To the contrary, the disclosure is intended
to cover various modifications and equivalent arrangements
within the spirit and scope of the appended claims.

What is claimed is:

1. A machine implemented method, comprising:

scanning a first data structure by a processor executing
instructions out of a memory for a storage operating
system to determine whether any data chunk with one
or more blocks of data of a first object having a
plurality of data chunks stored at a first storage tier is
referenced by the storage operating system;

wherein the first data structure maintains a reference
count for each data chunk of the first object indicating
if the storage operating system is still using any data
chunk and the first data structure is used to determine
whether the first object is fragmented and ready for
repackaging when a certain number of data chunks of
the first object are referenced by the storage operating
system or whether the first object is ready for deletion
when no data chunk of the first object is being refer-
enced by the storage operating system;

when the storage operating system references the certain
number of data chunks, the processor using an object
staging data structure to identify a second object that is
in the process of being built with enough space to
repackage the certain number of data chunks from the

US 9,792,043 B2

19

first object to the second object and using the second
object to store the certain number of data chunks;

wherein the object staging data structure stores a unique
identifier for identifying the second object, an indicator
providing a status of the second object indicating that
the object is being built, a length of the second object
indicating a number of existing data blocks that are
included in the second object and a transfer log file
block number for providing a location within the trans-
fer log where the existing data blocks of the second
object are stored; and wherein the transfer log is a
temporary data structure that uses the object staging
data structure to determine when the second object is
complete for storing the second object at the first
storage tier with the certain number of data chunks of
the first object; and

updating information regarding the second object at the

transfer log with location information of the certain
number of data chunks at the first storage tier.

2. The method of claim 1, further comprising:

using the transfer log for responding to any read request

for data associated with the certain number of data
chunks, before the second object is stored at the first
storage tier.

3. The method of claim 1, wherein the second object
includes a data chunk stored at a second storage tier and the
second object is transferred to the first storage tier after a
certain number of objects, each with a plurality of data
chunks are ready for transfer to the first storage tier.

4. The method of claim 3, wherein the first data structure,
the object staging structure and the transfer log are stored at
the second storage tier having storage devices that are faster
than the first storage tier storage devices.

5. The method of claim 1, further comprising:

verifying using the object staging data structure that no

data chunk of the first object is being referenced by the
storage operating system;

determining if an object identifier for the first object is still

being used; and

identifying the first object as a candidate for deletion.

6. The method of claim 5, wherein a second data structure
maintains object identifiers for all objects of the first storage
tier with an indicator indicating if each object identifier is
currently being used.

7. The method of claim 5, wherein the first object is
deleted with at least another object as part of a background
garbage collection process, executed by the processor.

8. A non-transitory, machine readable medium having
stored thereon instructions comprising machine executable
code which when executed by a machine, causes the
machine to:

scan a first data structure by a processor executing instruc-

tions out of a memory for a storage operating system to
determine whether any data chunk with one or more
blocks of data of a first object having a plurality of data
chunks stored at a first storage tier is referenced by the
storage operating system;

wherein the first data structure maintains a reference

count for each data chunk of the first object indicating
if the storage operating system is still using any data
chunk and the first data structure is used to determine
whether the first object is fragmented and ready for
repackaging when a certain number of data chunks of
the first object are referenced by the storage operating
system or whether the first object is ready for deletion
when no data chunk of the first object is being refer-
enced by the storage operating system;

20

25

30

40

45

50

60

20

when the storage operating system references the certain
number of data chunks, the processor using an object
staging data structure to identify a second object that is
in the process of being built with enough space to
repackage the certain number of data chunks from the
first object to the second object and using the second
object to store the certain number of data chunks;

wherein the object staging data structure stores a unique
identifier for identifying the second object, an indicator
providing a status of the second object indicating that
the object is being built, a length of the second object
indicating a number of existing data blocks that are
included in the second object and a transfer log file
block number for providing a location within the trans-
fer log where the existing data blocks of the second
object are stored; and wherein the transfer log is a
temporary data structure that uses the object staging
data structure to determine when the second object is
complete for storing the second object at the first
storage tier with the certain number of data chunks of
the first object; and

update information regarding the second object at the
transfer log with location information of the certain
number of data chunks at the first storage tier.

9. The non-transitory, storage medium of claim 8, wherein

the machine executable code further causes the machine to:
use the transfer log for responding to any read request for
data associated with the certain number of data chunks,
before the second object is stored at the first storage

tier.

10. The non-transitory, storage medium of claim 8,
wherein the second object includes a data chunk stored at a
second storage tier and the second object is transferred to the
first storage tier after a certain number of objects, each with
a plurality of data chunks are ready for transfer to the first
storage tier.

11. The non-transitory, storage medium of claim 10,
wherein the first data structure, the object staging structure
and the transfer log are stored at the second storage tier
having storage devices that are faster than the first storage
tier storage devices.

12. The non-transitory, storage medium of claim 8,
wherein the machine executable code further causes the
machine to:

verify using the object staging data structure that no data
chunk of the first object is being referenced by the
storage operating system;

determine that an object identifier for the first object is
still being used; and

identify the first object as a candidate for deletion.

13. The non-transitory, storage medium of claim 12,
wherein a second data structure maintains object identifiers
for all objects of the first storage tier with an indicator
indicating if each object identifier is currently being used.

14. The non-transitory, storage medium of claim 12,
wherein the first object is deleted with at least another object
as part of'a background garbage collection process, executed
by the processor.

15. A system, comprising:

a memory containing machine readable medium compris-
ing machine executable code having stored thereon
instructions for a storage operating system; and a
processor module coupled to the memory, the processor
module configured to execute the machine executable
code to:

scan a first data structure to determine whether any data
chunk with one or more blocks of data of a first object

US 9,792,043 B2

21

having a plurality of data chunks stored at a first storage
tier is referenced by the storage operating system;

wherein the first data structure maintains a reference
count for each data chunk of the first object indicating
if the storage operating system is still using any data
chunk and the first data structure is used to determine
whether the first object is fragmented and ready for
repackaging when a certain number of data chunks of
the first object are referenced by the storage operating
system or whether the first object is ready for deletion
when no data chunk of the first object is being refer-
enced by the storage operating system;

when the storage operating system references the certain
number of data chunks, using an object staging data
structure to identify a second object that is in the
process of being built with enough space to repackage
the certain number of data chunks from the first object
to the second object and using the second object to store
the certain number of data chunks;

wherein the object staging data structure stores a unique
identifier for identifying the second object, an indicator
providing a status of the second object indicating that
the object is being built, a length of the second object
indicating a number of existing data blocks that are
included in the second object and a transfer log file
block number for providing a location within the trans-
fer log where the existing data blocks of the second
object are stored; and wherein the transfer log is a
temporary data structure that uses the object staging
data structure to determine when the second object is
complete for storing the second object at the first
storage tier with the certain number of data chunks of
the first object; and

22

update information regarding the second object at the
transfer log with location information of the certain
number of data chunks at the first storage tier.

16. The system of claim 15, wherein the processor module
further executes the machine executable code to:

use the transfer log for responding to any read request for

data associated with the certain number of data chunks,
before the second object is stored at the first storage
tier.

17. The system of claim 15, wherein the second object
includes a data chunk stored at a second storage tier and the
second object is transferred to the first storage tier after a
certain number of objects, each with a plurality of data
chunks are ready for transfer to the first storage tier.

18. The system of claim 15, wherein the processor module
further executes the machine executable code to:

verify using the object staging data structure that no data

chunk of the first object is being referenced by the
storage operating system;

determine that an object identifier for the first object is no

longer being used; and

identify the first object as a candidate for deletion.

19. The system of claim 18, wherein a second data
structure maintains object identifiers for all objects of the
first storage tier with an indicator indicating if each object
identifier is currently being used.

20. The system of claim 18, wherein the first object is
deleted with at least another object as part of a background
garbage collection process, executed by the processor.

#* #* #* #* #*

