
TAHI LALAN HARTU MUH
US009762672B2

(12) United States Patent
Bonagiri et al .

(10) Patent No . : US 9 , 762 , 672 B2
(45) Date of Patent : Sep . 12 , 2017

l

(54) DYNAMIC NODE GROUP ALLOCATION (56) References Cited
U . S . PATENT DOCUMENTS (71) Applicant : International Business Machines

Corporation , Armonk , NY (US)

(72) Inventors : Krishna K . Bonagiri , Ambajipet (IN) ;
Eric A . Jacobson , Arlington , MA (US) ;
Yong Li , Newton , MA (US) ; Ron E .
Liu , San Jose , CA (US) ; Xiaoyan Pu ,
Chelmsford , MA (US)

9 , 063 , 992 B2 6 / 2015 Bhide et al .
2009 / 0018996 AL 1 / 2009 Hunt et al .
2011 / 0060157 A1 3 / 2011 Glaser et al .
2011 / 0145367 A1 * 6 / 2011 Ananthanarayanan

. HO4L 67 / 2842
709 / 219

2012 / 0311581 A112 / 2012 Balmin et al .
2013 / 0290957 Al 10 / 2013 Li et al .
2013 / 0318525 AL 11 / 2013 Palanisamy et al .
2014 / 0059290 A1 2 / 2014 Ross et al .

(Continued)
(73) Assignee : International Business Machines

Corporation , Armonk , NY (US)

(*) Notice : OTHER PUBLICATIONS Subject to any disclaimer , the term of this
patent is extended or adjusted under 35
U . S . C . 154 (b) by 218 days .

(21) Appl . No . : 14 / 740 , 050
(22) Filed : Jun . 15 , 2015

Prior Publication Data
US 2016 / 0366224 A1 Dec . 15 , 2016

ã (51) Int . Cl .
GOOF 15 / 16 (2006 . 01)
H04L 29 / 08 (2006 . 01)
H04L 12 / 923 (2013 . 01)
G06F 17 / 30 (2006 . 01)

(52) U . S . Ci .
CPC . . . H04L 67 / 1097 (2013 . 01) ; G06F 1730194

(2013 . 01) ; H04L 47 / 762 (2013 . 01)
(58) Field of Classification Search

CPC GO6F 17 / 30194 ; GO6F 17 / 30 ; G06F
17 / 30545 ; G06F 3 / 061 ; G06F 17 / 30445 ;
G06F 11 / 3006 ; H04L 67 / 1097 ; H04L

41 / 0893
See application file for complete search history .

IP . com , “ A Method of Expeditiously Detecting and Partitioning
Disks for Commissioning Slaves in Hadoop Cluster ” , Jun . 13 , 2013 ,
An IP . com Prior Art Database Technical Disclosure , IP . com No .
000228209 , retrieved from the Internet at < URL : http : / / null /
IPCOM / 000228209 > , Total 7 pp .

(Continued)
Primary Examiner — Tauqir Hussain
Assistant Examiner — Kamran Mohammadi
(74) Attorney , Agent , or Firm — A . Imtiaz Billah
(57) ABSTRACT
Provided are techniques for improving data locality for
parallel applications running in a big data distributed file
system with a dynamic node group . In response to a con
sumer job starting to read one or more files in a big data
distributed file system having multiple nodes , node group
information for the one or more files to be read is retrieved ,
wherein the node group information identifies nodes from
the multiple nodes on which a producer job wrote the one or
more files , and the consumer job is assigned to the nodes
identified by the node group information to allow for local
reading of the one or more files by the consumer job .

9 Claims , 12 Drawing Sheets

Parallel Application Server 100

Server 102a Server 1021 Administrator
Node
130 Sorting

Process
Sorting
Process
110n 110a 9 - 36 Connector

Process
120a

Connector
Process

120n
Parallel

Application
140

Data Sources 150

Big Data Distributed File System
160

Other Data
Sources

170

US 9 , 762 , 672 B2
Page 2

(56) References Cited
U . S . PATENT DOCUMENTS

2014 / 0059310 AL
2014 / 0245298 AL
2014 / 0358845 Al
2015 / 0081619 Al
2015 / 0201036 A1 *

2 / 2014 Du et al .
8 / 2014 Zhou et al .

12 / 2014 Mundlapudi et al .
3 / 2015 Brown et al .
7 / 2015 Nishiki H04L 67 / 1095

709 / 224
9 / 2015 Chan et al . 2015 / 0254330 AL

OTHER PUBLICATIONS
IP . com , “ Method for Generating Secure and Highly Available Data
for Hadoop Processing ” , Sep . 10 , 2014 , An IP . com Prior Art
Database Technical Disclosure , IP . com No . 000238663 , retrieved
from the Internet at < URL : http : / / null / IPCOM / 000238663 , Total 6
pp .
IP . com , " System and method for Hadoop Application Monitoring ” ,
Sep . 18 , 2013 , an IP . com Prior Art Database Technical Disclosure ,
IP . com No . 000230912 , retrieved from the Internet at < URL :
http : / / null / IPCOM / 000230912 > , Total 4 pp .
Mell , P . and T . Grance , “ Effectively and Securely Using the Cloud
Computing Paradigm ” , [online] , Oct . 7 , 2009 , retrieved from the
Internet at < URL : http : / / csrc . nist . gov / groups / SNS / cloud - comput
ing / cloud - computing - v26 . ppt > , Total 80 pp .
Mell , P . and T . Grance , “ The NIST Definition of Cloud Computing
(Draft) ” , Jan . 2011 , Computer Security Division Information Tech
nology Laboratory National Institute of Standards and Technology ,
Total 7 pp .
Fiori , J . , “ Leverage Existing File - based Applications with Hadoop ” ,
[online] , May 13 , 2013 . [Retrieved on Jun . 15 , 2015] . Retrieved
from the Internet at < URL : https : / / www . mapr . com / blog / leverage
existing - file - based - applications - hadoop # . VX8 _ XEbQiuw > , Total
18 pp .
Mirantis , A . L . , “ Improving Data Processing Performance with
Hadoop Data Locality ” , [online] , Feb . 28 , 2014 . [Retrieved on Jun .
15 , 2015] . Retrieved from the Internet at < URL : https : / / www .
mirantis . com / blog / improving - data - processing - performance
hadoop - data - locality > , Total 9 pp .
Pucher , A . , “ Auto - Scaling with Apache Helix and Apache YARN ” ,
[online] , posted on Sep . 24 , 2013 . [Retrieved on Jun . 15 , 2015] .
Retrieved from the Internet at < URL : https : / / engineering . linkedin .
com / cluster - management / auto - scaling - apache - helix - and
apach . . . > , Total 5 pp .

IP . com , “ A Service - oriented Methodology of Server Resources
Allocation and Relocation with Dynamically Expanded Resources
Manager ” , Dec . 5 , 2013 , An IP . com Prior Art Database Technical
Disclosure , IP . com No . 00233271 , retrieved from the Internet at
< URL : http : / / null / IPCOM / 000233271 > , Total 16 pp .
Vavilapalli , V . K . , A . C . Murthy , C . Douglas , S . Agarwal , M . Konar ,
R . Evans , T . Graves , J . Lowe , H . Shah , S . Seth , B . Saha , C . Curino ,
0 . O ' Malley , S . Radia , B . Reed , and E . Baldeschwieler , “ Apache
Hadoop YARN : Yet Another Resource Negotiator ” , SOCC ’ 13 , Oct .
1 - 3 , 2013 , Santa Clara , California , USA , ACM 978 - 1 - 4503 - 2428 - 1 ,
© 2013 ACM , Inc . , Total 16 pp .
Hogovist , M . , “ Architecture and Self - Tuning of a DISC - system ” ,
23rd IEEE International Parallel & Distributed Processing Sympo
sium (IPDPS) , 2009 , IEEE Computer Society , Total 3 pp .
Bonagiri et al . , “ Data Locality in Data Integration Applications ” ,
U . S . Appl . No . 15 / 050 , 565 , filed Feb . 23 , 2016 , 32 pages .
IBM , “ Appendix P : IBM Patents or Patent Applications Treated as
Related ” , 2 pages , dated Feb . 24 , 2016 .
Hogqvist , M . , “ Architecture and Self - Tuning of a DISC - system ” ,
23rd IEEE International Parallel & Distributed Processing Sympo
sium (IPDPS) , 2009 , IEEE Computer Society , Total 3 pp .
Chung et al . , “ Maximizing data locality in distributed systems ” ,
Journal of Computer and System Sciences 72 (2006) 1309 - 1316 ,
Available online Aug . 24 , 2006 , pp . 1309 - 1316 , doi : 10 . 1016 / jjcss .
2006 . 07 . 001 , © 2006 Elsevier Inc .
Gu et al . , “ Towards Efficient and Simplified Distributed Data
Intensive Computing ” , IEEE Transactions on Parallel and Distrib
uted Systems , Manuscript ID , Manuscript received Jan . 2 , 2010 ,
Revised on Jun . 18 , 2010 and Aug . 19 , 2010 , pp . 1 - 12 , A shorter
version of this paper has been published at the 2nd Workshop on
Many - Task Computing on Grids and Supercomputers (MTAGS
2009) .
CloverETL Rapid Data Integration , “ Products ” , pp . 1 - 4 , printed on
Sep . 24 , 2015 , < http : / / www . cloveretl . com / products > .
IBM® , “ IBM InfoSphere Information Server VII . 5 delivers new
integration and governance features ” , IBM United States Software
Announcement 215 - 345 , dated Sep . 15 , 2015 , 18 pages , Evidence
of Grace Period Use or Sale , < http : / / www - 01 . ibm . com / common /
ssi / cgi - bin / ssialias ? infotype = AN & subtype = CA & htmlfid = 8971
ENUS215 - 345 & appname = USN > .
Bonagiri et al . , “ Dynamic Node Group Allocation ” , U . S . Appl . No .
14 / 945 , 476 , filed Nov . 19 , 2015 , 35 pages .
IBM , “ Appendix P : IBM Patents or Patent Applications Treated as
Related ” , 2 pages , dated Jan . 21 , 2016 .

* cited by examiner

U . S . Patent Sep . 12 , 2017 Sheet 1 of 12 US 9 , 762 , 672 B2

Parallel Application Server 100

Server 102a Server 102n Administrator
Node
130 Sorting

Process
110a LO7 Sorting

Process
110n

Connector
Process
120a

Connector
Process
120n

Parallel
Application

140

Data Sources 150

Big Data Distributed File System
160

Other Data
Sources

170

FIG . 1

U . S . Patent Sep . 12 , 2017 Sheet 2 of 12 US 9 , 762 , 672 B2

Remote Mode

Big Data Distributed
File System

210
II IIIIIIIIII IIIIIIIIIII IIIIIIIIIIIIIIII

Data Node * Parallel Application 200 11111111111111111111111

IIIIIIIIIIIIIIIIIII DIRILIBRI IIIIIIIIIII MI _
LIIMIMINT111111111111MMINIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Co II _

IIIIIIIIIIIIIIIIIIIIIIIIII

I

MISTRIBUTIONIBILIBIDIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
III

_ M

I BDFS PX 11 _

III
_ III

III

IIIIIIII I

IIIIIIII
IIIIIII

_ Master Node KINILI
M

III

Data Node BDFS MI _ N

_ MILI I

TUI I II

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIIIIIIII 11 _

ITIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIII IIIIIIIIIIIIIIIIIIIIIIII
II _

M

IIIIIIIII
IIIIIIIII

IIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIIIIII

_ IIIIIIIIIIIIIIIIIIIIIIIII

III

LII

-
?

File Requests
Data Flow for READ (WRITE goes the other direction)
Data block in Big Data Distributed File System

FIG . 2

U . S . Patent Sep . 12 , 2017 Sheet 3 of 12 US 9 , 762 , 672 B2

Local Mode
Big Data Distributed

File System
310

Data Node *
0 . BDFS

I _ I _ MI II - II - II - II IIIIIIIII

Parallel Application 300 N

MMMMMMMMMMMMMMMMMMMMMMM IIIIIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIII - II _

IIIIIIIIIIIIIIIIIIII
DRIERIIII II
IIIIIIIIIIIIIIIIIIIIII -

- IIIIIIIIIIII
MIDDURIDDLE

II _

NIIIIIIII
-

_

II IIIIIIIIIII

- I PX -

-

III
-

II
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

I -
IIIIIII

IIIIIII
- Master Node II _

-

II
II
II
III PX II _

-

- _

- Data Node -

-

IIIIIIIIIIIIIIIIIIIIIIIIIIII

-

III
-

IIIIIIIIIIIIIIIII IIIIII BDFS IIIIIIIIIIIIIIIIIIIII
IIIIIIIIIIIIIIIIIIIIII

IIIIIIIIIIIIIIIIIIII11 1 IIIIIIIIIIIIIIIIIIIIIIII
BUILIBRIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

II

-
?

File Requests
Data Flow for READ (WRITE goes the other direction)
Data block in Big Data Distributed File System

FIG . 3

U . S . Patent Sep . 12 , 2017 Sheet 4 of 12 US 9 , 762 , 672 B2

400
In response to a producer job writing one or more files to a

big data distributed file system having multiple nodes , store node
group information identifying nodes from the multiple nodes where

the producer job runs and writes the one or more files .

In response to a consumer job running to read the one
or more files , retrieve the node group information for the

one or more files to be read .
402

Attempt to request logical resources on the nodes where
the producer job ran and send the consumer job to the
nodes identified by the node group to allow for local
reading of the data blocks of the one or more files by

the consumer job .

- 404

406 - 407

Successful ? Yes "
Dynamically generate a
configuration file for the

consumer job .

Attempt to send the consumer job to nodes
that are close to the nodes in the node group 408

FIG . 4A

U . S . Patent U . S . Patent so 1 . 297 mesein Sep . 12 , 2017 Sheet 5 of 12 US 9 , 762 , 672 B2 18926 , 67

410 - 411

Yes
Successful ?

Dynamically generate a
configuration file for the

consumer job .

| Increment a counter for number of attempts . 412

414 - 416

Yes Is counter
value above total number of

attempts ?

Return a message that
attempts to allocate

logical resources were
not successful .

No

Wait a predetermined amount of time . datuma maom - 418
FIG . 4B

500

iishd005 : / opt / Information Server / Server / Configurations # vi default . apt

U . S . Patent

node " nodel "

fastname " iishd005 "
pools " "

resource disk " lopt / Information Server / Server / Datasets " { pools " " }
resource scratchdisk " / opt / Information Server / Server / Scratch " { pools " " }

node " node2 "

Sep . 12 , 2017

fastname " iishd007 " .
pools " ! !

resource disk " lopt / InformationServer / Server / Datasets " { pools " " }
resource scratchdisk " / opt / Information Server / Server / Scratch " { pools " " }

node " node3 "

Sheet 6 of 12

fastname " iishd009 "
pools "

resource disk " / opt / Information Server / Server / Datasets " { pools " " }
resource scratchdisk " / opt / Information Server / Server / Scratch " { pools " " }

US 9 , 762 , 672 B2

FIG . 5

600

U . S . Patent

> - - the previously created dummy table has only 1 row , it is used for insert / update

> - - select from the dummy table shows only 1 row .

> select * from dummy ;

OK 10

Time taken : 0 . 105 seconds , Fetched : 1

Sep . 12 , 2017

> - - create the table to store info for file name and list of associated nodes

> create table file _ nodegroup _ info (full _ path _ file _ name string , nodes string) ;

OK

Time taken : 0 . 129 seconds

> - - the target file name (full path) and the nodes the job writing the file runs on
> - - are stored in the table . Note , the overwrite option is used to make sure

> - - if a record exists it will be overwritten .

> insert overwrite table file _ nodegroup _ info select ' / DS _ FILES / filel ' ,

' iishd005 , iishd007 , iishd009 ' from dummy ;

Sheet 7 of 12

> - - verify the operation . Both the file name and the list of nodes are correct .

> select * from file _ nodegroup _ info ;

OK

/ DS FILES / filel , iishd005 , iishd007 , iishd009

Time taken : 0 . 105 seconds , Fetched : 1 row (s)

FIG . 6

US 9 , 762 , 672 B2

700

U . S . Patent

node Set = iishd005 , iishd007 , iishd009

Create the configuration file for the ETL job using node Set .

/ / This technique makes a request for allocating num _ logical resources on the node with name node _ name , and the

Ilmaximum time to wait for allocations to succeed is timeOut seconds . Whether the allocation can
/ / instead be made on any node in the same rack is dictated by the boolean arg sameRackAllowed , in

/ / case of non - availability of resources on the node ' node _ name

/ / Returns the logical resource list , how many ever could be allocated within the timeOut

List < Logical Resource > getLogical Resources (string node _ name , int num _ logicalresources , int timeOut , bool sameRackAllowed) ;

Sep . 12 , 2017

bool allocation Succeeded = true ; List < Logical Resource > globalLogical ResourceList ;
For each node in nodeSet

List < Logical Resource > allocatedLogical Resources = getLogical Resources (node , num _ logicalresources , timeOut , false / * same rack not

allowed *) ;

Sheet 8 of 12

if (allocatedLogical Resource . size () < num _ logicalresources)

int remainingLogical Resources = num _ logicalresources - allocatedLogical Resources . size () ;

/ / Ask for the remaining Logical Resource on the same rack

allocated Logical Resources . add (getLogical Resources (node , remaining Logical Resources , timeOut , true / * same rack allowed * /

US 9 , 762 , 672 B2

FIG . 7A

if (allocatedLogical Resource . size () < num _ logicalresource)

int remaining Logical Resource = num _ logicalresource - allocatedLogical Resource . size () ;
e remaining logical resources anywhere in the cluster by specifying " * " for node name

allocated Logical Resource . add (getLogical Resource (" * " , remaining Logical Resources , timeOut , true / * doesn ' t really matter

here *)) ;

U . S . Patent

if (allocated Logical Resource . size () < num _ logicalresource) / / Can ' t proceed from here

release all the allocated logical resources , both from allocatedLogical Resource as well as globalLogicalResourceList ;

allocation Succeeded = false ;

break ;

Sep . 12 , 2017

globalLogical ResourceList . add (allocatedLogical Resource) ;

if (allocation Succeeded = = false)
return with error ;

else

Sheet 9 of 12

/ / aunch ETL processes on the allocated logical resources ,
for each logical resource in globalLogicalResourceList

get the command to run on the logical resource logicalresource . run (command) ;

US 9 , 762 , 672 B2

FIG . 7B

810

812

U . S . Patent

Computer Node

828

830

Memory

834

RAM

816

Storage System

Sep . 12 , 2017

Cache

Processing Unit

832

840 842

818 822

824

820

Sheet 10 of 12

Display

10
Interface (s)

Network Adapter

814
External Device (s)

FIG . 8

US 9 , 762 , 672 B2

U . S . Patent Sep . 12 , 2017 Sheet 11 of 12 US 9 , 762 , 672 B2

950 810 954B
954N

que se FIG . 9

-

9540 954A

U . S . Patent U . S . Patent

Software

Virtual

Mapping / Development / Classroom and
Navigation Lifecycle

Education Delivery

Management
and

Data Analytics

Transaction /

Dynamic Node Group Allocation

Processing
/ Processing

Workloads
1066 -

User

Metering and Pricing

Resource Provisioning

Service Level Management

Sep . 12 , 2017

SLA Planning and Fulfillment

/ / = / / = / 2 / 37 Portal

Management
1064

os $

3 00

29

Sheet 12 of 12

Virtual Servers

Virtual Storage
Virtual Networks
Virtual Applications
Virtual Clients

Virtualization
1062

TB 0
Mainframes RISC Series BladeCenter® Storage Networking Network Database

Architecture Systems Systems

Application Software

Servers

Server

Hardware and Software

Software

FIG . 10

1060

US 9 , 762 , 672 B2

US 9 , 762 , 672 B2

cu

DYNAMIC NODE GROUP ALLOCATION This is an indication that the parallel application offloaded
the work to the data nodes by running the HDFSTM connec

FIELD tor of the parallel application in the data nodes . The network
write throughput increased , indicating an increase of total

Embodiments of the invention relate to dynamic node 5 workload throughput . Also , for read operations , network and
group allocation and , in particular , to improving data locality disk Input / Output (I / O) activities increase . This is caused by
for parallel applications running in big data distributed file the fact that data locality cannot be guaranteed when running
system . the HDFSTM connector in the data nodes . The performance

results were impacted by these system resource utilization
BACKGROUND 10 patterns .

As for the performance comparison of the parallel appli
“ Big Data ” is often used to refer to a large amount of data . cation when running in remote mode versus local mode ,

Big Data provides an enhanced approach for business while for write operations running the HDFSTM connector in
insights . Business insights may be described as spotting local mode helps the parallel application performance , for
problems and opportunities from big data . The ApacheTM 15 read operations running HDFSTM connector in local mode
Hadoop software framework may be described as a soft - degrades performance . For example , for write operations
ware framework that supports Big Data and that consists of running the HDFSTM connector in local mode , performance
a Hadoop Distributed File System (HDFSTM) , an ApacheTM improved 64 % and 44 % for 20 and 40 concurrent writers
Hadoop® file system , and Map - Reduce processes (which is respectively . However , for read operations running the
a programming model for data processing) . (Apache , 20 HDFSTM connector in local mode , performance is 19 % and
Hadoop , and Hadoop Distributed File System (HDFS) are 25 % as running remote mode for 20 and 40 concurrent
trademarks or registered trademarks of the Apache Software readers respectively . This defeats the purpose of running
Foundation in the United States and / or other countries .) HDFSTM connector in data sources to offload some work to
Since the volume of data that the ApacheTM Hadoop® the data source and improve performance .
software framework handles may be of the internet scale , 25 Based on the aforementioned analysis , the poor perfor
data should be moved in and out of the HDFSTM efficiently . mance of running the HDFSTM connector in local mode is
In many usage scenarios , an Extract , Transform , and Load caused by excessive network and disk I / O that was caused
(ETL) tool is used to bridge the ApacheTM Hadoop® soft - by the HDFSTM connector not always getting data blocks in
ware framework and data sources (Relational Database the data nodes where the HDFSTM connector instance runs .
Management Systems (RDBMSs) , flat files , etc .) , and trans - 30 To complete a task , an application may send a sequence
form and enrich the data as it flows through . of jobs to run in a cluster . A job of a parallel application or

A parallel application (e . g . , an ETL tool) might invoke some parts of the job may run in parallel across multiple
multiple processes to carry out a task . The defined task may nodes with data partitioning . The job may produce data that
be referred to as a job . The processes of a job of the parallel is consumed later by one or more downstream jobs . The data
application may run in parallel in a computer or in multiple 35 is saved as a file in HDFSTM
computers in a cluster . The job may interact with HDFSTM Where the jobs are run in the cluster may be determined
through an HDFSTM connector . The HDFSTM connector may based on certain constraints and resource management poli
run in its own process . Multiple instances of the HDFSTM cies of a workload management system . An example of the
connector may be invoked for parallel execution . When the constraints that limit the nodes on which a job can run is may
connector of the parallel application runs in the data source ' s 40 be : 1) whether the job needs to access a remote database , and
nodes , it is called running in local mode , whereas , when the 2) whether the job must run in the nodes that are enabled for
connector of the parallel application runs outside of the accessing a remote database . Since system resource utiliza
source ' s nodes , it is call running in remote mode . tion keeps changing dynamically , there is no guarantee that

To understand the performance characteristics of the a downstream job that consumes the file runs in the same
parallel application , assume that a cluster is arranged with 6 45 nodes as the job that produces the file does . If the down
nodes , 1 dedicated for the parallel application , 1 dedicated stream job runs in different nodes , then , the downstream job
for a name node , and 4 for data nodes . Each of the data nodes may not retrieve the data blocks locally and that may incur
stores data . The name node maintains a directory tree of the excessive network and I / O operations and cause poor per
files in the HDFSTM and tracks where across a cluster the file formance . This is sometimes referred to as a data locality
data is kept . The parallel application contacts the name node 50 issue .
to access a file , and the name node returns a list of the one Certain conventional systems guarantee reading the data
or more data nodes that store the file data . When the parallel block locally by querying the name node to obtain the
application runs in remote mode , the parallel application location of the block , then sending the task that reads the
only runs in the dedicated computer for this parallel appli - block to its known location . But this may not work for
cation , whereas , when the parallel application runs in local 55 parallel applications because an operator handles the data of
mode , the HDFSTM connector of the parallel application will a whole partition that may be stored in multiple data blocks
run in the data nodes . across multiple nodes in the cluster . The operator will be in
When running in local mode (running the HDFSTM con - the same container (or logical resource) and the same data

nector of the parallel application in the data nodes) , because node in the duration of processing the whole data of a
there is no guarantee for data locality , read operations may 60 partition .
incur excessive network and Input / Output (IO) activities .

For example , for write operations , when running the SUMMARY
parallel application in local mode , the total CPU utilization
of the data nodes is 211 % , compared to 56 % when the Provided is a method for improving data locality for
parallel application is running in remote mode ; whereas the 65 parallel applications running in a big data distributed file
CPU utilization of the dedicated node for the parallel system with a dynamic node group . The method comprises :
application goes down from saturation (90 %) to only 1 % . in response to a consumer job starting to read one or more

ru

US 9 , 762 , 672 B2

files in a big data distributed file system having multiple FIG . 9 illustrates a cloud computing environment in
nodes , retrieving node group information for the one or more accordance with certain embodiments .
files to be read , wherein the node group information iden FIG . 10 illustrates abstraction model layers in accordance
tifies nodes from the multiple nodes on which a producer job with certain embodiments .
wrote the one or more files ; and assigning the consumer job 5
to the nodes identified by the node group information to DETAILED DESCRIPTION
allow for local reading of the one or more files by the
consumer job . The descriptions of the various embodiments of the

Provided is a computer system for improving data locality present invention have been presented for purposes of
for parallel applications running in a big data distributed file 10 illustration , but are not intended to be exhaustive or limited

to the embodiments disclosed . Many modifications and system with a dynamic node group . The computer system variations will be apparent to those of ordinary skill in the comprises : one or more processors , one or more computer art without departing from the scope and spirit of the
readable memories and one or more computer - readable , described embodiments . The terminology used herein was tangible storage devices ; and program instructions , stored on ns , stored on 15 chosen to best explain the principles of the embodiments , the at least one of the one or more computer - readable , tangible practical application or technical improvement over tech
storage devices for execution by at least one of the one or nologies found in the marketplace , or to enable others of
more processors via at least one of the one or more memo ordinary skill in the art to understand the embodiments
ries , to perform : in response to a consumer job starting to disclosed herein .
read one or more files in a big data distributed file system 20 FIG . 1 illustrates , in a block diagram , a computing envi
having multiple nodes , retrieving node group information ronment in accordance with certain embodiments . A parallel
for the one or more files to be read , wherein the node group application server 100 includes servers 102a . . . 102n (e . g . ,
information identifies nodes from the multiple nodes on compute nodes) , an administrator node 130 , and a parallel
which a producer job wrote the one or more files ; and application 140 . The ellipses in FIG . 1 between the server
assigning the consumer job to the nodes identified by the 25 102a and the server 102n indicates that there may be any
node group information to allow for local reading of the one number of servers in the computing environment . In certain
or more files by the consumer job . embodiments , the parallel application server 100 may be an

Provided is a computer program product for improving ETL server . The server 102a may run one or more jobs , and
data locality for parallel applications running in a big data each of the jobs may consist of multiple processes , for
distributed file system with a dynamic node group . The 30 example , a sorting process 110a and a connector process
computer program product comprises a computer readable 120a . Similarly , the server 102n may run one or more jobs ,
storage medium having program code embodied therewith , and each of the jobs may consist of multiple processes , for
the program code executable by at least one processor to example , a sorting process 110n and a connector process
perform : in response to a consumer job starting to read one 120n . The servers 102a . . . 102n may operate in parallel to
or more files in a big data distributed file system having 35 process data in a data partitioning manner . The servers 102a
multiple nodes , retrieving node group information for the . . . 102n may be described as server computers .
one or more files to be read , wherein the node group The parallel application server 100 is coupled to data
information identifies nodes from the multiple nodes on sources 150 . The data sources 150 include a big data
which a producer job wrote the one or more files ; and distributed file system 160 (e . g . , HDFSTM) and other data
assigning the consumer job to the nodes identified by the 40 sources 170 (e . g . , RDBMS databases , cloud storage , Exten
node group information to allow for local reading of the one sible Markup Language (XML) files , etc .) .
or more files by the consumer job . The processes 110a . . . 110n and processes 120a . . . 120n

may exchange information with each other and with data
BRIEF DESCRIPTION OF THE SEVERAL sources 150 .

VIEWS OF THE DRAWINGS 45 The parallel application server 100 executes the parallel
application 140 that processes Big Data and may exchange

Referring now to the drawings in which like reference information with the big data distributed file system 160 and
numbers represent corresponding parts throughout : data sources 170 (collectively called data sources 150

FIG . 1 illustrates , in a block diagram , a computing envi - herein) . Such exchange of information may be used to move
ronment in accordance with certain embodiments . 50 enterprise information into a Big Data source , such as the

FIG . 2 illustrates operations when running in remote big data distributed file system 160 , so that the enterprise
mode in accordance with certain embodiments . information may be included in analytics . Such exchange of

FIG . 3 illustrates operations when running in local mode information may also be used to take analytical results of the
in accordance with certain embodiments . big data distributed file system 160 and apply the analytical
FIGS . 4A - 4B illustrate operations for allocating logical 55 results to other Information Technology (IT) solutions .

resources on nodes in accordance with certain embodiments . The parallel application server 100 exchanging data with
FIG . 5 illustrates an example of a configuration file in the big data distributed file system 160 may be massively

accordance with certain embodiments . scalable . With the parallel processing , there is a scale - out
FIG . 6 illustrates Data Definition Language (DDL) state - design that may be expanded by adding new hardware (e . g . ,

ments and Data Manipulation Language (DML) statements 60 servers) . The parallel distributed file system 100 may
for storing node group information in accordance with aggressively use system resources (Central Processing Unit
certain embodiments . (CPU) , memory , network I / O , disk I / O , etc .) for high speed

FIGS . 7A and 7B illustrated program logic for requesting data processing . With these two characteristics , it may be
logical resources from the workload management system in desirable in some data integration scenarios to include the
accordance with certain embodiments . 65 compute nodes that the data sources 150 are running on to

FIG . 8 illustrates a cloud computing node in accordance be designated as a part of the parallel application server 100 .
with certain embodiments . For example , when the parallel application server 100 needs

US 9 , 762 , 672 B2

to run a large job , the dedicated computers running the Embodiments use a dynamically defined node group to
parallel application server 100 may be bound by system run the jobs in an ApacheTM Hadoop cluster of nodes . For
resources (e . g . , CPU , 1 / 0 , etc .) . If the parallel application the parallel application server 100 , the list of nodes a job
server 100 is able to offload some of the work to the data runs on is specified in a configuration file . To dynamically
sources 150 , the overall performance may be improved . One 5 generate a configuration file for a job to run is to dynami
way to implement this is to configure the computers running cally assign a node group for the job .
the data sources 150 to also serve as compute nodes of the With embodiments , a producer job is a job that writes files
parallel application server 100 . Then , the parallel application in the big data distributed file system , and a consumer job
server connectors , used to talk to the data sources 150 and reads from those files in the big data distributed file system .
parse the data , may be assigned to run in those compute When a producer job writes files to the big data distributed
nodes . file system , the producer job stores node group information
When a connector of the parallel application server 100 that includes a full path file names for each of one or more

runs in the data source ' s nodes , it is called running in local files , along with the information of the nodes where the job
mode , whereas , when a connector of the parallel application to runs . The node group information may be stored in a data
server 100 runs outside of the source ' s nodes , it is call storage management system table , such as an ApacheTM
running in remote mode . HIVETM table . (HIVE is a trademark or registered trademark

FIG . 2 illustrates operations when running in remote of the Apache Software Foundation in the United States
mode in accordance with certain embodiments . In FIG . 2 , and / or other countries .) When the consumer job runs , the
Big Data File System Stage (BDFS) represents a big data 20 consumer job first retrieves the node group information of
distributed file system connector . Also , in FIG . 2 , a parallel the one or more files the consumer job needs to read from ,
processing engine of the parallel application (e . g . , of an ETL uses this information to request logical resources (also
server) is represented by PX . When running in remote mode , referred to as containers) from the workload management
the instances of the big data distributed file system connector system , and dynamically generates a configuration file for
of the parallel application server 200 run outside of a big 25 the job . Logical resources may be described as a specific
data distributed file system 210 . When reading from the big amount of resources (e . g . , memory , central processing unit ,
data distributed file system 210 , the big data distributed file etc .) . . If logical resources cannot be allocated in the exact
system connector first sends a request to the master node to set of nodes that are in the node group information , the
obtain location information of the data block to be retrieved . consumer job attempts to allocate logical resources in nodes
In certain embodiments , the master node of the big data 30 as physically close as possible (i . e . , in the same rack (e . g . ,
distributed file system 210 maintains information about a metal frame that stores computers) , physically close to
which data nodes store which data blocks of the files . With each other , etc .) . If the consumer job runs in the exact set of
the information , the big data distributed file system connec - nodes as the producer job , (writing to the big data distributed
tor gets the data directly from the data node where the data file system writes a local copy of data in the node where it
block resides (via a Remote Procedure Call (RPC)) . When 35 runs) , data locality is provided . If the consumer job runs in
writing to the big data distributed file system 210 , the big the nodes close to the nodes that the producer jobs run , the
data distributed file system connector first sends a request to data locality issue is alleviated , i . e . , by going through shorter
the master node to obtain location information the data block network paths when retrieving data from the big data
to be written . Then , the big data distributed file system distributed file system .
connector makes an RPC call directly to the data node and 40 Embodiments leverage data locality with dynamic node
writes the data block . group allocation for the parallel application server 100 .

FIG . 3 illustrates operations when running in local mode Embodiments record and store away information of one or
in accordance with certain embodiments . In FIG . 3 , Big Data more files , along with node group information for the
File System Stage (BDFS) represents a big data distributed producer job . For the consumer job of the one or more files ,
file system connector . Also , in FIG . 3 , a parallel processing 45 embodiments use the node group information when request
engine of the parallel application (e . g . , of an ETL server) is ing logical resources from the workload management sys
represented by PX . When running in local mode , the tem . Then , the node group is used as a soft constraint when
instances of the big data distributed file system connector of allocating logical resources from the logical resources can
the parallel application server 300 run in a big data distrib - not be allocated in the exact set of nodes , embodiments
uted file system 310 . The big data distributed file system 50 attempt to allocate logical resources in nodes as close to the
connector first sends a request to the master node to obtain node group as possible .
location information of which data node to read or write the Merely to enhance understanding , examples of embodi
data block . For write operations , because of the data locality ments will be provided herein . However , it is to be under
principle of the big data distributed file system 310 , the data stood that embodiments are not limited to these examples .
blocks are designated to write locally to where the big data 55 In one example , Job1 runs in 4 - way parallelism writes to
distributed file system connector runs . However , for read a parallel data set (4 files in the big data distributed file
operations , the big data distributed file system 300 does not system) . Job2 reads the data set (the 4 files in the big data
guarantee data locality . That is , a data block to be retrieved distributed file system) written by Job1 . Job2 also runs in 4
by a big data distributed file system connector can reside in ways . If Job2 runs in the same set of nodes as Job1 did , Job2
a data node different from where the big data distributed file 60 reads data blocks locally or at least from nodes physical
system connector runs . close to nodes in the node group . Thus , embodiments avoid

Embodiments solve or at least alleviate the data locality having Job2 run in other , physically remote nodes from
issue by using a dynamic node group mechanism . A node which Job2 is not able to read the data blocks locally or
group that normally includes a list of nodes is used by the nodes as physically close as possible .
parallel application server 100 to define which nodes a job 65 How the elements of this invention apply to the solution
will run on . In certain embodiments , one or more parts of a is shown as the following (read data blocks locally as much
job run in a certain node pool (a subset of a node group) . as possible) :

US 9 , 762 , 672 B2

1 . Job1 writes to 4 files in the big data distributed file nodes on which the consumer job is to run . Then , the
system and records which nodes the job runs (i . e . , in a table) . consumer job is executed (" run ") on the identified nodes .

2 . When Job2 is about to run , in the prepare phase , the In block 412 , the parallel application 140 increments a
parallel application 140 retrieves the node group information counter for a number of attempts . That is , a counter may be
(i . e . , from the table) , sends requests to the workload man - 5 set (e . g . , by a user or system administrator) to indicate how
agement system to get logical resources in these nodes . If the many times the attempt to allocate the logical resources in
logical resources are successfully obtained , the parallel blocks 404 and 408 should be tried . In block 414 , the parallel
application 140 dynamically generates a configuration file application 140 determines whether the counter value is with the logical resources on the nodes for the job to run on . above a total number of attempts already completed . If so , 3 . If the parallel application 140 fails to get logical 10 processing continues to block 416 , otherwise , processing resources in the exact set of nodes , the parallel application continues to block 418 . 140 tries again and gets the next closest nodes and generates In block 416 , the parallel application 140 returns a mes a configuration file for Job2 dynamically with these closest sage that attempts to allocate logical resources were not
nodes . successful . The list of nodes the parallel application server 100 job 15 In block 418 , the parallel application 140 waits a prede (e . g . , the producer job) runs on is specified in a configuration termined amount of time , and then processing continues file . When Job1 is writing to a file in the big data distributed from block 418 (FIG . 4B) to block 404 (FIG . 4A) . file system , the file name (full path file name) and the nodes FIG . 5 illustrates an example of a configuration file 500 in
that the job runs on are recorded and stored away (i . e . , in a accordance with certain embodiments . In the configuration table) . When Job2 is reading data from the big data distrib - 20 file 500 , fastname points to the hosts where the consumer job uted file system , to make sure that Job2 runs on the nodes is to run . In this example , the job assigned with the con where the data is , the parallel application 140 attempts to figuration file runs on 3 nodes , iishd005 , iishd007 , and create the configuration file with the list of nodes the iishd009 . If a job that is assigned to run with the default . apt producer job ran on because that is where the data (a local configuration file writes to a file in the big data distributed copy of the data blocks) is stored . 25 file system , for example / DS _ FILES / file1 , both the file name When the parallel application 140 fails to get resources and the list of nodes the job runs on will be stored . for the job on the nodes specified in the configuration file , FIG . 6 illustrates Data Definition Language (DDL) state then , the parallel application 140 attempts to get the ments and Data Manipulation Language (DML) statements resources allocated somewhere on the same rack and runs 600 for storing node group information in accordance with the job on those nodes . In case getting the resources on the 30 certain embodiments . In certain embodiments , Common same rack is also not possible , the parallel application 140 Language Infrastructure (CLI) calls may be used to show the attempts to get resources anywhere in the cluster or waits for sequence of statements . These calls may be changed to Web a user defined amount of time to try again to obtain resources Application Programming Interface (API) calls in other on same node / rack that stores the data to be processed . embodiments . FIGS . 4A - 4B illustrate operations for allocating logical 35 When Job2 is reading from / DS _ FILES / file1 , first the resources on nodes in accordance with certain embodiments . information of the list of nodes that the producer of the file Control begins at block 400 , in response to a producer job ran on will be retrieved from the table storing node group writing one or more files to the big data distributed file information with the following : system having multiple nodes , with the producer job storing
node group information identifying nodes from the multiple 40
nodes where the producer job runs and writes the one or > select nodes from file _ nodegroup _ info where
more files . In block 402 , in response to a consumer job full _ path _ file _ name = ' / DS _ FILES / file1 ' ;
starting (eg , running) to read the one or more files , the OK

parallel application 140 retrieves the node group information iishd005 , iishd007 , iishd009

for the one or more files to be read . 45
In block 404 , the parallel application 140 attempts to Now the node group information of the list of nodes is

request logical resources on the nodes where the producer retrieved , and the parallel application 140 uses this node
job ran and send the consumer job to the nodes identified by group information to request logical resources from the
the node group to allow for local reading of the data blocks workload management system of the big data distributed file
of the one or more files by the consumer job . In block 406 , 50 system and construct a configuration file for Job2 . FIGS . 7A
the parallel application 140 determines whether the attempt and 7B illustrate program logic 700 , 710 for requesting
in block 404 was successful . If so , processing continues to logical resources from the workload management system in
block 407 , otherwise , processing continues to block 408 . In accordance with certain embodiments .
block 407 , the parallel application 140 dynamically gener Thus , when running parallel applications in the big data
ates a configuration file for the consumer job . The configu - 55 distributed file system through the workload management
ration file identifies the nodes on which the consumer job is system , if data cannot be accessed locally by the parallel
to run . Then , the consumer job is executed (“ run ”) on the applications , the parallel applications will generate excess
identified nodes . network traffic and cause poor performance . Embodiments

In block 408 , the parallel application 140 attempts to send remember the set of nodes a producer job runs on and use
the consumer job to nodes that are close to the node group . 60 this node group information to request , from the workload
From block 408 (FIG . 4A) , processing continues to block management system , logical resources in the same set of
410 (FIG . 4B) . In block 410 , the parallel application 140 nodes for the consumer job of the big data distributed file
determines whether the attempt in block 408 was successful . system . If the logical resources cannot be obtained from the
If so , processing continues to block 411 , otherwise , process - set of nodes , they will be requested to be allocated as close
ing continues to block 412 . In block 411 , the parallel 65 as possible to those nodes . This increases the possibility of
application 140 dynamically generates a configuration file the consumer application reading data locally in the data
for the consumer job . The configuration file identifies the nodes .

US 9 , 762 , 672 B2
10

With embodiments , a dynamically allocated node group is programming languages and tools supported by the provider .
used to constrain where the consumer job is to run to The consumer does not manage or control the underlying
leverage data locality . cloud infrastructure including networks , servers , operating

Embodiments improve the I / O time by assuring data systems , or storage , but has control over the deployed
locality for the applications run on the big data distributed 5 applications and possibly application hosting environment
file system . configurations .
Cloud Embodiments Infrastructure as a Service (IaaS) : the capability provided

It is understood in advance that although this disclosure to the consumer is to provision processing , storage , net
includes a detailed description on cloud computing , imple - works , and other fundamental computing resources where
mentation of the teachings recited herein are not limited to 10 the consumer is able to deploy and run arbitrary software ,
a cloud computing environment . Rather , embodiments of the which can include operating systems and applications . The
present invention are capable of being implemented in consumer does not manage or control the underlying cloud
conjunction with any other type of computing environment infrastructure but has control over operating systems , stor
now known or later developed . age , deployed applications , and possibly limited control of

Cloud computing is a model of service delivery for 15 select networking components (e . g . , host firewalls) .
enabling convenient , on - demand network access to a shared Deployment Models are as follows :
pool of configurable computing resources (e . g . networks , Private cloud : the cloud infrastructure is operated solely
network bandwidth , servers , processing , memory , storage , for an organization . It may be managed by the organization
applications , virtual machines , and services) that can be or a third party and may exist on - premises or off - premises .
rapidly provisioned and released with minimal management 20 Community cloud : the cloud infrastructure is shared by
effort or interaction with a provider of the service . This cloud several organizations and supports a specific community that
model may include at least five characteristics , at least three has shared concerns (e . g . , mission , security requirements ,
service models , and at least four deployment models . policy , and compliance considerations) . It may be managed

Characteristics are as follows : by the organizations or a third party and may exist on
On - demand self - service : a cloud consumer can unilater - 25 premises or off - premises .

ally provision computing capabilities , such as server time Public cloud : the cloud infrastructure is made available to
and network storage , as needed automatically without the general public or a large industry group and is owned by
requiring human interaction with the service ' s provider . an organization selling cloud services .

Broad network access : capabilities are available over a Hybrid cloud : the cloud infrastructure is a composition of
network and accessed through standard mechanisms that 30 two or more clouds (private , community , or public) that
promote use by heterogeneous thin or thick client platforms remain unique entities but are bound together by standard
(e . g . , mobile phones , laptops , and PDAs) . ized or proprietary technology that enables data and appli
Resource pooling : the provider ' s computing resources are cation portability (e . g . , cloud bursting for load balancing

pooled to serve multiple consumers using a multi - tenant between clouds) .
model , with different physical and virtual resources dynami - 35 A cloud computing environment is service oriented with
cally assigned and reassigned according to demand . There is a focus on statelessness , low coupling , modularity , and
a sense of location independence in that the consumer semantic interoperability . At the heart of cloud computing is
generally has no control or knowledge over the exact an infrastructure comprising a network of interconnected
location of the provided resources but may be able to specify nodes .
location at a higher level of abstraction (e . g . , country , state , 40 Referring now to FIG . 8 , a schematic of an example of a
or datacenter) . cloud computing node is shown . Cloud computing node 810

Rapid elasticity : capabilities can be rapidly and elastically is only one example of a suitable cloud computing node and
provisioned , in some cases automatically , to quickly scale is not intended to suggest any limitation as to the scope of
out and rapidly released to quickly scale in . To the consumer , use or functionality of embodiments of the invention
the capabilities available for provisioning often appear to be 45 described herein . Regardless , cloud computing node 810 is
unlimited and can be purchased in any quantity at any time . capable of being implemented and / or performing any of the
Measured service : cloud systems automatically control functionality set forth hereinabove .

and optimize resource use by leveraging a metering capa - In cloud computing node 810 there is a computer system /
bility at some level of abstraction appropriate to the type of server 812 , which is operational with numerous other gen
service (e . g . , storage , processing , bandwidth , and active user 50 eral purpose or special purpose computing system environ
accounts) . Resource usage can be monitored , controlled , and ments or configurations . Examples of well - known
reported providing transparency for both the provider and computing systems , environments , and / or configurations
consumer of the utilized service . that may be suitable for use with computer system / server

Service Models are as follows : 812 include , but are not limited to , personal computer
Software as a Service (SaaS) : the capability provided to 55 systems , server computer systems , thin clients , thick clients ,

the consumer is to use the provider ' s applications running on handheld or laptop devices , multiprocessor systems , micro
a cloud infrastructure . The applications are accessible from processor - based systems , set top boxes , programmable con
various client devices through a thin client interface such as sumer electronics , network PCs , minicomputer systems ,
a web browser (e . g . , web - based email) . The consumer does mainframe computer systems , and distributed cloud com
not manage or control the underlying cloud infrastructure 60 puting environments that include any of the above systems
including network , servers , operating systems , storage , or or devices , and the like .
even individual application capabilities , with the possible Computer system / server 812 may be described in the
exception of limited user - specific application configuration general context of computer system executable instructions ,
settings . such as program modules , being executed by a computer

Platform as a Service (PaaS) : the capability provided to 65 system . Generally , program modules may include routines ,
the consumer is to deploy onto the cloud infrastructure programs , objects , components , logic , data structures , and so
consumer - created or acquired applications created using on that perform particular tasks or implement particular

US 9 , 762 , 672 B2
12

al

abstract data types . Computer system / server 812 may be computer system / server 812 can communicate with one or
practiced in distributed cloud computing environments more networks such as a local area network (LAN) , a
where tasks are performed by remote processing devices that general wide area network (WAN) , and / or a public network
are linked through a communications network . In a distrib (e . g . , the Internet) via network adapter 820 . As depicted ,
uted cloud computing environment , program modules may 5 network adapter 820 communicates with the other compo
be located in both local and remote computer system storage nents of computer system / server 812 via bus 818 . It should
media including memory storage devices . be understood that although not shown , other hardware

As shown in FIG . 8 , computer system / server 812 in cloud and / or software components could be used in conjunction
computing node 810 is shown in the form of a general - with computer system / server 812 . Examples , include , but
purpose computing device . The components of computer 10 are not limited to : microcode , device drivers , redundant
system / server 812 may include , but are not limited to , one or processing units , external disk drive arrays , RAID systems ,
more processors or processing units 816 , a system memory tape drives , and data archival storage systems , etc .
828 , and a bus 818 that couples various system components Referring now to FIG . 9 , illustrative cloud computing
including system memory 828 to processor 816 . environment 950 is depicted . As shown , cloud computing
Bus 818 represents one or more of any of several types of 15 environment 950 comprises one or more cloud computing

bus structures , including a memory bus or memory control - nodes 810 with which local computing devices used by
ler , a peripheral bus , an accelerated graphics port , and a cloud consumers , such as , for example , personal digital
processor or local bus using any of a variety of bus archi - assistant (PDA) or cellular telephone 954A , desktop com
tectures . By way of example , and not limitation , such puter 954B , laptop computer 954C , and / or automobile com
architectures include Industry Standard Architecture (ISA) 20 puter system 954N may communicate . Nodes 810 may
bus , Micro Channel Architecture (MCA) bus , Enhanced ISA communicate with one another . They may be grouped (not
(EISA) bus , Video Electronics Standards Association shown) physically or virtually , in one or more networks ,
(VESA) local bus , and Peripheral Component Interconnects such as Private , Community , Public , or Hybrid clouds as
(PCI) bus . described hereinabove , or a combination thereof . This
Computer system / server 812 typically includes a variety 25 allows cloud computing environment 950 to offer infrastruc

of computer system readable media . Such media may be any ture , platforms and / or software as services for which a cloud
available media that is accessible by computer system / server consumer does not need to maintain resources on a local
812 , and it includes both volatile and non - volatile media , computing device . It is understood that the types of com
removable and non - removable media . puting devices 954A - N shown in FIG . 9 are intended to be

System memory 828 can include computer system read - 30 illustrative only and that computing nodes 810 and cloud
able media in the form of volatile memory , such as random computing environment 950 can communicate with any type
access memory (RAM) 830 and / or cache memory 832 of computerized device over any type of network and / or

Computer system / server 812 may further include other network addressable connection (e . g . , using a web browser) .
removable / non - removable , volatile / non - volatile computer Referring now to FIG . 80 , a set of functional abstraction
system storage media . By way of example only , storage 35 layers provided by cloud computing environment 950 (FIG .
system 834 can be provided for reading from and writing to 9) is shown . It should be understood in advance that the
a non - removable , non - volatile magnetic media (not shown components , layers , and functions shown in FIG . 80 are
and typically called a " hard drive ") . Although not shown , a intended to be illustrative only and embodiments of the
magnetic disk drive for reading from and writing to a invention are not limited thereto . As depicted , the following
removable , non - volatile magnetic disk (e . g . , a “ floppy 40 layers and corresponding functions are provided :
disk ”) , and an optical disk drive for reading from or writing Hardware and software layer 8060 includes hardware and
to a removable , non - volatile optical disk such as a CD - software components . Examples of hardware components
ROM , DVD - ROM or other optical media can be provided . include mainframes , in one example IBM® zSeries® sys
In such instances , each can be connected to bus 818 by one tems ; RISC (Reduced Instruction Set Computer) architec
or more data media interfaces . As will be further depicted 45 ture based servers , in one example IBM pSeries® systems ;
and described below , memory 828 may include at least one IBM xSeries® systems ; IBM BladeCenter® systems ; stor
program product having a set (e . g . , at least one) of program age devices ; networks and networking components .
modules that are configured to carry out the functions of Examples of software components include network appli
embodiments of the invention . cation server software , in one example IBM WebSphere®

Program / utility 840 , having a set (at least one) of program 50 application server software ; and database software , in one
modules 842 , may be stored in memory 828 by way of example IBM DB2 database software . (IBM , zSeries ,
example , and not limitation , as well as an operating system , pSeries , xSeries , BladeCenter , WebSphere , and DB2 are
one or more application programs , other program modules , trademarks of International Business Machines Corporation
and program data . Each of the operating system , one or more registered in many jurisdictions worldwide) .
application programs , other program modules , and program 55 Virtualization layer 8062 provides an abstraction layer
data or some combination thereof , may include an imple - from which the following examples of virtual entities may
mentation of a networking environment . Program modules be provided : virtual servers ; virtual storage ; virtual net
842 generally carry out the functions and / or methodologies works , including virtual private networks ; virtual applica
of embodiments of the invention as described herein . tions and operating systems ; and virtual clients .

Computer system / server 812 may also communicate with 60 In one example , management layer 8064 may provide the
one or more external devices 814 such as a keyboard , a functions described below . Resource provisioning provides
pointing device , a display 824 , etc . ; one or more devices that dynamic procurement of computing resources and other
enable a user to interact with computer system / server 812 ; resources that are utilized to perform tasks within the cloud
and / or any devices (e . g . , network card , modem , etc .) that computing environment . Metering and Pricing provide cost
enable computer system / server 812 to communicate with 65 tracking as resources are utilized within the cloud computing
one or more other computing devices . Such communication environment , and billing or invoicing for consumption of
can occur via Input / Output (I / O) interfaces 822 . Still yet , these resources . In one example , these resources may com

ac

US 9 , 762 , 672 B2
13 14

prise application software licenses . Security provides iden computers and / or edge servers . A network adapter card or
tity verification for cloud consumers and tasks , as well as network interface in each computing / processing device
protection for data and other resources . User portal provides receives computer readable program instructions from the
access to the cloud computing environment for consumers network and forwards the computer readable program
and system administrators . Service level management pro - 5 instructions for storage in a computer readable storage
vides cloud computing resource allocation and management medium within the respective computing / processing device .
such that required service levels are met . Service Level Computer readable program instructions for carrying out
Agreement (SLA) planning and fulfillment provide pre operations of the present invention may be assembler arrangement for , and procurement of , cloud computing instructions , instruction - set - architecture (ISA) instructions , resources for which a future requirement is anticipated in 10 machine instructions , machine dependent instructions , accordance with an SLA . microcode , firmware instructions , state - setting data , or Workloads layer 8066 provides examples of functionality
for which the cloud computing environment may be utilized . either source code or object code written in any combination
Examples of workloads and functions which may be pro of one or more programming languages , including an object
vided from this laver include : mapping and navigation : 15 oriented programming language such as Smalltalk , C + + or
software development and lifecycle management ; virtual the like , and conventional procedural programming lan
classroom education delivery ; data analytics processing ; guages , such as the “ C ” programming language or similar
transaction processing ; and dynamic node group allocation . programming languages . The computer readable program

Thus , in certain embodiments , software or a program , instructions may execute entirely on the user ' s computer ,
implementing dynamic node group allocation in accordance 20 partly on the user ' s computer , as a stand - alone software
with embodiments described herein , is provided as a service package , partly on the user ' s computer and partly on a
in a cloud environment . remote computer or entirely on the remote computer or

In certain embodiments , server 102a . . . 102n each has the server . In the latter scenario , the remote computer may be
architecture of computing node 810 . In certain embodi - connected to the user ' s computer through any type of
ments , the server 102a . . . 102n are part of a cloud 25 network , including a local area network (LAN) or a wide
environment . In certain alternative embodiments , server area network (WAN) , or the connection may be made to an
102a . . . 102n are not part of a cloud environment . external computer (for example , through the Internet using
Additional Embodiment Details an Internet Service Provider) . In some embodiments , elec

The present invention may be a system , a method , and / or tronic circuitry including , for example , programmable logic
a computer program product . The computer program prod - 30 circuitry , field - programmable gate arrays (FPGA) , or pro
uct may include a computer readable storage medium (or grammable logic arrays (PLA) may execute the computer
media) having computer readable program instructions readable program instructions by utilizing state information
thereon for causing a processor to carry out aspects of the of the computer readable program instructions to personalize
present invention . the electronic circuitry , in order to perform aspects of the

The computer readable storage medium can be a tangible 35 present invention .
device that can retain and store instructions for use by an Aspects of the present invention are described herein with
instruction execution device . The computer readable storage reference to flowchart illustrations and / or block diagrams of
medium may be , for example , but is not limited to , an methods , apparatus (systems) , and computer program prod
electronic storage device , a magnetic storage device , an ucts according to embodiments of the invention . It will be
optical storage device , an electromagnetic storage device , a 40 understood that each block of the flowchart illustrations
semiconductor storage device , or any suitable combination and / or block diagrams , and combinations of blocks in the
of the foregoing . A non - exhaustive list of more specific flowchart illustrations and / or block diagrams , can be imple
examples of the computer readable storage medium includes mented by computer readable program instructions .
the following : a portable computer diskette , a hard disk , a These computer readable program instructions may be
random access memory (RAM) , a read - only memory 45 provided to a processor of a general purpose computer ,
(ROM) , an erasable programmable read - only memory special purpose computer , or other programmable data pro
(EPROM or Flash memory) , a static random access memory cessing apparatus to produce a machine , such that the
(SRAM) , a portable compact disc read - only memory (CD - instructions , which execute via the processor of the com
ROM) , a digital versatile disk (DVD) , a memory stick , a puter or other programmable data processing apparatus ,
floppy disk , a mechanically encoded device such as punch - 50 create means for implementing the functions / acts specified
cards or raised structures in a groove having instructions in the flowchart and / or block diagram block or blocks . These
recorded thereon , and any suitable combination of the fore - computer readable program instructions may also be stored
going . A computer readable storage medium , as used herein , in a computer readable storage medium that can direct a
is not to be construed as being transitory signals per se , such computer , a programmable data processing apparatus , and /
as radio waves or other freely propagating electromagnetic 55 or other devices to function in a particular manner , such that
waves , electromagnetic waves propagating through a wave the computer readable storage medium having instructions
guide or other transmission media (e . g . , light pulses passing stored therein comprises an article of manufacture including
through a fiber - optic cable) , or electrical signals transmitted instructions which implement aspects of the function / act
through a wire . specified in the flowchart and / or block diagram block or
Computer readable program instructions described herein 60 blocks .

can be downloaded to respective computing / processing The computer readable program instructions may also be
devices from a computer readable storage medium or to an loaded onto a computer , other programmable data process
external computer or external storage device via a network , ing apparatus , or other device to cause a series of operational
for example , the Internet , a local area network , a wide area steps to be performed on the computer , other programmable
network and / or a wireless network . The network may com - 65 apparatus or other device to produce a computer imple
prise copper transmission cables , optical transmission fibers , mented process , such that the instructions which execute on
wireless transmission , routers , firewalls , switches , gateway the computer , other programmable apparatus , or other

US 9 , 762 , 672 B2
15 16

device implement the functions / acts specified in the flow
chart and / or block diagram block or blocks .

The flowchart and block diagrams in the Figures illustrate
the architecture , functionality , and operation of possible
implementations of systems , methods , and computer pro - 5
gram products according to various embodiments of the
present invention . In this regard , each block in the flowchart
or block diagrams may represent a module , segment , or
portion of instructions , which comprises one or more
executable instructions for implementing the specified logi - 10
cal function (s) . In some alternative implementations , the
functions noted in the block may occur out of the order noted
in the figures . For example , two blocks shown in succession
may , in fact , be executed substantially concurrently , or the
blocks may sometimes be executed in the reverse order , 15
depending upon the functionality involved . It will also be
noted that each block of the block diagrams and / or flowchart
illustration , and combinations of blocks in the block dia
grams and / or flowchart illustration , can be implemented by
special purpose hardware - based systems that perform the 20
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions .

25

30

What is claimed is :
1 . A method , comprising :
connecting a parallel application server to a data source

structure , wherein the data source structure contains a
big data distributed file system , wherein the big data
distributed file system contains multiple nodes and data
blocks ;

in response to the parallel application operating the data
source structure within the multiple nodes of the big
data distributed file system , the parallel application
server and the data source structure performing read
and write operations on the data blocks in a local mode 35
setting ;

in response to the parallel application operating the data
source structure outside of the multiple nodes of the big
data distributed file system , the parallel application
server and the data source structure performing read 40
and write operations on the data blocks in a remote
mode setting ;

in response to a consumer job starting to read one or more
files in the big data distributed file system , retrieving
node group information for the one or more files to be 45
read , wherein the node group information identifies
nodes from the multiple nodes on which a producer job
wrote the one or more files ;

implementing a node grouping mechanism to read and
write the data blocks within the local mode setting over 50
the remote mode setting ;

assigning the consumer job to the nodes identified by the
node group information to allow for reading of the one
or more files by the consumer job within the local mode
setting , wherein the local mode setting reads and writes 55
the data blocks ;

in response to assigning the consumer job to the nodes
identified by the node group information , generating a
configuration file , wherein the configuration file com -
prises a dynamically generated configuration file and a 60
non - dynamically generated configuration file ;

wherein the dynamically generated configuration file cor
responds to the consumer job and the dynamically
generated configuration file is dynamically assigned to
the node group for the consumer job ; 65

in response to retrieving the node group information ,
requesting logical resources ;

executing the consumer job with the configuration file
identifying the nodes on which the consumer job is to
run ; and

in response to determining that logical resources cannot
be allocated in the nodes identified by the node group
information , attempting to allocate logical resources in
nodes close to the nodes identified by the node group
information .

2 . The method of claim 1 , further comprising :
storing a full path file name along with the node group

information in a table .
3 . The method of claim 1 , wherein software is provided as

a service in a cloud environment .
4 . A computer system , comprising :
one or more processors , one or more computer - readable
memories and one or more computer - readable , tangible
storage devices ;

a parallel application server connected to a data source
structure , wherein the data source structure contains a
big data distributed file system , wherein the big data
distributed file system contains multiple nodes and data
blocks ; and

program instructions , stored on at least one of the one or
more computer - readable , tangible storage devices for
execution by at least one of the one or more processors
via at least one of the one or more memories , to
perform :

in response to the parallel application operating the data
source structure within the multiple nodes of the big
data distributed file system , the parallel application
server and the data source structure performing read
and write operations on the data blocks within a local
mode setting ;

in response to the parallel application operating the data
source structure outside the multiple nodes of the big
data distributed file system , the parallel application
server and the data source structure performing read
and write operations on the data blocks within a remote
mode setting ;

in response to a consumer job starting to read one or more
files in the big data distributed file system , retrieving
node group information for the one or more files to be
read , wherein the node group information identifies
nodes from the multiple nodes on which a producer job
wrote the one or more files ;

implementing a node grouping mechanism to read and
write the data blocks within the local mode setting over
the remote mode setting ;

assigning the consumer job to the nodes identified by the
node group information to allow for reading of the one
or more files by the consumer job within the local mode
setting , wherein the local mode setting reads and writes
the data blocks ;

in response to assigning the consumer job to the nodes
identified by the node group information , generating a
configuration file , wherein the configuration file com
prises a dynamically generated configuration file and a
non - dynamically generated configuration file ;

wherein the dynamically generated configuration file cor
responds to the consumer job and the dynamically
generated configuration file is dynamically assigned to
the node group for the consumer job ;

in response to retrieving the node group information ,
requesting logical resources ;

executing the consumer job with the configuration file
identifying the nodes on which the consumer job is to
run ; and

US 9 , 762 , 672 B2
17 18

in response to determining that logical resources cannot nodes from the multiple nodes on which a producer job
be allocated in the nodes identified by the node group wrote the one or more files ;
information , attempting to allocate logical resources in implementing a node grouping mechanism to read and
nodes close to the nodes identified by the node group write the data blocks within the local mode setting over
information . the remote mode setting ;

assigning the consumer job to the nodes identified by the 5 . The computer system of claim 4 , wherein the opera node group information to allow for reading of the one tions further comprise : or more files by the consumer job within the local mode storing a full path file name along with the node group setting , wherein the local mode setting reads and writes
information in a table . the data blocks ;

6 . The computer system of claim 4 , wherein a Software as in response to assigning the consumer job to the nodes
a Service (SaaS) is configured to perform the system opera identified by the node group information , generating a
tions . configuration file , wherein the configuration file com

7 . A computer program product , the computer program prises a dynamically generated configuration file and a
product comprising a computer readable storage medium 16 non - dynamically generated configuration file ;

15
having program code embodied therewith , the program code wherein the dynamically generated configuration file cor
executable by at least one processor to perform : responds to the consumer job and the dynamically

generated configuration file is dynamically assigned to connecting a parallel application server to a data source
structure , wherein the data source structure contains a the node group for the consumer job ;
big data distributed file system , wherein the big data 30 in response to retrieving the node group information ,
distributed file system contains multiple nodes and data requesting logical resources ;
blocks ; executing the consumer job with the configuration file

in response to the parallel application operating the data identifying the nodes on which the consumer job is to

source structure within the multiple nodes of the big run ; and
data distributed file system , the parallel application in response to determining that logical resources cannot
server and the data source structure perform read and be allocated in the nodes identified by the node group
write operations on the data blocks within a local mode information , attempting to allocate logical resources in
setting ; nodes close to the nodes identified by the node group

in response to the parallel application operating the data information .
source structure outside the multiple nodes of the big 30 8 . The computer program product of claim 7 , wherein the
data distributed file system , the parallel application 30 program code is executable by at the least one processor to
server and the data source structure perform read and perform :
write operations on the data blocks within a remote storing a full path file name along with the node group
mode setting ; information in a table .

in response to a consumer job starting to read one or more 35 9 . The computer program product of claim 7 , wherein a
files in the big data distributed file system , retrieving 35 Software as a Service (SaaS) is configured to perform the
node group information for the one or more files to be computer program product operations .
read , wherein the node group information identifies * * * *

