
| HAO WAKATI AKITEL ANIMAULAN DI MALUT US009778885B2

(12) United States Patent
Danilak et al .

(10) Patent No . : US 9 , 778 , 885 B2
(45) Date of Patent : Oct . 3 , 2017

(54) COMPRESSOR RESOURCES FOR HIGH
DENSITY STORAGE UNITS

(71) Applicant : Skyera , LLC , San Jose , CA (US)

(58) Field of Classification Search
None
See application file for complete search history .

(56) References Cited
U . S . PATENT DOCUMENTS (72) Inventors : Radoslav Danilak , Cupertino , CA

(US) ; Rodney N . Mullendore , San
Jose , CA (US) 2002 / 0007417 A1 *

(73) Assignee : Skyera , LLC , San Jose , CA (US) 2006 / 0212645 Al *
2008 / 0228998 A1 *
2012 / 0072641 A1 *

1 / 2002 Taylor GO6F 3 / 0613
709 / 231

9 / 2006 Petersen et al 711 / 103
9 / 2008 Colecchia et al . 711 / 103
3 / 2012 Suzuki GO6F 3 / 0608

711 / 103

.

(*) Notice : Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 24 days .

(21) Appl . No . : 14 / 108 , 671
(22) Filed : Dec . 17 , 2013
(65) (57) Prior Publication Data

US 2014 / 0281167 A1 Sep . 18 , 2014

Related U . S . Application Data
(60) Provisional application No . 61 / 788 , 613 , filed on Mar .

15 , 2013 .

* cited by examiner
Primary Examiner - David X Yi
Assistant Examiner — Craig Goldschmidt
(74) Attorney , Agent , or Firm - McDermott Will &
Emery LLP

ABSTRACT
In various embodiments , a high - density solid - state storage
unit includes a plurality of flash cards . Each flash card has
a flash controller that incorporates one or more resources for
facilitating compression and decompression operations . In
one aspect , data reduction and data reconstruction opera
tions can be performed in - line as data is stored to and
retrieved from flash memory . In another aspect , data reduc
tion and data reconstruction operations can be performed as
a service . Any one of the plurality of flash cards can be used
to provide data reduction or data reconstruction services on
demand for any type of data , including system data , librar
ies , and firmware code .

13 Claims , 11 Drawing Sheets

(51) Int . Ci .
GOOF 3 / 00 (2006 . 01)
G06F 3 / 06 (2006 . 01)

(52) U . S . CI .
CPC G06F 3 / 0688 (2013 . 01) ; G06F 3 / 0608

(2013 . 01) ; G06F 3 / 0658 (2013 . 01)

CPU
110 FLASH CARD

140

1

1 RAM
120

1

DATA
410

COMMAND QUEUE
420 FLASH CARD

140

RESPONSE QUEUE
430

atent

100

RAM 120

FLASH CARD 140

Oct . 3 , 2017

CPU

NETWORK INTERFACE 150

PCIE SWITCH 130

110

Sheet 1 of 11

FLASH CARD 140

FIG . 1

US 9 , 778 , 885 B2

U . S . Patent Oct . 3 , 2017 Sheet 2 of 11 US 9 , 778 , 885 B2

FLASH MODULES 220

- 140

FIG . 2A

FLASH CONTROLLER 210

atent Oct . 3 , 2017 Sheet 3 of 11 US 9 , 778 , 885 B2

Ploties File 1

sempre - 2 . 75817010
.

des the

* . blocks - - -

KAS PG & G

Sebed - pages
PAGE PAGE 1

PRGET POGEO

DATA REGISTER DATA REGSTER

FLASH
CONTROLLER

210

DATA

FIG . 2B

U . S . Patent Oct . 3 , 2017 Sheet 4 of 11 US 9 , 778 , 885 B2

FLASH MODULES 220

140

FIG . 3

DE COMPRESSOR RESOURCE 350
FLASH CONTROLLER 210 ECC 310 BUFFER 330

COMPRESSOR RESOURCE 340

U . S . Patent Oct . 3 , 2017 Sheet 5 of 11 US 9 , 778 , 885 B2

CPU
110 FLASH CARD

140

RAM
120

DATA
410

COMMAND QUEUE
420 FLASH CARD

140
RESPONSE QUEUE

430

FIG . 4

r510

U . S . Patent

6205 520

COMPRESSOR RESOURCE - 340

5302

Oct . 3 , 2017

BUFFER 330

ECC ECC 320

FLASH MODULES 220

550 S
550

- DE COMPRESSOR R & SOURCE ,
< < _ _ 350

Sheet 6 of 11

540

FIG . 5

US 9 , 778 , 885 B2

U . S . Patent Oct . 3 , 2017 Sheet 7 of 11 US 9 , 778 , 885 B2

600

BEGIN 610

RECEIVE DATA FOR STORAGE 620

SELECT COMPRESSOR RESOURCE - 630

SEND DATA TO SELECTED COMPRESSOR
RESOURCE FOR COMPRESSION 640

RECEIVE COMPRESSED DATA 650

DETERMINE STORAGE LOCATION OF
COMPRESSED DATA t660

SEND COMPRESSED DATA TO DETERMINED
STORAGE LOCATION 1670

END END - 680 680
FIG . 6

atent Oct . 3 , 2017 Sheet 8 of 11 US 9 , 778 , 885 B2

CPU
110

RAM
120

FLASH CARD
140

UNCOMPRESSED
DATA

- UNCOMPRESSED
DATA SELECT FLASH

CARD TO
PERFORM

COMPRESSION
UNCOMPRESSED

DATA

COMPRESS
DATA

COMPRESSED
DATA

COMPRESSED
DATA

SELECT FLASH
CARD TO STORE

DATA

COMPRESSED
DATA

STORE
COMPRESSED

DATA

FIG . 7

U . S . Patent Oct . 3 , 2017 Sheet 9 of 11 US 9 , 778 , 885 B2

800

BEGIN 810

RECEIVE REQUEST TO RETRIEVE DATA FROM n820 STORAGE

DETERMINE LOCATION OF DATA 830

LOAD COMPRESSED DATA INTO RAM - 840 840

SELECT DECOMPRESSOR RESOURCE 850

SEND COMPRESSED DATA TO SELECTED
DECOMPRESSOR RESOURCE 860

LOAD UNCOMPRESSED DATA INTO RAM 870

END n 880 880

FIG . 8

U . S . Patent Oct . 3 , 2017 Sheet 10 of 11 US 9 , 778 , 885 B2

CPU 9 RAM
120

FLASH CARD
140 110

COMPRESSED
DATA

SELECT FLASH
CARD TO PERFORM
DECOMPRESSION

COMPRESSED
DATA

DECOMPRESS
DATA

UNCOMPRESSED
DATA

FIG . 9

U . S . Patent Oct . 3 , 2017 Sheet 11 of 11 US 9 . 778 , 885 B2

- 1000

PROCESSOR (S)
1010

STORAGE
1030

MEMORY
1040 FILE

1050 RAM
1042

ROM
1044

1020

NETWORK
INTERFACE

1080

OUTPUT
DEVICES

1070
INPUT DEVICES

1060

COMM .
NETWORK

1090

FIG . 10

US 9 , 778 , 885 B2

COMPRESSOR RESOURCES FOR HIGH tional spinning disks — at one - tenth the power consump
DENSITY STORAGE UNITS tion — they have also been about 10 times more expensive to

deploy .
CROSS - REFERENCES TO RELATED Simply , the cost of deploying robust enterprise - grade

APPLICATIONS 5 solid - state technology has been too high for widespread
deployment across all enterprise applications . However , that

This application claims priority to U . S . Provisional Appli - excuse will not suffice for the future , as the performance
cation No . 61 / 788 , 613 , filed Mar . 15 , 2013 , and entitled level ensured by solid - state technology becomes even more
“ Compressor Resources for high - Density Storage Units » critical for all applications across all types of businesses .
the disclosure of which is incorporated by reference herein 10 forence herein 10 The reality is that the capacity and performance of solid

state technology will be a necessary part of next - generation for all purposes .
data center infrastructures if these infrastructures are to

BACKGROUND OF THE INVENTION deliver on the promise of cloud computing , Big Data and all
of the other critical aspects of computing ' s next era . Enter

Information technology is in the throes of a dramatic notie 15 prise - grade solid - state technology will be crucial to the
underlying storage infrastructure driving all enterprise transformation . Virtualization is giving way to cloud com applications — to meet ever - changing requirements for per puting ; the ubiquity of powerful handheld devices is creating formance , speed , capacity , and agility . new paradigms in mobility and social interaction ; the mas Next - generation solid - state technology for the enterprise

sive profusion of information generation is leading to pow - 20 must be robust , reliable , fully featured , and cost - efficient : It
erful new opportunities for Big Data analytics . Cloud com must go beyond what is available in solid - state today , puting has been called “ a disruptive force ” with the potential particularly when IT decision - makers think about typical
for long - term impact on most industries . solid - state drives (SSDs) that use HDD protocols to speak to

Additionally , nowhere is this need for next - generation the rest of the world . This deployment of solid - state tech
performance and capacity more critical than in enterprise 25 nology has been useful in their initial applications , such as
storage solutions . Organizations are creating more data than in laptop computing , but is nowhere near the right design for
ever before and data generation is growing at a staggering true enterprise - grade solid - state storage . The challenge to
rate . the storage industry has been to figure out how to deliver

It ' s not just storage capacity that ' s a challenge to com enterprise - grade performance and reliability in solid - state
puting ' s new paradigm : Speed and performance are equally 30 technology at a reasonable cost for widespread enterprise
crucial . Organizations must be able to access their most appeal .
important data as quickly as possible to act upon it effec - Accordingly , what is desired is to solve problems relating
tively . They need solutions that minimize latency , maximize to data reduction and compression in solid - state storage ,
input / output operations per second (IOPS) and deliver maxi - , some of which may be discussed herein . Additionally , what
mum capacity and performance in a cost - efficient manner . ner 35 is desired is to reduce drawbacks relating to data reduction

and compression in solid - state storage , some of which may Otherwise , the cost of delivering sufficient storage capacity
be discussed herein . and performance will cripple this new computing paradigm

before it ever gets its sea legs . BRIEF SUMMARY OF THE INVENTION The storage industry has made great strides in adapting 40
technology to deliver more capacity and better performance The following portion of this disclosure presents a sim
without congruent increases in costs . Solutions such as plified summary of one or more innovations , embodiments ,
compression , deduplication , and intelligent tiering have and / or examples found within this disclosure for at least the
made today ' s disk storage systems far more efficient and purpose of providing a basic understanding of the subject
have enabled the widespread proliferation of virtualization 45 matter . This summary does not attempt to provide an exten
that has set the stage for the transition to cloud computing . sive overview of any particular embodiment or example .

But those solutions go just so far : Spinning disk storage Additionally , this summary is not intended to identify key !
has practical limitations in speed and performance . The real critical elements of an embodiment or example or to delin
promise for next - generation performance has always been in eate the scope of the subject matter of this disclosure .
solid - state technology . Solid - state technology employs non - 50 Accordingly , one purpose of this summary may be to present
volatile flash memory so there are no moving parts , meaning some innovations , embodiments , and / or examples found
solid - state solutions operate much faster than traditional disk within this disclosure in a simplified form as a prelude to a
drives in reading and writing data . A single enterprise - grade more detailed description presented later .
solid - state solution can handle a transaction workload of 100 In various aspects , data services are provided by high
traditional hard drives — with more reliability and less power 55 density solid - state storage unit according to the present
consumption in a much smaller physical space . invention . The high - density solid - state storage unit includes
Most of the leading enterprise storage vendors incorporate a plurality of solid - state storage cards (or flash cards) each

solid - state technology as part of their overall solutions , but having one or more solid - state modules (or flash modules)
in limited capacities usually targeted for specific , storage for storing data . In general , data received by a solid - state
intensive production applications that require very high 60 storage card may be stored in one or more of the flash
levels of performance : Video editing , computer - aided design modules according to one or more data services provided by
and high - end online transaction processing systems (OLTPs) a controller associated with the solid - state storage card . Data
are some of the obvious choices . may also be retrieved from one or more of the flash modules

The challenge in deploying solid - state technology more and processed according to one or more data services
ubiquitously across the enterprise for all enterprise appli - 65 provided by a controller associated with the solid - state
cations — has been one of cost . Although NAND Flash storage card . In one aspect , the controller associated with
solutions could deliver 100 times the performance of tradi each solid - state storage card may be utilized as a resource to

US 9 , 778 , 885 B2

provide data services (such as compression or decompres - the plurality of solid - state storage devices . One or more
sion) for data not otherwise designated to be stored in the operations may be performed by the host controller device
flash modules of the solid - state storage card whose control - on the uncompressed data .
ler is performing the data services . In one embodiment , a high - density solid - state storage

In one embodiment , a controller for interfacing between 5 system includes a processor , a plurality of solid - state storage
a host controller in a host device and a flash memory device devices , each solid - state storage device having a controller
includes a compressor resource configured to perform a device and at least one flash memory device , the controller
plurality of compression operations . At least one compres device configured to control data transfers between the

processor and the at least one flash memory device , the sion operation in the plurality of compression operations is
configured to compress data transferred between the host 10 controller further configured to provide data services to the
controller and the controller and intended for storage in the processor for data transferred between the processor and the

controller that the controller is not configured to store in the flash memory device . Furthermore , at least one compression at least one flash memory device , and a memory configured operation in the plurality of compression operations is to store a set of instructions which when executed by the configured to compress data transferred between the host S 15 processor configured the processor to select one of a plu
controller and the controller and intended for further pro rality of solid - state storage devices , receive information
cessing or handling by the host controller . indicating success of a data transfer transferring first data to

In another embodiment , a controller for interfacing the selected one of the plurality of solid - state storage devices
between a host controller in a host device and a flash to generate second data , receive information indicating
memory device includes a decompressor resource config - 20 success of a data transfer transferring the second data from
ured to perform a plurality of decompression operations . At the selected one of the plurality of solid - state storage
least one decompression operation in the plurality of decom devices , and perform one or more operations with the second
pression operations is configured to decompress data trans - data .
ferred between the controller and the flash memory device In one aspect , the data services provided to the processor
and intended for further processing or handling by the host 25 include at least one compression service . In another aspect ,
controller . Furthermore , at least one decompression opera - the data services provided to the processor include at least
tion in the plurality of decompression operations is config - one decompression service . In a further aspect , the data
ured to decompress data transferred between the host con services provided to the processor include at least one data
troller and the controller and intended for further processing reduction service . In another aspect , the data services pro
or handling by the host controller . 30 vided to the processor include at least one data reconstruc

In one embodiment , high - density solid - state storage sys - tion service .
tem includes a plurality of solid - state storage devices . A host In some embodiments , the first data comprises a combi
controller is configured to store data to and retrieve data nation of a plurality of compressed data portions and
from each of the plurality of solid - state storage devices . wherein the second data comprises a single unit of decom
Each solid - state storage device further includes a controller 35 pressed data . To select one of the plurality of solid - state
configured to provide at least one of data reduction and data storage devices the processor may determine availability of
reconstruction services to the host controller for data the data services of each of the plurality of solid - state
retrieved from or stored to the solid - state storage device . The storage devices . The processor may further select one of the
controller may further be configured to provide at least one plurality of solid - state storage devices for storage of the
of data reduction and data reconstruction services to the host 40 second data subsequent to performing the one or more
controller on demand for data not otherwise intended for operations with the second data . The processor may initiate
direct storage in the solid - state storage device . a data transfer transferring the second data to the selected

In various embodiments , a method for providing data one of the plurality of solid - state storage devices subsequent
services in a high - density solid - state storage system includes to performing the one or more operations with the second
selecting , with a host controller device , one of a plurality of 45 data .
solid - state storage devices accessible to the host controller In various embodiments , a method includes selecting ,
device that offer on - demand data compression services to with one or more processors associated with one or more
compress data . A data transfer is initiated by the host computer systems , one of a plurality of solid - state storage
controller device transferring uncompressed data to the devices , each solid - state storage device having a controller
selected one of the plurality of solid - state storage devices to 50 device and at least one flash memory device , the controller
generate compressed data . A data transfer is initiated by the device configured to control data transfers between the
selected one of the plurality of solid - state storage devices processor and the at least one flash memory device , the
transferring the compressed data from the selected one of the controller further configured to provide data services to the
plurality of solid - state storage devices . One or more opera - processor for data transferred between the processor and the
tions may then be performed by the host controller device on 55 controller that the controller is not configured to store in the
the compressed data . at least one flash memory device , receiving , at the one or

In various embodiments , a method for providing data more computer systems , information indicating success of a
services in a high - density solid - state storage system includes data transfer transferring first data to the selected one of the
selecting , with a host controller device , one of a plurality of plurality of solid - state storage devices to generate second
solid - state storage devices accessible to the host controller 60 data , receiving , at the one or more computer systems ,
device that offer on - demand data decompression services to information indicating success of a data transfer transferring
decompress data . A data transfer is initiated by the host the second data from the selected one of the plurality of
controller device transferring compressed data to the solid - state storage devices , and perform one or more opera
selected one of the plurality of solid - state storage devices to tions with the second data .
generate uncompressed data . A data transfer is initiated by 65 In some embodiments , a solid - state storage device
the selected one of the plurality of solid - state storage devices includes a plurality of solid - state storage modules config
transferring the uncompressed data from the selected one of ured to store data , circuitry configured to store data to and

US 9 , 778 , 885 B2

retrieve data from each of the plurality of solid - state storage DETAILED DESCRIPTION OF THE
devices , and circuitry configured to provide one or more data INVENTION
services on demand to a host controller for data not desig
nated to be directly stored in the plurality of solid - state Introduction
storage modules . The circuitry configured to provide one or 5 5 FIG . 1 is a block diagram of high - density solid - state

storage unit 100 in one embodiment according to the present more data services may be configured to provide data invention . High - density solid - state storage unit 100 may be compression services , data decompression services , data embodied as an all - Flash enterprise solid - state storage sys
reduction services , or data reconstruction services for both tem . One example of high - density solid - state storage unit
the data stored to and retrieved from each of the plurality of 100 is skyHawk as provided by Skyera of San Jose , Calif .
solid - state storage devices and the data not designated to be in this embodiment , high - density solid - state storage 100
directly stored in the plurality of solid - state storage modules includes central processing unit (CPU) 110 , random access

memory 120 , PCIE switch 130 , a plurality of flash cards A further understanding of the nature of and equivalents 140 , and a network interface 150 . High - density solid - state to the subject matter of this disclosure (as well as any storage 100 can include hardware and / or software elements inherent or express advantages and improvements provided) 15 configured for performing logic operations and calculations .
should be realized in addition to the above section by input / output operations , machine communications , or the
reference to the remaining portions of this disclosure , any like . High - density solid - state storage 100 may include famil
accompanying drawings , and the claims . iar computer components , such as one or more data proces

sors or central processing units in addition to CPU 110 , one
20 or more graphics processors or graphical processing units

BRIEF DESCRIPTION OF THE DRAWINGS (GPUS) , one or more memory subsystems in addition to
RAM 120 , one or more storage subsystems in addition to the

In order to reasonably describe and illustrate those inno - plurality of flash cards 140 , one or more input / output (1 / 0)
vations , embodiments , and / or examples found within this interfaces , communications interfaces , or the like . High
disclosure , reference may be made to one or more accom - 25 a m 25 density solid - state storage 100 can include one or more

system buss interconnecting the depicted components and panying drawings . The additional details or examples used providing functionality , such as connectivity and inter - de
to describe the one or more accompanying drawings should vice communication . High - density solid - state storage 100
not be considered as limitations to the scope of any of the may be embodied as a computing device , such as a personal
claimed inventions , any of the presently described embodi computer (PC) , a workstation , a mini - computer , a main
ments and / or examples , or the presently understood best frame , a cluster or farm of computing devices , a laptop , a
mode of any innovations presented within this disclosure . notebook , a netbook , a PDA , a smartphone , a consumer

FIG . 1 is a block diagram of a high - density solid - state electronic device , a gaming console , or the like .
CPU 110 is representative of one or more data processors storage unit in one embodiment according to the present or central processing units (CPUs) that include hardware

invention . 35 and / or software elements configured for executing logic or
FIGS . 2A and 2B are block diagrams illustrating storage program code or for providing application - specific function

management of the high - density solid - state storage unit of ality . Some examples of CPU 110 can include one or more
FIG . 1 in one embodiment according to the present inven microprocessors or micro - controllers . CPU 110 may include

4 - bit , 8 - bit , 12 - bit , 16 - bit , 32 - bit , 64 - bit , or the like archi
40 tectures with similar or divergent internal and external

FIG . 3 is a block diagram of a flash card that can be used instruction and data designs . CPU 110 may further include
with the high - density solid - state storage unit of FIG . 1 in one a single core or multiple cores . In some aspects , each of a set
embodiment according to the present invention . of one or more cores associated with CPU 110 may be

configured for executing logic or program code or for FIG . 4 is a block diagram illustrating compression / de -
compression management in the high - density solid - state 45 45 providing application - specific functionality different from

other sets of one or more cores associated with the CPU 110 . storage unit of FIG . 1 in one embodiment according to the CPU 110 may be embodied as commercially available present invention . processors such as those provided by Intel of Santa Clara ,
FIG . 5 is a block diagram illustrating data reduction Calif . (e . g . , x86 , x86 _ 64 , PENTIUM , CELERON , CORE ,

aspects of the high - density solid - state storage unit of FIG . 1 CORE 2 , CORE ix , ITANIUM , XEON , etc .) and by
50 Advanced Micro Devices of Sunnyvale , Calif . (e . g . , x86 , in one embodiment according to the present invention . AMD _ 64 , ATHLON , DURON , TURION , ATHLON XP / 64 ,

FIG . 6 is a flowchart of a method for utilizing compressor OPTERON , PHENOM , etc) . Commercially available pro
resources for data reduction in one embodiment of the cessors may further include those conforming to the
present invention . Advanced RISC Machine (ARM) architecture (e . g . ,

FIG . 7 is a sequence chart indicating data flow according 55 ARMv7 - 9) , POWER and POWERPC architecture , CELL
to the method of FIG . 6 in one embodiment according to the architecture , and or the like . CPU 110 may also include one

or more field - gate programmable arrays (FPGAS) , applica present invention . tion - specific integrated circuits (ASICs) , or other microcon
FIG . 8 is a flowchart of a method for utilizing decom - trollers . CPU 110 may include any number of registers , logic

pressor resources for data reconstruction in one embodiment units , arithmetic units , caches , memory interfaces , or the
of the present invention . 60 like . CPUs 100 may further be integrated , irremovably or

moveably , into one or more motherboards or daughter FIG . 9 is a sequence chart indicating data flow according boards of high - density solid - state storage unit 100 . to the method of FIG . 8 in one embodiment according to the In some embodiments , CPU 110 may include one or more present invention . graphics processor or graphical processing units (GPUs)
FIG . 10 is a simplified block diagram of a computer 65 configured for executing logic or program code associated

system that may be used to practice embodiments of the with vector or parallel processing functionality . Some
present invention . examples of GPUs are commercially available from

tion .

US 9 , 778 , 885 B2

NVIDIA , ATI , and other vendors . In various embodiments , conjunction with controller - based compression as discussed
CPU 110 may include one or more vector or parallel further below , results in 10x fewer writes to the Flash
processing units . module .
RAM 120 is representative of one or more memory Network interface 150 is representative of a network

subsystems . RAM 120 can include hardware and / or soft - 5 communications interface . Network interface 150 can
ware elements configured for the storage and retrieval of include hardware and / or software elements configured for
information . RAM 120 may store information using performing communications operations , including sending

machine - readable articles , information storage devices , or and receiving data . Some examples of network interface 150
computer - readable storage media . Some examples of a may include a network communications interface , an exter
memory subsystem can include random access memories 10 nal bus interface , an Ethernet card , Fibre Channel card ,

Infiniband card , PCIe card , a modem (telephone , satellite , (RAM) , read - only - memories (ROMS) , volatile memories , cable , ISDN) , (asynchronous) digital subscriber line (DSL) non - volatile memories , and other semiconductor memories . unit , FireWire interface , USB interface , or the like . For In various embodiments , RAM 120 can include data and example , network interface 150 may be coupled to a com program code for coordinating various components of high munications network or external bus , such as a computer
density solid - state storage unit 100 as well as data reduction network , to a FireWire bus , a USB hub , or the like . In other in high - density solid - state storage unit 100 . embodiments , network interface 150 may be physically

PCIE Switch 130 is representative of one or more mecha integrated as hardware on a motherboard or daughter board
nisms providing communication between CPU 110 and the of high - density solid - state storage unit 100 , may be imple
plurality of flash cards 140 . Flash Cards 140 are represen - 20 mented as a software program , or the like , or may be
tative of a set of solid - state devices (SSDs) . An individual implemented as a combination thereof .
Flash card 140 may be embodied as a solid - state storage In various embodiments , high - density solid - state storage
blade provided by Skyera of California . Flash Card 140 unit 100 may include software that enables communications
includes hardware and / or software elements configured to over a network , such as a local area network or the Internet ,
perform flash management . 25 using one or more communications protocols , such as the

In one aspect , one of the main factors for the relatively HTTP , TCP / IP , RTP / RTSP protocols , or the like . In some
slow adoption of the widespread use of flash , for all but the embodiments , other communications software and / or trans
most performance - sensitive business applications , is cost . fer protocols may also be used , for example IPX , UDP or the
Due to its relatively high acquisition cost , solid - state storage like , for communicating with hosts over the network or with
capacity has been relegated to a very small portion (< 1 %) of 30 a device directly connected to high - density solid - state stor
total production storage deployed in the enterprise . age unit 100 . In further embodiments , high - density solid

Like any physical hardware device , flash storage capacity state storage unit 100 may include software that enables
has a limited lifespan . When data is written to a flash cell , network attached storage (NAS) communications , direct
an electrical charge records the data written onto the silica . attached storage (DAS) communications , storage area net
When data is changed in the flash cell , two operations take 35 work (SAN) communications , or the like . In some embodi
place one to restore the cell to a known “ erased ”) state m ents , other data storage software , transfer protocols , or
and a second to write the new data ; these operations are interconnets may also be used , for example ATA over
referred to as program / erase (P / E) cycles . P / E cycles even - Ethernet (AoE) mapping of ATA over Ethernet , Fibre Chan
tually result in the demise of the corresponding flash cell and nel Protocol (FCP) mapping of SCSI over Fibre Channel ,
ultimately the entire module . 40 Fibre Channel over Ethernet (FCOE) , ESCON over Fibre

High - density solid - state storage unit 100 may incorporate Channel (FICON) , HyperSCSI mapping of SCSI over Eth
one or more of two types of flash memory technologies : ernet , iFCP or SANOIP mapping of FCP over IP , iSCSI
MLC , or multi - level cell flash and SLC , single level cell mapping of SCSI over TCP / IP , iSCSI Extensions for RDMA
flash . MLC allows multiple data bits to be stored per flash (SER) mapping of iSCSI over InfiniBand , storage networks
cell while SLC stores a single data bit per flash cell . The 45 may also be built using SAS and SATA technologies , or the
most common form of MLC flash stores 2 data bits per cell like .
but there is also a version which stores 3 bits per cell known FIGS . 2A and 2B are block diagrams illustrating storage
as TLC . MLC can be further subdivided into eMLC (the “ e ” management of high - density solid - state storage unit 100 of
is for Enterprise grade) . The number of program / erase (P / E) FIG . 1 in one embodiment according to the present inven
cycles that can be handled ranges from approximately 50 tion . FIG . 2A is a block diagram of one of the plurality of
100 , 000 for SLC , 30 , 000 for 2 - bit eMLC , 3 , 000 for 2 - bit flash cards 140 that can be used with high - density solid - state
MLC , and 300 for TLC in the latest flash generation over the storage unit 100 of FIG . 1 in one embodiment according to
working lifetime of a cell . The greater endurance of SLC , the present invention . In this example , flash card 140
and even 2 - bit eMLC , over the latest generation 19 / 20 nm includes flash controller 210 and one or more flash modules
2 - bit MLC comes at a significant price premium . 55 220 . Flash controller 210 is representative of one or more

Today ' s enterprise solid - state storage solutions utilize processors , FPGAs , ASICs , or other microcontrollers that
SLC or 2 - bit eMLC NAND Flash storage due to limitations include hardware and / or software elements configured for
in their flash controllers and overall system design . High executing logic or program code or for providing applica
density solid - state storage unit 100 includes Flash Card 140 tion - specific functionality . Flash modules 220 are represen
to take advantage of this latest generation , and consequently 60 tative of flash memory modules or other solid - state devices
lowest cost MLC Flash without sacrificing performance , (SSDs) .
reliability or durability . Flash Card 140 and CPU 110 In order to better understand one or more of the inventions
employ advanced flash management algorithms to reduce presented within this disclosure , aspects of at least one
P / E cycles on the NAND and the resulting impact of those environment within which various embodiments may oper
cycles . In addition , high - density solid - state storage unit 100 65 ate will first be described with respect to FIG . 2B .
can employ one or more implementations of RAID - SE In general , flash modules 220 are organized into a hier
(similar to RAID - 6 , but custom designed for Flash) , in archical order where planes are a set of blocks and blocks are

US 9 , 778 , 885 B2
10

a set of pages as shown in FIG . 2B . A page is composed of Flash Device Dependent . Bits being programmed as 1 may
a set of bits which are read or programmed at the same time . not be checked . When programming , a page can only be
A page is the smallest unit of data which can be read or programmed once . Before the page can be programmed
programmed in the cell memory . For newer Flash devices , again , the block needs to be erased . Older devices supported
the page size is nominally 16 KB or larger . Note that a Flash 5 " partial page programming ” but newer devices generally do
page is actually larger than its “ nominal ” size . The extra not support partial page programming . The programming of
bytes in the Flash page are for Metadata and ECC bytes . The pages usually is done sequentially . In other words , a device
nominal size is the expected amount of actual data . with 256 pages per block needs to program the pages within

A block is composed of a set of pages which is typically a block in the order 0 . . . 255 . However , it may be acceptable
128 , 256 , or 512 . A block is the smallest unit of Flash 10 to skip pages .
memory that can be erased . Thus , an individual Flash page NAND Flash devices are typically available in 2 common
cannot be erased , instead , the entire Flash Block (i . e . , all types : SLC and MLC . SLC stands for Single Level Cell and
pages in the block) are erased at the same time . The block MLC stands for Multi - Level Cell . An SLC device stores 1
size is determined by the number of pages per block times bit for each cell . A single level is needed to distinguish
the page size . As an example , a 64 Gb Flash device may have 15 whether the cell contains a logic O or a logic 1 . An MLC
a page size of 16 KB , 256 pages , and 2048 blocks (a block device stores N bits per cell where N is typically 2 but can
size of 4 MB) . be 3 or more . For the purposes of this document , MLC will

The blocks are further divided into planes which is mean 2 bits per cell . The term 3LC (or TLC) will mean 3 bits
typically 2 where the even numbered blocks are in plane 0 per cell and the term 4LC (or QLC) will mean 4 bits per cell .
and the odd numbered blocks are in plane 1 . Most Flash 20 Devices which support more than 2 bits per cell are used
devices implement 2 or more planes . The main purpose of consumer electronics (e . g . Flash based music players) but do
planes is that Flash operations can be performed on both not lend themselves to use in SSD due to their low endur
planes at the same time . This has the effect of doubling the ance (e . g . low number of P / E cycles) . However , some SSD
page size (assuming 2 planes) and can increase the overall use TLC where the number of P / E cycles required is
performance of the Flash device . This is particularly true 25 reduced .
when programming data to the Flash device . Flash devices MLC devices have an advantage in cost because the cost
support 1 - plane commands as well as 2 - plane commands . per bit is effectively reduced by half . Flash manufacturers

There are 4 basic operations performed on a Flash device : typically produce 2 versions (an SLC and an MLC version)
Page Read , Read Data Transfer , Page Program , and Block of a Flash chip for a given device geometry . The MLC
Erase . Other operations exist which are related to manage - 30 device will have twice as many bits as the SLC device . For
ment of the device such as reading the device ID , reading example , a 32 Gb SLC device and a 64 Gb MLC device will
parameters , or setting feature values . Block Erase A block generally be developed at the same time . Note that the only
erase command specifies a block (in an address field of the basic difference is the sensing logic when reading data since
command) to be erased . Erasing a block causes all bits in the an MLC device requires three levels to be detected versus a
block to be changed to 1 . The time required for an erase 35 single level for an SLC device . The control logic for
command (tBERS) varies from 800 uS to 10 ms . An erase programming will also be different since there are multiple
error is reported if a bit remains at 0 . Page Read - A Page levels to set the value of the cell bits .
Read command transfers data from the Flash array to the An MLC device will have a lower endurance because it
Data Register (see FIG . 5) . The amount of time required for becomes easier for a cell ' s value to be interpreted incorrectly
the transfer to complete (R) varies by device but typical 40 when being read . In other words , there is less margin around
values vary from 25 us to 100 uS although some devices the nominal value for a given level . Cell voltage shifts due
have a value up to 400 us . When all of the page data has to time , temperature , and age cause a problem quicker (i . e .
been transferred into the data register , the contents of the after fewer P / E cycles) for an MLC device than for an SLC
data register can be transferred to the Flash controller . If data device . As an example of the endurance difference between
is transferred , it must be transferred from byte 0 in the data 45 SLC and MLC devices , 8 Gb SLC devices are generally
register . It is not necessary to transfer all of the page data specified with an endurance of 100 , 000 P / E cycles while a
(i . e . the data transfer can be stopped at any time) . 16 Gb MLC device (with the same device geometry) is

Read Data Transfer — Transferring data from the data specified with an endurance of 10 , 000 P / E cycles .
register following a Page Read command can be accom - MLC devices generally distribute the bits in a Flash cell
plished by performing a Random Data Out command which 50 to different Flash Pages . For an MLC (i . e . 2 - bit per cell)
can transfer the data register contents beginning at any device , there is a " lower ” page and an “ upper ” page . The
position within the data register . Any number of bytes may upper and lower pages are also not contiguous . The lower
then be transferred . Note that while the entire Page is read page of an MLC cell is programmed first and the upper page
from the Flash Array , only a section of the page data needs is programmed second .
to be transferred to the Flash Controller . Page Program — A 55 In general , flash card 140 and CPU 110 provides an
Page Program command transfers the contents of a Flash important aspect of Flash management with use of Super
page from the Flash Controller to the Flash device ' s data Blocks and Super - Pages , SBlocks , and S - Pages . When writ
register . After the data transfer has been completed , the data ing data , writes can occur over a series of pages spread
register contents are programmed into a page in the Flash across many or all of flash modules 220 . As data arrives (or
array . The page to be programmed is specified by an address 60 is garbage collected) , it may be written sequentially to two
field at the beginning of the command . The programming pages per die (one per plane) , then to two pages in the next
time (tPROG) varies by device from 200 us to 3 - 4 ms . The flash module (or die) in the sequence which is usually
data transfer time is not included in the tPROG value . located on a different channel .
Programming a page converts bits in a page from one (the Frequently , although not necessarily , the pages will have

erased value) to zero . If a bit is being programmed to a value 65 the same addresses : that is pages A and A + 1 of block B on
of one , the cell value is not modified . A programming error die C is followed by pages A and A + 1 of Block B on die
can occur when P bits cannot be changed to zero where Pis C + 1 . This simplifies the management for firmware , although

US 9 , 778 , 885 B2

bad block management frequently thwarts such an approach . is now the normal method for the way that host data is
S - Blocks are the series of blocks containing a set of S - Pages . mapped to Flash Memory in an SSD . Logical Block Map
When garbage collection is performed , it is performed on an ping requires a “ Map ” Table that contains one entry for
S - Block , allowing the S - Block or its constituent blocks to be every Logical Block defined for the SSD . For example , if a
reused . 5 64 GB SSD that supports 512 - Byte logical blocks would
Hard Disk Drives are nominally direct mapped . An LBA advertise to the host that it has 125 , 000 , 000 logical blocks .

(Logical Block Address) will specify a specific sector loca - A Map Table entry contains the current location of the
tion within the hard drive (e . g . platter , track , and sector) . The corresponding logical block in the Flash Memory . In a
only exception is a small number of spare sectors used to typical SSD , a Flash Page holds N integral Logical Blocks
replace bad sectors . The hard drive will maintain a small 10 (i . e . a Logical Block does not span across two Flash Pages) .
table to allow bad sectors to be replaced by a spare sector . For example , an 8 KB Flash page would hold 16 Logical
When a command is received to access (read or write) an Blocks (of size 512) . Therefore , the Map Table entry con
LBA , the table is first searched to determine if the LBA has tains a Page Offset field which identifies where a Logical
been remapped to a spare sector . If the LBA has been Block ' s data begins in the Flash Page Data (e . g . at byte
remapped , the LBA is internally modified to access the 15 512 * Page Offset) .
assigned spare sector . Otherwise , the LBA is used to derive The size of the Map Table prevents the Table from being
the specific platter , track and sector . held inside the SSD controller . Typically , the Map table is
An SSD could also be direct mapped to Flash data where held in an external DRAM connected to the SSD controller

the block , page , and page offset are derived from the LBA . (e . g . , RAM 120) . The size of the Map Table will scale
However , the same Flash block would be used to hold the 20 (slightly) non - linearly with the size of the SSD because the
same set of Logical Blocks . Since a Flash Block has a width of the Table entry will increase by 1 bit for each
limited life , accesses to the SSD that are not evenly distrib - doubling of the Flash Memory . For example , a 128 GB drive
uted can result in a given block ’ s life being exceeded much requires 834 MB for the Map table (28b / 8b * 250E6 /
earlier than other blocks . In addition , a Flash block may fail (1024 * 1024)) .
or be invalid (marked as bad during manufacturing test) . 25 Logical block data is written in the order that the data is
Therefore , remapping of all blocks was used in early SSD received . In the simplest model , a Flash block (or set of
where a table contains an entry for each block addressed by Flash blocks) is used as current write blocks . Data is
the LBA . As an example , assume that an SSD is 64 GB with accumulated until a complete Flash Page is received and is
1 MB blocks , 8 KB Flash pages , and a 512 - Byte Logical then written to the Flash device . Flash Pages in a block are
Block size . The host sees a drive with 61 , 036 blocks 30 written until the block has been completely written then a
(64 , 000 , 000 , 000 / (1024 * 1024)) of size 1 MB . Therefore , the new block must be selected to be written . Blocks from
SSD would have a table of 61 , 036 entries that remaps the multiple die may be written in parallel to allow a higher
block field in the LBA to the physical Flash block to be write rate . For example , if an SSD has 32 Flash die , one
accessed . block from each die could be currently used for writing of

Flash Block Remapping Advantages : Simplicity — The 35 data allowing up to 32 times higher write throughput (due to
mapping logic is straightforward and the mapping table is the potential for 32 Program operations to be in progress
relatively small and can be maintained in on - chip SRAM for concurrently) .
small SSD . Excellent read performance The read perfor - When a Logical Block is written , the corresponding Map
mance for both random and sequential accesses is very good . Table entry is updated to reflect the new location of the
Performance for random accesses may be slightly worse if 40 Logical Block . When a Logical Block is read , the corre
the size of the data read is less than the Page size . For sponding Map Table entry is read to determine the location
example , random 512 - Byte (single logical block) commands in Flash Memory that needs to be read . A read will then be
require a new Flash page be accessed for each command performed to the Flash Page specified in the Map entry .
while sequential 512 - Byte commands require a new Flash When the read data is available for the Flash Page , the data
page be opened every N commands (where N = Page Sizel 45 at the offset specified by the Map Entry is transferred from
512) . Excellent Sequential Write performance - When the the Flash device to the host .
host writes data sequentially , the SSD controller can write When a Logical Block is written , the Flash Memory
data to a new block without needing to copy data from the holding the " old ” version of the data becomes " garbage ”
old block . The SSD Controller may need to remember i . e . , the previous data is no longer valid) . Note that when a
temporarily the old block in order to perform reads or copy 50 Logical Block is written , the Flash Memory will initially
data if the entire block is not written . contain at least 2 versions of the Logical Block . The most

Flash Block Remapping Disadvantages : Poor Random recently written version (pointed at by the Map Table) is the
Write PerformanceNote that this implies that data is “ valid ” version while all other versions are “ stale ” (no
written to random Logical Block addresses not that the data longer valid) . These “ stale " entries are referred to as gar
content is random . When random writes are performed , only 55 bage .
part of a Flash block is modified which requires that the Logical Block mapping leads to the need to perform
remainder of the block be copied . Therefore , a large portion Garbage Collection on blocks prior to erasing a block . The
of a Flash block may need to be read from the old block and SSD must implement an algorithm that picks the next block
rewritten to the new block . For example , assume 4 KB (or blocks) to be erased (and then to be written) . Note that
random writes are performed and the Flash Block Size is 1 60 the SSD should select blocks to be erased and erase the
MB . This would require that 1020 KB of data be read and blocks prior to needing the blocks for write purposes .
rewritten resulting in a minimum write amplification of Logical Block Remapping Advantages : Very Good Ran
256 : 1 (1 M / 4K) . Wear Leveling is required to balance out dom Write Performance — Note that this implies that data is
the P / E cycles over the Flash Blocks for maximum lifetime written to random Logical Block addresses not that the data
of the SSD . 65 content is random . The primary motivation for Logical

Flash Block Mapping was used in early implementations Block mapping is that it is not necessary to re - write an entire
of Solid State drives . Mapping by logical Block (e . g . sector) Flash Block when random data is written to the SSD . Note

US 9 , 778 , 885 B2
13 14

that the Random Write Performance will be affected by the assume the host performs random 4 KB writes and the SSD
Garbage Collection operation . Garbage Collection will also has a map cache with line size of 128 map entries that
write data to the Flash Memory that may limit the write consumes 512 B of Flash memory . Each 4 KB write of host
bandwidth for the host . Excellent Read performance — The data would result in an additional 512 - Bytes of map data
random read performance is equivalent to the performance 5 being written .
for the Flash Block remapping implementation . Sequential disk drive (HDD or SSD) may have a physical sector
read performance may be worse than a Flash Block remap - size which is different from the logical sector (e . g . logical
ping implementation if the data was originally written block) size that is advertised to the host computer . In the
randomly but is read sequentially . Excellent Sequential past , the sector size on the disk drive is the same size as
Write performance Equivalent to a Flash Block remapping 10 advertised to the host and is typically 512 - Bytes . Enterprise
implementation . drives often use a sector size which is slightly larger (e . g .

Block Remapping Disadvantages : Complexity - Garbage 516 , 520 , or 528) which permits 512 - Bytes of data plus 4 - 16
Collection must be performed . In addition , the Mapping bytes of metadata . An example is the 8 - byte DIF (Data
Table must be restored when the SSD powers up which is Integrity Field) defined by T10 . The use of 512 - Byte sectors
challenging because of the size of the Table . Cost and 15 has been recognized as being inefficient at both the operating
Power — Logical Block mapping requires a large Table to system and drive level . However , for legacy reasons , the
maintain the Flash Location for each Logical Block . Typi - transition from a 512 - Byte sector to a larger sector size has
cally , the map table is implemented with an external DRAM been slow . Operating systems normally use clusters of
attached to the SSD controller (extra pins , extra board area , sectors (allocation units) in managing a volume since it is
and higher power) . The Map Table also needs to be restored 20 easier to track a smaller set of larger clusters .
following reset prior to the host issuing commands that An effort has been underway to move to 4 KB physical
access Flash Memory . sectors on hard drives to make more efficient use of the

The most common method for implementing a Logical media . The media is used more efficiently because the ECC
Block Mapping Table is to use an external DRAM where code used is a lower percent overhead (i . e . less % overhead
there is one entry for each Logical Block . The main disad - 25 when performed over one 4 KB sector than over eight
vantage to this approach is the size of the DRAM that can 512 - Byte sectors) . However , for backward compatibility , the
be several GB depending on the size of the SSD . An drives would appear as 512 - Byte sectors to the host (i . e .
alternative Map Table implementation is to use a cache that 512 - Byte emulation) .
holds a subset of the Map Table in internal SRAM . The Map SSD benefits significantly from implementing 4 KB
Table consists of a set of Cache Lines that are saved in Flash 30 Physical Sectors and then emulating 512 - Byte sectors (if
Memory (e . g . the system data area) . A “ Map Index ” table necessary) . Compression Ratio Compressing 4 KB of data
can be maintained in internal SRAM that points at the produces a significantly higher compression ratio than com
locations of the cache lines in Flash Memory . The size of the pressing 512 - Bytes of data . Smaller Map Table — The Map
Map Index table is dependent on the Cache line size and the Table size can be reduced by a factor of 8 when the drive ' s
logical size of the SSD . 35 physical sector size is 4 KB instead of 512 - Bytes . Thus , the

For example , assume a 64 GB SSD has 125 , 000 , 000 amount of external DRAM to hold the Map Table can be
entries . Assuming a Cache line size of 128 entries , the Map much smaller . Consider a 100 GB SSD that has 4 - byte Map
Index Table requires 976563 entries . Assuming each Map Table entries . For a 512 - Byte physical sector , the Map table
Cache line is written as a 512 - Byte block , the Map Index required is 745 MB while it is only 93 MB when 4 KB
Table would require 27 bits to specify the Flash location . A 40 physical sectors are used .
total of 3 . 1 MB would be required to implement the Map In addition , the Map Table contents are periodically saved
Index Table . in Flash Memory in order to restore the Map Table following

The size of the Map Index Table can be reduced by a reset or power failure . Note the Map Table contents are
increasing the cache line size or by implementing a larger also saved in Flash Memory if a caching (DRAM - Less)
Physical Sector size (e . g . 4 KB) . For example , implementing 45 system is used . A larger Map Table results in less Flash
4 KB physical sectors reduces the size of the Map Table (and Memory available for host data and hence a higher write
hence the Map Index Table) by a factor of 8 . amplification . Note that a 0 % overprovisioned drive would

Cached Mapped Table Advantages : Cost — Eliminating use ~ 1 . 6 % of the Flash memory with 512 - Byte physical
the DRAM saves board area , pins on the controller , and the sectors (assuming 4 - byte Map table entries and 2 copies of
DRAM devices . However , some of the cost savings are lost 50 the Map Table in Flash Memory) . However , only 0 . 2 % is
due to the larger die area used to implement the internal Map used when the Physical sector size is 4 KB . Therefore , an
Table Cache . An external (small) DRAM may still be used SSD that has a 512 - Byte physical sector size will be at a
to hold the Map Index Table which reduces the cost savings . performance and cost disadvantage to an SSD that has a 4
Faster Boot - A cached map table requires only that the Map KB physical sector size .
Cache Index table be loaded before the host can begin 55 512 - Byte Emulation : The disadvantage to using a 4 KB
issuing commands to access the Flash memory . Physical sector size is the need to emulate 512 - Byte sector
Cached Map Table Disadvantages : Higher Random Read sizes to support “ legacy ” systems . While most transactions

Latency - Random reads will have an extremely low hit rate will be a multiple of 4 KB and aligned to a 4 KB boundary ,
in the internal map cache . Therefore , a read will first be the need exists to handle transactions that are misaligned
required to load the cache line followed by a read for the 60 and / or a partial physical sector . Read commands are rela
actual data . Complexity — The logic to implement a cached tively easy to handle since data from the start of the first
Map Table is more complicated than implementing a Map physical sector and at the end of the last physical sector may
Table in external SDRAM . Higher Write Amplification for need to be discarded (i . e . not sent to the host) . Write
Random Writes — When writing random data , the probabil commands are more complicated since only a portion of the
ity of a cache hit is very small . Therefore , it is likely that a 65 first and / or last Physical sectors of a command may be
Cache Line will be forced out of the Cache (and written to written by the host . Therefore , read - modify - write (RMW)
Flash Memory) for every host command . For example , operations may need to be performed on these Physical

10

US 9 , 778 , 885 B2
15 16

sectors . In other words , 512 - Byte I / O operations would be 7 % — The amount of Flash Memory is - 7 % more than the
noticeably slower on an SSD with 4 KB physical sectors . same as the advertised Drive size . For example , a 120 GB

Write Amplification is a measure of the actual data that is drive with 128 GB of Flash Memory is 7 % overprovisioned .
written to the Flash memory in an SSD . The write amplifi 28 % — The amount of Flash Memory is 28 % more than the
cation is dependent on the type of Map Table used , the data 5 same as the advertised Drive size . For example , a 100 GB
pattern written by the host (e . g . , system metadata , overpro drive with 128 GB of Flash Memory is 28 % overprovi
visioning , and other system level features) . Write amplifi sioned .
cation can be expressed by the following formula : The percent of overprovisioning is expressed as :

% Overprovisioning = 100 * (Nominal Flash Capacity
WA = (Data Written to Flash) / (Host Data written to 10 in GB / Advertised Drive Capacity in GB)

SSD) Overprovisioning reduces write amplification because the
Awrite amplification value of 1 . 0 would indicate that the amount of data that needs to be rewritten during garbage

same amount of data written by the host is written to the collection is reduced . For example , consider two SSD that Flash Memory . A value of 2 . 0 indicates that the amount of 5 each have 128 GB of Flash Memory but one is 0 % over
data written to the Flash memory is double the amount of provisioned and the second is 28 % overprovisioned . There
host data written to the SSD . The write amplification for is an additional 5 % of Flash memory available after account Flash block mapping is dependent on the amount of data in ing for bad blocks , metadata , etc . due to the difference each block that must be copied from the existing block . As between GB for Disk space (1 GB = 1 , 000 , 000 , 000 bytes) an example , assume block remapping is used , 256 KB 20 and GB for Flash (1 GB = 1 , 073 , 741 , 824) . The 5 % extra blocks , and the host is performing random 8 KB writes to the 2 memory equates to 134 . 4 GB . With 0 % overprovisioning , SSD . Each I / O operation writes a 256 KB block with 8 KB the worst case free space (i . e . garbage) across all blocks
of the data from the host resulting in a write amplification of (assuming free space is evenly distributed) will be : 32 (256 KB / 8 KB) . As a second example , assume that the
host is writing data sequentially , the data written in each % Average Free Space (0 % Overprovisioned) = 100 *
block would come only from the host resulting in a write 25 (1 - 128 / 134 . 4) = 4 . 76 %
amplification of 1 . 0 . The above means that the write amplification could be as
When Logical Block mapping is used , the write amplifi - high as 1 / 0 . 0476 = 21 . Thus , when choosing a block to

cation is determined by the amount of data from each block garbage collect , it is probable that the amount of free space
that is garbage collected . The write amplification for a block (i . e . garbage) will be approximately twice the average value
is calculated as following : which would result in a more realistic worst case write

amplification of 1 / (2 * 0 . 0476) = 10 . 5 .
WA = (Block Size) / (Block Size - Data in Block For a 28 % overprovisioned SSD , the worst case free space

Rewritten) across all blocks will be :
For example , assume that (on average) 25 % of each block 35 % Average Free Space (28 % Overprovisioned) = 100 * is garbage (i . e . free space) when the block is recycled . The (1 - 100 / 134 . 4) = 25 . 6 % resulting write amplification would be 4 = (1 / (1 - 0 . 75)) .
The life of the Flash memory in an SSD is directly related The write amplification will thus be much lower for the

to the write amplification . The effect of write amplification 28 % overprovisioned drive where the worst case write
effectively reduces the number of P / E cycles (by the write an amplification is 1 / 0 . 256 = 3 . 91 if free space were evenly

40 distributed across all blocks . However , the write amplifica amplification) . Therefore , techniques that reduce write
amplification are important for improving the life of an SSD . tion would be a more realistic 1 / 0 . 512 = 1 . 95 if free space is
Write amplification is also likely to reduce the overall distributed based on the age of a block .
performance of an SSD . The bandwidth for writing data to The disadvantage of overprovisioning is the increased
Flash Memory will be WA times the host write rate . For cost per GB . Therefore , consumer drives are normally 0 % or

45 7 % overprovisioned to minimize cost per GB while enthu example , a write amplification of four and a host write rate
of 100 MB / s means that the Flash write bandwidth will be siast and enterprise drives are normally 28 % overprovi
400 MB / s . In addition , the extra write data is mostly data sioned where performance and lifetime are more important .
being rewritten (during garbage collection) which requires Compression is one technique for reducing write ampli
that the data also be read from the Flash Memory . Therefore , se fication . An SSD can perform compression at the Logical
the total Flash Memory bandwidth used to write data to the 50 Block level to reduce the amount of data which is written to
Flash Memory would be : Flash Memory . The compression ratio is expressed by the

following formula :
Flash Memory BW = (2 * WA - 1) * Host Write Rate Compression Ratio = (Size of Data) / (Size of Com

For example , if the host writes data at a rate of 100 MB / s 55 pressed Data) : 1
and the write amplification is 4 , the Flash Bandwidth used For example , 64 KB compressed to 32 KB results in a
will actually be 700 MB / s (100 MB / s from host , 300 MB / s compression ratio of 2 : 1 (i . e . 2 to 1) . A compression ratio of
of data being rewritten , and 300 MB / s to read the data being 1 : 1 indicates that the size of the compressed data equals the
rewritten) . size of the original data . A compression ratio less than 1 (e . g .

Overprovisioning is one technique for reducing write 60 0 . 99 : 1) indicates that the data “ expanded ” as a result of the
amplification . When an SSD is overprovisioned , the SSD compression algorithm . Note that all compression algo
has more Flash memory than the advertised size . There are rithms are expanding because at least 1 additional bit is
3 typical values of overprovisioning seen in SSD : required to specify whether the data is compressed .
0 % - The amount of Flash Memory is the same as the Compression of Logical Block data by an SSD has the
advertised Drive size . For example , a 128 GB drive with 128 65 effect of reducing the rate at which host data is written to
GB of Flash Memory is 0 % overprovisioned (i . e . the drive Flash memory but also creates additional free space on the
has no overprovisioning) . drive . In effect , the overprovisioning of the drive is increased

127Vwawa 35

US 9 , 778 , 885 B2
18

by the amount by which host data is reduced . Thus , the write Data Services
amplification is reduced because less host data is written but FIG . 3 is a block diagram of one of the plurality of flash
also because the amount of data that is written during cards 140 that can be used with high - density solid - state
garbage collection is reduced . storage unit 100 of FIG . 1 in one embodiment according to

Consider the case of a 128 GB SSD that is overprovi - 5 the present overprovi . 5 the present invention . In this example , flash card 140
includes flash controller 210 and one or more flash modules sioned by 0 % and data written has an average compression 220 . In this embodiment , flash controller 210 also includes ratio of 2 : 1 . The drive has 134 . 4 GB of Flash Memory ECC module 330 , buffer module 340 , compressor resource available (assuming 5 % extra after accounting for metadata , 340 , and decompressor resource 350 (among other data

bad blocks , etc .) . Due to compression , the drive only con services not shown) .
tains 64 GB of data resulting in an effective overprovision ECC module 330 includes hardware and / or software
ing value of 50 % . In the worst case , a block can always be elements configured for verifying data by locating and
found with at least 50 % garbage . correcting errors . In general , flash modules 220 can require
However , the older blocks should have considerably more ECC techniques to correct random bit errors (“ soft ” errors) .

This is because the inside of a NAND chip can be very noisy garbage than newer blocks . For this example , a value of 80 % 15 and the signal levels of bits passed through a NAND string garbage (20 % used space) will be assumed . Thus , the write can be very weak . Error correction can also help to correct amplification will actually be : bit errors due to wear . Wear can cause bits to become stuck
in one state or the other (a “ hard ” error) , and it can increase

(1 / (1 - % garbage)) / compression Ratio the frequency of soft errors . Some examples of ECC tech
For the above example , the value is (1 / 0 . 8) / 2 = 0 . 625 . 20 niques may include Reed - Solomon coding , Bose - Chaud

When writing random data without compression , a 0 % no huri - Hocquengham (BCH) , low - density parity - check
overprovisioned drive would typically have a write ampli (LDPC) code , and other linear error correcting codes . ECC

module 330 may incorporate one or more error checking and fication of - 10 . 5 (see Overprovisioning section) . However ,
the same drive with compression (and a compression ratio of correcting techniques and data integrity techniques as is

25 known in the art . 2 : 1) will have a write amplification of 0 . 625 . The compres In general , bits in a Flash memory may be read incorrectly sion ratio that can be achieved is dependent on the type of (i . e . develop bit errors) after being programmed . The charge
data being written and the size of the block over which the level on a Flash cell will change due to several conditions compression is performed . Encrypted data does not com (time , temperature , accesses to other pages in the block ,
press much (if at all) because the encryption effectively 30 etc .) . Eventually , when the cell is read , the wrong value is
randomizes the data . Data that has already been compressed returned . Flash Manufacturers specify a maximum number
will in general not be compressible though a small gain in of bit errors for a Flash Page based on the process technol
some cases may be possible . ogy , cell design , lab testing , simulation , operating condi

The larger the data block compressed , the greater the tions , etc . The bit error specification will be N errors per M
chance of matching a previous string in the history buffer . 35 bytes . The Flash user is then responsible for implementing
The history buffer contains the data previously processed in an Error Correcting Code that satisfies or exceeds the
the block being compressed . Compression over 4096 byte requirement . Flash Manufacturers provide extra bytes in a
data blocks is significantly better than compression over Flash Page to accommodate the number of expected ECC
512 - Byte data blocks . Therefore , compression should be bits plus a small amount of metadata (e . g . CRC field , sector
performed over as large a block as practical and has the most 40 number , etc .) .
impact on an SSD which has a larger Physical sector (e . g . 4 The Open NAND Flash Interface (ONFI) Working Group
KB) as opposed to a Physical sector of 512 bytes . in ONFI 2 . 3 defines a Flash Page as containing a data area

Compression Advantages : Lower Write Amplification and a spare area . The spare area is intended for use in
Compression Disadvantages : Additional Logic to imple - holding ECC checkbits and metadata while the Data Area is

ment the Compression and Decompression algorithm . Vari - 45 assumed to contain sector (e . g . Logical Block) data . An
able size of data Physical Sectors Compressed Physical example error specification is 40 - bit errors over 1104 bytes
Sectors will be packed in Flash Memory (for best use of the for a Flash Page size of 8832 bytes (1104 * 8) . Assuming the
Flash memory) . Thus , Physical sectors may “ straddle ” Flash ECC code is BCH14 , 70 bytes (e . g . 560 bits = 40 * 14) are
Pages (i . e . start in one Flash Page and continue in another required for the ECC bits leaving 10 bytes for metadata . The
Flash Page) . Support for variable sized Physical sectors may 50 spare area bytes do not have to be located at the end of the
be an advantage though in supporting Logical Blocks that Flash Page . In fact , it is simpler to divide the Flash Page into
have additional information (e . g . a Data Integrity Field) sections which contain data and the corresponding ECC bits .
which are not exactly 512 bytes (e . g . 528 bytes) . In this case , Each of these “ sections ” is an E - Page .
the logical blocks may not pack nicely into a Flash Page An SSD implementation may choose to use a stronger or
anyway . Higher Latency in the Write Path — Data must first 55 weaker ECC code (i . e . correct more bits) than required by
be compressed to determine if the data will be expanded the manufacturer . Using a stronger ECC code can increase
(larger than the original data) to determine if the original the available life of the Flash . However , to implement a
data should be written or the compressed data . Latency in stronger ECC code will require increasing the number of
the read path is lower because the decompression can be bytes dedicated to the ECC checkbits or a larger E - Page size .
performed in - line . More metadata — Additional metadata 60 Thus , data bytes are “ borrowed ” for use as ECC bytes . A
(size and possibly a flag indicating if data is compressed) weaker ECC code may be used during the early life of a
need to be kept for Physical Sectors . device when the number of errors is lower . The use of a

In various embodiments , flash controller 210 incorporates weaker ECC code allows some of the ECC bytes to be
one or more resources for facilitating data services , such as " stolen ” for use as data bytes (which has the effect of
compression and decompression operations that implement 65 increasing the drive overprovisioning . As an example ,
some of the advantages discussed above as well as reduce or assume 60 bits (instead of 40) are corrected over 1104 bytes
solve some of the disadvantages discussed above . using BCH14 . The size of the ECC checkbits field will

er

US 9 , 778 , 885 B2
19 20

increase to 14 * 60 = 105 bytes (from 70) which reduces the unit 100 stores data 410 , command queue 420 , and response
space available for sector data to 999 bytes . Note that the use queue 430 in RAM 120 . In general , data 410 represents
of stronger ECC has more benefits when applied later in a information that CPU 110 may store to the plurality of flash
Flash device ' s life (since it has the effect of reducing the cards 140 or that has been retrieved from the plurality of
drive overprovisoning) . 5 flash cards 140 . Data 410 may include compressed infor

Another option is to increase the number of bytes over mation , uncompressed information , error correction or
which the correction is performed (i . e . increasing the E - Page redundancy information , application data , application code ,
Size) . The number of errors which need to be corrected does operating system data , firmware , or the like .
not increase linearly with size though the actual distribution In various embodiments , one or more commands are
will be device dependent . For example , a device which 10 placed into command queue 420 . A command may represent
requires 40 bits corrected for 1104 bytes may only require 60 one or more operations to be performed by one or more of
bit correction for 2208 bytes for the same device lifetime . the plurality of flash cards 140 . One example of an operation
The number of ECC bytes required (assuming a BCH15 is to store data 410 to one or more of the plurality of flash
code) would be 112 . 5 (15 * 60) versus 140 bytes (70 for each cards 140 . Another example of an operation is to retrieve
of two 1104 byte E - Pages) . 15 information from one or more of the plurality of flash cards

Buffer 330 includes hardware and / or software elements 140 as data 410 . In one aspect , CPU 110 may instruct one or
configured for staging data . For example , buffer 330 may more of the plurality of flash cards 140 to compress data 410
include one or more memory elements configured to stage before storage . CPU 110 may place one or more commands
data to reduce erase / write cycles of flash modules 220 . into command queue 420 and provide a pointer to command

Compressor resource 340 includes hardware and / or soft - 20 queue 420 to one or more of the plurality of flash cards 140 .
ware elements configured for providing a first type or class In another aspect , CPU 110 may instruct one or more of the
of data services , such as data compression , data reduction , plurality of flash cards 140 to decompress information to be
data deduplication , and the like . Compressor resource 340 stored as data 410 . CPU 110 and the plurality of flash cards
may employ some of the first type or class of data services , may perform a variety of operations that directly or indi
for example , using compression and data deduplication 25 rectly manage insertion , processing , and removal of com
techniques as are known in the art . In general , compressor mands associated with command queue 420 .
resource 340 provides a plurality of modes of operation In various embodiments , one or more responses are
associated with the first type or class of data services . For placed into response queue 430 . A response may represent
example , in one embodiment of a first mode of operation , the result of one or more operations performed by one or
compressor resource 340 is configured to compress data to 30 more of the plurality of flash cards 140 . One example of a
be stored in one or more of flash modules 220 . In another response is to provide information indicating the storage of
example , in one embodiment of a second mode of operation , data 410 to one or more of the plurality of flash cards 140 .
compressor resource 340 is configured to compress data to Another example of a response is information indicative of
be stored or used by another entity other than flash controller retrieval of information from one or more of the plurality of
210 . The first type or class of data services may be provided 35 flash cards 140 as data 410 . In one aspect , one or more of the
on an on - demand basis or via one or more scheduling plurality of flash cards 140 may generate a response in
routing . response queue 430 indicating that data 410 has been

Decompressor resource 350 includes hardware and / or compressed . One or more of the plurality of flash cards 140
software elements configured for providing a second type or may generate a response in response queue 430 indicating
class of data services , such as data decompression , data 40 that information has been decompressed as data 410 . CPU
reconstruction , data reconstitution , and the like . Decompres - 110 and the plurality of flash cards may perform other
sor resource 350 may employ some of the second type or operations that directly or indirectly manage the insertion
class of data services , for example , using decompression and and the removal of responses in response queue 430 .
data reconstruction techniques as are known in the art . In In one aspect , there can be multiple command response
general , decompressor resource 350 provides a plurality of 45 and queues . In one implementation , command and response
modes of operation associated with the second type or class queues are unique to each flash card . In addition , each
of data services . For example , in one embodiment of a first resource or " data service ” provided by a resource of a flash
mode of operation , decompressor resource 350 is configured card may have dedicated command queues and response
to decompress data retrieved from one or more of flash queues (e . g . a compress command queue , decompress com
modules 220 . In another example , in one embodiment of a 50 mand queue , compress response queue , and decompress
second mode of operation , decompressor resource 350 is queue) .
configured to decompress data obtained from another entity In various aspects , CPU 110 manages storage of data in
other than flash controller 210 . The second type or class of flash cards 140 using command queue 420 . CPU 110 may
data services may be provided on an on - demand basis or via allocate one or more portions of data 410 to be stored in one
one or more scheduling routing . 55 or more of the plurality of flash cards 140 . CPU 110 may

Although only compressor resource 340 and decompres - maintain tables , lists , or queues of portions of data to be
sor resource 350 are illustrated , flash controller 210 in some stored in each of the flash cards 140 . CPU 110 may imple
embodiments is configured to provide other types or classes ment RAID (redundant array of independent disks ; origi
of data services , metadata services , or the like , using other nally redundant array of inexpensive disks) as a way of
resources , not shown . These other resources , for example , 60 storing the same portions of the data in different places (thus ,
may be configured to provide a plurality of modes of redundantly) on multiple flash cards . By placing data on
operation that also allow for on - demand data services of the multiple disks , I / O (input / output) operations can overlap in
corresponding type or class to other entities or resources . a balanced way , improving performance . One technique

FIG . 4 is a block diagram illustrating compression / de - called striping provides no redundancy of data but offers
compression management in high - density solid - state storage 65 better performance as the data can be read simultaneously
unit 100 of FIG . 1 in one embodiment according to the from individual flash cards 140 . Another technique called
present invention . In FIG . 4 , high - density solid - state storage mirroring provides duplication of the storage of data . Mir

US 9 , 778 , 885 B2
22

roring provides fault - tolerance . Combinations of mirroring plurality of flash cards 140 . In another example , one of the
and striping can include the further determination of data plurality of flash cards 140 may be instructed to retrieve a
recovery information , such as data checks and parity calcu - command from command queue 420 that indicates that data
lations . 410 is to be compressed . The one of the plurality of flash
Knowing that compression will occur and that mirror , 5 cards 140 then may retrieve data 410 from RAM 120 . In step

striping , and other data recovery operations need to happen 650 , the compressed data is received . As depicted in FIG . 5 ,
on the compressed data , in another aspect , CPU 110 takes data 520 may be compressed using compressor resource 340
advantage of a variety of types or classes of data services , and returned to RAM 120 .
such as data reduction and data reconstruction service , In step 660 , a location for the compressed data is deter
provided by resources incorporated into flash cards 140 . 10 mined . In various embodiments , the one of the plurality of

FIG . 5 is a block diagram illustrating data reduction flash cards 140 that was selected as the compressor resource
aspects of high - density solid - state storage unit 100 of FIG . may be selected as the location for the compressed data . In
1 in one embodiment according to the present invention . In other embodiments , the one of the plurality of flash cards
general , data 510 received by flash card 140 may be stored 140 selected as the location of the compressed data may be
in one or more of flash modules 220 by directly staging data 15 different from the one selected as the compressor resource .
510 in buffer 330 . Data 510 may also be retrieved from one CPU 110 may implement one or more scheduling algorithms
or more of flash modules 220 and staged in buffer 330 for or load balancing algorithms in selecting a location . CPU
transfer to RAM 110 . Data 510 may be transferred in an 110 may further maintain usage information , availability
unaltered state . In further embodiments , flash card 140 may information , or other lists about the plurality of flash cards
be utilized as a resource to compress or decompress data not 20 140 to determine which one to select . The selection process
otherwise stored in flash modules 220 . may further be influenced by storage algorithms (such as

In some embodiments , data 520 is compressed or other RAID techniques) and mirror or stripe the data across one or
wise encoded using one or more data reduction techniques more of the plurality of flash cards 140 .
at compressor resource 340 . Data 520 after being com - In step 670 , the compressed data is sent to the selected
pressed may be stored in one or more of flash modules 220 25 location . In one embodiment , CPU 110 may forward the
by compressor resource 340 staging the compressed data in compressed data directly to a selected one of the plurality of
buffer 330 . In various embodiments , compressor resource flash cards 140 . In another example , one of the plurality of
340 can be utilized to compress any type of data in - line for flash cards 140 may be instructed to retrieve a command
storage in one or more of flash modules 220 as well as an from command queue 420 that indicates that the compressed
on - demand data reduction service by high - density solid - 30 data as data 410 is to be stored . The one of the plurality of
state storage unit 100 . In one aspect , compressor resource flash cards 140 then may retrieve data 410 from RAM 120 .
340 is configured to route the compressed data as data 530 The compressed data is then stored . As depicted in FIG . 5 ,
for further handling by flash controller 210 or CPU 110 . data 510 may flow directly into buffer 330 for storage in
Accordingly , high - density solid - state storage unit 100 may flash modules 220 . FIG . 6 ends in step 680 .
be configured to utilize any compressor resource 340 in flash 35 FIG . 7 is a sequence chart indicating data flow according
controller 210 of any one of the plurality of flash cards 140 to method 600 of FIG . 6 in one embodiment according to the
on - demand to perform data reduction services on any type of present invention .
data . Returning to FIG . 5 , in some embodiments , data 540 is

FIG . 6 is a flowchart of method 600 for utilizing com - decompressed or otherwise decoded using one or more data
pressor resources for data reduction in one embodiment of 40 reconstruction techniques at decompressor resource 350 .
the present invention . Implementations of or processing in Data may be retrieved from flash modules 220 and staged in
method 600 depicted in FIG . 6 may be performed by buffer 330 for decompression by decompressor resource 350
software (e . g . , instructions or code modules) when executed as data 540 . In various embodiments , decompressor resource
by a central processing unit (CPU or processor) of a logic 350 can be utilized to decompress any type of data in - line
machine , such as a computer system or information pro - 45 stored in one or more of flash modules 220 as well as an
cessing device , by hardware components of an electronic on - demand data reconstruction service by high - density
device or application - specific integrated circuits , or by com - solid - state storage unit 100 . In one aspect , decompressor
binations of software and hardware elements . Method 600 resource 350 is configured to route the decompressed data as
depicted in FIG . 6 begins in step 610 . data 540 for further handing by flash controller 210 or CPU

In step 620 , data is received for storage . For example , 50 110 . Accordingly , high - density solid - state storage unit 100
information may be forwarded by network interface 150 to may be configured to utilize any decompressor resource 350
CPU 110 according to a storage protocol . CPU 110 may in flash controller 210 of any one of the plurality of flash
store the information as data 410 of FIG . 4 . cards 140 on - demand to perform data reconstruction ser

In step 630 , a compressor resource is selected . In various vices on any type of data .
embodiments , CPU 110 may select one or more of the 55 FIG . 8 is a flowchart of method 800 for utilizing decom
plurality of flash cards 140 as the compressor resource . CPU pressor resources for data reconstruction in one embodiment
110 may implement one or more scheduling algorithms or of the present invention . Implementations of or processing
load - balancing algorithms in selecting a resource . CPU 110 in method 800 depicted in FIG . 8 may be performed by
may further maintain usage information , availability infor - software (e . g . , instructions or code modules) when executed
mation , or other lists about the plurality of flash cards 140 60 by a central processing unit (CPU or processor) of a logic
to determine which one to select . The selection process may machine , such as a computer system or information pro
further be influenced by storage algorithms (such as RAID cessing device , by hardware components of an electronic
techniques) that mirror or strip the data across one or more device or application - specific integrated circuits , or by com
of the plurality of flash cards 140 . binations of software and hardware elements . Method 800

In step 640 , the data is sent to the selected compressor 65 depicted in FIG . 8 begins in step 810 .
resource for compression . In one embodiment , CPU 110 In step 820 , a request is received to retrieve data for
may forward the data directly to a selected one of the storage . For example , information may be forwarded by

US 9 , 778 , 885 B2
23 24

network interface 150 to CPU 110 according to a storage Disk Read Only Memory (CD - ROM) drive , a DVD , an
protocol requesting one or more block , sectors , or units of optical drive , removable media cartridges , and other like
data . In step 830 , the location of the data is determined . CPU storage media .
110 may determine the location of the data using mapping Input devices 1060 may include a keyboard , pointing
table as discussed above . The mapping table may indicate 5 devices such as a mouse , trackball , touchpad , or graphics
that one or more of the plurality of flash cards 140 stores the tablet , a scanner , a barcode scanner , a touchscreen incorpo
requested data . rated into the display , audio input devices such as voice

In step 840 , the compressed data is loaded into RAM . In recognition systems , microphones , and other types of input
step 850 , a decompressor resource is selected . In various devices . In general , use of the term “ input device ” is
embodiments , CPU 110 may select one or more of the 10 intended to include all possible types of devices and mecha
plurality of flash cards 140 as the decompressor resource . nisms for inputting information to computer system 1000 .
CPU 110 may implement one or more scheduling algorithms Output devices 1070 may include a display subsystem , a
or load balancing algorithms in selecting a resource . CPU printer , a fax machine , or non - visual displays such as audio
110 may further maintain usage information , availability output devices , etc . The display subsystem may be a cathode
information , or other lists about the plurality of flash cards 15 ray tube (CRT) , a flat - panel device such as a liquid crystal
140 to determine which one to select . display (LCD) , or a projection device . In general , use of the

In step 860 , the compressed data is sent to the selected term “ output device ” is intended to include all possible types
decompressor resource for data reconstruction . In one of devices and mechanisms for outputting information from
embodiment , CPU 110 may forward the compressed data computer system 1000 .
directly to a selected one of the plurality of flash cards 140 . 20 Network interface subsystem 1080 provides an interface
In another example , one of the plurality of flash cards 140 to other computer systems , devices , and networks , such as
may be instructed to retrieve a command from command communications network 1090 . Network interface subsys
queue 420 that indicates that data 410 is to be decompressed . tem 1080 serves as an interface for receiving data from and
The one of the plurality of flash cards 140 then may retrieve transmitting data to other systems from computer system
data 410 from RAM 120 . 25 1000 . Some examples of communications network 1090 are

In step 870 , the decompressed data is loaded into RAM . private networks , public networks , leased lines , the Internet ,
As depicted in FIG . 5 , data 550 may be decompressed using Ethernet networks , token ring networks , fiber optic net
decompressor resource 350 and returned to RAM 120 . FIG . works , and the like .
8 ends in step 880 . Computer system 1000 can be of various types including

FIG . 9 is a sequence chart indicating data flow according 30 a personal computer , a portable computer , a workstation , a
to the method of FIG . 8 in one embodiment according to the network computer , a mainframe , a kiosk , or any other data
present invention . processing system . Due to the ever - changing nature of
Conclusion computers and networks , the description of computer system

FIG . 10 is a simplified block diagram of computer system 1000 depicted in FIG . 10 is intended only as a specific
1000 that may be used to practice embodiments of the 35 example for purposes of illustrating the preferred embodi
present invention . As shown in FIG . 10 , computer system ment of the computer system . Many other configurations
1000 includes processor 1010 that communicates with a having more or fewer components than the system depicted
number of peripheral devices via bus subsystem 1020 . These in FIG . 10 are possible .
peripheral devices may include storage subsystem 1030 , Although specific embodiments of the invention have
comprising memory subsystem 1040 and file storage sub - 40 been described , various modifications , alterations , alterna
system 1050 , input devices 1060 , output devices 1070 , and tive constructions , and equivalents are also encompassed
network interface subsystem 1080 . within the scope of the invention . The described invention is

Bus subsystem 1020 provides a mechanism for letting the not restricted to operation within certain specific data pro
various components and subsystems of computer system cessing environments , but is free to operate within a plural
1000 communicate with each other as intended . Although 45 ity of data processing environments . Additionally , although
bus subsystem 1020 is shown schematically as a single bus , the present invention has been described using a particular
alternative embodiments of the bus subsystem may utilize series of transactions and steps , it should be apparent to
multiple busses . those skilled in the art that the scope of the present invention

Storage subsystem 1030 may be configured to store the is not limited to the described series of transactions and
basic programming and data constructs that provide the 50 steps .
functionality of the present invention . Software (code mod Further , while the present invention has been described
ules or instructions) that provides the functionality of the using a particular combination of hardware and software , it
present invention may be stored in storage subsystem 1030 . should be recognized that other combinations of hardware
These software modules or instructions may be executed by and software are also within the scope of the present
processor (s) 1010 . Storage subsystem 1030 may also pro - 55 invention . The present invention may be implemented only
vide a repository for storing data used in accordance with the in hardware , or only in software , or using combinations
present invention . Storage subsystem 1030 may comprise thereof .
memory subsystem 1040 and file / disk storage subsystem The specification and drawings are , accordingly , to be
1050 . regarded in an illustrative rather than a restrictive sense . It
Memory subsystem 1040 may include a number of 60 will , however , be evident that additions , subtractions , dele

memories including a main random access memory (RAM) tions , and other modifications and changes may be made
1042 for storage of instructions and data during program thereunto without departing from the broader spirit and
execution and a read only memory (ROM) 1044 in which scope of the invention as set forth in the claims .
fixed instructions are stored . File storage subsystem 1050 Various embodiments of any of one or more inventions
provides persistent (non - volatile) storage for program and 65 whose teachings may be presented within this disclosure can
data files , and may include a hard disk drive , a floppy disk be implemented in the form of logic in software , firmware ,
drive along with associated removable media , a Compact hardware , or a combination thereof . The logic may be stored

US 9 , 778 , 885 B2
25 26

in or on a machine - accessible memory , a machine - readable devices , and store the compressed data in a different
article , a tangible computer - readable medium , a computer one of the plurality of solid - state storage devices ;
readable storage medium , or other computer / machine - read and
able media as a set of instructions adapted to direct a central in response to at least one of a scheduling algorithm and
processing unit (CPU or processor) of a logic machine to 5 a load balancing algorithm for the decompressor
perform a set of steps that may be disclosed in various data services , retrieve data from one of the plurality
embodiments of an invention presented within this disclo of solid - state storage devices , perform decompressor
sure . The logic may form part of a software program or data services on the data in a different one of the computer program product as code modules become opera plurality of solid - state storage devices , and send the tional with a processor of a computer system or an infor - 10 decompressed data to the computing device . mation - processing device when executed to perform a 2 . The solid - state storage unit of claim 1 wherein the
method or process in various embodiments of an invention compressor data services include at least one or more of data presented within this disclosure . Based on this disclosure
and the teachings provided herein , a person of ordinary skill compression , data reduction and data deduplication .
in the art will appreciate other ways , variations , modifica - 15 3 . The solid - state storage unit of claim 1 wherein the
tions , alternatives , and / or methods for implementing in decompressor data services include at least one or more of
software , firmware , hardware , or combinations thereof any data decompression , data reconstruction and data reconsti
of the disclosed operations or functionalities of various tution .

embodiments of one or more of the presented inventions . 4 . The solid - state storage unit of claim 1 wherein the solid
The disclosed examples , implementations , and various 20 state storage devices are flash cards .

embodiments of any one of those inventions whose teach 5 . A high - density solid - state storage system comprising : a
ings may be presented within this disclosure are merely processor ;
illustrative to convey with reasonable clarity to those skilled a plurality of solid - state storage devices , each solid - state
in the art the teachings of this disclosure . As these imple storage device having its own controller device and a
mentations and embodiments may be described with refer - 25 plurality of flash modules , the controller device con
ence to exemplary illustrations or specific figures , various figured to control data transfers between the processor
modifications or adaptations of the methods and / or specific and the plurality of flash modules , the controller further
structures described can become apparent to those skilled in configured to provide compressor or decompressor data
the art . All such modifications , adaptations , or variations that services to the plurality of flash modules ; and
rely upon this disclosure and these teachings found herein , 30 a memory configured to store a set of instructions which
and through which the teachings have advanced the art , are when executed by the processor configure the processor
to be considered within the scope of the one or more to at least one of :
inventions whose teachings may be presented within this in response to at least one of a scheduling algorithm and
disclosure . Hence , the present descriptions and drawings a load - balancing algorithm for the compressor data
should not be considered in a limiting sense , as it is 35 services , send data from the processor to one of the
understood that an invention presented within a disclosure is plurality of solid - state storage devices , instruct the
in no way limited to those embodiments specifically illus controller on the one of the plurality of solid - state
trated . storage devices to perform compressor data services

Accordingly , the above description and any accompany on the data , and instruct a different one of the
ing drawings , illustrations , and figures are intended to be 40 plurality of solid - state storage devices to store the
illustrative but not restrictive . The scope of any invention compressed data ;
presented within this disclosure should , therefore , be deter in response to at least one of a scheduling algorithm and
mined not with simple reference to the above description a load balancing algorithm for the decompressor
and those embodiments shown in the figures , but instead data services , instruct one of the plurality of solid
should be determined with reference to the pending claims 45 state storage devices to retrieve data , instruct the
along with their full scope or equivalents . controller of a different one of the plurality of

solid - state storage devices to perform decompressor
What is claimed is : data services on the data , and send the decompressed
1 . A solid - state storage unit comprising : data to the processor .
a plurality of solid - state storage devices configured to 50 6 . The high - density solid - state storage system of claim 5

store data ; wherein the compressor data services provided to the pro
each solid - state storage device comprising a plurality of cessor include at least one or more of data compression , data

flash modules , and its own compressor resource and reduction and data deduplication .
decompressor resource , wherein the compressor 7 . The high - density solid - state storage system of claim 5
resource is configured to perform compressor data 55 wherein the decompressor data services provided to the
services and the decompressor resource is configured to processor include at least one or more of data decompres
perform decompressor data services ; sion , data reconstruction and data reconstitution .

circuitry configured to store data to and retrieve data from 8 . The high - density solid - state storage system of claim 5
each of the plurality of solid - state storage devices ; wherein the solid state storage devices are flash cards .

wherein the solid state storage unit is configured to at least 60 9 . A method comprising :
one of : managing a plurality of solid - state storage devices con
in response to at least one of a scheduling algorithm and figured to store data ; each solid - state storage devices

a load - balancing algorithm for the compressor data comprising a plurality of flash modules , and its own
services , send data from a computing device to one compressor resource and decompressor resource ,
of the plurality of solid - state storage devices , per - 65 wherein the compressor resource is configured to per
form decompressor data services on the data in a form compressor data services and the decompressor
different one of the plurality of solid - state storage resource is configured to perform decompressor data

27
US 9 , 778 , 885 B2

28
services , wherein each of the plurality of solid - state 10 . The method of claim 9 wherein the compressor data
storage devices is configured to store and retrieve data ; services provided to the processor include at least one or

performing at least one of the following : more of data compression , data reduction and data dedupli in response to at least one of a scheduling algorithm and cation . a load balancing algorithm for the compressor data 5 11 . The method of claim 9 wherein the decompressor data services , sending data from a processor to one of the
plurality of solid - state storage devices , performing services provided to the processor include at least one or
compressor data services on the data in the one of the more of data decompression , data reconstruction and data
plurality of solid - state storage devices , and storing reconstitution .
the compressed data in a different one of the plurality . 12 . The method of claim 9 wherein to select one of the
of solid - state storage devices ; plurality of solid - state storage devices the processor is

in response to at least one of a scheduling algorithm and configured to determine availability of the compressor or a load - balancing algorithm for the decompressor decompressor data services of each of the plurality of
data services , retrieving data from one of the plural solid - state storage devices . ity of solid - state storage devices , performing decom
pressor data services on the data in a different one of 15 13 . The method of claim 9 wherein the sod state storage
the plurality of solid - state storage devices , and send devices are flash cards .
ing the decompressed data to the processor . * * *

