
MAI MOTOMONTANT UN DIMULATON HII US009767152B2 

( 12 ) United States Patent 
Venkataramani et al . 

( 10 ) Patent No . : US 9 , 767 , 152 B2 
( 45 ) Date of Patent : Sep . 19 , 2017 

( 54 ) DISTRIBUTED CACHE FOR GRAPH DATA ( 56 ) References Cited 

( 71 ) Applicant : Facebook , Inc . , Menlo Park , CA ( US ) U . S . PATENT DOCUMENTS 
5 , 448 , 727 A 
6 , 675 , 264 B2 

9 / 1995 Annevelink 
1 / 2004 Chen 

( Continued ) 
( 72 ) Inventors : Venkateshwaran Venkataramani , 

Sunnyvale , CA ( US ) ; George Cabrera , 
III , Redwood City , CA ( US ) ; 
Venkatasiva Prasad Chakkabala , 
Sunnyvale , CA ( US ) ; Mark 
Marchukov , Mountain View , CA ( US ) 

FOREIGN PATENT DOCUMENTS 
CN 
JP JP 

1673244 3 / 2010 
2005 - 122703 5 / 2005 

( Continued ) ( 73 ) Assignee : Facebook , Inc . , Menlo Park , CA ( US ) 
( * ) Notice : OTHER PUBLICATIONS Subject to any disclaimer , the term of this 

patent is extended or adjusted under 35 
U . S . C . 154 ( b ) by 0 days . 

( 21 ) Appl . No . : 14 / 954 , 675 
International Search Report and Written Opinion for International 
Application No . PCT / US2011 / 062609 , Jul . 12 , 2012 . 

( Continued ) 
( 22 ) Filed : Nov . 30 , 2015 

( 65 ) Prior Publication Data 
US 2016 / 0085881 A1 Mar . 24 , 2016 

Primary Examiner — Hiep Nguyen 
( 74 ) Attorney , Agent , or Firm — Baker Botts L . L . P . 

( 57 ) ABSTRACT Related U . S . Application Data 
( 63 ) Continuation of application No . 14 / 577 , 190 , filed on 

Dec . 19 , 2014 , now Pat . No . 9 , 208 , 207 , which is a 
( Continued ) 

O ( 51 ) Int . Ci . 
G06F 12 / 08 ( 2016 . 01 ) 
G06F 1730 ( 2006 . 01 ) 

( Continued ) 
( 52 ) U . S . Ci . 

CPC . . . . . G06F 17 / 3048 ( 2013 . 01 ) ; G06F 12 / 0844 
( 2013 . 01 ) ; G06F 17 / 3033 ( 2013 . 01 ) ; 
( Continued ) 

( 58 ) Field of Classification Search 
CPC . . . . . . . . . . . . . GO6F 12 / 0804 ; G06F 12 / 0806 ; G06F 

12 / 0811 ; G06F 12 / 0813 ; GO6F 12 / 0815 ; 
( Continued ) 

In one embodiment , a system comprises a database opera 
tive to maintain a social graph , a leader cache layer com 
prising one or more leader cache clusters , and a follower 
cache layer comprising one or more follower cache clusters , 
wherein the leader cache layer is operative to , communicate 
social graph information between the follower cache cluster 
and the database , wherein each follower cache cluster main 
tains at least a portion of the social graph , receive a request 
from one of the follower cache clusters to store social graph 
information in the database , update the database storing the 
social graph responsive to the request , and update one or 
more of the follower cache clusters storing the portion of the 
social graph associated with the request . 

18 Claims , 4 Drawing Sheets 

100 

* * * * * * * - - * * * * * * * * * * * * * * * * * * * * * * * * * * - - - * * * * * * * * * * * * * * * * * * * * * * 

Gr14 2 style lo omalo te 46 106 got their € toe toe www ww * * * * * * wwwww w ww 

14 - 1 

p 

110 110 



US 9 , 767 , 152 B2 
Page 2 

Related U . S . Application Data 
continuation of application No . 14 / 080 , 573 , filed on 
Nov . 14 , 2013 , now Pat . No . 8 , 954 , 675 , which is a 
continuation of application No . 13 / 227 , 381 , filed on 
Sep . 7 , 2011 , now Pat . No . 8 , 612 , 688 . 
Provisional application No . 61 / 428 , 799 , filed on Dec . 
30 , 2010 . 

( 60 ) 

( 51 ) 

( 52 ) 

Int . CI . 
G06F 12 / 0844 ( 2016 . 01 ) 
H04L 29 / 08 ( 2006 . 01 ) 
U . S . CI . 
CPC . . GO6F 1730377 ( 2013 . 01 ) ; G06F 1730424 

( 2013 . 01 ) ; G06F 17 / 30457 ( 2013 . 01 ) ; G06F 
17 / 30554 ( 2013 . 01 ) ; G06F 17 / 30575 

( 2013 . 01 ) ; G06F 17 / 30595 ( 2013 . 01 ) ; G06F 
17130876 ( 2013 . 01 ) ; GOOF 1730902 

( 2013 . 01 ) ; G06F 17 30958 ( 2013 . 01 ) ; H04L 
67 / 2842 ( 2013 . 01 ) ; G06F 17 / 30132 ( 2013 . 01 ) ; 

G06F 2212 / 463 ( 2013 . 01 ) ; G06F 2212 / 60 
( 2013 . 01 ) 

Field of Classification Search 
CPC . . . . GO6F 12 / 0824 ; G06F 12 / 0828 ; G06F 

12 / 084 ; G06F 17 / 30902 ; G06F 17 / 30091 ; 
G06F 17 / 30864 ; G06F 17 / 3048 ; GO6F 

17 / 3033 ; GO6F 17 / 30457 ; G06F 
17 / 30595 ; G06F 17 / 30876 ; G06F 
17 / 30424 ; G06F 17 / 30554 ; G06F 
17 / 30958 ; G06F 17 / 30377 ; G06F 
17 / 30575 ; G06F 17 / 30132 ; G06F 

12 / 0844 ; G06F 12 / 22126 ; G06F 12 / 463 ; 
H04L 67 / 2842 

See application file for complete search history . 

7 , 860 , 894 B2 12 / 2010 Rohwedder 
8 , 326 , 865 B2 12 / 2012 Dettinger 
8 , 346 , 864 B1 * 1 / 2013 Amidon . . . . . . . . . . . . . . H04L 65 / 1069 

709 / 204 
9 , 208 , 207 B2 12 / 2015 Venkataramani 

2002 / 0166031 A1 11 / 2002 Chen 
2003 / 0225723 A1 * 12 / 2003 Agarwalla . . . . . . . GO6F 17 / 30569 

707 / 600 
2004 / 0033610 AL 2 / 2004 Lovell 
2006 / 0190243 A1 8 / 2006 Barkai et al . 
2007 / 0230468 A1 10 / 2007 Narayanan 
2008 / 0195584 AL 8 / 2008 Nath 
2009 / 0059842 A 3 / 2009 Maltseff 
2009 / 0248709 A1 10 / 2009 Fuhrmann 
2010 / 0241634 A1 * 9 / 2010 Madhok . . . . . . . . . . . . G06Q 10 / 107 

707 / 748 
2011 / 0145307 AL 6 / 2011 Ananthanarayanan 
2011 / 0145363 A1 6 / 2011 Ananthanarayanan 
2011 / 0231578 A1 * 9 / 2011 Nagappan . . . . . . . . . GO6F 17 / 30575 

709 / 248 
2012 / 0110678 A1 5 / 2012 Nayak 
2012 / 0158715 A1 * 6 / 2012 Maghoul . . . . . . . . . . . GO6F 17 / 30867 

707 / 728 
2012 / 0173541 A1 7 / 2012 Venkataramani 
2012 / 0173820 Al 7 / 2012 Venkataramani 
2012 / 0173845 A17 / 2012 Venkataramani 
2012 / 0215785 Al 8 / 2012 Singh 
2014 / 0074876 Al 3 / 2014 Venkataramani 

( 58 ) 

FOREIGN PATENT DOCUMENTS 
KR 
wo 

10 - 2010 - 0105568 
2009 / 097586 

9 / 2010 
8 / 2009 

OTHER PUBLICATIONS 

( 56 ) References Cited 
U . S . PATENT DOCUMENTS 

Office Action for U . S . Appl . No . 13 / 227 , 393 , May 21 , 2012 . 
Notice of Allowance for U . S . Appl . No . 13 / 227 , 385 , Jan . 22 , 2013 . 
Notice of Allowance for KR 10 - 2016 - 7001846 , Jun . 21 , 2016 . 
Extended European Search Report for EP 11853438 . 7 - 1951 / 
2659386 , Jun . 13 , 2016 . 
Notice of Allowance for KR Patent Application 10 - 2016 - 7017888 , 
dated May 31 , 2017 . 
Notification of First Office Action for CN Patent Application 
2016107413076 , dated Apr . 24 , 2017 . 6 , 829 , 654 B1 * 12 / 2004 Jungck . . . . . . . . . . . . . . . . . . . . . HO4L 47 / 10 

370 / 475 
7 , 555 , 412 B2 6 / 2009 Nath * cited by examiner 



, { 

F 

US 9 , 767152 B2 

{ { 

wwwwwwww? Www 3 wwwY ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? - 
Ex 
~ LL 

Sheet 1 of 4 

* 

: KK 

KK 

KK 

KK 

K + 

K 

KK 

KK 
& 

W 

X 

Y 

& 

& 

Kk 

K + 

KK 

KKK 

KK KK 

K 

W 

+ 

G + : KK KK 

KK 

KKR 

* 

* 

* 

* 

* 

* 

* 

KK 

KK 

KK KK 

K 

W 

X 

# k 

? 

M 

vu 

www 

? 

? ?? ?? 

???? ?? ?? ?? 

z 

??? ?? 

www + 

T 

www 

y 

ft + + + + 

F 

? 

x 

? 

n / } 

? 

? 

?? 

S 

w 

WY Ww 

GUJAUS 

S 

? 

? 

?? 

w 

+ 

90 

S S 

ww 

? 

? 

S 

? 

ww 

?? ?? ?? ?? ?? 

x w 

? ? 

T 

Sep . 19 , 2017 

? 

zr112 
?? 

E 

Lyr112 

why www 

sg 

? 

w 

? ? 

www 

w 

?? ??? 

w 

vu ' 

??? 

? 

? 

* 

?? ?? 

- ? 

Www 

w 

? 

? 

? 

ww 

Www 

. 

hmmmmm 
M 

? 

m 

- 10 / 

? 

S 

VOL 

?? ?? ?? ?? ??? 

[ 

www? 

w 

_ FfY 

? 

www 

w 

? 

C 

? 

www3 

w? 

? 

w 

? 

? 

, ? 

w? 

?? ?? 

? 

& # # 

# 

# 

# 

# # ?  ? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

? ? 

?? 

? 

? 

? 

? 

? 

? 

? 

? 

? 

?? 
? 

? 

? 

? 

? 

? 

U . S . Patent 

{ } { ? 



U . S . Patent Sep . 19 , 2017 Sheet 2 of 4 US 9 , 767 , 152 B2 

WWWWWWWWWWWWWW 1000 
1002 PROCESSOR 1004 

wwwwwwwww CACHE 
Y YYYY L - 1016 

1010 HOST 
R?? 

1006 
HIGH PERFORMANCE VO BUS , 

NETWORK 
INTERFACE neon J - 1016 Finang A HIGH PER 

1012 
1 / O BUS 
{ R }? ? 

SYSTEM 
MEMORY mensen 1014 

STANDARD 1 / 0 BUS 
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 

wab 1008 en meer MASS 
STORAGE 

VO 1018 - op FIG . 2 

wwwwwwww 

assoc add ( id1 , type , id2 , metadata ) 

IDENTIFY ASSOCIATION SET ( idy , type ) 
??????????????????????????? 

MY 

ADD Id2 TO HASH TABLE AND 
CIRCULAR BUFFER : INCREMENT COUNT 

www 

IDENTIFY Shardlo FOR 1d2 ; FORWARD 
assoc TO CACHE NODE FOR PROCESSING ; 

IF SAME CACHE NODE , PROCESS 

FORWARD assoc add TO 
LEADER CACHE NODE 408 408 

FIG . 4 



atent Sep . 19 , 2017 Sheet 3 of 4 US 9 , 767 , 152 B2 m 

SOCIAL NETWORKING SYSTEM 

KARAWAK 220 225 
W 

2 

wwwwwwwwwwwwww 
ZZZZZ 

w * * * * * M 

7 

we Ayo wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww y - tulos 
7777777777777777777 Www wwwww wwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwwww 

CUKOOOOOOOOOOOOOOO CUENT CLIENT 730 

CUENT NETWORK CLIENT 

30 - 4 CLIENTI 
304 cuber — 
- 

00000000000000000000 XXXXXXXXXXX 

I 
seront 
Per 

CLIENT - 30 
cem * * 

a 60 
CUENT FIG . 3 IND 123 

wwwwwwwwwwwwwwwwwww 

WRITE 

106 106 106 Gö 0 0 * ACK 

REPLICATION 
viä 
wwwwwwwwwww 

9801 
w 

mamman - 40 10 mm 
1020 FIG . 5 1 



U . S . Patent Sep . 19 , 2017 Sheet 4 of 4 US 9 , 767 , 152 B2 

RECEIVE WRITE COMMAND 
FROM FOLLOWER CACHE NODE 

???????????????????????????????????????????????? + + + + + + + + + + + + + 

PROCESS WRITE COMMAND 
IN LEADER CACHE CLUSTER 

L - 604 

000000000000000010100110010 

WAITE UPDATES TO 
PERSISTENT DATABASE 

606 

SEND ACK TO FOLLOWER CACHE 
NODE AND BROADCAST UPDATE TO 
OTHER FOLLOWER CACHE CLUSTERS - 608 

ADD UPDATE TO REPLICATION LOG 

FIG . 6 

{ ? { E 

106 106 WRRRRRRRRRRRRRRR mit 
I 106 106 106 

ACK 

www 
ww 

Wwwwwwww 
www 

REPLICATION REPLICATION 108a 1086 1086 
10a 1100 

FIG . 



US 9 , 767 , 152 B2 

DISTRIBUTED CACHE FOR GRAPH DATA for example , financial records , manufacturing and logistical 
information , personnel data , and other applications . As 

PRIORITY computer power has increased , the inefficiencies of rela 
tional databases , which made them impractical in earlier 

This application is a continuation under 35 U . S . C . $ 120 of 5 times , have been outweighed by their ease of use for 
U . S . patent application Ser . No . 14 / 577 , 190 , filed 19 Dec . conventional applications . The three leading open source 
2014 , which is a continuation under 35 U . S . C . $ 120 of U . S . implementations are MySQL , PostgreSQL , and SQLite . 
patent application Ser . No . 14 / 080 , 573 , filed 14 Nov . 2013 , MySQL is a relational database management system ( RD 
which is a continuation under 35 U . S . C . $ 120 of U . S . patent BMS ) that runs as a server providing multi - user access to a 
application Ser . No . 13 / 227 , 381 , filed 7 Sep . 2011 , now U . S . 10 number of databases . The “ M ” in the acronym of the popular 
Pat . No . 8 , 612 , 688 , issued 17 Dec . 2013 , which claims the LAMP software stack refers to MySQL . Its popularity for 
benefit under 35 U . S . C . $ 119 ( e ) of U . S . Provisional Patent use with web applications is closely tied to the popularity of 
Application No . 61 / 428 , 799 , filed 30 Dec . 2010 , each of PHP ( the “ P ” in LAMP ) . Several high - traffic web sites use 
which is incorporated herein by reference . MySQL for data storage and logging of user data . 

15 As communicating with relational databases is often a 
TECHNICAL FIELD speed bottleneck , many networks utilize caching systems to 

serve particular information queries . For example , Mem 
The present disclosure relates generally to storing and cached is a general - purpose distributed memory caching 

serving graph data , and more particularly , to storing and system . It is often used to speed up dynamic database - driven 
serving graph data with a distributed cache system . 20 websites by caching data and objects in RAM to reduce the 

number of times an external data source ( such as a database 
BACKGROUND or API ) must be read . Memcached ' s APIs provide a giant 

hash table distributed across multiple machines . When the 
Computer users are able to access and share vast amounts table is full , subsequent inserts cause older data to be purged 

of information through various local and wide area computer 25 in least recently used ( LRU ) order . Applications using 
networks including proprietary networks as well as public Memcached typically layer requests and additions into core 
networks such as the Internet . Typically , a web browser before falling back on a slower backing store , such as a 
installed on a user ' s computing device facilitates access to database . 
and interaction with information located at various network The Memcached system uses a client - server architecture . 
servers identified by , for example , associated uniform 30 The servers maintain a key - value associative array ; the 
resource locators ( URLs ) . Conventional approaches to clients populate this array and query it . Clients use client 
enable sharing of user - generated content include various side libraries to contact the servers . Typically , each client 
information sharing technologies or platforms such as social knows all servers and the servers do not communicate with 
networking websites . Such websites may include , be linked each other . If a client wishes to set or read the value 
with , or provide a platform for applications enabling users to 35 corresponding to a certain key , the client ' s library first 
view web pages created or customized by other users where computes a hash of the key to determine the server that will 
visibility and interaction with such pages by other users is be used . The client then contacts that server . The server will 
governed by some characteristic set of rules . compute a second hash of the key to determine where to 

Such social networking information , and most informa store or read the corresponding value . Typically , the servers 
tion in general , is typically stored in relational databases . 40 keep the values in RAM ; if a server runs out of RAM , it 
Generally , a relational database is a collection of relations discards the oldest values . Therefore , clients must treat 
( frequently referred to as tables ) . Relational databases use a Memcached as a transitory cache ; they cannot assume that 
set of mathematical terms , which may use Structured Query data stored in Memcached is still there when they need it . 
Language ( SQL ) database terminology . For example , a 
relation may be defined as a set of tuples that have the same 45 BRIEF DESCRIPTION OF THE DRAWINGS 
attributes . A tuple usually represents an object and informa 
tion about that object . A relation is usually described as a FIG . 1 illustrates an example caching system architecture 
table , which is organized into rows and columns . Generally , according to one implementation of the invention . 
all the data referenced by an attribute are in the same domain FIG . 2 illustrates an example computer system architec 
and conform to the same constraints . 50 ture . 

The relational model specifies that the tuples of a relation FIG . 3 provides an example network environment . 
have no specific order and that the tuples , in turn , impose no FIG . 4 shows a flowchart illustrating an example method 
order on the attributes . Applications access data by speci - for adding a new association to a graph . 
fying queries , which use operations to identify tuples , iden - FIG . 5 is a schematic diagram illustrating an example 
tify attributes , and to combine relations . Relations can be 55 message flow between various components of a caching 
modified and new tuples can supply explicit values or be system . 
derived from a query . Similarly , queries identify may tuples FIG . 6 shows a flowchart illustrating an example method 
for updating or deleting . It is necessary for each tuple of a for processing changes to graph data . 
relation to be uniquely identifiable by some combination FIG . 7 is a schematic diagram illustrating an example 
( one or more ) of its attribute values . This combination is 60 message flow between various components of a caching 
referred to as the primary key . In a relational database , all system . 
data are stored and accessed via relations . Relations that 
store data are typically implemented with or referred to as DESCRIPTION OF EXAMPLE EMBODIMENTS 
tables . 

Relational databases , as implemented in relational data - 65 Particular embodiments relate to a distributed caching 
base management systems , have become a predominant system for storing and serving information modeled as a 
choice for the storage of information in databases used for , graph that includes nodes and edges that define associations 



US 9 , 767 , 152 B2 

or relationships between nodes that the edges connect in the using Common Gateway Interface ( CGI ) script , PHP Hyper 
graph . In particular embodiments , the graph is , or includes , text Preprocessor ( PHP ) , Active Server Pages ( ASP ) , Hyper 
a social graph , and the distributed caching system is part of Text Markup Language ( HTML ) , Extensible Markup Lan 
a larger networking system , infrastructure , or platform that guage ( XML ) , Java , JavaScript , Asynchronous JavaScript 
enables an integrated social network environment . In the 5 and XML ( AJAX ) , and the like . 
present disclosure , the social network environment may be Physical servers 22 may host functionality directed to the 
described in terms of a social graph including social graph operations of social networking system 20 . By way of 
information . In fact , particular embodiments of the present example , social networking system 20 may host a website 
disclosure rely on , exploit , or make use of the fact that most that allows one or more users , at one or more client devices 
or all of the data stored by or for the social network 10 30 , to view and post information , as well as communicate 
environment can be represented as a social graph . Particular with one another via the website . Hereinafter servers 22 may 
embodiments provide a cost - effective infrastructure that can be referred to as server 22 , although server 22 may include 
efficiently , intelligently , and successfully scale with the numerous servers hosting , for example , social networking 
exponentially increasing number of users of the social system 20 , as well as other content distribution servers , data 
network environment such as that described herein . 15 stores , and databases . Data store 24 may store content and 

In particular embodiments , the distributed caching system data relating to , and enabling , operation of the social net 
and backend infrastructure described herein provides one or working system as digital data objects . A data object , in 
more of : low latency at scale , a lower cost per request , an particular implementations , is an item of digital information 
easy to use framework for developers , an infrastructure that typically stored or embodied in a data file , database or 
supports multi - master , an infrastructure that provides access 20 record . Content objects may take many forms , including : 
to stored data to clients written in languages other than text ( e . g . , ASCII , SGML , HTML ) , images ( e . g . , jpeg , tif and 
Hypertext Preprocessor ( PHP ) , an infrastructure that enables gif ) , graphics ( vector - based or bitmap ) , audio , video ( e . g . , 
combined queries involving both associations ( edges ) and mpeg ) , or other multimedia , and combinations thereof . 
objects ( nodes ) of a social graph as described by way of Content object data may also include executable code 
example herein , and an infrastructure that enables different 25 objects ( e . g . , games executable within a browser window or 
persistent data stores to be used for different types of data . frame ) , podcasts , etc . Logically , data store 24 corresponds to 
Furthermore , particular embodiments provide one or more one or more of a variety of separate and integrated data 
of : an infrastructure that enables a clean separation of the bases , such as relational databases and object - oriented data 
data access API from the caching + persistence + replication bases , that maintain information as an integrated collection 
infrastructure , an infrastructure that supports write - through / 30 of logically related records or files stored on one or more 
read - through caching , an infrastructure that moves compu - physical systems . Structurally , data store 24 may generally 
tations closer to the data , an infrastructure that enables include one or more of a large class of data storage and 
transparent migration to different storage schemas and back management systems . In particular embodiments , data store 
ends , and an infrastructure that improves the efficiency of 24 may be implemented by any suitable physical system ( s ) 
data object access . 35 including components , such as one or more database servers , 

Additionally , as used herein , “ or ” may imply " and " as mass storage media , media library systems , storage area 
well as " or ; ” that is , “ or ” does not necessarily preclude networks , data storage clouds , and the like . In one example 
" and , ” unless explicitly stated or implicitly implied . embodiment , data store 24 includes one or more servers , 

Particular embodiments may operate in a wide area net databases ( e . g . , MySQL ) , and / or data warehouses . 
work environment , such as the Internet , including multiple 40 Data store 24 may include data associated with different 
network addressable systems . FIG . 3 illustrates an example social networking system 20 users and / or client devices 30 . 
network environment , in which various example embodi - In particular embodiments , the social networking system 20 
ments may operate . Network cloud 60 generally represents maintains a user profile for each user of the system 20 . User 
one or more interconnected networks , over which the sys - profiles include data that describe the users of a social 
tems and hosts described herein can communicate . Network 45 network , which may include , for example , proper names 
cloud 60 may include packet - based wide area networks ( first , middle and last of a person , a trade name and / or 
( such as the Internet ) , private networks , wireless networks , company name of a business entity , etc . ) biographic , demo 
satellite networks , cellular networks , paging networks , and graphic , and other types of descriptive information , such as 
the like . As FIG . 3 illustrates , particular embodiments may work experience , educational history , hobbies or prefer 
operate in a network environment comprising social net - 50 ences , geographic location , and additional descriptive data . 
working system 20 and one or more client devices 30 . Client By way of example , user profiles may include a user ' s 
devices 30 are operably connected to the network environ birthday , relationship status , city of residence , and the like . 
ment via a network service provider , a wireless carrier , or The system 20 may further store data describing one or more 
any other suitable means . relationships between different users . The relationship infor 

In one example embodiment , social networking system 20 55 mation may indicate users who have similar or common 
comprises computing systems that allow users to commu - work experience , group memberships , hobbies , or educa 
nicate or otherwise interact with each other and access tional history . A user profile may also include privacy 
content , such as user profiles , as described herein . Social settings governing access to the user ' s information is to 
networking system 20 is a network addressable system that other users . 
in various example embodiments , comprises one or more 60 Client device 30 is generally a computer or computing 
physical servers 22 and data store 24 . The one or more device including functionality for communicating ( e . g . , 
physical servers 22 are operably connected to computer remotely ) over a computer network . Client device 30 may be 
network 60 via , by way of example , a set of routers and / or a desktop computer , laptop computer , personal digital assis 
networking switches 26 . In an example embodiment , the tant ( PDA ) , in - or out - of - car navigation system , smart phone 
functionality hosted by the one or more physical servers 22 65 or other cellular or mobile phone , or mobile gaming device , 
may include web or HTTP servers , FTP servers , as well as , among other suitable computing devices . Client device 30 
without limitation , web pages and applications implemented may execute one or more client applications , such as a web 



US 9 , 767 , 152 B2 

browser ( e . g . , Microsoft Windows Internet Explorer , the follower cache clusters 106 , and the client servers 104 
Mozilla Firefox , Apple Safari , Google Chrome , and Opera , they respectively serve , may be located within a centralized 
etc . ) , to access and view content over a computer network . location , each of the follower cache clusters 106 and respec 
In particular implementations , the client applications allow tive client servers 104 the follower cache clusters 106 
a user of client device 30 to enter addresses of specific 5 respectively serve , may be located in a different location 
network resources to be retrieved , such as resources hosted than the other follower cache clusters 106 and respective 
by social networking system 20 . These addresses can be client servers 104 of a given data center ; that is , the follower 
Uniform Resource Locators , or URLs . In addition , once a cache clusters 106 ( and the respective client servers 104 the 
page or other resource has been retrieved , the client appli - clusters serve ) of a given data center of a given region may 
cations may provide access to other pages or records when 10 be distributed throughout various locations within the 
the user “ clicks ” on hyperlinks to other resources . By way region . 
of example , such hyperlinks may be located within the web In particular embodiments , each data center 102 further 
pages and provide an automated way for the user to enter the includes a leader cache cluster 108 that communicates 
URL of another page and to retrieve that page . information between the follower cache clusters 106 of a 

FIG . 1 illustrates an example embodiment of a network - 15 given data center 102 and a persistent storage database 110 
ing system , architecture , or infrastructure 100 ( hereinafter of the given data center 102 . In particular embodiments , 
referred to as networking system 100 ) that can implement database 110 is a relational database . In particular embodi 
the back end functions of social networking system 20 ments , leader cache cluster 108 may include a plug - in 
illustrated in FIG . 3 . In particular embodiments , networking operative to interoperate with any suitable implementation 
system 100 enables users of networking system 100 to 20 of database 110 . For example , database 110 may be imple 
interact with each other via social networking services mented as a dynamically - variable plug - in architecture and 
provided by networking system 100 as well as with third may utilize MySQL , and / or any suitable relational database 
parties . For example , users at remote user computing management system such as , for example , HAYSTACK , 
devices ( e . g . , personal computers , netbooks , multimedia CASSANDRA , among others . In one implementation , the 
devices , cellular phones ( especially smart phones ) , etc . ) may 25 plug - in performs various translation operations , such as 
access networking system 100 via web browsers or other translating data stored in the caching layer as graph nodes 
user client applications to access websites , web pages , or and edges to queries and commands suitable for a relational 
web applications hosted or accessible , at least in part , by database including one or more tables or flat files . In 
networking system 100 to view information , store or update particular embodiments , leader cache cluster 108 also coor 
information , communicate information , or otherwise inter - 30 dinates write requests to database 110 from follower cache 
act with other users , third party websites , web pages , or web clusters 106 and sometimes read requests from follower 
applications , or other information stored , hosted , or acces - cache clusters 106 for information cached in leader cache 
sible by networking system 100 . In particular embodiments , cluster 108 or ( if not cached in leader cache cluster 108 ) 
networking system 100 maintains a graph that includes stored in database 110 . In particular embodiments , leader 
graph nodes representing users , concepts , topics , and other 35 cache cluster 108 further coordinates the synchronization of 
information ( data ) , as well as graph edges that connect or information stored in the follower cache clusters 106 of the 
define relationships between graph nodes , as described in respective data center 102 . That is , in particular embodi 
more detail below . ments , the leader cache cluster 108 of a given data center 

With reference to FIGS . 1 and 5 , in particular embodi 102 is configured to maintain cache consistency ( e . g . , the 
ments , networking system 100 includes one or more data 40 information cached ) between the follower cache clusters 106 
centers 102 . For example , networking system 100 may of the data center 102 , to maintain cache consistency 
include a plurality of data centers 102 located strategically between the follower cache clusters 106 and the leader cache 
within various geographic regions for serving users located cluster 108 , and to store the information cached in leader 
within respective regions . In particular embodiments , each cache cluster 108 within database 110 . In one implementa 
data center includes a number of client or web servers 104 45 tion , a leader cache cluster 108 and a follower cache cluster 
( hereinafter client servers 104 ) that communicate informa - 106 can be considered a caching layer between client servers 
tion to and from users of networking system 100 . For 104 and database 110 . 
example , users at remote user computing devices may In one implementation , the caching layer is a write - thru / 
communicate with client servers 104 via load balancers or read - thru caching layer , wherein all reads and writes traverse 
other suitable systems via any suitable combination of 50 the caching layer . In one implementation , the caching layer 
networks and service providers . Client servers 104 may maintains association information and , thus , can handle 
query the caching system described herein in order to queries for such information . Other queries are passed 
retrieve data to generate structured documents for respond through to database 110 for execution . Database 110 gen 
ing to user requests . erally connotes a database system that may itself include 

Each of the client servers 104 communicates with one or 55 other caching layers for handling other query types . 
more follower distributed cache clusters or rings 106 ( here Each follower cache cluster 106 may include a plurality of 
inafter follower cache clusters 106 ) . In the illustrated follower cache nodes 112 , each of which may be running on 
embodiment , data center 102 includes three follower cache an individual computer , computing system , or server . How 
clusters 106 that each serve a subset of the web servers 104 . ever , as described above , each of the follower cache nodes 
In particular embodiments , a follower cache cluster 106 and 60 112 of a given follower cache cluster 106 may be located 
the client servers 104 the follower cache cluster 106 serves within a centralized location . Similarly , each leader cache 
are located in close proximity , such as within a building , cluster 108 may include a plurality of leader cache nodes 
room , or other centralized location , which reduces costs 114 , each of which may be running on an individual com 
associated with the infrastructure ( e . g . , wires or other com - puter , computing system , or server . Similar to the follower 
munication lines , etc . ) as well as latency between the client 65 cache nodes 112 of a given follower cache cluster 106 , each 
servers 104 and respective serving follower cache nodes of the leader cache nodes 114 of a given leader cache cluster 
cluster 106 . However , in some embodiments , while each of 108 may be located within a centralized location . For 



US 9 , 767 , 152 B2 

example , each data center 102 may include tens , hundreds , respective follower cache cluster 106 and each shard is 
or thousands of client servers 104 and each follower cache assigned a range of node IDs for which to store information , 
cluster 106 may include tens , hundreds , or thousands of including information about the nodes whose respective 
follower cache nodes 112 that serve a subset of the client node IDs map to the shard IDs in the range of shard IDs 
servers 104 . Similarly , each leader cache cluster 108 may 5 stored by the particular shard . Similarly , each leader cache 
include tens , hundreds , or thousands of leader cache nodes n ode 114 in the leader cache cluster 108 may store a subset 
114 . In particular embodiments , each of the follower cache of the shards ( e . g . , tens , hundreds , or thousands of shards ) 
nodes 112 within a given follower cache cluster 106 may stored by the respective leader cache cluster 108 and each 
only communicate with the other follower cache nodes 112 s hard is assigned a range of node IDs for which to store 
within the particular follower cache cluster 106 , the client 10 information , including information about the nodes whose 
servers 104 served by the particular follower cache cluster respective node IDs map to the shard IDs in the range of 
106 , and the leader cache nodes 114 within the leader cache shard IDs stored by the particular shard . 
cluster 108 . However , as described above , a given shard ID corre 

In particular embodiments , information stored by net - sponds to the same data objects stored by the follower and 
working system 100 is stored within each data center 102 15 leader cache clusters 106 and 108 , respectively . As the 
both within database 110 as well as within each of the number of follower cache nodes 106 within each follower 
follower and leader cache clusters 106 and 108 , respectively . cache cluster 106 and the number of leader cache nodes 114 
In particular embodiments , the information stored within within the leader cache cluster 108 may vary statically ( e . g . , 
each database 110 is stored relationally ( e . g . , as objects and the follower cache clusters 106 and the leader cache cluster 
tables via MySQL ) , whereas the same information is stored 20 108 may generally include different numbers of follower 
within each of the follower cache clusters 106 and the leader cache nodes 112 and leader cache nodes 114 , respectively ) 
cache cluster 108 in a number of data shards stored by each or dynamically ( e . g . , cache nodes within a given cache 
of the follower and leader cache clusters 106 and 108 , cluster may be shut down for various reasons periodically or 
respectively , in the form of a graph including graph nodes as needed for fixing , updating , or maintenance ) , the number 
and associations or connections between nodes ( referred to 25 of shards stored by each of the follower cache nodes 112 and 
herein as graph edges ) . In particular embodiments , the data leader cache nodes 114 may vary statically or dynamically 
shards of each of the follower cache clusters 106 and leader within each cache cluster as well as between cache clusters . 
cache cluster 108 are bucketized or divided among the cache Furthermore , the range of shard IDs assigned to each shard 
nodes 112 or 114 within the respective cache cluster . That is , may also vary statically or dynamically . 
each of the cache nodes 112 or 114 within the respective 30 In particular embodiments , each of the follower cache 
cache cluster stores a subset of the shards stored by the nodes 112 and leader cache nodes 114 includes graph 
cluster ( and each set of shards stored by each of the follower management software that manages the storing and serving 
and leader cache clusters 106 and 108 , respectively , stores of information cached within the respective cache node . In 
the same information , as the leader cache cluster synchro particular embodiments , the graph management software 
nizes the shards stored by each of the cache clusters of a 35 running on each of the cache nodes of a given cache cluster 
given data center 102 , and , in some embodiments , between may communicate to determine which shards ( and corre 
data centers 102 ) . sponding shard IDs ) are stored by each of the cache nodes 

In particular embodiments , each graph node is assigned a within the respective cache cluster . Additionally , if the cache 
unique identifier ( ID ) ( hereinafter referred to as node ID ) node is a follower cache node 112 , the graph management 
that uniquely identifies the graph node in the graph stored by 40 software running on the follower cache node 112 receives 
each of the follower and leader cache clusters 106 and 108 , requests ( e . g . , write or read requests ) from client servers 
respectively , and database 110 ; that is , each node ID is 104 , serves the requests by retrieving , updating , deleting , or 
globally unique . In one implementation , each node ID is a storing information within the appropriate shard within the 
64 - bit identifier . In one implementation , a shard is allocated follower cache node , and manages or facilitates communi 
a segment of the node ID space . In particular embodiments , 45 cation between the follower cache node 112 and other 
each node ID maps ( e . g . , arithmetically or via come math follower cache nodes 112 of the respective follower cache 
ematical function ) to a unique corresponding shard ID ; that cluster 106 as well as communication between the follower 
is , each shard ID is also globally unique and refers to the cache node 112 and the leader cache nodes 114 of the leader 
same data object in each set of shards stored by each of the cache cluster 108 . Similarly , if the cache node is a leader 
follower and leader cache clusters 106 and 108 , respectively . 50 cache node 114 , the graph management software running on 
In other words , all data objects are stored as graph nodes the leader cache node 114 manages the communication 
with unique node IDs and all the information stored in the between the leader cache node 114 and follower cache nodes 
graph in the data shards of each of the follower and leader 112 of the follower cache clusters 106 and the other leader 
cache clusters 106 and 108 , respectively , is stored in the data cache nodes 114 of the leader cache cluster 108 , as well as 
shards of each of the follower and leader cache clusters 106 55 communication between the leader cache node 114 and 
and 108 , respectively , using the same corresponding unique database 110 . The graph management software running on 
shard IDs . each of the cache nodes 112 and 114 understands that it is 
As just described , in particular embodiments , the shard ID storing and serving information in the form of a graph . 

space ( the collection of shard IDs and associated informa In particular embodiments , the graph management soft 
tion stored by all the shards of each cache cluster , and 60 ware on each follower cache node 112 is also responsible for 
replicated in all of the other follower cache clusters 106 and maintaining a table that it shares with the other cache nodes 
leader cache cluster 108 ) is divided among the follower or 112 of the respective follower cache cluster 106 , the leader 
leader cache nodes 112 and 114 , respectively , within the cache nodes 114 of the leader cache cluster 108 , as well as 
follower or leader cache clusters 106 and 108 , respectively . the client servers 104 that the respective follower cache 
For example , each follower cache node 112 in a given 65 cluster 106 serves . This table provides a mapping of each 
follower cache cluster 106 may store a subset of the shards shard ID to the particular cache node 112 in a given follower 
( e . g . , tens , hundreds , or thousands of shards ) stored by the cache cluster 106 that stores the shard ID and information 



US 9 , 767 , 152 B2 
10 

associated with the shard ID . In this way , the client servers Networking system 100 , and particularly the graph man 
104 served by a particular follower cache cluster 106 know agement software running on the follower cache nodes 112 
which of the follower cache nodes 112 within the follower of follower cache clusters 106 and the leader cache nodes 
cache cluster 106 maintain the shard ID associated with 114 of the leader cache cluster 108 , support a number of 
information the client server 104 is trying to access , add , or 5 queries received from client servers 104 as well as to or from 
update ( e . g . , a client server 104 may send write or read other follower or leader cache nodes 112 and 114 , respec requests to the particular follower cache node 112 that tively . For example , the query object _ add { ID1 , node typel , 
stores , or will store , the information associated with a metadata ( not always specified ) , payload ( not always speci particular shard ID after using the mapping table to deter fied ) } causes the receiving cache node to store a new node mine which of the follower cache nodes 112 is assigned , and 10 with the node ID1 specified in the query of the specified stores , the shard ID ) . Similarly , in particular embodiments , node typel in the shard the node ID1 corresponds to . The the graph management software on each leader cache node receiving cache node also stores with the node ID1 the 114 is also responsible for maintaining a table that it shares 
with the other cache nodes 114 of the respective leader cache metadata ( e . g . , a timestamp ) and payload ( e . g . , name - value 
cluster 108 , as well as the follower cache nodes 112 of the 15 pairs and ! the 15 pairs and / or content such as text , media , resources , or 
follower cache clusters 106 that the leader cache cluster 108 references to resources ) , if specified . As another example , 
manages . Furthermore , in this way , each follower cache the query object _ update { ID1 , node typel ( not always speci 
node 112 in a given follower cache cluster 106 knows which fied ) , metadata ( not always specified ) , payload ( not always 
of the other follower cache nodes 112 in the given follower specified ) } causes the receiving cache node to update the 
cache cluster 106 stores which shard IDs stored by the 20 node identified by node ID1 specified in the query ( e . g . , 
respective follower cache cluster 106 . Similarly , in this way change the node type to the node typel specified in the 
each leader cache node 114 in the leader cache cluster 108 query , update the metadata with the metadata specified in the 
knows which of the other leader cache nodes 114 in the query , or update the content stored with the payload speci 
leader cache cluster 108 stores which shard IDs stored by the fied in the query ) in the corresponding shard . As another 
leader cache cluster 108 . Furthermore , each follower cache 25 example , the query object _ delete { node ID1 } causes the 
node 112 in a given follower cache cluster 106 knows which receiving cache node to delete the node identified by node 
of the leader cache nodes 114 in the leader cache cluster 108 ID1 specified in the query . As another example , the query 
stores which shard IDs . Similarly , each leader cache node object _ get { node ID1 } causes the receiving cache node to 114 in the leader cache cluster 108 knows which of the retrieve the content stored with the node identified by node follower cache nodes 112 in each of the follower cache 30 ID cache 30 ID1 specified in the query . clusters 106 stores which shard IDs . Now referring to edge queries ( as opposed to the node In particular embodiments , information regarding each queries just described ) , the query assoc _ add { ID1 , edge node in the graph , and in particular example embodiments a 
social graph , is stored in a respective shard of each of the typel , ID2 , metadata ( not always specified ) } causes the 
follower cache clusters 106 and leader cache cluster 108 35 rece 25 receiving cache node ( which stores node ID1 ) to create an 
based on its shard ID . Each node in the graph , as discussed edge between the node identified by node ID1 and the node 
above , has a node ID . Along with the shard ID , the respec identified by node ID2 of edge type edge typel and to store 
tive cache node 112 or 114 may store a node type parameter the edge with the node identified by node ID1 along with the 
identifying a type of the node , as well as one or more metadata ( e . g . , a timestamp indicating when the edge was 
name - value pairs ( such as content ( e . g . , text , media , or 40 requested ) if specified . As another example , the query 
URLs to media or other resources ) ) and metadata ( e . g . , a assoc _ update { node ID1 , edge typel , node ID2 , metadata 
timestamp when the node was created or modified ) . In ( not always specified ) } causes the receiving cache node 
particular embodiments , each edge in the graph , and in ( which stores node ID1 ) to update the edge between the node 
particular example embodiments a social graph , is stored identified by node ID1 and the node identified by node ID2 . 
with each node the edge is connected to . For example , most 45 As another example , the query assoc _ delete { node ID1 , edge 
edges are bi - directional ; that is , most edges each connect typel ( not always specified ) , node ID2 } causes the receiving 
two nodes in the graph . In particular embodiments , each cache node ( which stores node ID1 ) to delete the edge 
edge is stored in the same shard with each node the edge between the node identified by node ID1 and the node 
connects . For example , an edge connecting node ID1 to identified by node ID2 . As another example , the query 
node ID2 may be stored with the shard ID corresponding to 50 assoc _ get _ node ID1 , edge typel , sortkey ( not always speci 
node ID1 ( e . g . , shard ID1 ) and with the shard ID corre fied ) , start ( not always specified ) , limit ( not always speci 
sponding to node ID2 ( e . g . , shard ID2 ) , which may be in fied ) } causes the receiving cache node ( which stores node 
different shards or even different cache nodes of a given ID1 ) to return the node IDs of the nodes connected to the 
cache cluster . For example , the edge may be stored with node identified by node ID1 by edges of edge typel . 
shard ID1 in the form of { node ID1 , edge type , node ID2 } 55 Additionally , if specified , the sortkey specifies a filter . For 
where the edge type indicates the type of edge . The edge example , if the sortkey specifies a timestamp , the receiving 
may also include metadata ( e . g . , a timestamp indicating cache node ( which stores node ID1 ) returns the node IDs of 
when the edge was created or modified ) . The edge may also the nodes connected to the node identified by node ID1 by 
be cached with shard ID2 in the form of ( node ID1 , edge edges of edge typel which were created between the time 
type , node ID2 ) . For example , when a user of social net - 60 value specified by the start parameter and the time value 
working system 100 establishes a contact relationship with specified by the limit parameter . As another example , the 
another user or a fan relationship with a concept or user , the query assoc _ exists ( node ID1 , edge typel , list of other node 
edge relationship of type “ friend ” or “ fan ” may be stored in IDs , sortkey ( not always specified ) , start ( not always speci 
two shards , a first shared corresponding to the shard to fied ) , limit ( not always specified ) } causes the receiving 
which the user ' s identifier is mapped and a second shard to 65 cache node ( which stores node ID1 ) to return the node IDs 
which the object identifier of the other user or concept is of the nodes specified in the list of other node IDs connected 
mapped . to the node identified by shard ID1 by edges of edge typel . 



US 9 , 767 , 152 B2 
12 

In addition , the queries described above may be sent in the tently , not just the cached entries in the index ) ; b ) head ( 4 
described form and used to update the leader cache nodes bytes ) : the byte offset of array head ( element that sorts 
114 . highest ) in the circular buffer ; c ) tail ( 4 bytes ) : the byte offset 

In one implementation , the caching layer implemented by of array tail ( element that sorts lowest ) in the circular buffer ; 
the follower and leader cache clusters 108 and 106 cache 5 and d ) id2 index pointer ( 8 bytes ) : a pointer to a block 
maintain association data in one or more indexes in a manner containing an id2 hash table . 
that supports high query rates for one or more query types . The second ( $ id2 ) index is implemented , in one embodi 
In some implementations , the invention facilitates efficient m ent , as a hash table and supports quick inserts and lookups 
intersection , membership and filtering queries directed to for a given ( $ id1 , $ type , $ id2 ) association . The hash table 
associations between nodes in the graph . For example , in 10 itself , in one implementation , may be stored in a separate 
one implementation , the caching layer caches information in block allocated with memcached ' s memory allocator . The 
a manner optimized to handle point lookup , range and count table is an array of offsets into the primary index , each 
queries for a variety of associations between nodes . For identifying the first element in the corresponding hash 
example , in constructing a page , a client server 104 may bucket . Elements are linked into a bucket through their Slink 
issue a query for all friends of a given user . The client server 15 fields . Storing the hash table in a separate block allows 
104 may issue an assoc _ get query identifying the user and implementers to resize the table and the primary index 
the " friend ” edge type . To facilitate handling of the query , a independently , thus reducing the amount of memory copied 
cache node in the caching layer may store associations of a as the association set grows . Linking association entries into 
given type ( such as “ friends ” , “ fans ” , “ members ” , “ likes ” , buckets in - place also improves memory efficiency . The hash 
etc . ) between a first node ( e . g . , a node corresponding to a 20 table ( and bucket lists ) may need to be rebuilt when entries 
user ) and a node corresponding to contacts or friends of a marked hidden or deleted are expunged from the index , but 
user . In addition , to construct another party of the page , a this can be done infrequently . 
client server 104 may issue a query of the last N set of wall Accordingly , as a new association of the same < type > is 
posts on the profile , by issuing a assoc _ get query identifying added , a cache node 112 , 114 adds the newly associated 
the user or user profile , the " wallpost " edge type and a limit 25 object to the hash table and the circular buffer , removing the 
value . Similarly , comments to a particular wall post can be oldest entry from the circular buffer . As discussed above , the 
retrieved in a similar manner . < sortkey > value can be used to sort matching entries based 

In one implementation , the caching layer implemented by on the attribute , such as a time stamps . In addition , a < limit > 
the follower cache clusters 106 and the leader cache clusters value limits the number of returned results to the first N 
maintain a set of in - memory structures for associations 30 values , where N = < limit > . This configuration allows for 
between nodes ( idi , id2 ) in the graph that facilitate fast serving queries regarding associations between nodes at a 
searching and handle high query rates . For example , for each very high query rate . For example , a first query may ask to 
( id1 , type ) association set ( a set of all associations that display a set of friends in a section of a web page . A cache 
originate at idl and have a given type ) , the caching layer node can quickly respond to a get _ assoc ( id1 , type , sortkey , 
maintains two in - memory indexes . As discussed above , 35 limit ) query by looking up association set corresponding to 
these association sets are maintained by cache nodes in each id1 by accessing the primary index and retrieving the first N 
cluster that based on the shard in which id1 falls . Still ( where N = limit ) id2 entries in the circular buffer . In addi 
further , given the structure discussed below , a given asso - tion , the hash table of the secondary index facilitates point 
ciation between two nodes may be stored in two association look ups . Still further , the count value maintained by the 
sets each directed to the respective nodes of the association . 40 caching layer facilitates fast responses to the count of a 
A first index is based on a temporal attribute ( e . g . , time given association set ( id1 , type ) . 
stamps ) and supports range queries . A second index by id2 Some general examples of storing and serving data will 
does not support range queries , but supports better time now be described ( more specific examples relating to par 
complexity of inserts and look ups . In one implementation , ticular example implementations of a social graph will be 
the first index is an ordered dynamic array of association 45 described later after the particular example implementations 
entries stored in a circular buffer . Each entry in the circular of the social graph are described ) . For example , when a 
buffer describes or corresponds to one association and client server 104 receives a request for a web page , such as 
contains the following fields : a ) $ flags ( 1 byte ) ( indicating from a user of networking system 100 , or from another 
the visibility of an association ) ; b ) $ id2 ( 8 bytes ) ; c ) $ time server , component , application , or process of networking 
( 4 bytes ) ; d ) $ data ( 8 bytes ) ( $ data is a fixed size 8 byte field 50 system 100 ( e . g . , in response to a user request ) , the client 
( when more than 8 bytes are needed for $ data , this becomes server 104 may need to issue one or more queries in order 
a pointer to another memory chunk to hold the full $ data to generate the requested web page . In addition , as a user 
value ; data is optional for a given assoc type ) ; and e ) $ link interacts with networking system 100 , the client server 104 
( 8 bytes ) offsets of next and previous entries in the same id2 may receive requests that establish or modify object nodes 
index bucket ( see below ) . In one implementation , the array 55 and / or associations be object nodes . In some instances , the 
is ordered by the $ time attribute ascending . The number of request received by a client server 104 generally includes the 
entries in the index is capped ( such as 10 , 000 ) and configu - node ID representing the user on whose behalf the request to 
rable , by association type . When the limit is reached the the client server 104 was made . The request may also , or 
array wraps around . Because the array is $ time - sorted , most alternately , include one or more other node IDs correspond 
new en tries will be appended at the end without shilling any 60 ing to objects the user may want to view , update , delete , or 
of the existing elements . connect or associate ( with an edge ) . 

In one implementation , the primary index can be stored in For example , a request may be a read request for access 
a single memcache key that can be looked up by name ing information associated with the object or objects the user 
( " assoc : < id1 > : < type > ' ) through a global memcached hash wants to view ( e . g . , one or more objects for serving a web 
table . The array can be fronted with a header containing the 65 page ) . For example , the read request may be a request for 
following fields : a ) count ( 4 bytes ) : the count of visible content stored for a particular node . For example , a wall post 
associations in the ( idí , type ) association set ( stored persis on a user profile can be represented as a node with an edge 



US 9 , 767 , 152 B2 
13 14 

type of " wallpost . " Comments to the wallpost can also be client server 104 may select ( e . g . , randomly or based on 
represented as nodes in the graph with edge type “ comment ” some function ) a particular follower cache node 112 or a 
associations to the wallpost . In such an example , in particu - particular shard to send the new node ID request to . What 
lar embodiments , the client server 104 determines the shard ever the case , the particular cache node 112 , or more 
ID corresponding to the node ID of the object ( node ) that 5 particularly the graph management software running on the 
includes the content or other information requested , uses the follower cache node 112 , then transmits the new node ID to 
mapping table to determine which of the follower cache the client server 104 . The client server 104 may then 
nodes 112 ( in the follower cache cluster 106 that serves the formulate a write request that includes the new node ID to 
client server 104 ) stores the shard ID , and transmits a query the corresponding follower cache node 112 . The write 
including the shard ID to the particular one of the follower 10 request may also specify a node type of the new node and 
cache nodes 112 storing the information associated with and include a payload ( e . g . , content to be stored with the new 
stored with the shard ID . The particular cache node 112 then node ) and / or metadata ( e . g . , the node ID of the user making 
retrieves the requested information ( if cached within the the request , a timestamp indicating when the request was 
corresponding shard ) and transmits the information to the received by the client server 104 , among other data ) to be 
requesting client server 104 , which may then serve the 15 stored with the node ID . For example , the write request sent 
information to the requesting user ( e . g . , in the form of an to the follower cache node 112 may be of the form 
HTML or other structured document that is renderable by object _ add { node ID , node type , payload , metadata } . Simi 
the web browser or other document - rendering application larly , to update a node , the client server 104 may send a write 
running on the user ' s computing device . If the requested request of the form object _ modify { node ID , node type , 
information is not stored / cached within the follower cache 20 payload , metadata to the follower cache node 112 storing 
node 112 , the follower cache node 112 may then determine , the shard within which the node ID is stored . Similarly , to 
using the mapping table , which of the leader cache nodes delete a node , the client server 104 may send a request of the 
114 stores the shard storing the shard ID and forwards the form object _ delete { node ID } to the follower cache node 112 
query to the particular leader cache node 114 that stores the storing the shard within which the shard ID is stored . 
shard ID . If the requested information is cached within the 25 In particular embodiments , the follower cache node then 
particular leader cache node 114 , the leader cache node 114 transmits the request to the leader cache node 114 storing the 
may then retrieve the requested information and forward it shard that stores the corresponding node ID so that the leader 
to the follower cache node 112 , which then updates the cache node 114 may then update the shard . The leader cache 
particular shard in the follower cache node 112 to store the node 114 then translates the request into the language of 
requested information with the shard ID and proceeds to 30 database 110 and transmits the translated request to the 
serve the query as just described to the client server 104 , database 110 so that the database may then be updated . 
which may then serve the information to the requesting user . FIG . 4 illustrates an example method for processing a 
If the requested information is not cached within the leader request to add an association ( assoc _ add ) between two 
cache node 114 , the leader cache node 114 may then nodes . As FIG . 4 illustrates , when a follower cache node 112 
translate the query into the language of database 110 , and 35 receives an assoc _ add request ( e . g . , assoc _ add ( id1 , type , 
transmit the new query to database 110 , which then retrieves id2 , metadata ) , it accesses an index to identify the associa 
the requested information and transmits the requested infor - tion set object corresponding to idl and type ( 402 ) . Follower 
mation to the particular leader cache node 114 . The leader cache nodes 112 adds id2 to both the hash table and the 
cache node 114 may then translate the retrieved information circular buffer of the association set object and increments 
back into the graphical language understood by the graph 40 the count value of the association set object ( 404 ) . The 
management software , update the particular shard in the association set object now maintains the new association of 
leader cache node 114 to store the requested information the given type between node idl and node id2 . To facilitate 
with the shard ID , and transmit the retrieved information to searching of the association relative to id2 , follower cache 
the particular follower cache node 112 , which then updates node 112 identifies the shard Id corresponding to the node 
the particular shard in the follower cache node 112 to store 45 identifier id2 and forwards the assoc _ add request to the 
the requested information with the shard ID and proceeds to follower cache node 112 in the cluster that handles the 
serve the query as just described to the client server 104 , identified shard ( 406 ) . If the instant follower cache node 112 
which may then serve the information to the requesting user . handles the shard , it processes the assoc _ add request . In one 
As another example , the user request may be a write implementation , the forwarding follower cache node 112 

request to update existing information or store additional 50 may transmit a modified assoc _ add request that signals that 
information for a node or to create or modify an edge this is an update required to establish a bi - directional asso 
between two nodes . In the former case , if the information to ciation in the cache layer . The follower cache node 112 also 
be stored is for a non - existing node , the client server 104 forwards the assoc _ add request to the leader cache node 114 
receiving the user request transmits a request for a node ID corresponding to the shard in which idi falls ( 408 ) . The 
for a new node to the respective follower cache cluster 106 55 leader cache node 114 may execute a similar process to 
serving the client server 104 . In some cases or embodiments , establish a bi - directional association in the leader cache 
the client server 104 may specify a particular shard within cluster . The leader cache node 114 also causes the new 
which the new node is to be stored ( e . g . , to co - locate the new association to be persisted in database 110 . In this manner , 
node with another node ) . In such a case , the client server 104 an association between node idl and node id2 is now 
requests a new node ID from the particular follower cache 60 searchable in an index with reference to idl and type , and 
node 112 storing the specified shard . Alternately , the client separately , id2 and type . 
server 104 may pass a node ID of an existing node with the In particular embodiments , the graph can maintain a 
request for a new node ID to the follower cache node 112 variety of different node types , such as users , pages , events , 
storing the shard that stores the passed node ID to cause the wall posts , comments , photographs , videos , background 
follower cache node 112 to respond to the client server 104 65 information , concepts , interests and any other element that 
with a node ID for the new node that is in the range of node would be useful to represent as a node . Edge types corre 
IDs stored in the shard . In other cases or embodiments , the spond to associations between the nodes and can include 



15 
US 9 , 767 , 152 B2 

16 
friends , followers , subscribers , fans , likes ( or other indica profile page to which the user has administrative rights or , 
tions of interest ) , wallpost , comment , links , suggestions , alternately , a suitable trusted representative of the claimed 
recommendations , and other types of associations between user . 
nodes . In one implementation , a portion of the graph can be A connection between two users or concepts may repre 
a social graph including user nodes that each correspond to 5 sent a defined relationship between users or concepts of the 
a respective user of the social network environment . The social network environment , and can be defined logically in 
social graph may also include other nodes such as concept a suitable data structure of the social network environment 
nodes each devoted or directed to a particular concept as as an edge between the nodes corresponding to the users , 
well as topic nodes , which may or may not be ephemeral , concepts , events , or other nodes of the social network 
each devoted or directed to a particular topic of current 10 environment for which the association has been made . As 
interest among users of the social network environment . In used herein , a " friendship ” represents an association , such as 
particular embodiments , each node has , represents , or is a defined social relationship , between a pair of users of the 
represented by , a corresponding web page ( profile page ” ) social network environment . A “ friend , ” as used herein , may 
hosted or accessible in the social network environment . By refer to any user of the social network environment with 
way of example , a user node may have a corresponding user 15 which another user has formed a connection , friendship , 
profile page in which the corresponding user can add con - association , or relationship with , causing an edge to be 
tent , make declarations , and otherwise express himself or generated between the two users . By way of example , two 
herself . By way of example , as will be described below , registered users may become friends with one another 
various web pages hosted or accessible in the social network explicitly such as , for example , by one of the two users 
environment such as , for example , user profile pages , con - 20 selecting the other for friendship as a result of transmitting , 
cept profile pages , or topic profile pages , enable users to post or causing to be transmitted , a friendship request to the other 
content , post status updates , post messages , post comments user , who may then accept or deny the request . Alternately , 
including comments on other posts submitted by the user or friendships or other connections may be automatically estab 
other users , declare interests , declare a “ like ” ( described lished . Such a social friendship may be visible to other users , 
below ) towards any of the aforementioned posts as well as 25 especially those who themselves are friends with one or both 
pages and specific content , or to otherwise express them of the registered users . A friend of a registered user may also 
selves or perform various actions ( hereinafter these and have increased access privileges to content , especially user 
other user actions may be collectively referred to as " posts " generated or declared content , on the registered user ' s 
or " user actions ” ) . In some embodiments , posting may profile or other page . It should be noted , however , that two 
include linking to , or otherwise referencing additional con - 30 users who have a friend connection established between 
tent , such as media content ( e . g . , photos , videos , music , text , them in the social graph may not necessarily be friends ( in 
etc . ) , uniform resource locators ( URLs ) , and other nodes , via the conventional sense ) in real life ( outside the social 
their respective profile pages , other user profile pages , networking environment ) . For example , in some implemen 
concept profile pages , topic pages , or other web pages or tations , a user may be a business or other non - human entity , 
web applications . Such posts , declarations , or actions may 35 and thus , incapable of being a friend with a human being 
then be viewable by the authoring user as well as other users . user in the traditional sense of the word . 
In particular embodiments , the social graph further includes As used herein , a " fan ” may refer to a user that is a 
a plurality of edges that each define or represent a connec - supporter or follower of a particular user , web page , web 
tion between a corresponding pair of nodes in the social application , or other web content accessible in the social 
graph . As discussed above , each item of content may be a 40 network environment . In particular embodiments , when a 
node in the graph linked to other nodes . user is a fan of a particular web page ( “ fans ” the particular 
As just described , in various example embodiments , one web page ) , the user may be listed on that page as a fan for 

or more described web pages or web applications are other registered users or the public in general to see . 
associated with a social network environment or social Additionally , an avatar or profile picture of the user may be 
networking service . As used herein , a " user ” may be an 45 shown on the page ( or in / on any of the pages described 
individual ( human user ) , an entity ( e . g . , an enterprise , busi - below ) . As used herein , a “ like ” may refer to something , 
ness , or third party application ) , or a group ( e . g . , of indi - such as , by way of example and not by way of limitation , a 
viduals or entities ) that interacts or communicates with or post , a comment , an interest , a link , a piece of media ( e . g . , 
over such a social network environment . As used herein , a photo , photo album , video , song , etc . ) a concept , an entity , 
" registered user ” refers to a user that has officially registered 50 or a page , among other possibilities ( in some implementa 
within the social network environment ( Generally , the users tions a user may indicate or declare a like to or for virtually 
and user nodes described herein refer to registered users anything on any page hosted by or accessible by the social 
only , although this is not necessarily a requirement in other network system or environment ) , that a user , and particularly 
embodiments ; that is , in other embodiments , the users and a registered or authenticated user , has declared or otherwise 
user nodes described herein may refer to users that have not 55 demonstrated that he or she likes , is a fan of , supports , 
registered with the social network environment described enjoys , or otherwise has a positive view of . In one embodi 
herein ) . In particular embodiments , each user has a corre - ment , to indicate or declare a “ like ” or to indicate or declare 
sponding " profile ” page stored , hosted , or accessible by the that the user is a “ fan ” of something may be processed and 
social network environment and viewable by all or a defined equivalently in the social networking environment 
selected subset of other users . Generally , a user has admin - 60 and may be used interchangeably ; similarly , to declare 
istrative rights to all or a portion of his or her own respective oneself a “ fan ” of something , such as a concept or concept 
profile page as well as , potentially , to other pages created by profile page , or to declare that oneself “ likes ” the thing , may 
or for the particular user including , for example , home be defined equivalently in the social networking environ 
pages , pages hosting web applications , among other possi - ment and used interchangeably herein . Additionally , as used 
bilities . As used herein , an " authenticated user ” refers to a 65 herein , an “ interest ” may refer to a user - declared interest , 
user who has been authenticated by the social network such as a user - declared interest presented in the user ' s 
environment as being the user claimed in a corresponding profile page . As used herein , a " want ” may refer to virtually 



17 
US 9 , 767 , 152 B2 

18 
anything that a user wants . As described above , a " concept ” the follower cache node 112 that received the write com 
may refer to virtually anything that a user may declare or mand may also forward the write command to its secondary 
otherwise demonstrate an interest in , a like towards , or a leader cache cluster 108b ( FIG . 7 , No . 5 ) , which broadcasts 
relationship with , such as , by way of example , a sport , a the updates to other follower cache clusters 106 ( FIG . 7 , No . 
sports team , a genre of music , a musical composer , a hobby , 5 5 ) . The foregoing architecture allows for therefore allows for 
a business ( enterprise ) , an entity , a group , a celebrity , a changes to the caching layer to be quickly replicated across 
person who is not a registered user , or even , an event , in data centers , while the separate replication between data 
some embodiments , another user ( e . g . , a non - authenticated bases 110a , 110b allow for data security . 
user ) , etc . By way of example , there may be a concept node The applications or processes described herein can be 
and concept profile page for " Jerry Rice , " the famed pro - 10 implemented as a series of computer - readable instructions , 
fessional football player , created and administered by one or embodied or encoded on or within a tangible data storage 
more of a plurality of users ( e . g . , other than Jerry Rice ) , medium , that when executed are operable to cause one or 
while the social graph additionally includes a user node and more processors to implement the operations described 
user profile page for Jerry Rice created by and administered above . While the foregoing processes and mechanisms can 
by Jerry Rice , himself ( or trusted or authorized representa - 15 be implemented by a wide variety of physical systems and 
tives of Jerry Rice ) . in a wide variety of network and computing environments , 

FIG . 5 illustrates a distributed , redundant system . In the the computing systems described below provide example 
implementation shown , the distributed redundant system computing system architectures of the server and client 
includes at least first and second data centers 102a , 102b . systems described above , for didactic , rather than limiting , 
Each of the data centers 102a , 102b includes one or more 20 purposes . 
follower cache clusters 106 and a leader cache cluster 108a , FIG . 2 illustrates an example computing system architec 
108b . In one implementation , leader cache cluster 108a acts ture , which may be used to implement a server 22a , 22b . In 
as a primary ( master ) cache cluster , while leader cache one embodiment , hardware system 1000 comprises a pro 
cluster 108b is a secondary ( slave ) cache cluster . In one cessor 1002 , a cache memory 1004 , and one or more 
implementation , data centers 102a , 102b are redundant in 25 executable modules and drivers , stored on a tangible com 
the sense that synchronization functions are employed to puter readable medium , directed to the functions described 
achieve replicated copies of the database 110 . In one imple - herein . Additionally , hardware system 1000 includes a high 
mentation , data center 102a may be physically located at one performance input / output ( I / O ) bus 1006 and a standard I / O 
geographic region ( such as the West Coast of the United bus 1008 . Ahost bridge 1010 couples processor 1002 to high 
States ) to serve traffic from that region , while data center 30 performance I / O bus 1006 , whereas 1 / 0 bus bridge 1012 
102b may be physically located at another geographic region couples the two buses 1006 and 1008 to each other . A system 
( such as the East Coast of the United States ) . Given that memory 1014 and one or more network / communication 
users from either of these regions may access the same data interfaces 1016 couple to bus 1006 . Hardware system 1000 
and associations , efficient synchronization mechanisms are may further include video memory ( not shown ) and a 
desired . 35 display device coupled to the video memory . Mass storage 

FIG . 6 illustrates an example method of how a leader 1018 , and I / O ports 1020 couple to bus 1008 . Hardware 
cache node 114 processes write commands . As discussed system 1000 may optionally include a keyboard and point 
above and with reference to FIG . 5 , a follower cache node ing device , and a display device ( not shown ) coupled to bus 
112 may receive a write command to add / update an object 1008 . Collectively , these elements are intended to represent 
or association from a client server 104 ( FIG . 5 , No . 1 ) . The 40 a broad category of computer hardware systems , including 
follower cache node 112 forwards the write command to a but not limited to general purpose computer systems based 
corresponding leader cache node 114 ( FIG . 5 , No . 2 ) . When on the x86 - compatible processors manufactured by Intel 
the leader cache node 114 receives a write command from a Corporation of Santa Clara , Calif . , and the x86 - compatible 
follower cache node ( 602 ) , it processes the write command processors manufactured by Advanced Micro Devices 
to update one or more entries in the cache maintained by the 45 ( AMD ) , Inc . , of Sunnyvale , Calif . , as well as any other 
leader cache cluster 108a ( 604 ) and writes the update to suitable processor . 
persistent database 110a ( 606 ) ( FIG . 5 , No . 3 ) . The leader The elements of hardware system 1000 are described in 
cache node 114 also acknowledges the write command greater detail below . In particular , network interface 1016 
( ACK ) to the follower cache node 112 and broadcasts the provides communication between hardware system 1000 
update to other follower cache clusters 106 of the data center 50 and any of a wide range of networks , such as an Ethernet 
102a ( FIG . 5 , No . 4a ) and the secondary leader cache cluster ( e . g . , IEEE 802 . 3 ) network , a backplane , etc . Mass storage 
108b , which forwards the update to its follower cache 1018 provides permanent storage for the data and program 
clusters 106 ( FIG . 5 , No . 4b ) ( 608 ) . As FIG . 6 illustrates , the ming instructions to perform the above - described functions 
leader cache node 114 also adds the update to a replication implemented in the servers 22a , 22b , whereas system 
log ( 610 ) . The databases 110a , 110b implement a synchro - 55 memory 1014 ( e . g . , DRAM ) provides temporary storage for 
nization mechanism , such as MySQL Replication , to syn - the data and programming instructions when executed by 
chronize the persistent databases . processor 1002 . I / O ports 620 are one or more serial and / or 

FIG . 7 illustrates a message flow according to one imple - parallel communication ports that provide communication 
mentation of the invention . When a write command is between additional peripheral devices , which may be 
received at a follower cache node 112 in a ring 106 that is 60 coupled to hardware system 1000 . 
not directly associated with the primary leader cache cluster Hardware system 1000 may include a variety of system 
108a ( FIG . 7 , No . 1 ) , the follower cache node 112 forwards architectures , and various components of hardware system 
the write message to the primary leader cache cluster 108a 1000 may be rearranged . For example , cache 1004 may be 
for processing ( FIG . 7 , No . 2 ) . A leader cache node 114 in on - chip with processor 1002 . Alternatively , cache 1004 and 
the primary leader cache cluster 108a may then broadcast 65 processor 1002 may be packed together as a " processor 
the update to its follower cache clusters 106 ( FIG . 7 , No . 3 ) module , ” with processor 1002 being referred to as the 
and writes the changes to database 110a . As FIG . 7 shows , “ processor core . ” Furthermore , certain embodiments of the 



US 9 , 767 , 152 B2 
20 

present invention may not require nor include all of the skill in the art would comprehend . By way of example , while 
above components . For example , the peripheral devices embodiments of the present invention have been described 
shown coupled to standard I / O bus 1008 may couple to high as operating in connection with a social networking website , 
performance I / O bus 1006 . In addition , in some embodi - the present invention can be used in connection with any 
ments , only a single bus may exist , with the components of 5 communications facility that supports web applications and 
hardware system 1000 being coupled to the single bus . models data as a graph of associations . Furthermore , in some 
Furthermore , hardware system 1000 may include additional embodiments the term “ web service ” and “ web - site ” may be 
components , such as additional processors , storage devices , used interchangeably and additionally may refer to a custom 
or memories . or generalized API on a device , such as a mobile device In one implementation , the operations of the embodi - 10 ( e . g . , cellular phone , smart phone , personal GPS , personal ments described herein are implemented as a series of digital assistance , personal gaming device , etc . ) , that makes executable modules run by hardware system 1000 , individu 
ally or collectively in a distributed computing environment . API calls directly to a server . 
In a particular embodiment , a set of software modules and / or 
drivers implements a network communications protocol 15 What is claimed is : 
stack , browsing and other computing functions , optimiza 1 . A system comprising : a database operative to maintain 
tion processes , and the like . The foregoing functional mod - a social graph ; a leader cache layer comprising one or more 
ules may be realized by hardware , executable modules leader cache clusters , each leader cache cluster comprised of 
stored on a computer readable medium , or a combination of a plurality of leader cache nodes , and a follower cache layer 
both . For example , the functional modules may comprise a 20 comprising one or more follower cache clusters , each fol 
plurality or series of instructions to be executed by a lower cache cluster comprised of a plurality of follower 
processor in a hardware system , such as processor 1002 . cache nodes , wherein the leader cache layer is operative to : 
Initially , the series of instructions may be stored on a storage communicate social graph information between the fol 
device , such as mass storage 1018 . However , the series of lower cache cluster and the database , wherein each 
instructions can be tangibly stored on any suitable storage 25 follower cache cluster maintains at least a portion of the medium , such as a diskette , CD - ROM , ROM , EEPROM , social graph ; etc . Furthermore , the series of instructions need not be receive a request from one of the follower cache clusters stored locally , and could be received from a remote storage to store social graph information in the database ; device , such as a server on a network , via network / commu update the database storing the social graph responsive to nications interface 1016 . The instructions are copied from 30 the request ; and the storage device , such as mass storage 1018 , into memory 
1014 and then accessed and executed by processor 1002 . update one or more of the follower cache clusters storing 
An operating system manages and controls the operation the portion of the social graph associated with the 

of hardware system 1000 , including the input and output of request . 
data to and from software applications ( not shown ) . The 35 2 . The system of claim 1 , wherein the social graph 
operating system provides an interface between the software comprises a plurality of graph nodes and a plurality of graph 
applications being executed on the system and the hardware edges connecting the graph nodes , each graph edge con 
components of the system . Any suitable operating system necting two graph nodes indicating an association between 
may be used , such as the LINUX Operating System , the the two graph nodes . 
Apple Macintosh Operating System , available from Apple 40 3 . The system of claim 2 , wherein each graph node of the 
Computer Inc . of Cupertino , Calif . , UNIX operating sys - social graph is associated with a unique identifier . 
tems , Microsoft® Windows® operating systems , BSD oper - 4 . The system of claim 3 , wherein each unique identifier 
ating systems , and the like . Of course , other implementa is stored with its respective graph node in one or more of the 
tions are possible . For example , the nickname generating one or more follower cache cluster or one or more leader 
functions described herein may be implemented in firmware 45 cache clusters . 
or on an application specific integrated circuit . 5 . The system of claim 1 , wherein the one or more leader 

Furthermore , the above - described elements and opera - cache clusters includes a plug - in operative to interoperate 
tions can be comprised of instructions that are stored on with the database . 
storage media . The instructions can be retrieved and 6 . The system of claim 5 , wherein the plug - in performs 
executed by a processing system . Some examples of instruc - 50 one or more translation operations . 
tions are software , program code , and firmware . Some 7 . The system of claim 6 , wherein the social graph 
examples of storage media are memory devices , tape , disks , comprises a plurality of graph nodes and a plurality of graph 
integrated circuits , and servers . The instructions are opera - edges connecting the graph nodes , and wherein the one or 
tional when executed by the processing system to direct the more translation operations comprises translating the graph 
processing system to operate in accord with the invention . 55 nodes and graph edges stored in the one or more follower 
The term “ processing system ” refers to a single processing cache clusters to one or more queries to be sent to the 
device or a group of inter - operational processing devices . database . 
Some examples of processing devices are integrated circuits 8 . The system of claim 1 , wherein the database utilizes 
and logic circuitry . Those skilled in the art are familiar with CASSANDRA . 
instructions , computers , and storage media . 60 9 . The system of claim 1 , wherein each of the one or more 

The present disclosure encompasses all changes , substi - leader cache clusters maintains a cache consistency between 
tutions , variations , alterations , and modifications to the each of the one or more follower cache clusters and the 
example embodiments herein that a person having ordinary database . 
skill in the art would comprehend . Similarly , where appro - 10 . The system of claim 1 , wherein each of the one or 
priate , the appended claims encompass all changes , substi - 65 more leader cache clusters maintains a cache consistency 
tutions , variations , alterations , and modifications to the between each of the one or more follower cache clusters and 
example embodiments herein that a person having ordinary each of the leader cache clusters . 



US 9 , 767 , 152 B2 
22 

11 . The system of claim 1 , wherein the one or more leader communicate social graph information between the fol 
cache clusters are further operative to update the database lower cache cluster and the database , wherein each 
with the social graph information cached in the one or more follower cache cluster maintains at least a portion of the 
leader cache clusters . social graph ; 

12 . The system of claim 1 , wherein the one or more leader 5 receive a request from one of the follower cache clusters 
cache clusters and one or more follower cache clusters to store social graph information in the database ; 
operate as a caching layer between a client server and the update the database storing the social graph responsive to 
database . the request ; and 

13 . The system of claim 1 , wherein the follower cache update one or more of the follower cache clusters storing 
nodes of a particular follower cache cluster may communi - 10 the portion of the social graph associated with the 
cate only with the follower caches nodes in the particular request . 
cache cluster and the one or more leader cache clusters . 18 . A method by a leader cache layer of a system , the 

14 . The system of claim 1 , wherein the social graph system comprising : a database operative to maintain a social 
maintained by the database is stored as a distributed graph graph ; the leader cache layer comprising one or more leader 
across the one or more follower cache clusters and the one 15 one 15 cache clusters , each leader cache cluster comprised of a 

plurality of leader cache nodes , and a follower cache layer or more leader cache clusters . 
15 . The system of claim 1 , wherein the social graph comprising one or more follower cache clusters , each fol 

information stored in the database is stored relationally . lower cache cluster comprised of a plurality of follower 
16 . The system of claim 1 , wherein the one or more cache nodes , the method by the leader cache layer compris 

follower cache clusters and the one or more leader cache 20 mg 
clusters are operative to store social graph information in communicating social graph information between the 
one or more data shards of the respective cache cluster . follower cache cluster and the database , wherein each 

17 . A non - transitory storage medium of a system storing follower cache cluster maintains at least a portion of the 
computer - readable instructions , the system comprising a social graph ; 

25 database operative to maintain a social graph ; a leader cache receiving a request from one of the follower cache clus 
layer comprising one or more leader cache clusters , each ters to store social graph information in the database ; 
leader cache cluster comprised of a plurality of leader cache updating the database storing the social graph responsive 
nodes , and a follower cache layer comprising one or more to the request ; and 
follower cache clusters , each follower cache cluster com updating one or more of the follower cache clusters 
prised of a plurality of follower cache nodes , wherein the 30 storing the portion of the social graph associated with 
instruction , when executed , are operative to cause the leader the request . 
cache layer to : * * * * * 


