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A method for the computer-aided learning of a recurrent
neural network for modeling a dynamic system which is
characterized at respective times by an observable vector with
one or more observables as entries is provided. The neural
network includes both a causal network with a flow of infor-
mation that is directed forwards in time and a retro-causal
network with a flow of information which is directed back-
wards in time. The states of the dynamic system are charac-
terized by first state vectors in the causal network and by
second state vectors in the retro-causal network, wherein the
state vectors each contain observables for the dynamic system
and also hidden states of the dynamic system. Both networks
are linked to one another by a combination of the observables
from the relevant first and second state vectors and are learned
on the basis of training date including known observables
vectors.
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METHOD FOR THE COMPUTER-AIDED
LEARNING OF A RECURRENT NEURAL
NETWORK FOR MODELING A DYNAMIC
SYSTEM

CROSS REFERENCE TO RELATED
APPLICATIONS

[0001] This application is the US National Stage of Inter-
national Application No. PCT/EP2011/055664 filed Apr. 12,
2011, and claims the benefit thereof. The International Appli-
cation claims the benefits of German Application No. 102010
014 906.3 DE filed Apr. 14, 2010. All of the applications are
incorporated by reference herein in their entirety.

FIELD OF INVENTION

[0002] The invention relates to a method for computer-
aided learning of a recurrent neural network for modeling a
dynamic system and to a method for predicting the observ-
ables of a dynamic system on the basis of a learned recurrent
neural network, and to a corresponding computer program
product.

BACKGROUND OF INVENTION

[0003] Recurrent neural networks are used nowadays in
various fields of application as an appropriate way of model-
ing the changes over time of a dynamic system such that a
recurrent neural network learned using training data of the
dynamic system can accurately predict the observables (ob-
servable states) of the system in question. Said recurrent
neural network is also used to model, as states of the dynamic
system, not only the observables but also unknown hidden
states of the dynamic system, wherein generally only a causal
information flow, i.e. proceeding forward in time, between
consecutive states is considered. However, dynamic systems
are often based on the principle that future predictions con-
cerning observables also play a role in the changes over time
of the states of the system. Such dynamic systems are often
only inadequately described by known recurrent neural net-
works.

SUMMARY OF INVENTION

[0004] An object is to create a method for computer-aided
learning of a recurrent neural network that will provide better
modeling of dynamic systems.

[0005] This object is achieved by the independent claims.
Developments of the invention are defined in the dependent
claims.

[0006] The method according to the invention is used for
computer-aided learning of a recurrent neural network for
modeling a dynamic system which is characterized at respec-
tive points in time by an observable vector comprising one or
more observables (i.e. observable states of the dynamic sys-
tem) as entries. This method can be applied to any dynamic
systems. It can be used, for example, to model energy price
and/or commodity price movements. The method likewise
enables any technical system that changes dynamically over
time to be modeled on the basis of corresponding observable
state variables of the technical system in order thereby to
predict observables of the technical system using an appro-
priately learned network. For example, the method can be
usefully employed to model a gas turbine and/or a wind
turbine.
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[0007] The recurrent neural network in the method accord-
ing to the invention comprises a first subnetwork in the form
of a causal network which describes an information flow
proceeding forward in time between first state vectors of the
dynamic system, wherein a first state vector at a respective
point in time comprises one or more first entries which are
each assigned to an entry of the observable vector, as well a
one or more hidden (i.e. unobservable) states of the dynamic
system. In order also to take future changes over time of the
dynamic system into account in the recurrent neural network,
a second subnetwork in the form of a retro-causal network is
provided, wherein the retro-causal network describes an
information flow proceeding backward in time between sec-
ond state vectors of the dynamic system, wherein a second
state vector at a respective point in time comprises one or
more second entries which are each assigned to an entry of the
observable vector, as well as one or more hidden states of the
dynamic system. In the recurrent neural network, the observ-
able vector at a respective point in time is determined such
that the first entries of the first state vector are combined with
the second entries of the second state vector. Finally, the
causal and the retro-causal network are learned based on
training data containing a sequence of consecutive known
observable vectors.

[0008] The method according to the invention is character-
ized in that a dynamic system is described by a recurrent
neural network which takes into account both an information
flow from the past to the future and an information flow from
the future to the past. This enables dynamic systems to be
suitably modeled in which the observables at a respective
point in time are also influenced by predicted future observ-
able values.

[0009] In a particularly preferred embodiment, during
learning of the causal and retro-causal network at a respective
point in time for which a known observable vector from the
training data exists, the first and second entries of the first and
second state vectors are corrected using the difference
between the observable vector determined in the recurrent
neural network and the known observable vector at the
respective point in time. The first and second state vectors
with the corrected first and second entries then continue to be
used for learning. In this way, at a respective point in time
so-called teacher forcing is achieved whereby observables
determined in the recurrent neural network are always
matched to observables according to the training data.
[0010] In another particularly preferred embodiment, the
causal and retro-causal networks are learned based on error-
back-propagation with shared weights. This method of error-
back-propagation with shared weights will be sufficiently
familiar to the average person skilled in the art and is fre-
quently used for learning in recurrent neural networks. By
using this method, simple and efficient learning of the recur-
rent neural network is achieved.

[0011] In another preferred embodiment of the method
according to the invention, in the recurrent neural network the
observable vector is determined at a respective point in time
such that the respective first and second entries which are
assigned to the same entry of the observable vector are added.
[0012] In another embodiment of the method according to
the invention, during learning of the causal and retro-causal
network a target value is determined at a respective point in
time for which a known observable vector according to the
training data exists, which target value constitutes the differ-
ence vector between the observable vector determined in the
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recurrent neural network and the known observable vector at
the respective point in time. Predefined here as the learning
optimization target is the minimization of the sum of the
absolute values or squared absolute values of the difference
vectors at the respective points in time for which a known
observable vector from the training data exists. This provides
a simple means of ensuring that the recurrent neural network
correctly models the dynamics of the system in question.
[0013] In another embodiment of the method according to
the invention, in the causal network a first state vector at a
respective point in time is converted to a first state vector at a
subsequent point in time by multiplication by a matrix
assigned to the causal network and application of an activa-
tion function. In a particularly preferred variant, first the
activation function is applied to the state vector at the respec-
tive point in time and only subsequently is multiplication by
the matrix assigned to the causal network performed. This
ensures that observables can be described which are not lim-
ited by the value range of the activation function.

[0014] In another embodiment of the method according to
the invention, in the retro-causal network a second state vec-
tor at arespective point in time is converted into a second state
vector at a previous point in time by multiplication by a matrix
assigned to the retro-causal network and application of an
activation function. Once again, first the activation function is
preferably applied to the second state vector at the respective
point in time and only subsequently is multiplication by the
matrix assigned to the retro-causal network performed. This
ensures also for the retro-causal network that observables can
be described which are not limited by the value range of the
activation function.

[0015] In a particularly preferred variant, the above
described activation functions are tanh (hyperbolic tangent)
functions which are frequently used in recurrent neural net-
works.

[0016] In addition to the method described above, the
invention comprises a method for predicting observables of a
dynamic system whereby the prediction is carried out using a
recurrent neural network which is learned using the inventive
learning process based on training data comprising known
observable vectors of the dynamic system.

[0017] The invention additionally relates to a computer
program product having program code stored on a machine-
readable medium for carrying out the methods described
above when the program is run on a computer.

BRIEF DESCRIPTION OF THE DRAWINGS

[0018] Exemplary embodiments of the invention will now
be described in detail with reference to the accompanying
drawings in which:

[0019] FIG. 1 and FIG. 2 show two variants of known
recurrent neural networks for modeling a dynamic system;
[0020] FIG. 3 shows a variant of a recurrent neural network
based on FIG. 2 which is inventively used as a causal subnet-
work;

[0021] FIG. 4 shows a variant known from the prior art for
learning the causal network according to FIG. 3;

[0022] FIG. 5 and FIG. 6 show variants of the learning of
the causal network from FIG. 3 which are used in embodi-
ments of the method according to the invention;

[0023] FIG. 7 shows aretro-causal network which is used in
the method according to the invention in combination with
the causal network from FIG. 3;
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[0024] FIG. 8 and FIG. 9 show variants of the learning of
the retro-causal network from FIG. 7 which are used in
embodiments of the method according to the invention;
[0025] FIG. 10 shows an embodiment of an inventive recur-
rent neural network which combines the networks from FIG.
3 and FIG. 7 with one another; and

[0026] FIG. 11 and FIG. 12 show embodiments of the
inventive learning of the recurrent neural network illustrated
in FIG. 10.

DETAILED DESCRIPTION OF INVENTION

[0027] Recurrent neural networks for modeling the behav-
ior over time of a dynamic system are sufficiently known from
the prior art. These networks generally comprise a plurality of
layers which generally contain a plurality of neurons and can
be suitably learned based on training data from known states
of the dynamic system such that future states of the dynamic
system can be predicted.

[0028] FIG. 1 shows a known prior art variant of a neural
network which models an open dynamic system. This net-
work comprises an input layer I having consecutive state
vectors U, 5, U, ,, U,_, and u, which represent corresponding
input variables of the dynamic system. These input variables
can be, for example, manipulated variables of a technical
system modeled using the neural network. The individual
state vectors of the input layer [ are connected to correspond-
ing hidden state vectors s,_,, s, ;, etc. of a hidden layer via
matrices B. The hidden state vectors comprise a plurality of
hidden states of the dynamic system and constitute the (unob-
servable) state space of the dynamic system. The individual
hidden state vectors are interconnected via matrices A. The
network additionally comprises an output layer 0 having out-
put variables in the form of state vectors ¥, 5, V, 15 - - - s You
which are linked to corresponding hidden state vectors s,_,,
S, 15 - -5 Sy via the matrix C. The states of the output layer
are states of the dynamic system which result from the cor-
responding input variables of the input layer 1. Based on
training data which consists of known input variables and
resulting known output variables, the neural network in FIG.
1 can be suitably learned using known methods such as error-
back-propagation and then used to predict future output vari-
ables y,,1, V.., etc. in the output layer O on the basis of past
input variables u, 5, u, 5, . . . , U, , and the present input
variable u, in the input layer I. The network in FIG. 1 is based
on modeling of the dynamic system in question in the form of
a superposition of an autonomous and of an externally driven
subsystem.

[0029] FIG. 2 shows another variant of a recurrent neural
network which is used in the embodiments described below
of'the method according to the invention. This network mod-
els a closed dynamic system and differs from the network in
FIG. 1 in that a distinction is no longer made between input
variables u_ and output variables y_, where T hereinafter
denotes any point in time. Rather, both the input variables and
the output variables are considered as observables, i.e.
observable states of an observable vector of the dynamic
system. The network in FIG. 2 comprises a first layer [.1 and
a second layer [.2, wherein the first layer L1 represents an
information flow proceeding forward in time between indi-
vidual state vectors s,_,,s, |, .. .,S,, 5 of themodeled dynamic
system. In contrast to FIG. 1, in the embodiment in FIG. 2 a
state vector s, initially contains as entries the observable
observables corresponding to the state vectors y, and u, in
FIG. 1, and then the unobservable hidden states, wherein the
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number of hidden states is generally much greater than the
number of observables. The individual state vectors in the
layer L1 are converted into one another by matrices A which
are suitably learned based on training data. At the start of said
learning, in the layer L1 a suitable bias is defined which is
denoted by S, in FIG. 2 and also in all the subsequent figures.
[0030] A suitably learned recurrent neural network as
shown in FIG. 2 supplies in the second layer the observables
Y, 1o, 5, Y, 1.1, ;, . ..,etc. at the respective points in time.
The entries of the corresponding state vectors s, which
entries correspond to observables, are obtained via the matrix
[1d, O]. For the columns, the matrix [Id, O] has the dimension
of'the state vector s_ and, for the rows, the dimension accord-
ing to the number of observables. The left-hand part of the
matrix forms a square identity matrix and, for the remaining
columns, the matrix contains only zeros by means of which
the filtering of the observables from the state vector s_ is
achieved. With the network in FIG. 2, the observables are
embedded in a large state vector s, thereby achieving
dynamically consistent dynamic system modeling that is
symmetrical in all the variables, wherein time plays no spe-
cific role. The network in FIG. 2 also represents a causal
network, as the information flow between the states of the
layer L1 progresses forward in time from the past to the
future.

[0031] FIG. 3 shows a recurrent neural network based on
FIG. 2, wherein now all the observables are consistently
denoted as observable vectors y, s, Y, 5, - - - » Y,.5- 1he
notation y., therefore comprises both the output variable y_
and the input variable u_ from FIG. 2. This notation will also
be used in the following for all the other recurrent neural
network variants described. In addition, in FIG. 3 the observ-
able vectors y,,, V.., and y,,; to be predicted using the
network are indicated by dashed circles for the sake of clarity,
i.e. the present point in time is denoted by t in FIG. 3 and also
in all the other figures. Past points in time are therefore the
time instants t-1, t-2, etc. and future points in time are the
time instants t+1, t+2, t43, etc.

[0032] FIG. 4 shows a known variant of the learning of the
recurrent neural network in FIG. 3, where y%,_, v, ., v%,_,
and y?, represent known observable vectors according to pre-
defined training data of the dynamic system to be modeled.
The matrix [Id, 0] corresponds to the above explained matrix
for filtering the observables from the corresponding state
vector s.. On the other hand, the matrix

[o]

enables the known observable vector y?, to be converted into
an observable vector which contains not only the entries for
the known observables but also entries for the other hidden
states which, however, are all set to zero. This matrix

o]

comprises a number of columns corresponding to the number
of observables and a number of rows corresponding to the
dimension of the state vector s.. In the upper portion, the
matrix forms a square identity matrix and the remaining rows
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of the matrix contain exclusively zeros. The network in FIG.
4 additionally contains the matrix C with which a state s_ is
transitioned to a stater,.. Said state r, represents a filtered state
which contains only the hidden states of the vector s.. Con-
sequently, the matrix C is a matrix which contains ones on the
diagonal elements corresponding to the corresponding rows
or columns of the hidden states and whose remaining entries
are set to zero.

[0033] The linking shown in FIG. 4 of the known states y*,
with the state r, ensures that the observable values obtained
by the neural network are replaced by the observables y*,
according to the training data. Replacement of the determined
observables by the actual observables according to the train-
ing data is therefore achieved in each time step T=t. Such a
learning method is also known as “teacher forcing”. Accord-
ing to the representation in FIG. 4, the following relationships
are modeled using the recurrent neural network, wherein—as
mentioned above—the time t corresponds to the current
present time:

M

0 0 1d p
T Sppp =t A[O 1d s + O}yr
T
T> 1 Sy = tanh(Asy) 2)
for all = yr = [Id, 0]s¢. 3)

[0034] The learning is based on the following optimization
target:
4 42 ] @)
T;m (¥r = ¥¢)" - min.
[0035] In other words, the matrix A is sought which mini-

mizes the quadratic error, summed over the time instants
t-m=T=t, between observable vectors determined via the
network and known observable vectors.

[0036] The teacher forcing described above is also
employed in the recurrent neural network used in the method
according to the invention, but in modified variants which are
illustrated in FIGS. 5 and 6 for the causal network in FIG. 3.
Similar notations to FIG. 4 are retained (except for any signs).
The additional matrix Id in FIG. 5 denotes a corresponding
identity mapping for the state vector at which the arrow
denoted by the matrix begins. In contrast to the embodiment
in FIG. 4, a target variable or target value tar is now intro-
duced in FIG. 5 which represents the difference vector
between the observable vector y,_ determined by the recurrent
neural network within the state vector s, and the known
observable vector y?_. This target value, which is ideally zero,
is in turn used to replace the corresponding determined
observables in the vectors s, by the known observables
according to the training data, which is expressed by the
linking via the matrix
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)

[0037] Using the structure of the network according to FIG.
5, the following equations are modeled:

(&)
Id P
TSI Syl =1 Asr—[o}(yr—yr)
T
T> 1 Sy = tanh(As;) (6)
for all v yr = [Id, Ols¢. (@)

[0038] Similarly to the network in FIG. 4, the optimization
target is given by:

U a2 ] (3)
Z (yr=7%) - min.

T=t-m

[0039] Using the architecture according to FIG. 5, because
of the tanh function used, only observables between —1 and
+1 can be modeled, as matrix multiplication by the matrix A
is performed first and only then is the tanh function applied
which has a value range between -1 and 1. In a modified
variant of the learning according to FIG. 5, the tanh function
is applied to the corresponding stater_ors_first, and only then
is matrix multiplication by the matrix A performed. Such a
variant of the network is illustrated in FIG. 6, wherein the
application of the tanh function before matrix multiplication
by the matrix A is illustrated in that the tanh function is now
depicted in the circles which in FIG. 5 contain the states r,,
and also between the states s,,; and s,,,. According to this
variant, observables outside the value range between -1 and
+1 can also be modeled. FIG. 6 shows a preferred learning
variant which is also used in the inventive neural network
structure described below. The difference between the recur-
rent neural network in FIG. 6 and the recurrent neural network
in FIG. 5 can be expressed mathematically in that, in the
above equations (5) and (6), the position of the matrix A is
transposed with the position of the function tanh.

[0040] In the preceding, suitable learning of a causal net-
work having an information flow proceeding forward in time
was described. The invention is based on the insight that a
causal modal is not always suitable for describing a dynamic
system. In particular, there are dynamic systems which also
have a retrocausal information flow in the reverse time direc-
tion from the future to the present. These are dynamic systems
whose changes over time are influenced by planning involv-
ing the prediction of future observables. For the change over
time of a corresponding state vector of the dynamic system,
notonly preceding state vectors but also predicted future state
vectors are therefore taken into account. For example, regard-
ing the market price movements of energy or commodities,
the price is determined not only by supply and demand, but
also by planning aspects of the sellers/buyers for the sale/
purchase of energy or commodities.

[0041] The method according to the invention is based on
the concept of modeling a dynamic system such that an infor-
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mation flow is considered not only in the causal direction
from the past to the future, but also an information flow in the
retro-causal direction from the future to the past. Such an
information flow can be implemented by a retro-causal net-
work. Such a network is depicted in FIG. 7. The network in
FIG. 7 differs from the network in FIG. 3 in that the informa-
tion flow between the states s_ runs in reverse direction from
the future to the past, the process being again initialized using
a bias S, which now, however, is a state in the future. Analo-
gously to the network in FIG. 3, the network in FIG. 7 can be
learned via the minimization of a target value tar, as indicated
in FIG. 8. FIG. 8 corresponds to the representation in FIG. 5
except that the causality direction is now reversed. The equa-
tions (5)to (8) can be applied analogously, with the difference
thats_, , isreplaced by s._, in equations (5) and (6). The above
described teacher forcing for learning the network can there-
fore also be used for the retro-causal network. Likewise, the
learning shown in FIG. 6, in which first the tanh function and
only then matrix multiplication is applied at the transition
from one state to a successor state, can also be used analo-
gously for the retro-causal network. This is illustrated in FIG.
9 which corresponds to the representation in FIG. 6, with the
difference that the information flow proceeds from the future
to the present.

[0042] The invention is henceforward based on a combina-
tion of a causal network with a retro-causal network, thereby
providing a recurrent neural network having an information
flow both from the past to the future and from the future to the
past. This makes it possible to also model dynamic systems in
which predicted future states also play a role in the dynamic
progression of the states.

[0043] FIG. 10 shows in generic form an inventive combi-
nation of a causal network with a retro-causal network,
thereby creating a recurrent neural network which can be
learned in a suitable manner The lower part of this network is
composed of a causal network N1 and the upper part is com-
posed of a retro-causal network N2. The network N1 corre-
sponds to the causal network in FIG. 3 and the network N2
corresponds to the retro-causal network in FIG. 7, wherein in
the retro-causal network the matrices are now denoted by A’
and the states by s_', since matrices and states for the causal
and the retro-causal network can be different. The two net-
works are interlinked by the corresponding observable vector
Y-

[0044] Based on the network in FIG. 10, FIG. 11 shows the
learning of the network by means of teacher forcing. In the
preceding, said teacher forcing has been explained separately
for the causal network in FIG. 6 and the retro-causal network
in FIG. 9. In FIG. 11, for example, the observables contained
in the state vector s, are denoted by A, and the observables
contained in the state vector s, by A for the time t. The sum
of' A, and A, represents the observable vector determined by
the recurrent network and the target value is the difference
between this sum and the actual observable vector y%, accord-
ing to the training data. By linking the target values via the
corresponding matrices

to the state vector s_ or s.', teacher forcing is again achieved
for each time step T=t. In FIG. 11 the corresponding state r,
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or r.' resulting from teacher forcing is specified e.g. only for
the time instant 32 t. To this state is then applied first the tanh
function and then multiplication by the matrix A or A'.
[0045] Inorderto implement learning according to FIG. 11,
error-back-propagation with shared weights, a method suffi-
ciently known from the prior art, is used as shown in FIG. 12.
Error-back-propagation with shared weights is achieved in
that error-back-propagation is calculated once for the causal
network N1 and once for retro-causal network N2 in two
copies of the network in FIG. 11, it being simultaneously
ensured that the same matrix A is always used in both copies
of the network and the same matrix A' is always used in both
copies of the network. Error-back-propagation with shared
weights is sufficiently well known to the average person
skilled in the art and will not therefore be explained in further
detail.

[0046] Theinventive method described in the foregoing has
a number of advantages. In particular, dynamic systems can
also be learned in which future predicted states of the
dynamic system influence the current state. The method can
be used for different dynamic systems. For example, the
dynamic system can represent the changes over time of
energy or more specifically electricity prices and/or commod-
ity prices, wherein various types of energy (e.g. gas, oil)
and/or commodities as well as other economic factors such as
the conversion of different currencies and share indices can be
taken into account as observables. Using a recurrent neural
network learned by appropriate training data, suitable predic-
tions concerning future price movements for energy and/or
commodities can be made. Another field of application is
modeling the dynamic behavior of a technical system. For
example, the recurrent neural network according to the inven-
tion can be used to predict the observable states of a gas
turbine and/or of a wind turbine or also of any other technical
systems.

1.-15. (canceled)

16. A method for computer-aided learning of a recurrent
neural network for modeling a dynamic system which is
characterized at respective times by an observable vector
comprising one or more observables as entries, the method
comprising:

providing a recurrent neural network comprising a causal

network, a retro-causal network, an observable vector

with one or more observables,

wherein the causal network describes an information
flow proceeding forward in time between first state
vectors of the dynamic system, wherein a first state
vector at a respective point in time comprises one or
more first entries which are each assigned to an entry
of the observable vector, and one or more hidden
states of the dynamic system,

wherein the retro-causal network describes an informa-
tion flow proceeding backward in time between sec-
ond state vectors of the dynamic system, wherein a
second state vector at a respective point in time com-
prises one or more second entries which are each
assigned to an entry of the observable vector, and one
or more hidden states of the dynamic system,

determining the observable vector by combining the first

entries of the first state vector with the second entries of

the second state vector,

wherein the causal network and the retro-causal network
are learned based on training data which contains a
sequence of consecutive known observable vectors.
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17. The method as claimed in claim 16, wherein, during
learning of the causal and retro-causal networks at a respec-
tive point in time, for which a known observable vector from
the training data exists, the first and second entries of the first
and second state vectors are corrected using the difference
between the observable vector determined in the recurrent
neural network and the known observable vector at the
respective point in time, the first and second state vectors with
the corrected first and second entries continuing to be used for
learning.

18. The method as claimed in claim 16, wherein the causal
network and the retro-causal network are learned based on
error-back-propagation with shared weights.

19. The method as claimed in claim 16, wherein, in the
recurrent neural network at a respective point in time, the
observable vector is determined such that the respective first
and second entries which are assigned to the same entry ofthe
observable vector are added.

20. The method as claimed in claim 16, wherein, during
learning of the causal and retro-causal networks at a respec-
tive point in time, for which a known observable vector from
the training data exists, a target value is determined which
represents the difference vector between the observable vec-
tor determined in the recurrent neural network and the known
observable vector at the respective point in time, wherein the
minimization of the sum of the absolute values or squared
absolute values of the difference vectors at the respective
points in time, for which a known observable vector from the
training data exists, is predefined as the learning optimization
target.

21. The method as claimed in claim 16, wherein in the
causal network a first state vector at a respective point in time
is converted into a first state vector at a subsequent point in
time by multiplication by a matrix assigned to the causal
network and the application of an activation function.

22. The method as claimed in claim 21, wherein first the
activation function is applied to the first state vector at the
respective point in time and then multiplication by the matrix
assigned to the causal network is performed.

23. The method as claimed in claim 16, wherein in the
retro-causal network a second state vector at a respective
point in time is converted into a second state vector at a
previous point in time by multiplication by a matrix assigned
to the retro-causal network and the application of an activa-
tion function.

24. The method as claimed in claim 23, wherein first the
activation function is applied to the second state vector at the
respective point in time and then multiplication by the matrix
assigned to the retro-causal network is performed.

25. The method as claimed in claim 21, wherein the acti-
vation function is a tanh function.

26. The method as claimed in claim 16, wherein the recur-
rent neural network is used to model energy price and/or
commodity price changes over time.

27. The method as claimed in claim 16, wherein the recur-
rent neural network is used to model a technical system.

28. The method as claimed in claim 27, wherein the tech-
nical system is a gas turbine or a wind turbine.

29. A non-transitory computer readable medium compris-
ing program code for carrying out a method when the pro-
gram is executed on a computer, wherein the method is for
computer-aided learning of a recurrent neural network for
modeling a dynamic system which is characterized at respec-
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tive times by an observable vector comprising one or more
observables as entries, the method comprising:
using a recurrent neural network comprising a causal net-
work, a retro-causal network, an observable vector with
one or more observables,
wherein the causal network describes an information
flow proceeding forward in time between first state
vectors of the dynamic system, wherein a first state
vector at a respective point in time comprises one or
more first entries which are each assigned to an entry
of the observable vector, and one or more hidden
states of the dynamic system,
wherein the retro-causal network describes an informa-
tion flow proceeding backward in time between sec-
ond state vectors of the dynamic system, wherein a
second state vector at a respective point in time com-
prises one or more second entries which are each
assigned to an entry of the observable vector, and one
or more hidden states of the dynamic system,
determining the observable vector by combining the first
entries of the first state vector with the second entries of
the second state vector,
wherein the causal network and the retro-causal network
are learned based on training data which contains a
sequence of consecutive known observable vectors.
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