

US009745351B2

(12) United States Patent

Li et al.

(54) TRUNCATED L1 PROTEIN OF HUMAN PAPILLOMAVIRUS TYPE 6

- (71) Applicants: XIAMEN UNIVERSITY, Xiamen, Fujian Province (CN); BEIJING
 WANTAI BIOLOGICAL
 PHARMACY ENTERPRISE CO., LTD., Changping District, Beijing (CN)
- Inventors: Shaowei Li, Xiamen (CN); Huirong Pan, Xiamen (CN); Bo Liu, Xiamen (CN); Jun Zhang, Xiamen (CN); Ji Miao, Xiamen (CN); Ningshao Xia, Xiamen (CN)
- (73) Assignees: XIAMEN UNIVERSITY, Fujian Province (CN); BEIJING WANTAI BIOLOGICAL PHARMACY ENTERPRISE CO., LTD., Beijing (CN)
- (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days.
- (21) Appl. No.: 14/248,063
- (22) Filed: Apr. 8, 2014
- (65) **Prior Publication Data**

US 2014/0288283 A1 Sep. 25, 2014

Related U.S. Application Data

 (62) Division of application No. 12/601,972, filed as application No. PCT/CN2008/001050 on May 29, 2008, now Pat. No. 8,748,127.

(30) Foreign Application Priority Data

May 29, 2007 (CN) 2007 1 0105764

(51) Int. Cl.

C07K 14/005	(2006.01)
C12P 21/00	(2006.01)
A61K 39/12	(2006.01)
C12N 7/00	(2006.01)
A61K 39/00	(2006.01)
C07K 14/025	(2006.01)

- (58) Field of Classification Search
 - CPC A61K 39/00; C07K 14/005; C12N 2710/20022; C12N 2710/20023 See application file for complete search history.

(10) Patent No.: US 9,745,351 B2 (45) Date of Patent: Aug. 29, 2017

(56) **References Cited**

U.S. PATENT DOCUMENTS

4,512,970	A *	4/1985	Wissler C07K 14/52						
			424/85.1						
5,276,141	A *	1/1994	Kolbe C07K 1/30						
			435/814						
5,866,553	A *	2/1999	Donnelly et al 514/44 R						
6,013,262	Α	1/2000	Frazer et al.						
6,066,324	A *	5/2000	Gissmann et al 424/204.1						
6,599,508	B1 *	7/2003	Gissmann et al 424/204.1						
6,602,697	B1*	8/2003	Cook, III 435/239						
7,351,533	B2 *	4/2008	McCarthy et al 435/6.14						
7,709,010	B2 *	5/2010	Bryan et al 424/278.1						
7,754,430	B2 *	7/2010	Gissmann et al 435/5						
2002/0193565	A1 $*$	12/2002	Stanley et al 530/350						
2003/0118609	A1*	6/2003	Harrison et al 424/204.1						
2004/0081661	A1	4/2004	Hallek et al.						
2004/0202679	A1*	10/2004	Gissmann et al 424/204.1						
2005/0031636	A1*	2/2005	Gissman et al 424/186.1						
2005/0175632	A1*	8/2005	Wettendorff 424/204.1						
2006/0153864	A1*	7/2006	Gissmann et al 424/186.1						
2006/0198853	A1*	9/2006	Gissmann et al 424/204.1						
2007/0036824	A1*	2/2007	Bryan et al 424/204.1						
2007/0224218	A1*	9/2007	Wettendorff A61K 39/12						
			424/204.1						
2008/0248062	A1*	10/2008	Bryan et al 424/204.1						
2008/0279890	A1 $*$	11/2008	Wettendorff 424/204.1						
2009/0028894	A1*	1/2009	Gissmann et al 424/192.1						
2010/0255031	A1 $*$	10/2010	Gu et al 424/204.1						
(Continued)									
		(001							

FOREIGN PATENT DOCUMENTS

CN CN GB	1478790 101153280 WO 2008068455 A1 *	3/2004 4/2008 6/2008	C07K 1/30	0
	(Contin	nued)		

OTHER PUBLICATIONS

GE Healthcare. Purifying Challenging Proteins: Principles and Methods. https://www.mcdb.ucla.edu/Research/Jacobsen/ LabWebSite/PDFOthers/GESeminar.pdf. Online Apr. 15, 2007.* Caparros-Wanderley W, Savage N, Hill-Perkins M, Layton G, Weber J, Davies DH. Major capsid protein [Human papillomavirus type 6]. GenBank Acc. No. AAC80442.1. Revised Apr. 13, 1999.* European Molecular Biology Laboratory (EMBL). "Extraction and Clarification: Preparation of cell lysates from *E. coli*." https://www. embl.de/pepcore/pepcore_services/protein_purification/extraction_clarification/cell_lysates_ecoli/enzymatic_lysis/. Accessed Dec. 30, 2015, Available online Feb. 1, 2002.*

(Continued)

Primary Examiner — Rachel B Gill (74) Attorney, Agent, or Firm — Pillsbury Winthrop Shaw Pittman LLP

(57) **ABSTRACT**

The invention relates to a truncated L1 protein of the Human Papillomavirus Type 6, a virus-like particle consisting of the truncated L1 protein, a vaccine comprising said virus-like particle, and the use of the vaccine in the prevention of condyloma acuminatum or HPV infections.

15 Claims, 7 Drawing Sheets

(56) **References Cited**

U.S. PATENT DOCUMENTS

2010/0272751 A	.1*]	10/2010	Li et al	424/204.1
2010/0291141 A	.1* :	11/2010	Zhang et al	424/204.1

FOREIGN PATENT DOCUMENTS

WO	WO 94/20137	9/1994
WO	WO 00/54730	9/2000
WO	WO 03/078455	9/2003

OTHER PUBLICATIONS

McCarthy MP, White WI, Palmer-Hill F, Koenig S, Suzich JA. Quantitative disassembly and reassembly of human papillomavirus type 11 viruslike particles in vitro. J Virol. Jan. 1998;72(1):32-41.* Christensen T, Trabbic-Carlson K, Liu W, Chilkoti A. Purification of recombinant proteins from *Escherichia coli* at low expression levels by inverse transition cycling. Anal Biochem. Jan. 1, 2007;360(1):166-8. Epub Nov. 3, 2006.*

Lim DW, Trabbic-Carlson K, Mackay JA, Chilkoti A. Improved non-chromatographic purification of a recombinant protein by cationic elastin-like polypeptides. Biomacromolecules. May 2007;8(5):1417-24. Epub Apr. 4, 2007.*

Ge X, Yang DS, Trabbic-Carlson K, Kim B, Chilkoti A, Filipe CD. Self-cleavable stimulus responsive tags for protein purification without chromatography. J Am Chem Soc. Aug. 17, 2005;127(32):11228-9.*

McPherson A. Introduction to protein crystallization. Methods. Nov. 2004;34(3):254-65.*

Perry J. EMBL Feb. 1, 2002, "Protein Purification: Extraction and Clarification Solubility Studies. Preparation of soluble/insoluble protein from cells." https://www.embl.de/pepcore/pepcore_services/protein_purification/extraction_clarification/solubility_ studies/.*

Simpson RJ. "Protocol: Bulk Precipitation of Proteins by Ammonium Sulfate." Cold Spring Harb. Protoc.; Jul. 4, 2006; doi:10.1101/ pdb.prot4308. http://www.protocol-online.org/forums/index. php?app=core&module=attach§ion=attach&attach_id=2983.* Kornberg A. "Protein Purification." Lecture notes for MIC/BIO/ BCH522, University of Buffalo. Mar. 6, 2006. https://www.acsu. buffalo.edu/~pbianco/Protein%20purification%20lecture.pdf.*

Vallejo LF, Rinas U. Strategies for the recovery of active proteins through refolding of bacterial inclusion body proteins. Microb Cell Fact. Sep. 2, 2004;3(1):11.*

Arakawa T, Timasheff SN. Mechanism of protein salting in and salting out by divalent cation salts: balance between hydration and salt binding. Biochemistry. Dec. 4, 1984;23(25):5912-5923.*

Jenkins WT. Three solutions of the protein solubility problem. Protein Sci. Feb. 1998;7(2):376-82.*

Protein Purification: Principles, High Resolution Methods, and Applications. Eds: Janson JC and Ryden L, 2rd Ed. ISBN-13: 978-0471186267. Wiley-VCH; 2 edition (Jun. 1, 1997). 712 p.*

Cloning, Gene Expression, and Protein Purification: Experimental Procedures and Process Rationale. 1st Edition. Hardin C, Edwards J, Riell A, Presutti D, Miller W, Robertson D. ISBN-13: 978-0195132946. Publisher: Oxford University Press; 1 edition (Mar. 1, 2001).*

Wang, Jiabi et al., "Expression of Recombinant HPV6 L1 Protein in Prokaryotic System"; Journal Clinical Dermatol, Jun. 2003, vol. 32, No. 6, ISSN 1000-4963.

W. Caparros-Wanderley et al.; "Intratype Sequence Variation Among Clinical Isolates of the Human Papillomavirus Type 6 L1 ORF: Clustering of Mutations and Identification of a Frequent Amino Acid Sequence Variant"; Journal of General Virology, Apr. 1999; vol. 80, pp. 1025-1033, ISSN 0001-5983.

Kelsall et al., "Expression of the Major Capsid Protein of Human Papillomarvirus Type 16 in *Escherichia coli*"; Journal of Virological Methods, Elsevier, BV, NL, vol. 53, No. 1, Jan. 1, 1995.

Schiller JT, Castellsague X, Garland SM. A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine. Nov. 20, 2012;30 Suppl 5:F123-38.

Cho HJ, Oh YK, Kim YB. Advances in human papilloma virus vaccines: a patent review. Expert Opin Ther Pat. Mar. 2011;21(3):295-309. Epub Jan. 21, 2011.

Neeper et. al. HPV6 protein coding sequence. NCBI-GenBank. Acc. # AAC53712; submitted Apr. 19, 1996.

Bishop B, et. al. Virol J. Jan. 8, 2007;4:3.

Written Opinion of the International Searching Authority for PCT/CN2008/001050.English version.Dated Sep. 11, 2008.

Machine translation (Chinese to English) of CN1478790A. Mar. 2004.

Dartmann K, Schwarz E, Gissmann L, zur Hausen H. The nucleotide sequence and genome organization of human papiloma virus type 11. Virology. May 1986;151(1):124-30.

Chen XS, Casini G, Harrison SC, Garcea RL. Papillomavirus capsid protein expression in *Escherichia coli*: purification and assembly of HPV11 and HPV16 LI. J Mol Biol. Mar. 16, 2001;307(1):173-82.

* cited by examiner

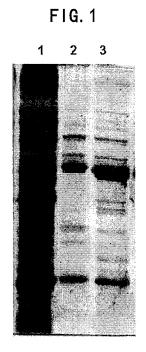


FIG. 3

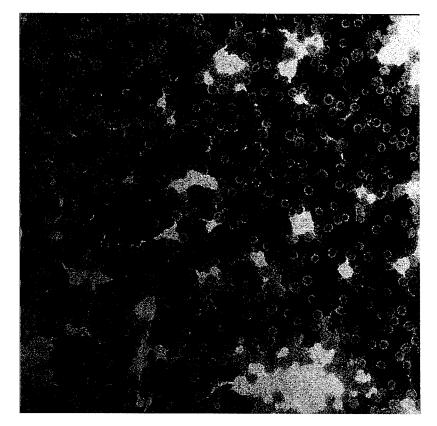
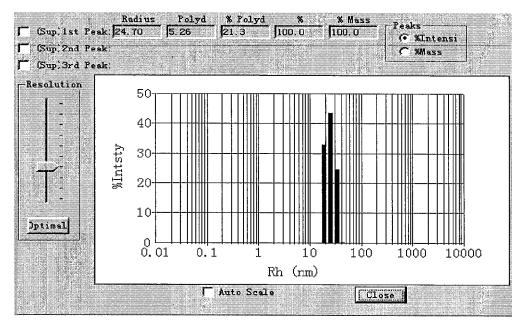



FIG. 4

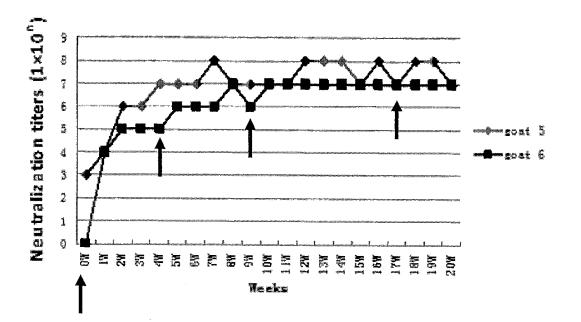
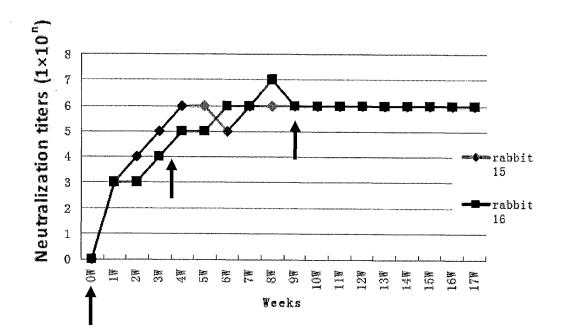



FIG. 6

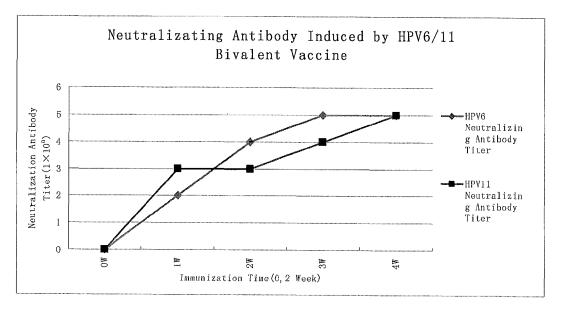
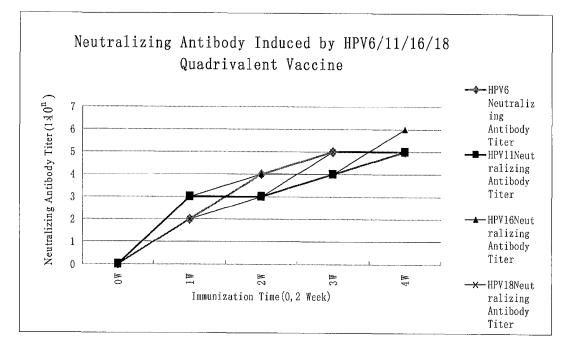
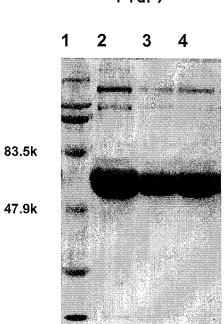




FIG.8

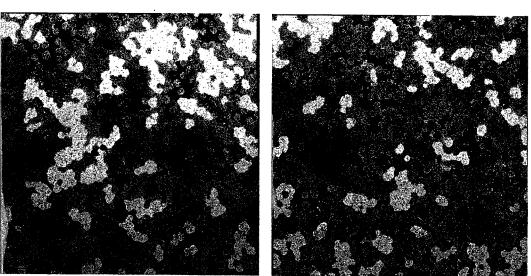


FIG. 10

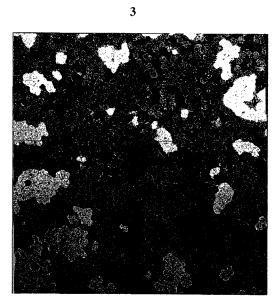
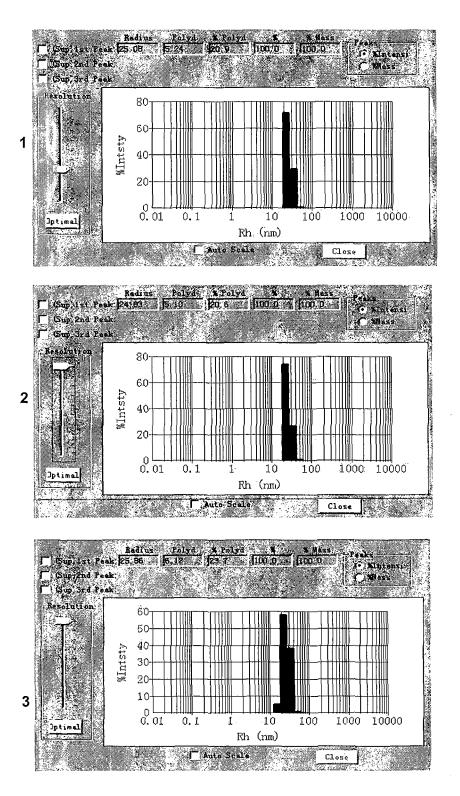



FIG. 11

25

TRUNCATED L1 PROTEIN OF HUMAN PAPILLOMAVIRUS TYPE 6

CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of co-pending U.S. application Ser. No. 12/601,972, filed Dec. 30, 2009, which is a U.S. National Stage Application of PCT/CN2008/001050, filed May 29, 2008, which in turn claims priority to ¹⁰ Chinese Patent Application No. 200710105764.7, filed May 29, 2007, the entire contents of all applications are incorporated herein by reference in their entireties.

FIELD OF THE INVENTION

The invention relates to a truncated L1 protein of the Human Papillomavirus Type 6, a virus-like particle consisting of the protein, a vaccine comprising said virus-like particle, and the use of the vaccine in the prevention of ²⁰ condyloma acuminatum and HPV (especially HPV6) infection.

BACKGROUND OF THE INVENTION

The human papillomavirus, a non-enveloped, deoxyribonucleic acid (DNA) virus, belongs to the genus of papovaviridae. The viral genome is a closed circle, double-stranded DNA, which is approximately 7.2-8 kb in length and contains 8 open reading frames (ORFs). The genome can be 30 divided into three parts in terms of function: (1) the early region (E), approximately 4.5 Kb in length, coding for 6 non-structural proteins E1, E2, E4~E7 associated with virus replication, transcription and transformation; (2) the late region (L), approximately 2.5 Kb in length, coding for the 35 major capsid protein L1 and the minor capsid protein L2; (3)the long control region (LCR), located between the end of the L region and the initiating terminal of the E region, approximately 800-900 bp in length, and comprising regulator elements for DNA replication and expression instead of 40 coding for proteins. Viral particles are 45-55 nm in diameter, wherein the nucleocapsid, consisting of L1 and L2, exhibits icosahedral symmetry and comprise 72 capsomers.

Currently, there are over 90 different types of HPV, mainly causing papillary disease in the skin and mucosa of 45 human. HPV types are divided into three groups depending on their relation with tumorigenesis: (1) group of low or no cancerogenic risk, containing types 6, 11, 39, 41, 42, and 43; (2) group of medium cancerogenic risk, containing types 31, 33, 35, 51, and 52; and (3) group of high cancerogenic risk, 50 containing types 16, 18, 45, and 56.

Epidemiological investigation reveals that HPV (such as HPV6, 11) infection in the anal-genital mucosa is the third most common sexually transmitted disease following trichommoniasis and chlamydia. Pathological changes 55 caused by HPV types 6 and 11 account for about 90% of these cases. In America, HPV infection of genital meatus among women occurs most frequently when they are 15-25 years old and is highly related to the infected person's sexual behavior. In China, HPV infection among women occurs 60 most frequently when they are 20-29 years old, and the infection rate is 1606.1/100,000. Women are less infected with HPV as they grow older than 35. However, since the majority of HPV infections are sub-clinical, it is difficult to accurately estimate the infection rate. As estimated by the 65 US CDC, the risk is approximately 10% during the whole life. In addition, there is little data regarding HPV infection

among men, due to the difficulty of sample collection and the lesser severity of consequences. Currently, HPV infection rate among men is believed to be close to the one among women. In the United States, condyloma acuminatum can be found in 1% of sexually active adult men. Therefore, the development of a safe, efficient vaccine for HPV 6 and 11 would be an effective way to prevent sexually transmitted diseases.

HPV L1 protein, with a molecular weight of 55-60 kDa, is the major capsid protein of the human papillomavirus and the main target protein of the HPV vaccine. HPV L1 protein expressed in multiple different expression systems can form Virus-like particles (VLPs) which resemble native HPV particles morphologically, without the assistance of the L2 15 protein. The VLP, consisting of 72 pentamers of the L1 proteins, exhibits icosahedral symmetry. Since the VLPs retain the native epitopes of the viral particles, they are highly immunogenic and can induce the generation of neutralizing antibodies against homologous HPV (Kirnbauer, R., F. Boov, et al. 1992 Proc Natl Acad Sci USA 89(24): 12180-4). Furthermore, the VLPs are safe and have no potential cancergenic risk as they contain no viral DNA. Therefore, VLP vaccines become the primary candidate for an HPV vaccine.

The key for development of a vaccine is to efficiently produce VLP vaccines of HPV in large-scale. Currently, the most commonly used expression systems are eukaryotic expression systems and prokaryotic expression systems.

The commonly used eukaryotic systems comprise poxvirus, insect baculovirus and yeast vectors. HPV L1 protein expressed in eukaryotic systems shows little conformational difference from that of the native virus, and can selfassemble into VLPs. Thus, purified VLPs can be easily obtained after gradient density centrifugation. It brings a lot of convenience to the purification work. However, due to the high culture costs and low expression level, it is quite difficult to product industrially on a large-scale. The HPV vaccine Gardasil®, which came into the market recently, is more expensive than others due to low expression level and high production cost of the *Saccharomyces cerevisiae* expression system employed in its manufacture.

The expression of HPV L1 protein in a prokaryotic system such as E. coli has been previously reported. Banks, Matlashewski, et al. published a paper regarding the expression of HPV 16 L1 by employing E. coli (Banks, L., G. Matlashewski, et al. (1987). J Gen Virol 68 (Pt 12): 3081-9). However, most HPV L1 proteins expressed by E. coli lose their native conformation and cannot induce the generation of protective antibodies against HPV. Alternatively, although HPV VLPs can be obtained from the incorrectly folded proteins by steps such as purification from inclusion bodies and refolding, it is difficult to apply this method to largescale production, as the protein is largely lost during the refolding process and the yield is low (Kelsall, S. R. and J. K. Kulski (1995). J Virol Methods 53(1): 75-90). Although HPV L1 protein may be expressed in a soluble form with a correct conformation in E. coli and dissolved in the supernatants of E. coli lysate, the expression level is low. Moreover, since there are large number and amount of impure proteins, it is difficult to isolate the proteins of interest from them. Although it is reported that the expression level of L1 protein can be increased in the supernatants by means of GST fusion expression and the purification of the protein of interest is facilitated (Li, M., T. P. Cripe, et al. (1997), J Virol 71(4): 2988-95), it still cannot be applied to large-scale production because expensive enzymes are required to cleave the fusion protein.

Therefore, a HPV L1 protein capable of inducing the generation of protective antibodies against HPV, and a virus-like particle consisting of the same are still needed in the art, so that it is possible to produce vaccines for condyloma acuminatum industrially on a large scale.

DESCRIPTION OF THE INVENTION

This invention aims to provide a novel HPV type 6 L1 protein, the virus-like particles (VLPs) consisting of it, and 10 a vaccine comprising the VLPs.

During research, it was found by chance that the E. coli expression system can produce a truncated HPV 6 L1 protein that can induce the generation of neutralizing antibodies against HPV 6. After purification, the truncated 15 HPV6 L1 protein can be produced in high yield, with at least 50% purity. Further treatment of the purified HPV L1 protein can produce VLPs, which can induce the production of neutralizing antibodies against HPV6. The invention has been completed based on the above.

Therefore, the first aspect of the invention relates to HPV 6 L1 proteins with 2, 3, 4, or 5 amino acids truncated at N-terminal as compared to a wild type HPV 6 L1 protein. Preferably, the truncated protein has the sequence set forth in SEQ ID Nos:1, 2, 3, or 4, especially the sequence set forth 25 in SEQ ID NO:1.

A further aspect of the invention relates to a polynucleotide encoding the truncated protein according to the invention, and a vector containing the polynucleotide.

A further aspect of the invention relates to a cell com- 30 prising the vector.

The invention also relates to a composition comprising the truncated protein, the polynucleotide, the vector, or the cell.

A further aspect of the invention relates to a HPV 6 VLP, 35 comprising or consisting of a HPV 6 L1 protein with 2, 3, 4, or 5 amino acids truncated at the N terminal such as a HPV 6 L1 protein having a sequence set forth in SEQ ID NOs: 1, 2, 3, or 4.

A further aspect of the invention relates to a method for 40 obtaining the HPV 6 L1 protein, comprising the expression of a truncated HPV 6 L1 gene fragment in an E. coli system and the subsequent purification of the protein from the lysate supernatant.

In a preferred embodiment of the invention, a method for 45 obtaining HPV 6 L1 protein comprises:

a) expressing the truncated HPV 6 L1 gene fragment in a E. coli expression system;

b) disrupting E. coli, which has expressed the truncated HPV 6 L1 protein, in a salt solution at a concentration of 50 from 100 mM to 600 mM, and isolating the supernatant;

c) decreasing the salt concentration of the supernatant in b) to from 100 mM to 0, inclusive, by using water or a low salt solution, and collecting a precipitate;

a concentration of from 150 mM to 2500 mM, with a reductant added, and then isolating the resultant solution, wherein the solution contains the truncated HPV 6 L1 protein with a purity of at least 50%.

More generally, the invention also relates to a method for 60 obtaining a HPV L1 protein, such as the HPV 6 L1 protein according to the invention, comprising:

- a) expressing a HPV L1 gene encoding the HPV L1 protein in an E. coli expression system;
- b) disrupting E. coli, which has expressed the HPV L1 65 protein, in a salt solution at a concentration of from 100 mM to 600 mM, and isolating the supernatant;

- c) decreasing the salt concentration of the supernatant in b) to from 100 mM to 0, inclusive, by using water or a low salt solution, and collecting a precipitate;
- d) redissolving the precipitation of c) in a salt solution at a concentration of from 150 mM to 2500 mM, with a reductant added, and then isolating the resultant solution, wherein the solution contains the HPV L1 protein with a purity of at least 50%.

The invention also relates to a vaccine for the prevention of condyloma acuminatum or HPV infection, comprising VLPs of HPV 6 L1 proteins according to the invention. Preferably, the vaccine further comprises at least one VLPs selected from VLPs of HPV 18, 11, 16, 31, 33, 45, 52, and 58 L1 proteins. Generally, the vaccine further contains excipients or vectors for vaccine.

Preferably, the vaccine comprises HPV 6 VLPs and HPV 11 VLPs, especially the HPV 6 VLPs comprising or consisting of a protein having an amino acid sequence set forth 20 in SEQ ID No: 4, and the HPV 11 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 7. More preferably, the vaccine further comprises HPV 16 VLPs and HPV 18 VLPs, especially the HPV 16 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 8, and the HPV 18 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 9.

In a specially preferred embodiment, the vaccine comprises the HPV 6 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 4, the HPV 11 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 7, the HPV 16 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 8, and the HPV 18 VLPs comprising or consisting of a protein having an amino acid sequence set forth in SEQ ID No: 9.

The invention further relates to the use of the HPV 6 L1 protein or the VLPs thereof in the manufacture of a vaccine for the prevention of condyloma acuminatum or HPV infections

The invention further relates to a method for preventing condyloma acuminatum or HPV infections, comprising administrating a vaccine comprising an preventively effective amount of HPV 6 L1 protein to a human or animal in need of preventing condyloma acuminatum or HPV infections

The invention involves a method for obtaining VLPs of the HPV 6 L1 protein, comprising:

- e) further purifying the truncated HPV 6 L1 protein with a purity of at least 50% by subjecting it to a chromatography;
- f) removing the reductant from the HPV 6 L1 protein obtained in e).

This invention involves a method for preparing a vaccine d) redissolving the precipitation in c) in a salt solution at 55 for preventing condyloma acuminatum or HPV infections, comprising blending the VLPs above, and optionally, one or more VLPs selected from the group consisting of VLPs of HPV 11, 16, 18, 31, 33, 45, 52 and 58, with carriers or excipients useful for vaccines.

Definitions of the Term in Present Invention

According to the invention, the term "E. coli expression system" refers to a expression system consisting of E. coli (strains) and vectors, wherein the E. coli (strains) include, but are not limited to: GI698, ER2566, BL21 (DE3), B834 (DE3), and BLR (DE3), which are available on the market.

According to the invention, the term "vectors" refers to the nucleic acid carrier tools which can have a polynucleotide encoding a protein inserted therein and allow for the expression of the protein. The "vector" can have the carried genetic material expressed in a host cell by transformation, transduction, and transfection into the host cell. For example, "vectors" include plasmids, phages, cosmids and the like.

According to the invention, the term "a gene fragment of a truncated HPV 6 L1 protein" refers to the nucleic acids with the nucleotide(s) encoding one or more amino acid sequences deleted at 5' or 3' terminal of the wild-type HPV 6 L1 gene (cDNA). The full-length gene sequence of the wild-type HPV 6 L1 gene can be found in, but not limited to, the following NCBI sequences: AF067042.1, AF092932.1, L41216.1 and X00203.1.

The term "truncated HPV 6 L1 protein" refers to the protein with one or more amino acids deleted at the Nand/or C-terminal of the wild-type HPV 6 L1 protein. The 20 full-length gene sequence of the wild-type HPV 6 L1 protein can be found in, but not limited to, the full-length L1 proteins encoded by the following NCBI sequences: AF067042.1, AF092932.1, L41216.1 and X00203.1.

According to the invention, the term "carriers and excipi- 25 ents useful for vaccines" refers to one or more reagents, including but not limited to: pH regulators, surfactants, adjuvants, and ionic strength enhancers. For example, pH regulators include, but are not limited to, phosphate buffers; surfactants include, but are not limited to: anion surfactants, 30 HPV 6 L1 VLP, preferably 20-40 µg. cation surfactants, non-ionic surfactants (for example, but not limited to Tween-80); adjuvants include, but are not limited to, aluminum hydroxide and Freund's complete adjuvant; and Ionic strength enhancers include, but are not limited to, NaCl.

According to the invention, the term "chromatography" includes, but is not limited to: ion exchange chromatography (e.g. cation-exchange chromatography), hydrophobic interaction chromatography, absorbent chromatography (e.g. hydroxyapatite chromatography), gel filtrate chromatogra- 40 phy (gel exclusion chromatography), and affinity chromatography.

According to the invention, the truncated HPV 6 L1 proteins may be obtained preferably by the following steps:

- a) disrupting E. coli, which expresses truncated HPV 6 L1 45 protein, in a buffer containing 100-600 mM salt, preferably 200-500 mM;
- b) isolating the supernatant from the disrupted solution, then decreasing the salt concentration of the supernatant to 100 mM-0M with water or a low-salt buffer 50 (generally, with a salt concentration lower than the one of the buffer for disrupting);
- c) separating a precipitant from the supernatant with a salt concentration as low as 100 mM-0;
- d) redissolving the precipitant in a solution containing a 55 reductant and having a salt concentration of 150-2000 mM, preferably greater than 200 mM;
- e) isolating a solution of the truncated HPV 6 L1 proteins with a purity of at least 50%, preferably at least 70%, more preferably at least 80%.

60

65

According to the invention, in the method for obtaining the truncated HPV 6 L1 proteins, the term "buffer" refers to a solution which can maintain pH value stable within a certain range, including but not limited to: Tris buffers, phosphate buffers, HEPES buffers, and MOPS buffers.

According to the invention, the disrupting of the prokaryotic host cell can be achieved by methods including, but not 6

limited to one or more of homogenizer disrupting, ultrasonic treatment, grinding, high pressure extrusion, and lysozyme treatment.

According to the invention, in the method for obtaining the truncated HPV 6 L1 proteins, the salts used include, but are not limited to: one or more of neutral salts, especially alkali metal salt, ammonium salts, hydrochlorides, sulfates, bicarbonates, phosphate salts or hydrogenphosphates, especially NaCl, KCl, NH₄Cl, (NH₄)₂SO₄. NaCl are preferred. The reductant used includes, but is not limited to, DTT and 2-mercaptoethanol, in an amount of including, but not limited to, 10-100 mM.

According to the invention, the VLPs of the truncated HPV 6 L1 protein may be produced by the following steps: further purifying the truncated HPV 6 L1 protein with a purity of at least 50% by subjecting it to a chromatography, and thereby obtaining a purified truncated HPV 6 L1 protein solution; and removing the reductant from the purified HPV 6 L1 protein solution, and thereby obtaining VLPs of the truncated HPV 6 L1. Methods for removing the reductant include, but are not limited to, known techniques in the art, such as dialysis, ultrafiltration, and chromatography.

According to the invention, the truncated HPV L1 protein preferably has the sequence set forth in SEQ ID NO:1.

According to the invention, the vaccine may be administrated in a patient-acceptable form, including but not limited to oral and injection, preferably injection.

According to the invention, the vaccine is preferably used in a unit dose. Each unit dose contains 5-80 µg truncated

Beneficial Effect

Presently, the expression systems useful for preparing 35 HPV VLPs include eukaryotic and prokaryotic expression systems.

HPV L1 proteins expressed in eukaryotic expression systems retain their native conformation, and can form VLPs on their own. In most cases, VLP with a correct conformation can be obtained by simple purification. Nevertheless, eukaryotic expression systems, such as the baculovirus and yeast expression systems, are difficult to be applied in large-scale industrial production due to low expression levels and high costs.

Prokaryotic expression systems, such as E. coli systems, have the advantages of high expression levels at a lower cost. However, when expressed in a prokarvotic system, the HPV L1 protein usually loses its native conformation and is expressed in a form of inclusion bodies in the precipitant. Renaturation of the protein from inclusion bodies is still a problem worldwide. Due to the difficulty and inefficiency of renaturation, this method is limited to small-scale lab research and cannot be applied on a large scale so as to obtain VLP with a correct conformation from the inclusive bodies. Although the HPV L1 protein can exist in its native conformation in the supernatant of E. coli lysate, its expression levels are low. Moreover, it is quite difficult to purify the HPV L1 protein from the numerous soluble proteins in the E. coli lysate supernatant. Generally, the purification is completed by means such as fusion expression and affinity chromatography which are not feasible for industrial-scale processes due to expensive enzymes employed therein.

In this invention, N-truncated HPV 6 L1 protein is expressed in an E. coli expression system and is selectively precipitated from the E. coli lysate supernatant under mild conditions. The HPV 6 L1 protein is then redissolved in a salt buffer to significantly improve its purity while still

retaining its native conformation. The redissolved protein of interest can be immediately subjected to ion-exchange or hydrophobic interaction chromatography so as to obtain the pure protein. The purified, truncated HPV 6 L1 protein obtained from these steps, can self-assemble into VLPs with good immunogenicity and the ability to induce neutralizing antibodies of a high titer against HPV 6, which is a good vaccine for preventing human from HPV 6 infection. In addition, the truncated HPV 6 L1 protein used in the present invention, with the antigenicity and particle-self assembly ability of the full-length HPV 6 L1 protein retained, is easily expressed in an E. coli expression system, and can be economically purified without using expensive enzymes. Furthermore, because the protein of interest is not subjected 15 to the intensive procedures of denaturation and renaturation during purification, the method can be applied industrially on a large scale due to low loss.

The invention will be more apparent after referring to the detailed description and the drawings as follows. All public 20 references are incorporated hereby by reference in their entirety.

DESCRIPTION OF DRAWINGS

FIG. 1 shows the SDS-PAGE result of HPV6N3C-L1 protein during steps a)-d) of the method according to the invention. Lane 1: Lysate supernatant; Lane 2: HPV6N3C-L1 protein precipitated by tangential flow; Lane 3: Redissolved HPV6N3C-L1 in a re-suspension solution. The result 30 shows that the purity of HPV6N3C-L1 reached about 70% following the steps of precipitation and re-dissolution.

FIG. **2** shows the SDS-PAGE result of HPV6N3C-L1 that was obtained in step d) and was further purified according to step e). Lane 1: HPV6N3C-L1 purified according to step e), 35 10 μ L; Lane 2: HPV6N3C-L1 purified according to step e), 20 μ L. The result shows that HPV6N3C-L1 purified according to step e) reached a purity of about 98%.

FIG. **3** shows the transmission electron microscopy (TEM) photograph of HPV6N3C-L1 VLPs obtained in step 40 f), taken at 50,000× magnification. A great deal of VLPs in a radius of about 25 nm were observed in visual field, wherein the particle size was consistant with the theoretic size and the particles were homogenous.

FIG. **4** shows the dynamic light-scattering measurement 45 result of HPV6N3C-L1 VLPs obtained in step f). The result shows that HPV6N3C-L1 VLP had a hydrodynamic radius of 24.70 nm and a particle assembly rate of 100%.

FIG. **5** shows titers of neutralizing antibodies in serum at different stages after vaccination of goat with HPV6N3C-L1 50 VLPs. Vaccination times are indicated with arrows. The titer of neutralizing antibodies increased rapidly a week after the first vaccination, and reached a peak level of 10^7-10^8 after a booster.

FIG. **6** shows titers of neutralizing antibodies in serum at different stages a week after vaccination of rabbit with HPV6N3C-L1 VLPs. Vaccination times are indicated with arrows. The titer of neutralizing antibodies increased rapidly a week after the first vaccination, and reached a peak level of 10^6 after a booster.

FIG. 7 shows the titers of neutralizing antibodies against HPV 6 and HPV11 in serum at different times after vaccination of mice with HPV6/11 bivalent vaccine obtained in Example 5. Vaccine was administered at 0 and 2 weeks. The titers of neutralizing antibodies against HPV6 and HPV 11 65 increased rapidly after the first vaccination, reaching 10^4 - 10^5 .

8

FIG. 8 shows the titers of neutralizing antibodies against HPV 6, HPV 11, HPV 16 and HPV 18 in serum at different times after vaccination of mice with HPV6/11/16/18 quadrivalent vaccine obtained in Example 5. Vaccine was administered at 0 and 2 weeks. The titers of neutralizing antibodies against HPV 6, HPV 11, HPV 16 and HPV 18 increased rapidly after the first vaccination, reaching 10^5 - 10^6 .

FIG. **9** shows the SDS-PAGE results of HPV6N2C-L1, HPV6N4C-L1 and HPV6N5C-L1 protein separately having 2, 4 and 5 amino acids truncated at the N-terminal of HPV 6 L1 protein (the amino acid sequences thereof set forth in SEQ ID Nos: 2, 3 and 4, respectively) during steps a)-e) of the method according to the invention. Lane 1: Molecular Weight Marker; Lane 2: HPV6N2C-L1 purified according to step a)-e), 10 μ L; Lane 3: HPV6N4C-L1 purified according to step a)-e), 10 μ L; Lane 4: HPV6N4C-L1 purified according to step a)-e), 10 μ L. The result shows that the purity of HPV6N2C-L1, HPV6N4C-L1 and HPV6N5C-L1 protein separately having 2, 4 and 5 amino acids truncated at the N-terminal of HPV 6 L1 protein, reached about 98% following the steps a)-e).

FIG. 10 the transmission electron microscopy (TEM) photographs of the VLPs of HPV6N2C-L1, HPV6N4C-L1 and HPV6N5C-L1 protein separately having 2, 4 and 5 amino acids truncated at the N-terminal of HPV 6 L1 protein obtained after steps a)-f), taken at 50,000× magnification. 1. The transmission electron microscopy (TEM) photographs of HPV6N2C-L1 VLPs obtained after steps a)-f), taken at 50,000× magnification. 2 The transmission electron microscopy (TEM) photographs of HPV6N4C-L1 VLPs obtained after steps a)-f), taken at 50,000× magnification. 3. The transmission electron microscopy (TEM) photographs of HPV6N5C-L1 VLPs obtained after steps a)-f), taken at 50,000× magnification. The results show that a great deal of VLPs in a radius of about 25 nm were observed in visual field, wherein the particle size was consistant with the theoretic size and the particles were homogenous.

FIG. **11** shows the dynamic light-scattering measurement result of the VLPs of HPV6N2C-L1, HPV6N4C-L1 and HPV6N5C-L1 protein separately having 2, 4 and 5 amino acids truncated at the N-terminal of HPV 6 L1 protein obtained after steps a)-f). 1. The dynamic light-scattering measurement result of HPV6N2C-L1 VLPs obtained after steps a)-f). 2. The dynamic light-scattering measurement result of HPV6N4C-L1 VLPs obtained after steps a)-f). 3. The dynamic light-scattering measurement result of HPV6N5C-L1 VLPs obtained after steps a)-f). The result shows that HPV6N2C-L1 VLPs, HPV6N4C-L1 VLPs and HPV6N5C-L1 VLPs had a hydrodynamic radius of about 25 nm and a particle assembly rate of 100%.

55			SEQUENC	ES	
	SEQ ID 1	NO: 1: MPSDSTVYVP AVGHPYFSIK		TDAYVTRTNI	FYHASSSRLL
60	61	~	VLPDPNKFAL GVSGHPFLNK	PDSSLFDPTT	QRLVWACTGL
	101	VDDVDNGGGG		VONDVIVOTIO	antigan ppi a

- 121 YDDVENSGSG GNPGQDNRVN VGMDYKQTQL CMVGCAPPLG EHWGKGKQCT NTPVQAGDCP
- 181 PLELITSVIQ DGDMVDTGFG AMNFADLQTN KSDVPIDICG TTCKYPDYLQ MAADPYGDRL

-continued

10

-continued

		-contin			_	-continued					
		SEQUENC	ES		_	SEQUENCES					
241	-	ARHFFNRAGE GSLVSSEAQL	VGEPVPDTLI	IKGSGNRTSV	5	121	DVENSGSGGN WGKGKQCTNT	PGQDNRVNVG PVQAGDCPPL	MDYKQTQLCM	VGCAPPLGEH	
301		QGHNNGI CWG SDYKEYMRHV	NQLFVTVVDT	TRSTNMTLCA		181	ELITSVIQDG CKYPDYLQMA	DMVDTGFGAM ADPYGDRLFF	NFADLQTNKS	DVPIDICGTT	
361		LCSITLSAEV YRYVQSQAIT	VAYIHTMNPS	VLEDWNFGLS	10	241	FLRKEQMFAR SIYVNTPSGS	HFFNRAGEVG LVSSEAQLFN	EPVPDTLIIK	GSGNRTSVGS	
421		PDPYKNLSFW SSIRTGVKRP	EVNLKEKFSS	ELDQYPLGRK		301	KPYWLQKAQG TTSSTYTNSD	HNNGI CWGNQ YKEYMRHVEE	LFVTVVDTTR	STNMTLCASV	
481	AVSKASAAPK	RKRAKTKR			15	361	YDLQFIFQLC PNGTLEDTYR	SITLSAEVVA YVQSQAITCQ	YIHTMNPSVL	EDWNFGLSPP	
SEQ ID 1	MRPSDSTVYV	PPPNPVSKVV KRANKTVVPK	ATDAYVTRTN	IFYHASSSRL		421	KPTPEKQKPD		NLKEKFSSEL	DQYPLGRKFL	
61		VVLPDPNKFA VGVSGHPFLN	LPDSSLFDPT	TQRLVWACTG	20	481	SKASAAPKRK	RAKTKR			
121	KYDDVENSGS		NVGMDYKQTQ	LCMVGCAPPL		SEQ ID 1	ATGTGGCGGC	CTAGCGACAG ATCCAAAGTT	CACAGTATAT	GTGCCTCCTC	
181		QDGDMVDTGF QMAADPYGDR	GAMNFADLQT	NKSDVPIDIC	25	61	GTTGCCACGG ATCATGCCAG	ATGCTTATGT CAGTTCTAGA	TACTCGCACC	AACATATTTT	
241		FARHFFNRAG SGSLVSSEAQ	EVGEPVPDTL	IIKGSGNRTS		121	CTTCTTGCAG CTAACAAAAC	TGGGTCATCC TGTTGTGCCA		ATAAAACGGG	
301		AQGHNNGICW NSDYKEYMRH	GNQLFVTVVD	TTRSTNMTLC	30	181	AAGGTGTCAG TACCAGATCC	GATATCAATA ТААСАААТТТ	CAGGGTATTT	AAGGTGGTGT	
361		QLCSITLSAE TYRYVQSQAI	VVAYIHTMNP	SVLEDWNFGL		241	GCATTGCCTG GTTTGGTATG	ACTCGTCTCT GGCATGCACA	TTTTGATCCC	ACAACACAAC	
421		KPDPYKNLSF RSSIRTGVKR	WEVNLKEKFS	SELDQYPLGR	35	301	GGCCTAGAGG TAAGTGGACA	TGGGCAGGGG TCCTTTCCTA	ACAGCCATTA	GGTGTGGGTG	
481	PAVSKASAAP	KRKRAKTKR				361	AATAAATATG ACCCTGGACA		AAATTCAGGG	AGTGGTGGTA	
SEQ ID 1			DAYVTRTNIF	YHASSSRLLA	40	421	GTTAATGTTG		TAAACAAACA	CAATTATGCA	
61	-	LPDPNKFALP VSGHPFLNKY	DSSLFDPTTQ	RLVWACTGLE		481	TTGGGCGAGC CACCTGTACA	ATTGGGGTAA GGCTGGTGAC	AGGTAAACAG	TGTACTAATA	
121		NPGQDNRVNV TPVQAGDCPP	GMDYKQTQLC	MVGCAPPLGE	45	541	TGCCCGCCCT GCGATATGGT		TACCAGTGTT	ATACAGGATG	
181	~	GDMVDTGFGA AADPYGDRLF	MNFADLQTNK	SDVPIDICGT		601	TTTGGTGCTA CAGATGTTCC	TGAATTTTGC TATTGACATA		АССААТАААТ	
241		RHFFNRAGEV SLVSSEAQLF	GEPVPDTLII	KGSGNRTSVG	50	661	TGTGGCACTA CTGCAGACCC	CATGTAAATA ATATGGTGAT		TTACAAATGG	
301		GHNNGICWGN DYKEYMRHVE	QLFVTVVDTT	RSTNMTLCAS		721	AGATTATTTT GACATTTTTT	TTTTTCTACG TAACAGGGCT		ATGTTTGCCA	
361		CSITLSAEVV RYVQSQAITC	AYIHTMNPSV	LEDWNFGLSP	55	781	GGCGAGGTGG AGGGTAGTGG	GGGAACCTGT AAATCGAACG		СТТАТААТТА	
421		DPYKNLSFWE SIRTGVKRPA	VNLKEKFSSE	LDQYPLGRKF		841	TCTGTAGGGA CTTTGGTGTC	GTAGTATATA CTCTGAGGCA		CCAAGCGGCT	
	VSKASAAPKR	KRAKTKR			60	901	СААТТGTTTA GACATAACAA	ATAAGCCATA TGGTATTTGT		AAAGCCCAGG	
SEQ ID 1	MDSTVYVPPP	NPVSKVVATD NKTVVPKVSG	AYVTRTNIFY	HASSSRLLAV		961	TGGGGTAATC GCAGTACCAA	AACTGTTTGT CATGACATTA		GATACCACAC	
61		PDPNKFALPD SGHPFLNKYD	SSLFDPTTQR	LVWACTGLEV	65	1021	TGTGCATCCG ATTATAAAGA	TAACTACATC GTACATGCGT	TTCCACATAC	ACCAATTCTG	

-continued

12

-continued

	_					
1081		AGTATGATTT ATTGTCTGCT	ACAATTTATT	TTTCAATTAT	5	851
1141		CCTATATTCA GAACTTTGGG	CACAATGAAT	CCCTCTGTTT		901
1201		CCCCAAATGG GTCACAGGCC	TACATTAGAA	GATACCTATA	10	951
1261	ATTACCTGTC ATCCCTATAA		TCCTGAAAAG	CAAAAGCCAG		1001
1321		TTAATTTAAA TCCTTTGGGA	AGAAAAGTTT	TCTAGTGAAT	15	1051
1381		TGTTACAAAG CGGTGTTAAG	TGGATATAGG	GGACGGTCCT		1101
1441		TTTCCAAAGC AACTAAAAGG	CTCTGCTGCC	CCTAAACGTA	20	1151
1501	TAA					1201
SEQ ID 1		ACAGCACAGT	ATATGTGCCT	CCTCCTAACC	25	1251
51	AGTTGTTGCC TTTTATCATG	ACGGATGCTT	ATGTTACTCG	CACCAACATA		1301
101	CCAGCAGTTC TTCCATAAAA	TAGACTTCTT	GCAGTGGGTC	ATCCTTATTT	30	1351
151	CGGGCTAACA AATACAGGGT	AAACTGTTGT	GCCAAAGGTG	TCAGGATATC		1401
201	ATTTAAGGTG CCTGACTCGT	GTGTTACCAG	ATCCTAACAA	ATTTGCATTG	35	1451
251	CTCTTTTTGA CACAGGCCTA	TCCCACAACA	CAACGTTTGG	TATGGGCATG		The of the Exa
301	GAGGTGGGCA GACATCCTTT	GGGGACAGCC	ATTAGGTGTG	GGTGTAAGTG	40	
351	ССТАААТААА GGTAACCCTG	TATGATGATG	TTGAAAATTC	AGGGAGTGGT		E
401	GACAGGATAA AACACAATTA	CAGGGTTAAT	GTTGGTATGG	АТТАТАААСА	45	Prepa
451	TGCATGGTTG GTAAAGGTAA	GATGTGCCCC	CCCTTTGGGC	GAGCATTGGG		plate The Shangh
501	ACAGTGTACT CCCTTAGAAC	AATACACCTG	TACAGGCTGG	TGACTGCCCG	50	a full le Based o
551	TTATTACCAG AGGCTTTGGT	TGTTATACAG	GATGGCGATA	TGGTTGACAC		L1, the invention
601	GCTATGAATT TTCCTATTGA	TTGCTGATTT	GCAGACCAAT	AAATCAGATG	55	Cons cated H The f
651	TATATGTGGC ATGGCTGCAG	ACTACATGTA	AATATCCAGA	TTATTTACAA		the prev reaction AGC G
701	ACCCTTATGG ACAAATGTTT	TGATAGATTA	TTTTTTTTC	TACGGAAGGA	60	5' termi was int
751	GCCAGACATT CTGTGCCTGA	TTTTTAACAG	GGCTGGCGAG	GTGGGGGAAC		wherein reverse TTT G
801	TACTCTTATA GGGAGTAGTA	ATTAAGGGTA	GTGGAAATCG	AACGTCTGTA	65	which t Amplif mocycl

SEQUENCES										
851	TATATGTTAA GGCACAATTG	CACCCCAAGC	GGCTCTTTGG	TGTCCTCTGA						
901	TTTAATAAGC ACAATGGTAT	CATATTGGCT	ACAAAAAGCC	CAGGGACATA						
951	TTGTTGGGGT ACACGCAGTA	AATCAACTGT	TTGTTACTGT	GGTAGATACC						
1001	CCAACATGAC ATACACCAAT	ATTATGTGCA	TCCGTAACTA	CATCTTCCAC						
1051	ТСТGАТТАТА АТТТАСААТТ	AAGAGTACAT	GCGTCATGTG	GAAGAGTATG						
1101	TATTTTTCAA GTGGCCTATA	TTATGTAGCA	TTACATTGTC	TGCTGAAGTA						
1151	TTCACACAAT TGGGTTATCG	GAATCCCTCT	GTTTTGGAAG	ACTGGAACTT						
1201	CCTCCCCCAA TGCAGTCACA	ATGGTACATT	AGAAGATACC	TATAGGTATG						
1251	GGCCATTACC CCAGATCCCT	TGTCAAAAGC	CCACTCCTGA	AAAGCAAAAG						
1301	ATAAGAACCT GTTTTCTAGT	TAGTTTTTGG	GAGGTTAATT	TAAAAGAAAA						
1351	GAATTGGATC AAAGTGGATA	AGTATCCTTT	GGGACGCAAG	TTTTTGTTAC						
1401	TAGGGGACGG GCTGTTTCCA	TCCTCTATTC	GTACCGGTGT	TAAGCGCCCT						
1451	AAGCCTCTGC AAGGTAA	TGCCCCTAAA	CGTAAGCGCG	ССААААСТАА						

description is further illustrated in combination with amples, wherein it is not limited to the Examples.

EXAMPLE 1

Expression of the Truncated HPV6 L1 Protein (SEQ ID NO. 1)

paration of HPV6 L1 Gene Fragments as PCR Tem-

full-length gene of HPV-6 L1 was synthesized by hai Boya Bio Co. The synthesized gene fragment has ength of 1503 by and has a sequence of SEQ ID NO:5.

on the synthetic full-length gene fragment of HPV-6 e truncated HPV 6 L1 protein according to the ion was prepared as a template.

struction of Non-Fusion Expression Vector of Trun-HPV6 L1 Gene

full-length gene fragment of HPV-6 L1 synthesized in evious step were used as the template for the next PCR on. The forward primer was 6N3F: 5'-CAT ATG CCT GAC AGC ACA GTA TA-3' (SEQ ID NO:10), at the

inal of which the restriction endonuclease NdeI site troduced. The sequence of NdeI site was CAT ATG, in ATG was the initiation codon in E. coli system. The e primer was 6CR: 5'-GTC GAC TTA CCT TTT AGT GC GC-3' (SEQ ID NO:11), at the 5' terminal of

the restriction endonuclease Sall site was introduced. fication was performed in a Biometra T3 PCR thermocycler using the following parameters:

94° C. denaturation 5 min	1 cycle	
94° C. denaturation 50 sec	25 cycles	
57° C. annealing 50 sec		
72° C. elongation 2 min		
72° C. elongation 10 min	1 cycle	

The DNA fragments, about 1.5 kb in length, were obtained after amplification. The PCR products were linked to the pMD 18-T vector (Takara Biosciences). After digestion with NdeI/Sa11, it was identified that positive colonies, wherein the truncated HPV6 L1 gene was inserted, were obtained, designated as pMD 18-T-HPV6N3C-L1.

The nucleotide sequence of interest, which was inserted into the plasmid pMD 18-T-HPV6N3C-L1, was determined 15 as SEQ ID NO: 6 by Shanghai Boya Bio Co. through using M13 +/– primers. SEQ ID NO:6 encodes the amino acid sequence set forth in SEQ ID NO:1 which corresponds to a HPV 6 L1 protein having 3 amino acids truncated at its N-terminal and no amino acid truncated at its C-terminal and ²⁰ was designated as HPV6N3C-L1.

The truncated HPV6N3C-L1 gene fragments were obtained by Ndel/Sa11 digestion of plasmid pMD 18-T-HPV6N3C-L1 The fragments were linked to the prokaryotic 25 expression vector pTrxFus digested with NdeI/Sa11 (Invitrogen). Since the fusion protein was cleaved, the protein of interest was expressed immediately after initiating the expression of the amino acid Met, without other fusion proteins included. Colonies were screened with NdeI/Sa11 30 digestion. Positive colonies containing the insert of the L1 gene fragment were labeled pTRX-HPV6N3C-L1. 1 µL plasmid pTRX-HPV6N3C-L1 (0.15 mg/ml) was used to transform 40 µL competent E. coli GI698 (Invitrogen) prepared by Calcium chloride method, and then were coated 35 on solid CAA media (dissolving 6 g Na₂HPO₄, 3 g KH₂PO₄, 0.5 g NaCl, 1 g NH₄Cl, 20 g casein hydrolysate, 0.095 MgCl₂, 1.5 g agar powder, and 20 ml 50% glycerinin 900 ml deionized water, and was added) containing benzyl chloride (at a final concentration of 100 mg/ml, the same as below). 40 Plates were incubated at 30° C. for about 10-12 h until single colonies could be observed clearly. Single colonies from the plates were transferred to a tube containing 4 ml liquid IMC medium containing benzyl chloride. Cultures were incubated in a shaking incubator at 220 rpm for 10 h at 25° C., 45 and then 1 ml bacterial solution was freeze-dried and stored at -70° C.

Expression of HPV6N3C-L1 in Large Scale

E. coli transformed with pTRX-HPV6N3C-L1 was taken from freeze-dried stain at -70° C., and diluted with a little ⁵⁰ sterile water, and then incubated in 50 mL IMC medium containing benzyl amine at 200 rpm and 30° C. for 8 h. Then, the cultures were transferred to ten flasks (5 ml cultures per flask), each of which contains 500 mL LB medium, and were incubated in a shaking incubator over- 55 night at 200 rpm and 30° C.

A 50 L fermenter made by Shanghai Baoxing Biological Ltd. was used in large-scale incubation. pH electrode was calibrated. 30 L LB medium was prepared and transferred into the fermenter, sterilized at 121° C. for 30 minutes. 60 Dissolved oxygen electrode was calibrated, wherein the value was determined as 0 before introduction of air after sterilization and as 100% prior to vaccination after introduction of air while stirring at 100 rpm at the beginning.

Preparation of the feed: 30 g casein hydrolysates was 65 dissolved in 100 mL deionized water to prepare a solution (30%), and 50 g glucose was dissolved in 100 ml deionized

water to prepared a glucose solution (50%). The two mixtures were sterilized at 121° C. for 20 min.

On the second day, the starter cultures in the ten flasks (for a total of 5 L) were transferred to the fermenter. At 30° C. and pH 7.0, the dissolved O_2 was maintained at >40% by

regulating agitation rate or air supply manually.

Flow Feed: 50% glucose and 30% casein hydrolysates were mixed at a 2:1 mass ratio.

Flow rates were as follows:

25 ml/min was defined as 100%.

1 h: 5%

2 h: 10%

3 h: 20%

4 h: 40%

5 h to the end: 60%

When OD_{600} reached about 10.0, the culture temperature was lowered to 25° C. and 4 g tryptophan was added to begin an induction culture of 4 h. Fermentation was halted when OD_{600} reached about 40. The culture was then centrifuged to obtain strains (about 2.5 kg).

IMC medium (1 liter):

Na_2HPO_4	6 g
KH ₂ PO ₄	3 g
NaCl	0.5 g
NH_4Cl	1 g
Casein Hydrolysates	20 g
MgCl ₂	0.095 g

EXAMPLE 2

Preparation of HPV6N3C-L1 with a Purity of about 70%

1 g strains were re-suspended in 10 ml lysis buffer (20 mM tris buffer pH 7.2, 300 mM NaCl). Strains were disrupted by passing through a APV homogenizer (Invensys Group) for five times at a pressure of 600 bar. The homogenate was centrifuged at 30,000 g (13,500 rpm in JA-14 rotor) for 15 min. The supernatant was subjected to SDS-PAGE on a 10% gel. At this stage, the HPV6N3C-L1 had a purity of about 10%. The supernatant was dialyzed by a Centrasette 5 Tangential Flow Filter (Pall Co.) running at a pressure of 0.5 psi, a flow rate of 500 ml/min, and a tangential flow rate of 200 mL/min, wherein the retention molecular weight was 30 kDa, the dialysate was 10 mM phosphate buffer pH 6.0, and the dialysis volume was three times as large as the volume of supernatant. After thorough dialysis, the mixture was centrifuged at 12,000 g (9500 rpm in JA-10 rotor (Beckman J25 high speed centrifuge)) for 20 min, and the precipitation was collected. The precipitation was re-suspended in 10 mM phosphate buffer pH 7.0 containing 10 mM DTT and 300 mM NaCl, wherein the volume of the buffer was 1/10 times as large as the volume of the supernatant. The mixture was stirred for 30 min and centrifuged at 30,000 g (13,500 rpm in JA-14 rotor (Beckman J25 high speed centrifuge)) for 20 min. The supernatant passes through a $0.22 \,\mu m$ filter membrane. The sample was used for cation exchange chromatography of the next step. 30 μL of $6 \times$ loading buffer was added to 150 µL of the filtered supernatant, and the result solution was mixed. After heating in a water bath at 80° C. for 10 min, 10 ul of the sample was subjected to SDS-PAGE on a 10% gel at 120V for 120 min. The electrophoretic bands were stained by Coomassie brilliant blue. The result was shown in FIG. 1. According to the

15

analysis of SDS-PAGE, HPV6N3C-L1 protein was purified and enriched after the steps of precipitation and re-dissolution, with the purity of about 70%.

EXAMPLE 3

Chromatography Purification of HPV6N3C-L1

Purification of HPV6N3C-L1 by Cation exchange Chromatography

Equipment: AKTA Explorer 100 preparative liquid chromatography system (GE Healthcare, i.e. the original Amershan Pharmacia Co.)

Chromatographic media: SP Sepharose 4 Fast Flow

Column Volume: 5.5 cm×20 cm

Buffer: 20 mM phosphate buffer pH 7.0, 10 mM DTT

20 mM phosphate buffer pH 7.0, 10 mM DTT, 2M NaCl Flow Rate: 25 mL/min

Detector Wavelength: 280 nm

Sample: 3 L 70% pure HPV6N3C-L1 solution

Elution protocol: eluting undesired proteins with 200 mM NaCl, eluting the protein of interest with 500 mM NaCl, collecting 500 mM NaCl elutate, and finally getting about 900 mL purified HPV6N3C-L1 sample.

Purification of HPV6N3C-L1 by CHT-II Chromatogra- ²⁵ phy

Equipment: AKTA Explorer 100 preparative liquid chromatography system (GE Healthcare, i.e. the original Amershan Pharmacia Co.)

Chromatographic media: CHT-II (Bio-Rad)

Column Volume: 5.5 cm×20 cm

Buffer: 10 mM phosphate buffer pH 7.0, 10 mM DTT, 0.5M NaCl

Flow Rate: 20 mL/min

Detector Wavelength: 280 nm

Sample: 500 mM NaCl elutate from SP Sepharose 4 Fast Flow

Elution protocol: directly collecting the pass-through containing the protein of interest.

The pass-through, which contains HPV6N3C-L1, was ⁴⁰ collected and about 1000 mL purified HPV6N3C-L1 was obtained. 30 μ L 6× loading buffer was added to 150 μ L HPV6N3C-L1 sample purified according to the method of the Example, and then the result solution was mixed thoroughly. After heating the solution in a water bath at 80° C. ⁴⁵ for 10 min, a 10 uL sample was subjected to SDS-PAGE on a 10% gel at 120V for 120 min. The electrophoretic bands were stained by Coomassie brilliant blue. The result was shown in FIG. **2**. The concentration of the protein of interest was about 0.7 mg/ml, and the purity was greater than 98% ⁵⁰ according to SDS-PAGE.

EXAMPLE 4

Assembly of HPV6N3C-L1 VLPs

Equipment: Centrasette 5 Tangential Flow Filter (Pall Co.), retention MW 30 kDa.

Sample: 1000 mL HPV6N3C-L1 obtained in Example 3

Sample Concentration Sample was concentrated to 800_{60} mL with the system tangential flow rate was adjusted to 50 mL/min

Sample renaturation: Sample Renaturation: Sample buffer was exchanged with 10 L renaturation buffer (20 mM PB pH 6.0, 2 mM CaCl₂, 2 mM MgCl₂, 0.5M NaCl, 0.003% 65 Tween-80) thoroughly. When running the Tangential Flow Filter, the pressure was 0.5 psi and the tangential flow rate

was 10 mL/min. When exchange was finished, the sample buffer was replaced with storage buffer (20 L PBS: 20 mM PB pH 6.5, 0.5M NaCl). The exchange volume was 20 L. The running pressure was 0.5 psi and the tangential flow rate was 25 mL/min. When the liquid exchange was finished, the sample was aseptically filtrated with a Pall filter (0.20 μ m), and thereby obtaining HPV6N3C-L1 VLPs. The HPV6N3C-L1 VLPs were stored at 4° C. for further use.

EXAMPLE 5

Determination of the Morphology and Immunogenicity of HPV6N3C-L1 VLPs

Transmission Electron Microscopy (TEM) of HPV6N3C-L1 VLPs

The equipment was a JEOL 100 kV Transmission Electron Microscope (100,000× magnification). HPV6N3C-L1 VLPs were negatively stained with 2% phosphotungstic acid at pH 7.0, and fixed on a copper grid. Results were shown in FIG. **3**. It could be seen that the VLPs obtained in Example 4 had a radius of approximately 25 nm, and were homogenous and in a hollow form.

Dynamic Light-Scattering Measurement of HPV6N3C-L1 VLPs

DynaPro MS/X dynamic light-scattering instrument (including a temperature controller) (US Protein Solutions Co.) was used for light-scattering measurements. The regulation algorithm was used in the measurements. The sample was the one obtained in Example 4. The sample was passed through a 0.22 µm filter membrane prior to the measurement. Results were shown in FIG. **4**. The result shows that HPV6N3C-L1 VLPs had a Hydrodynamic radius of 25.46 35 nm.

Establishment a Model of Pseudovirion Neutralization Assay for HPV6:

HPV can hardly be cultured in vitro, and the HPV host had a strong specificity. Thus, HPV can hardly be propagated in hosts other than human. That is, there was not an appropriate animal model for HPV. Therefore, in order to evaluate the immune productivity of HPV vaccine quickly, there was a need to establish a efficient model for in vitro neutralization assays.

In Vitro Infection Model of Pseudovirion: According to the characteristic that HPV VLP can package nucleic acids non-specifically, HPV pseudivirion was formed by expressing HPV L1 and L2 protein in cells, and by packaging viral DNA of episome or introducing reporter plasmids heterologously. Methods include expression systems based on recombinant viruses and cotransfection of multi-plasmids (see Yeager, M. D, Aste-Amezaga, M. et al (2000) Virology (278) 570-7).

The invention utilizes cotransfection of a multi-plasmid 55 system. Some improvements were made as follows. An optimized calcium phosphate transfection method was established for the 293 FT cell line, with a transfection efficiency of above 90%, which facilitate the production on a large scale. The resultant codon-optimized expression 60 plasmid of HPV protein could express HPV L1 and L2 gene efficiently in mammalian cell lines, facilitating efficient assembly of pseudovirion.

1. Construction of HPV Pseudovirion:

P6L1h, p6L2h and pN31-EGFP (donated by Professor John T. Schiller of NIH) contain genes for HPV6L1, HPV6L2, and GFP, respectively. These plasmids were purified using CsCl density gradient centrifugation as described

40

in The Molecular Cloning Experiment Guide, (3rd edition). The purification procedure was as follows:

Plasmids were used to transform E. coli DH5a;

- Single colonies were transferred into 500 mL LB culture medium and incubated in a shaking flask at 37° C. for 5 16 h;
- Culture medium was centrifuged at 9,000 g for 5 min and the stains were collected;
- The following substances were successively added to 10bacteria in each 1000 mL LB: 40 mL solution I (50 mM glucose, 25 mM Tris-Cl pH 8.0, 10 mM EDTA pH 8.0) and 2 ml 1 µg/µL RNase A), 40 mL solution II (0.2M NaOH, 1% SDS), and 48 mL solution III (60.0 mL 5M potassium acetate, 11.5 mL acetic acid, and 28.5 mL 15 deionized water);
- After placing on ice for 10 min, the mixture was centrifuged at 15,000 g for 20 min at 4° C.;
- The supernatant was mixed with 0.6 volume of isopropyl alcohol, then was centrifuged again at 15,000 g for 30 20 min:
- The supernatant was decanted into waste and the precipitation was washed with 70% ethanol;
- The precipitation was dissolved in TE and the content of 25 DNA was determined;
- CsCl was dissolved in the solution of DNA (1 g DNA per 1.01 g CsCl), and then 100 μ L 10 mg/mL EB solution was also dissolved in it;
- The mixture was centrifuged using a Beckman NVT65 centrifuge at 62,000 rpm for 10 hr at 20° C.;
- Closed circle DNA section was collected using an injector pinhead;
- EB was extracted with equivalent volume of Isoamyl alcohol repeatedly for four times;
- Three volumes of deionized water and eight volumes of 35 dry ethanol were added to one volume of DNA solution, and then the mixture was centrifuged at 20000 g for 30 min at 4° C.;
- The precipitation was collected and washed with 75% ethanol, and then dissolved in 1 mL TE;

The concentration of the DNA solution was determined, then the solution was stored in small packages at -20° C.

The purified p6L1h, p6L2h and pN31-EGFP co-transfected 293 FT cells (Invitrogen) cultured on a 10 cm cell 45 culture plate by calcium phosphate method. The calcium phosphate method was described as follows. 40 ug p6L1h, 40 µg p6L2h and 40 µg pN31-EGFP were separately added to the mixture of 1 mL HEPES solution (125 µL 1M HEPES/50 mL deionized water, at pH7.3 and 4° C.) and 1 $\,$ 50 $\,$ mL 0.5M CaCl₂ solution. After mixing, 2 mL 2× HeBS solution (0.28M NaCl (16.36 g), 0.05M HEPES (11.9 g), 1.5 mM Na₂HPO₄ (0.213 g), dissolved in 1000 mL deionized water, at pH 6.96 and -70° C.) was added dropwise. After standing at room temperature for 1 min, the mixture was 55 added to the 10 cm cell culture plate where the 293 FT cells were cultured. The original culture medium was replaced with 10 ml complete medium (Invitrogen Co.) 6 hours later. 48 hours after transfection, the medium was decanted and the cells were washed twice with PBS. Then, the cells were 60 collected and counted. Every 108 cells were suspended in 1 mL cytolytic solution (0.25% Brij58, 9.5 mM MgCl₂). After lysing, cell lysate was centrifugated at 5,000 g for 10 min and the supernatant was collected. The Pseudovirion solution was obtained after adding 5M NaCl to the supernatant 65 HPV6N5C-L1 and HPV11N4C-L1 VLPs, prepared accordto a final concentration of 850 mM, then was stored in small packages at -20° C.

293 FT cells (Invitrogen) were spread on a 96-well cell culture plate $(1.5 \times 10^4 \text{ cells/well})$, Neutralization assay was performed five hours later. Serum samples were serially diluted with 10% DMEM half-by-half. 50 µL diluted samples were separately mixed with 50 µL Pseudovirion solutions diluted with 10% DMEM (moi=0.1). After incubating at 4° C. for 1 h, the mixture was added to the 96-well cell culture plate spread with 293 FT cells. The mixture was then incubated for 72 h at 37° C. Neutralization titers of samples were estimated by observing fluorescence. Infection percentage of cells in each well was checked by flow cytometry (EPICS XL, American Beckman Coulter Co.). The exact titers of monoclonal antibodies or polyclonal antibodies were calculated. Infection percentage was the percentage of cells in the positive region minus the uninfected cells in the positive region.

Infection control percentage=(1-infection percentage of sample cell/infection percentage of negative cell)x100%

Neutralization titer was defined as the highest dilution multiple by which the infection control percentage was just above 50%. Monoclonal and polyclonal antibodies were considered as having neutralizing capacity if their infection control percentage was above 50% after 50 times dilutions.

Measurement of Immune Protection of Animals Vaccinated with HPV6 VLPs

Female rabbits (general level), 6-8 weeks old, were purchased from the Disease Prevention and Control Center of Guangxi province, where they were raised. HPV6N3C-L1 VLPs prepared in Example 4, were mixed with equal amount of complete Freund's Adjuvant for the first immunization. For the booster, HPV6N3C-L1 VLPs were mixed with incomplete Freund's Adjuvant. Rabbits were immunized via muscle injection, with 100 µg per rabbit for the first immunization, and with 50 µg per rabbit for the booster separately at week 4, 10. After immunization, external vein blood was collected every week, and serum was separated and stored for detection.

Female goats (general level), 6-8 weeks old, were purchased from the Disease Prevention and Control Center of Guangxi province, where they were raised. HPV6N3C-L1 VLPs as prepared in Example 4, were mixed with equal amount of complete Freund's adjuvant for the first immunization. For the booster, HPV6N3C-L1 VLPs were mixed with incomplete Freund's adjuvant. Goats were immunized via muscle injection, with 1 mg per goat for the first immunization, and with 0.5 mg per goat for the booster separately at weeks 4, and 18. After immunization, external vein blood was collected, and serum was separated and stored for detection.

Neutralization titers of the anti-serums were evaluated using a pseudovirion-based neutralization cell model assay. As shown in FIGS. 5 and 6, the vaccine produced by mixing HPV6N3C-L1 VLPs prepared in Example 4 with Freund's adjuvants (aluminum hydroxide or aluminum phosphate adjuvants available commercially or self-prepared may be used besides Freund's adjuvants) had good immunogenicity, could induce neutralizing antibodies with a high titer in animals, and could be used as an effective vaccine for the prevention of HPV infection.

Measurement of Immune Protection of Mice Vaccinated with HPV6/11 Bivalent Vaccine.

Four SPF BALB/c mice, 4-5 weeks old, were used. ing to the method similar to that of Examples 1-4, were mixed at a ratio of 1:2 (by weight), wherein the final

concentrations of them were 40 µg/mL and 80 µg/mL, respectively. The vaccine was mixed with an equal amount of complete Freund's adjuvant for the first immunization, and was mixed with an equal amount of incomplete Freund's adjuvant for the booster.

Mice were immunized by muscle injection. The amount for the first immunization was 10 µg HPV6N5C-L1 and 20 µg HPV11N4C-L1 per mouse. The booster was administered every two weeks. The amount for the booster was 20 μg HPV6N5C-L1 and 40 μg HPV11N4C-L1 per mouse.

After immunization, external vein blood was collected every week and serum was separated. The titers of neutralizing antibodies against HPV6 and HPV 11 in immunized mice were separately determined according to the method of Example 5.

Results were shown in FIG. 7, indicating that HPV6/11 bivalent vaccine, prepared by blending HPV6N5C-L1 and HPV11N4C-L1 VLPs as prepared in Examples 1-4, had good immunogenicity, could induce neutralizing antibodies with a high titer against HPV 6 and HPV 11 in animals, and could be used as an effective vaccine for the prevention of HPV6/HPV11 infection (besides the Freund's adjuvants used in the experiments, the vaccine may be prepared by 10blending the two HPV6N5C-L1 and HPV11N4C-L1, with aluminum hydroxide or aluminum phosphate adjuvants available commercially or self-prepared).

The Amino Acid Sequence of HPV11N4C-L1 is showed in SEQ ID NO: 7 as follows.

Met Ser Asp Ser Thr Val Tyr Val Pro Pro Pro Asn Pro Val Ser Lys 5 10 Val Val Ala Thr Asp Ala Tyr Val Lys Arg Thr Asn Ile Phe Tyr His 20 Ala Ser Ser Arg Len Leu Ala Val Gly His Pro Tyr Tyr Ser Ile 40 35 Lys Lys Val Asn Lys Thr Val Val Pro Lys Val Ser Gly Tyr Gln Tyr 55 Val Phe Lys Val Val Leu Pro Asp Pro Asn Lys Phe Ala Leu Pro Arg 70 Asp Ser Ser Leu Phe Asp Pro Thr Thr Gln Arg Leu Val Trp Ala Cys 85 90 Thr Gly Leu Glu Val Gly Arg Gly Gln Pro Leu Gly Val Gly Val Ser 100 105 110 Gly His Pro Leu Leu Asn Lys Tyr Asp Asp Val Glu Asn Ser Gly Gly 115 120 125 Tyr Gly Gly Asn Pro Gly Gln Asp Asn Arg Val Asn Val Gly Met Asp 130 135 140 Tyr Lys Gln Thr Gln Leu Cys Met Val Gly Cys Ala Pro Pro Leu Gly 145 150 155 160 Glu His Trp Gly Lys Gly Thr Gln Cys Ser Asn Thr Ser Val Gln Asn 165 170 175 Gly Asp Cys Pro Pro Leu Glu Leu Ile Thr Ser Val Ile Gln Asp Gly 180 185 Asp Met Val Asp Thr Gly Phe Gly Ala Met Asn Phe Ala Asp Leu Gln 195 200 205 Thr Asn Lys Ser Asp Val Pro Leu Asp Ile Cys Gly Thr Val Cys Lys 210 215 220 Pro Asp Tyr Leu Gln Met Ala Ala Asp Pro Tyr Gly Asp Arg Leu Tyr 230 235 240 Phe Phe Tyr Leu Arg Lys Glu Gln Met Phe Ala Arg His Phe Phe Asn 245 250 255 Arg Ala Gly Thr Val Gly Glu Pro Val Pro Asp Asp Leu Leu Val Lys 260 265 270 Gly Gly Asn Asn Arg Ser Ser Val Ala Ser Ser Ile Tyr Val His Thr 275 280 Pro Ser Gly Ser Leu Val Ser Ser Glu Ala Gln Leu Phe Asn Lys Pro 290 295 300 Tyr Trp Leu Gln Lys Ala Gln Gly His Asn Asn Gly Ile Cys Trp Gly 305 310 315 320

-continued

Asn	His	Leu	Phe	Val 32!		Val	Val	Asp	Thr	Thr 330	Arg	Ser	Thr	Asn	Met 335
Thr	Leu	Суз	Ala 340	Ser	Val	Ser	Lys	Ser	Ala 345	Thr	Tyr	Thr	Asn		Asp 350
Tyr	Lys	Glu 359	-	Met	Arg	His		Glu 360	Glu	Phe	Asp	Leu	Gln 365		Ile
Phe	Gln 370	Len	Суз	Ser	Ile		Leu 375	Ser	Ala	Glu	Val	Met 380		Tyr	Ile
His 385	Thr	Met	Asn	Pro		Val 90	Leu	Glu	Asp	Trp	Asn 395	Phe	Gly	Leu	Ser 400
Pro	Pro	Pro	Asn	-	Thr 05	Leu	Glu	Asp	Thr	Tyr 410	-	Tyr	Val	Gln	Ser 415
Gln	Ala	Ile		Сув 20	Gln	Lys	Pro	Thr	Pro 425	Glu	Lys	Glu	Lys		Asp 30
Pro	Tyr	Lys 439	-	Met	Ser	Phe	-	Glu 140	Val	Asn	Leu	Lys	Glu 449	-	Phe
Ser	Ser 450		Leu	Asp	Gln	Phe 459		Leu	Gly	Arg	Гла	Phe 460	Leu	Leu	Gln
Ser 465	Gly	Tyr	Arg	Gly	-	Thr 70	Ser	Ala	Arg	Thr	Gly 475	Ile	Lys	Arg	Pro 480
Ala	Val	Ser	ГÀа		Ser 35	Thr	Ala	Pro	ГÀа	Arg 490	-	Arg	Thr	Lys	Thr 495

Lys Lys

Measurement of Immune Protection of Mice Vaccinated with HPV6/11/16/18Quadrivalent Vaccine

Four SPF BALB/c mice, 4-5 weeks old, were used. HPV6N5C-L1, HPV11N4C-L1, HPV16N30C-L1 and ³⁵ HPV18N65C-L1 VLPs, prepared according to the method similar to that of Examples 1-4, were mixed at a ratio of 1:2:2:1 (by weight), wherein the final concentrations of them were 40 μ g/mL, 80 μ g/mL and 40 μ g/mL, respectively. The vaccine was mixed with an equal amount of complete Freund's adjuvant for the first immunization, and was mixed with an equal amount of incomplete Freund's adjuvant for the booster.

Mice were immunized by muscle injection. The amount for the first immunization was 10 µg HPV6N5C-L1, 10 µg 45 HPV18N65C-L1, 20 µg HPV11N4C-L1, and 20 µg HPV16N30C-L1 per mouse. The booster was administered every two weeks. The amount for the booster was 20 µg HPV6N5C-L1, 20 µg HPV18N65C-L1, 40 µg HPV11N4C-L1, and 40 µg HPV16N30C-L1 per mouse.

After immunization, external vein blood was collected every week and serum was separated. The titers of neutralizing antibodies against HPV6, HPV 11, HPV 16 and HPV 18 in immunized mice were separately determined according to the method of Example 5.

Results were shown in FIG. **8**, indicating that HPV6/11/ 16/18 quadrivalent vaccine, prepared by blending HPV6N5C-L1, HPV11N4C-L1, HPV16N30C-L1 and HPV18N65C-L1 VLPs as prepared in Examples 1-4, had good immunogenicity, could induce neutralizing antibodies with a high titer against HPV 6, HPV 11, HPV 16, and HPV 18 in animals, and could be used as a effective vaccine for the prevention of HPV6/HPV11/HPV16/HPV18 infection (in addition to the Freund's adjuvants used in the experiments, the vaccine could be prepared by blending the four HPV6N5C-L1, HPV11N4C-L1, HPV16N30C-L1 and HPV18N65C-L1 VLPs with aluminum hydroxide or aluminum phosphate adjuvants available commercially or selfprepared).

The Amino Acid Sequence of L1 of HPV6N5C-L1 is showed in SEQ ID NO 4 as follows.

The Amino Acid Sequence of L1 of HPV16N30C-L1 is showed in SEQ ID NO 8 as follows.

Met 1	Leu	Pro	Ser	Glu 5	Ala	Thr	Val	Tyr	Leu	Pro 10	Pro	Val	Pro	Val		.5
Lys	Val	Val	Ser 20		Asp	Glu	Tyr	Val	Ala 25	Arg	Thr	Asn	Ile	Tyr	Tyr 30	
His	Ala	Gly 35	Thr	Ser	Arg	Leu	Leu	Ala 40	Val	Gly	His	Pro	-	Phe 15	Pro	
Ile	Lys 50	Lys	Pro	Asn	Asn	Asn	Lys 55	Ile	Leu	Val	Pro	Lys (Val 50	Ser	Gly	
Leu 65	Gln	Tyr	Arg	Val		-			Leu		-	Pro		-		0

-continued

Gly Phe Pro Asp Thr Ser Phe Tyr Asn Pro Asp Thr Gln Arg Leu Val Trp Ala Cys Val Gly Val Glu Val Gly Arg Gly Gln Pro Leu Gly Val Gly Ile Ser Gly His Pro Leu Leu Asn Lys Leu Asp Asp Thr Glu Asn Ala Ser Ala Tyr Ala Ala Asn Ala Gly Val Asp Asn Arg Glu Cys Ile Ser Met Asp Tyr Lys Gln Thr Gln Leu Cys Leu Ile Gly Cys Lys Pro Pro Ile Gly Glu His Trp Gly Lys Gly Ser Pro Cys Thr Asn Val Ala Val Asn Pro Gly Asp Cys Pro Pro Leu Glu Leu Ile Asn Thr Val Ile Gln Asp Gly Asp Met Val Asp Thr Gly Phe Gly Ala Met Asp Phe Thr Thr Leu Gln Ala Asn Lys Ser Glu Val Pro Leu Asp Ile Cys Thr Ser Ile Cys Lys Tyr Pro Asp Tyr Ile Lys Met Val Ser Glu Pro Tyr Gly 235 240 Asp Ser Leu Phe Phe Tyr Leu Arg Arg Glu Gln Met Phe Val Arg His Leu Phe Asn Arg Ala Gly Ala Val Gly Asp Asn Val Pro Asp Asp Leu Tyr Ile Lys Gly Ser Gly Ser Thr Ala Asn Leu Ala Ser Ser Asn Tyr Phe Pro Thr Pro Ser Gly Ser Met Val Thr Ser Asp Ala Gln Ile Phe Asn Lys Pro Tyr Trp Leu Gln Arg Ala Gln Gly His Asn Asn Gly Ile Cys Trp Gly Asn Gln Leu Phe Val Thr Val Val Asp Thr Thr Arg Ser Thr Asn Met Ser Leu Cys Ala Ala Ile Ser Thr Ser Glu Thr Thr Tyr Lys Asn Thr Asn Phe Lys Glu Tyr Leu Arg His Gly Glu Glu Tyr Asp Leu Gln Phe Ile Phe Gln Leu Cys Lys Ile Thr Leu Thr Ala Asp Ile Met Thr Tyr Ile His Ser Met Asn Ser Thr Ile Leu Glu Asp Trp Asn Phe Gly Leu Gln Pro Pro Pro Gly Gly Thr Leu Glu Asp Thr Tyr Arg Phe Val Thr Ser Gln Ala Ile Ala Cys Gln Lys His Thr Pro Pro Ala Pro Lys Glu Asp Pro Leu Lys Lys Tyr Thr Phe Trp Glu Val Asn Len Lys Glu Lys Phe Ser Ala Asp Leu Asp Gl
n Phe Pro Leu Gly Arg Lys Phe Leu Cln Ala Gly Leu Glu Ala Lys Pro Lys Phe Thr Leu Gly Lys Arg Lys Ala Thr Pro Thr Thr Ser Ser Thr Ser Thr Thr Ala Lys Arg Lys Lys Arg Lys Leu

The Amino Acid Sequence of L1 of HPV18N65C-L1 is showed in SEQ ID NO 9 as follows.

Met Arg Pro Ser Asp Asn Thr Val Tyr Leu Pro Pro Pro Ser Val Ala Arg Val Val Asn Thr Asp Asp Tyr Val Thr Arg Thr Ser Ile Phe Tyr 3.0 His Ala Gly Ser Ser Arg Leu Leu Thr Val Gly As
n Pro Tyr Phe Arg Val Pro Ala Gly Gly Gly Asn Lys Gln Asp Ile Pro Lys Val Ser Ala Tyr Gln Tyr Arg Val Phe Arg Val Gln Leu Pro Asp Pro Asn Lys Phe Gly Leu Pro Asp Thr Ser Ile Tyr Asn Pro Glu Thr Gln Arg Leu Val Trp Ala Cys Ala Gly Val Glu Ile Gly Arg Gly Gln Pro Leu Gly Val Gly Leu Ser Gly His Pro Phe Tyr Asn Lys Leu Asp Asp Thr Glu Ser Ser His Ala Ala Thr Ser Asn Val Ser Glu Asp Val Arg Asp Asn Val Ser Val Asp Tyr Lys Gln Thr Gln Leu Cys Ile Leu Gly Cys Ala Pro Ala Ile Gly Glu His Trp Ala Lys Gly Thr Ala Cys Lys Ser Arg Pro Leu Ser Gln Gly Asp Cys Pro Pro Leu Glu Leu Lys Asn Thr Val Leu Glu Asp Gly Asp Met Val Asp Thr Gly Tyr Gly Ala Met Asp Phe Ser Thr Leu Gln Asp Thr Lys Cys Glu Val Pro Leu Asp Ile Cys Gln Ser Ile Cys Lys Tyr Pro Asp Tyr Leu Gl
n Met Ser Ala Asp Pro Tyr Gly $% \left({{\left({{{\left({{{}_{{\rm{T}}}} \right)}} \right)}} \right)$ Asp Ser Met Phe Phe Cys Leu Arg Arg Glu Gln Leu Phe Ala Arg His Phe Trp Asn Arg Ala Gly Thr Met Gly Asp Thr Val Pro Gln Ser Leu Tyr Ile Lys Gly Thr Gly Met Arg Ala Ser Pro Gly Ser Cys Val Tyr Ser Pro Ser Pro Ser Gly Ser Ile Val Thr Ser Asp Ser Gln Leu Phe Asn Lys Pro Tyr Trp Leu His Lys Ala Gln Gly His Asn Asn Gly Val Cys Trp His Asn Gln Leu Phe Val Thr Val Val Asp Thr Thr Arg Ser Thr Asn Leu Thr Ile Cys Ala Ser Thr Gln Ser Pro Val Pro Gly Gln Tyr Asp Ala Thr Lys Phe Lys Gln Tyr Ser Arg His Val Glu Glu Tyr Asp Leu Gln Phe Ile Phe Gln Leu Cys Thr Ile Thr Leu Thr Ala Asp Val Met Ser Tyr Ile His Ser Met Asn Ser Ser Ile Leu Glu Asp Trp Asn Phe Gly Val Pro Pro Pro Pro Thr Thr Ser Leu Val Asp Thr Tyr

-continued Arg Phe Val Gln Ser Val Ala Ile Ala Cys Gln Lys Asp Ala Ala Pro 420 425 430 Ala Glu Asn Lys Asp Pro Tyr Asp Lys Leu Lys Phe Trp Asn Val Asp 435 440 445 Leu Lys Glu Lys Phe Ser Leu Asp Leu Asp Gln Tyr Pro Leu Gly Arg 450 455 460 Lys Phe Leu Val Gln Ala Gly Leu Arg Arg Lys Pro Thr Ile Gly Pro 470 480 475 465 Arg Lys Arg Ser Ala Pro Ser Ala Thr Thr Ala Ser Lys Pro Ala Lys 485 490 495 Arg Val Arg Val Arg Ala Arg Lys 500

The Amino Acid Sequence of HPV11N4C-L1 VLP is shown in SEQ ID NO:7, as described above.

EXAMPLE 6

20

The truncated HPV6L1 proteins set forth in SEQ ID NOs: 2, 3 and 4 were prepared according to the techniques used in examples 1-5. All these truncated proteins could be purified to an extent of above 98% and could be assembled into VLPs with a radius of about 25 nm. The results are ²⁵ shown in FIGS. **9**, **10** and **11**.

<160> NUMBER OF SEQ ID NOS: 11

SEQUENCE LISTING

<210> SEQ ID NO 1 <211> LENGTH: 498 <212> TYPE: PRT <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 1 Met Pro Ser Asp Ser Thr Val Tyr Val Pro Pro Pro Asn Pro Val Ser 5 10 1 15 Lys Val Val Ala Thr Asp Ala Tyr Val Thr Arg Thr As
n Ile Phe Tyr $_{20}$ $_{25}$ $_{30}$ His Ala Ser Ser Ser Arg Leu Leu Ala Val Gly His Pro Tyr Phe Ser 35 40 45 Ile Lys Arg Ala Asn Lys Thr Val Val Pro Lys Val Ser Gly Tyr Gln505560 Tyr Arg Val Phe Lys Val Val Leu Pro Asp Pro Asn Lys Phe Ala Leu 65 70 75 80 Pro Asp Ser Ser Leu Phe Asp Pro Thr Thr Gln Arg Leu Val Trp Ala 85 90 Cys Thr Gly Leu Glu Val Gly Arg Gly Gln Pro Leu Gly Val Gly Val 100 105 110 Ser Gly His Pro Phe Leu Asn Lys Tyr Asp Asp Val Glu Asn Ser Gly 115 120 125 Ser Gly Gly Asn Pro Gly Gln Asp Asn Arg Val Asn Val Gly Met Asp 135 140 130 Tyr Lys Gln Thr Gln Leu Cys Met Val Gly Cys Ala Pro Pro Leu Gly 150 155 145 160 Glu His Trp Gly Lys Gly Lys Gln Cys Thr Asn Thr Pro Val Gln Ala 165 170 175

-continued

												COII			
Gly	Asp	Cys	Pro 180	Pro	Leu	Glu	Leu	Ile 185	Thr	Ser	Val	Ile	Gln 190	Asp	Gly
Asp	Met	Val 195		Thr	Gly	Phe	Gly 200		Met	Asn	Phe	Ala 205	Asp	Leu	Gln
Thr	Asn 210	-	Ser	Asp	Val	Pro 215	Ile	Asp	Ile	Суз	Gly 220	Thr	Thr	Суз	Lys
Tyr 225	Pro	Asp	Tyr	Leu	Gln 230	Met	Ala	Ala	Asp	Pro 235	-	Gly	Asp	Arg	Leu 240
Phe	Phe	Phe	Leu	Arg 245		Glu	Gln	Met	Phe 250	Ala	Arg	His	Phe	Phe 255	Asn
Arg	Ala	Gly	Glu 260	Val	Gly	Glu	Pro	Val 265	Pro	Asp	Thr	Leu	Ile 270	Ile	Lys
Gly	Ser	Gly 275		Arg	Thr	Ser	Val 280	Gly	Ser	Ser	Ile	Tyr 285	Val	Asn	Thr
Pro	Ser 290	Gly	Ser	Leu	Val	Ser 295	Ser	Glu	Ala	Gln	Leu 300	Phe	Asn	Lys	Pro
Tyr 305	Trp	Leu	Gln	LÀa	Ala 310	Gln	Gly	His	Asn	Asn 315	Gly	Ile	СЛа	Trp	Gly 320
Asn	Gln	Leu	Phe	Val 325	Thr	Val	Val	Asp	Thr 330	Thr	Arg	Ser	Thr	Asn 335	Met
Thr	Leu	Cys	Ala 340	Ser	Val	Thr	Thr	Ser 345	Ser	Thr	Tyr	Thr	Asn 350	Ser	Asp
Tyr	Lys	Glu 355		Met	Arg	His	Val 360	Glu	Glu	Tyr	Asp	Leu 365	Gln	Phe	Ile
Phe	Gln 370	Leu	Суз	Ser	Ile	Thr 375	Leu	Ser	Ala	Glu	Val 380	Val	Ala	Tyr	Ile
His 385	Thr	Met	Asn	Pro	Ser 390	Val	Leu	Glu	Asp	Trp 395	Asn	Phe	Gly	Leu	Ser 400
Pro	Pro	Pro	Asn	Gly 405	Thr	Leu	Glu	Asp	Thr 410	Tyr	Arg	Tyr	Val	Gln 415	Ser
Gln	Ala	Ile	Thr 420	Сүз	Gln	Lys	Pro	Thr 425	Pro	Glu	Гла	Gln	Lys 430	Pro	Asp
Pro	Tyr	Lys 435	Asn	Leu	Ser	Phe	Trp 440	Glu	Val	Asn	Leu	Lys 445	Glu	Гла	Phe
Ser	Ser 450	Glu	Leu	Asp	Gln	Tyr 455	Pro	Leu	Gly	Arg	Lys 460	Phe	Leu	Leu	Gln
Ser 465	Gly	Tyr	Arg	Gly	Arg 470	Ser	Ser	Ile	Arg	Thr 475	Gly	Val	Lys	Arg	Pro 480
Ala	Val	Ser	Lys	Ala 485	Ser	Ala	Ala	Pro	Lys 490	Arg	ГЛа	Arg	Ala	Lys 495	Thr
Lys	Arg														
		EQ II													
		ENGTI YPE :													
<220)> FI	EATU	RE:	Art: ORMA			v								
<400)> SI	EQUEI	NCE:	2											
Met 1	Arg	Pro	Ser	Asp 5	Ser	Thr	Val	Tyr	Val 10	Pro	Pro	Pro	Asn	Pro 15	Val
Ser	Lys	Val	Val 20	Ala	Thr	Asp	Ala	Tyr 25	Val	Thr	Arg	Thr	Asn 30	Ile	Phe
Tyr	His	Ala	Ser	Ser	Ser	Arg	Leu	Leu	Ala	Val	Gly	His	Pro	Tyr	Phe

		35					40					45				
Ser	Ile 50	Lys	Arg	Ala	Asn	Lys 55	Thr	Val	Val	Pro	Lys 60	Val	Ser	Gly	Tyr	
3ln 55	Tyr	Arg	Val	Phe	Lys 70	Val	Val	Leu	Pro	Asp 75	Pro	Asn	Lys	Phe	Ala 80	
Jeu	Pro	Asp	Ser	Ser 85	Leu	Phe	Asp	Pro	Thr 90	Thr	Gln	Arg	Leu	Val 95	Trp	
la	Сув	Thr	Gly 100	Leu	Glu	Val	Gly	Arg 105	Gly	Gln	Pro	Leu	Gly 110	Val	Gly	
al	Ser	Gly 115	His	Pro	Phe	Leu	Asn 120	Lys	Tyr	Asp	Asp	Val 125	Glu	Asn	Ser	
ly	Ser 130	Gly	Gly	Asn	Pro	Gly 135	Gln	Asp	Asn	Arg	Val 140	Asn	Val	Gly	Met	
.sp 45	Tyr	Lys	Gln	Thr	Gln 150	Leu	Cys	Met	Val	Gly 155	Сүз	Ala	Pro	Pro	Leu 160	
ly	Glu	His	Trp	Gly 165	Lys	Gly	Lys	Gln	Cys 170	Thr	Asn	Thr	Pro	Val 175	Gln	
la	Gly	Asp	Cys 180	Pro	Pro	Leu	Glu	Leu 185	Ile	Thr	Ser	Val	Ile 190	Gln	Asp	
ly	Asp	Met 195	Val	Asp	Thr	Gly	Phe 200	Gly	Ala	Met	Asn	Phe 205	Ala	Asp	Leu	
ln	Thr 210	Asn	Lys	Ser	Asp	Val 215	Pro	Ile	Asp	Ile	Сув 220	Gly	Thr	Thr	СЛа	
ув 25	Tyr	Pro	Asp	Tyr	Leu 230	Gln	Met	Ala	Ala	Asp 235	Pro	Tyr	Gly	Asp	Arg 240	
eu	Phe	Phe	Phe	Leu 245	Arg	LÀa	Glu	Gln	Met 250	Phe	Ala	Arg	His	Phe 255	Phe	
.sn	Arg	Ala	Gly 260	Glu	Val	Gly	Glu	Pro 265	Val	Pro	Asp	Thr	Leu 270	Ile	Ile	
Àз	Gly	Ser 275	Gly	Asn	Arg	Thr	Ser 280	Val	Gly	Ser	Ser	Ile 285	Tyr	Val	Asn	
hr	Pro 290	Ser	Gly	Ser	Leu	Val 295	Ser	Ser	Glu	Ala	Gln 300	Leu	Phe	Asn	Lys	

Thr Pro Ser Gly Ser Leu Pro Tyr Trp Leu Gln Lys Ala Gln Gly His Asn Asn Gly Ile Cys Trp Gly Asn Gln Leu Phe Val Thr Val Val Asp Thr Thr Arg Ser Thr Asn Met Thr Leu Cys Ala Ser Val Thr Thr Ser Ser Thr Tyr Thr Asn Ser Asp Tyr Lys Glu Tyr Met Arg His Val Glu Glu Tyr Asp Leu Gln Phe 355 360 Ile Phe Gln Leu Cys Ser Ile Thr Leu Ser Ala Glu Val Val Ala Tyr Ile His Thr Met Asn Pro Ser Val Leu Glu Asp Trp Asn Phe Gly Leu Ser Pro Pro Pro Asn Gly Thr Leu Glu Asp Thr Tyr Arg Tyr Val Gln Ser Gln Ala Ile Thr Cys Gln Lys Pro Thr Pro Glu Lys Gln Lys Pro Asp Pro Tyr Lys Asn Leu Ser Phe Trp Glu Val Asn Leu Lys Glu Lys

Phe Ser Ser Glu Leu Asp Gln Tyr Pro Leu Gly Arg Lys Phe Leu Leu

Gln Ser Gly Tyr Arg Gly Arg Ser Ser Ile Arg Thr Gly Val Lys Arg Pro Ala Val Ser Lys Ala Ser Ala Ala Pro Lys Arg Lys Arg Ala Lys Thr Lys Arg <210> SEQ ID NO 3 <211> LENGTH: 497 <212> TYPE: PRT <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 3 Met Ser Asp Ser Thr Val Tyr Val Pro Pro Pro Asn Pro Val Ser Lys Val Val Ala Thr Asp Ala Tyr Val Thr Arg Thr Asn Ile Phe Tyr His Ala Ser Ser Ser Arg Leu Leu Ala Val Gly His Pro Tyr Phe Ser Ile Lys Arg Ala Asn Lys Thr Val Val Pro Lys Val Ser Gly Tyr Gln Tyr Arg Val Phe Lys Val Val Leu Pro Asp Pro Asn Lys Phe Ala Leu Pro Asp Ser Ser Leu Phe Asp Pro Thr Thr Gln Arg Leu Val Trp Ala Cys Thr Gly Leu Glu Val Gly Arg Gly Gln Pro Leu Gly Val Gly Val Ser Gly His Pro Phe Leu Asn Lys Tyr Asp Asp Val Glu Asn Ser Gly Ser Gly Gly Asn Pro Gly Gln Asp Asn Arg Val Asn Val Gly Met Asp Tyr Lys Gln Thr Gln Leu Cys Met Val Gly Cys Ala Pro Pro Leu Gly Glu His Trp Gly Lys Gly Lys Gln Cys Thr Asn Thr Pro Val Gln Ala Gly Asp Cys Pro Pro Leu Glu Leu Ile Thr Ser Val Ile Gln Asp Gly Asp Met Val Asp Thr Gly Phe Gly Ala Met Asn Phe Ala Asp Leu Gln Thr Asn Lys Ser Asp Val Pro Ile Asp Ile Cys Gly Thr Thr Cys Lys Tyr Pro Asp Tyr Leu Gln Met Ala Ala Asp Pro Tyr Gly Asp Arg Leu Phe Phe Phe Leu Arg Lys Glu Gln Met Phe Ala Arg His Phe Phe Asn Arg Ala Gly Glu Val Gly Glu Pro Val Pro Asp Thr Leu Ile Ile Lys Gly Ser Gly Asn Arg Thr Ser Val Gly Ser Ser Ile Tyr Val Asn Thr Pro Ser Gly Ser Leu Val Ser Ser Glu Ala Gln Leu Phe Asn Lys Pro Tyr Trp Leu Gln Lys Ala Gln Gly His Asn Asn Gly Ile Cys Trp Gly Asn

												0011	CIII	ucu	
Gln	Leu	Phe	Val	Thr 325	Val	Val	Asp	Thr	Thr 330	Arg	Ser	Thr	Asn	Met 335	Thr
Leu	Суз	Ala	Ser 340	Val	Thr	Thr	Ser	Ser 345	Thr	Tyr	Thr	Asn	Ser 350	Asp	Tyr
Lys	Glu	Tyr 355	Met	Arg	His	Val	Glu 360	Glu	Tyr	Asp	Leu	Gln 365	Phe	Ile	Phe
Gln	Leu 370	Суз	Ser	Ile	Thr	Leu 375	Ser	Ala	Glu	Val	Val 380	Ala	Tyr	Ile	His
Thr 385	Met	Asn	Pro	Ser	Val 390	Leu	Glu	Asp	Trp	Asn 395	Phe	Gly	Leu	Ser	Pro 400
Pro	Pro	Asn	Gly	Thr 405	Leu	Glu	Asp	Thr	Tyr 410	Arg	Tyr	Val	Gln	Ser 415	Gln
Ala	Ile	Thr	Cys 420	Gln	Lys	Pro	Thr	Pro 425	Glu	Lys	Gln	Lys	Pro 430	Asp	Pro
Tyr	Lys	Asn 435	Leu	Ser	Phe	Trp	Glu 440	Val	Asn	Leu	Гла	Glu 445	Lys	Phe	Ser
Ser	Glu 450	Leu	Asp	Gln	Tyr	Pro 455	Leu	Gly	Arg	Lys	Phe 460	Leu	Leu	Gln	Ser
Gly 465	Tyr	Arg	Gly	Arg	Ser 470	Ser	Ile	Arg	Thr	Gly 475	Val	ГЛа	Arg	Pro	Ala 480
	Ser	Lys	Ala	Ser 485	Ala	Ala	Pro	Lys	Arg 490	Lys	Arg	Ala	Lys	Thr 495	Lys
<211 <212 <213	L> LI 2> TY 3> OF	EQ II ENGTH YPE : RGANI EATUH	H: 49 PRT ISM:	96	ifica	al									
<210 <211 <212 <213 <220 <223 <400	L> LI 2> T 3> OI 0> FI 3> O 0> SI	ENGTI 7PE : RGANI EATUI THER EQUEI	H: 49 PRT ISM: RE: INFO NCE:	96 Art: DRMA 4	rion	: HP		D	D	ħ	D	37-7	0		17-7
<210 <211 <212 <223 <220 <223 <400 Met 1	1> L1 2> T 3> OF 0> F1 3> O 3> O 0> SI Asp	ENGTH YPE: RGANI EATUH FHER EQUEN Ser	H: 49 PRT ISM: RE: INFO NCE: Thr	96 Art: DRMA 4 Val 5	TION Tyr	: HP' Val	Pro		10					Lys 15	
<210 <211 <212 <213 <220 <223 <400 Met 1	1> L1 2> T 3> OF 0> F1 3> O 3> O 0> SI Asp	ENGTH YPE: RGANI EATUH FHER EQUEN Ser	H: 49 PRT ISM: RE: INFO NCE: Thr	96 Art: DRMA 4 Val 5	TION Tyr	: HP' Val	Pro		10					-	
<210 <211 <212 <213 <220 <223 <400 Met 1 Val	1> LI 2> T 3> OI 0> FI 3> O 0> SI Asp Ala	ENGTH YPE: RGANI EATUH THER EQUEN Ser Thr	H: 49 PRT ISM: RE: INFO NCE: Thr Asp 20	Art: DRMA 4 Val 5 Ala	TION Tyr Tyr	: HP Val Val	Pro Thr	Arg 25	10 Thr	Asn	Ile	Phe	Tyr 30	15	Ala
<210 <211 <212 <213 <220 <223 <400 Met 1 Val Ser	1> L1 2> T 3> OB 0> F1 3> O 0> S1 Asp Ala Ser	ENGTH YPE: RGANI EATUH FHER EQUEN Ser Thr Ser 35	H: 49 PRT ISM: ISM: RE: INF(NCE: Thr Asp 20 Arg	Art: DRMA 4 Val 5 Ala Leu	TION Tyr Tyr Leu	: HP' Val Val Ala	Pro Thr Val 40	Arg 25 Gly	10 Thr His	Asn Pro	Ile Tyr	Phe Phe 45	Tyr 30 Ser	15 His	Ala Lys
<pre><21(<211 <211 <211 <211 <2213 <220 <223 <400 Met 1 Val Ser Arg</pre>	<pre>1> L1 2> TTT 3> OD D> F1 3> O' D> S1 Asp Ala Ser Ala 50</pre>	ENGTH YPE: RGAN: EATUH FHER EQUEN Ser Thr Ser 35 Asn	H: 49 PRT ISM: ISM: INFC INFC: Thr Asp 20 Arg Lys	<pre>Peace Art: Art: 4 Val 5 Ala Leu Thr</pre>	TYT Tyr Leu Val	: HP' Val Val Ala Val 55	Pro Thr Val 40 Pro	Arg 25 Gly Lys	10 Thr His Val	Asn Pro Ser	Ile Tyr Gly 60	Phe Phe 45 Tyr	Tyr 30 Ser Gln	15 His Ile	Ala Lys Arg
<pre><21(<21: <21: <22: <22: <22: <400 Met 1 Val Ser Arg Val 65</pre>	<pre>L> LI 2> TY 3> OI 0> FI 3> O' 0> SI Asp Ala Ser Ala 50 Phe</pre>	ENGTH YPE: RGAN: EATUU FHER EQUE Ser Thr Ser 35 Asn Lys	H: 49 PRT ISM: ISM: RE: INFO NCE: Thr Asp 20 Arg Lys Val	96 Art: 0RMA 4 Val 5 Ala Leu Thr Val	TION Tyr Tyr Leu Val Leu 70	: HP Val Val Ala Val 55 Pro	Pro Thr Val 40 Pro Asp	Arg 25 Gly Lys Pro	10 Thr His Val Asn	Asn Pro Ser Lys 75	Ile Tyr Gly 60 Phe	Phe Phe 45 Tyr Ala	Tyr 30 Ser Gln Leu	15 His Ile Tyr	Ala Lys Arg Asp 80
<pre><210 <211 <212 <213 <222 <223 <400 Met 1 Val Ser Arg Val 65 Ser</pre>	1> LI 2> TY 3> OD D> FI 3> O' D> SI Asp Ala Ser Ala 50 Phe Ser	ENGTH IPE:: QGAN: CATUL FLER EQUEN Ser Thr Ser 35 Asn Lys Leu	H: 49 PRT ISM: CRE: INF(NCE: Thr Asp 20 Arg Lys Val Phe	Art: Art: 4 Val 5 Ala Leu Thr Val Asp 85	TION Tyr Tyr Leu Val Leu 70 Pro	: HP Val Val Ala Val 55 Pro Thr	Pro Thr Val 40 Pro Asp Thr	Arg 25 Gly Lys Pro Gln	10 Thr His Val Asn Arg 90	Asn Pro Ser Lys 75 Leu	Ile Tyr Gly 60 Phe Val	Phe 45 Tyr Ala Trp	Tyr 30 Ser Gln Leu Ala	15 His Ile Tyr Pro Cys	Ala Lys Arg Asp 80 Thr
<pre><210 <211 <212 <212 <222 <223 <400 Met 1 Val Ser Arg Val 65 Ser Gly</pre>	<pre>L> LI 2> TT 3> OD >> FF 3> O' Asp Ala Ser Ala 50 Phe Ser Leu</pre>	ENGTH TPE:: CGAN:: CGAN:: CGAN:: CGAN:: CGAN:: FILE: Ser 35 Asn Lys Leu Glu	H: 49 PRT ISM: RE: INFC NCE: Thr Asp 20 Arg Lys Val Phe Val 100	Art: Art: A Val 5 Ala Leu Thr Val Asp 85 Gly	TION Tyr Leu Val Leu 70 Pro Arg	: HP Val Val Ala Val 55 Pro Thr Gly	Pro Thr Val 40 Pro Asp Thr Gln	Arg 25 Gly Lys Pro Gln Pro 105	10 Thr His Val Asn Arg 90 Leu	Asn Pro Ser Lys 75 Leu Gly	Ile Tyr Gly 60 Phe Val Val	Phe 45 Tyr Ala Trp Gly	Tyr 30 Ser Gln Leu Ala Val 110	15 His Ile Tyr Pro Cys 95	Ala Lys Arg 80 Thr Gly
<pre><210 <211 <212 <213 <222 <223 <400 Met 1 Val Ser Arg Val 65 Ser Gly His</pre>	<pre>1> LI 2> TT 3> Of 0> FF 3> O' 0> SI Asp Ala Ser Ala 50 Phe Ser Leu Pro</pre>	ENGTH YPE: - CGAN: CGAN: CGAN: FHER SQUEN Ser Thr Ser Thr Ser Lys Leu Glu Phe 115	H: 49 PRT ISM: ISM: RE: INFC NCE: Thr Asp 20 Arg Lys Val Phe Val 100 Leu	Art: Art: 4 Val 5 Ala Leu Thr Val Asp 85 Gly Asn	TION Tyr Tyr Leu Val Leu 70 Pro Arg Lys	: HP Val Val Ala Val 55 Pro Thr Gly Tyr	Pro Thr Val 40 Pro Asp Thr Gln Asp 120	Arg 25 Gly Lys Pro Gln Pro 105 Asp	10 Thr His Val Asn Arg 90 Leu Val	Asn Pro Ser Lys 75 Leu Gly Glu	Ile Tyr Gly 60 Phe Val Val Asn	Phe 45 Tyr Ala Trp Gly Ser 125	Tyr 30 Ser Gln Leu Ala Val 110 Gly	15 His Ile Tyr Pro Cys 95 Ser	Ala Lys Arg 80 Thr Gly
<pre><21(<21) <212 <212 <222 <400 Met 1 Val Ser Arg Val 65 Ser Gly His Gly</pre>	<pre>L> LI 2> TT 3> OI >> FI 3> O 2> SI Asp Ala Ser Ala Ser Leu Pro Asn 130</pre>	ENGTH TPE:: CGAN:: CGAN:: Ser Thr Ser 35 Asn Lys Leu Glu Phe 115 Pro	H: 49 PRT ISM: RE: INFO NCE: Thr Asp 20 Arg Lys Val Phe Val 100 Leu Gly	Art: DRMA 4 Val 5 Ala Leu Thr Val Asp 85 Gly Asn Gln	TION Tyr Tyr Leu Val Leu 70 Pro Arg Lys Asp	HP' Val Val Ala Val 55 Pro Thr Gly Tyr Tyr Asn 135	Pro Thr Val 40 Pro Asp Thr Gln Asp 120 Arg	Arg 25 Gly Lys Pro Gln Pro 105 Asp Val	10 Thr His Val Asn Qo Leu Val Asn	Asn Pro Ser Lys 75 Leu Gly Glu Val	Ile Tyr Gly 60 Phe Val Val Val Asn Gly 140	Phe 45 Tyr Ala Trp Gly Ser 125 Met	Tyr 30 Ser Gln Leu Ala Val 110 Gly Asp	15 His Ile Tyr Pro Cys 95 Ser Ser	Ala Lys Arg Asp 80 Thr Gly Lys
<pre><210 <211 <212 <212 <223 <400 Met 1 Val Ser Arg Val 65 Ser Gly His Gly Gln 145</pre>	<pre>L> LI 2> TT 3> Of D> FF 3> O Asp Ala Ser Ala 50 Phe Ser Leu Pro Asn 130 Thr</pre>	ENGTH YPE: : CGAN:: CGAN:: CGAN:: Ser Thr Ser Thr Ser 35 Asn Lys Leu Glu Phe 115 Pro Gln	H: 49 PRT ISM: ISM: ISM: RE: INFC NCE: Thr Asp 20 Arg Lys Val Phe Val 100 Leu Gly Leu	Art: DRMA 4 Val 5 Ala Leu Thr Val Asp 85 Gly Asn Gln Cys	TION Tyr Tyr Leu Val Leu Val Leu Pro Arg Lys Asp Met 150	HPV Val Val Ala Val 55 Pro Thr Gly Tyr Asn 135 Val	Pro Thr Val 40 Pro Asp Thr Gln Asp 120 Arg Gly	Arg 25 Gly Lys Pro Gln Pro 105 Asp Val Cys	10 Thr His Val Asn Arg 90 Leu Val Asn Ala	Asn Pro Ser Lys 75 Leu Gly Glu Val Pro 155	Ile Tyr Gly 60 Phe Val Val Asn Gly 140 Pro	Phe Phe 45 Tyr Ala Trp Gly Ser 125 Met Leu	Tyr 30 Ser Gln Leu Ala Val 110 Gly Asp Gly	15 His Ile Tyr Pro Cys 95 Ser Ser Tyr	Ala Lys Arg 80 Thr Gly Lys Lys His 160
<pre><21(<21) <212 <212 <222 <223 <400 Met 1 Val 5ser Arg Val 65 Ser Gly His Gly Gln 145 Trp</pre>	<pre>L> LI 2> TT 3> OI >> FF 3> O >> SI Asp Ala Ser Ala Ser Ala Ser Leu Pro Asn 130 Thr Gly</pre>	ENGTH TPE:: CGAN:: CGAN:: CGAN:: Ser Thr Ser 35 Asn Lys Leu Glu Phe 115 Pro Gln Lys	H: 49 PRT ISM: RE: INFO NCE: Thr Asp 20 Arg Lys Val Phe Val 100 Leu Gly Leu Gly	Art: DRMAY 4 Val 5 Ala Leu Thr Val Asp 85 Gly Asn Gln Cys Lys 165	TION Tyr Tyr Leu Val Leu 70 Pro Arg Lys Asp Met 150 Gln	HP' Val Val Ala Val 55 Pro Thr Gly Tyr Tyr Asn 135 Val Cys	Pro Thr Val Pro Asp Thr Gln Asp 120 Arg Gly Thr	Arg 25 Gly Lys Pro Gln Pro 105 Asp Val Cys Asn	10 Thr His Val Asn Val Leu Val Asn Ala Thr	Asn Pro Ser Lys Gly Glu Val Pro 155 Pro	Ile Tyr Gly 60 Phe Val Val Asn Gly 140 Pro Val	Phe 45 Tyr Ala Trp Gly Ser 125 Met Leu Gln	Tyr 30 Ser Gln Leu Ala Val 110 Gly Gly Ala	15 His Ile Tyr Pro Cys 95 Ser Ser Tyr Glu Gly	Ala Lys Arg & So Thr Gly Lys Lys His 160 Asp

-continued

Val	Asp	Thr 195	Gly	Phe	Gly	Ala	Met 200	Asn	Phe	Ala	Asp	Leu 205	Gln	Thr	Asn				
Lys	Ser 210	Asp	Val	Pro	Ile	Asp 215	Ile	Суз	Gly	Thr	Thr 220	Суз	Lys	Tyr	Pro				
Asp 225	Tyr	Leu	Gln	Met	Ala 230	Ala	Asp	Pro	Tyr	Gly 235	Asp	Arg	Leu	Phe	Phe 240				
Phe	Leu	Arg	Lys	Glu 245	Gln	Met	Phe	Ala	Arg 250	His	Phe	Phe	Asn	Arg 255	Ala				
Gly	Glu	Val	Gly 260	Glu	Pro	Val	Pro	Asp 265	Thr	Leu	Ile	Ile	Lys 270	Gly	Ser				
Gly	Asn	Arg 275	Thr	Ser	Val	Gly	Ser 280	Ser	Ile	Tyr	Val	Asn 285	Thr	Pro	Ser				
Gly	Ser 290	Leu	Val	Ser	Ser	Glu 295	Ala	Gln	Leu	Phe	Asn 300	Lys	Pro	Tyr	Trp				
Leu 305	Gln	Lys	Ala	Gln	Gly 310	His	Asn	Asn	Gly	Ile 315	Суз	Trp	Gly	Asn	Gln 320				
	Phe	Val	Thr	Val 325		Asp	Thr	Thr	Arg 330		Thr	Asn	Met	Thr 335					
Суз	Ala	Ser	Val 340		Thr	Ser	Ser	Thr 345		Thr	Asn	Ser	Asp 350		ГЛа				
Glu	Tyr	Met 355		His	Val	Glu	Glu		Asp	Leu	Gln			Phe	Gln				
Leu	-		Ile	Thr	Leu		360 Ala	Glu	Val	Val		365 Tyr	Ile	His	Thr				
	370 Asn	Pro	Ser	Val		375 Glu	Asp	Trp	Asn		380 Gly	Leu	Ser	Pro					
385					390					395					400				
Pro	Asn	Gly	Thr	Leu 405	Glu	Asp	Thr	Tyr	Arg 410	Tyr	Val	Gln	Ser	Gln 415	Ala				
Ile	Thr	Суз	Gln 420	ГЛЗ	Pro	Thr	Pro	Glu 425	Lys	Gln	ГЛЗ	Pro	Asp 430	Pro	Tyr				
Lys	Asn	Leu 435	Ser	Phe	Trp	Glu	Val 440	Asn	Leu	Lys	Glu	Lys 445	Phe	Ser	Ser				
Glu	Leu 450	Asp	Gln	Tyr	Pro	Leu 455	Gly	Arg	Lys	Phe	Leu 460	Leu	Gln	Ser	Gly				
Tyr 465	Arg	Gly	Arg	Ser	Ser 470	Ile	Arg	Thr	Gly	Val 475	Lys	Arg	Pro	Ala	Val 480				
Ser	Lys	Ala	Ser	Ala 485	Ala	Pro	Lys	Arg	Lys 490	Arg	Ala	Lys	Thr	Lys 495	Arg				
<21: <21: <22: <22: <22: <400 atgt	L> L1 2> T 3> OF 3> O 3> O 5 3> O 5 0> SI 5 5 9 5 9 5 9 5 6 9 5 6 6 6 6 6 6 6 6 7 7 7 7 7 7 7 7 7 7 7	egg a	H: 19 DNA ISM: RE: INFO NCE: ctago	503 Art: DRMA 5 cgaca ttate	TION ag ca gt ta	: HP acagi actco	catat	c aa	cata	ttt	atca	atge	cag (cagtt	aaagtt cctaga gtgcca	60 120 180			
															aattt	240			
gcat	tgc	ctg a	actc	gtct	ct ti	tttga	atcco	c aca	aaca	caac	gtti	tggta	atg o	ggcat	gcaca	300			

US 9,745,351 B2

39

-continued

ggcctagagg tgggcagggg acagccatta ggtgtgggtg taagtggaca	tcctttccta 3	360
aataaatatg atgatgttga aaattcaggg agtggtggta accctggaca	ggataacagg 4	120
gttaatgttg gtatggatta taaacaaaca caattatgca tggttggatg	tgeccccct	180
ttgggcgagc attggggtaa aggtaaacag tgtactaata cacctgtaca	ggctggtgac §	540
tgcccgccct tagaacttat taccagtgtt atacaggatg gcgatatggt	tgacacaggc (500
tttggtgcta tgaattttgc tgatttgcag accaataaat cagatgttcc	tattgacata (560
tgtggcacta catgtaaata tccagattat ttacaaatgg ctgcagacco	atatggtgat '	720
agattatttt tttttctacg gaaggaacaa atgtttgcca gacattttt	taacagggct .	780
ggcgaggtgg gggaacctgt gcctgatact cttataatta agggtagtgg	aaatcgaacg (340
tetgtaggga gtagtatata tgttaacace ceaagegget etttggtgte	ctctgaggca S	900
caattgttta ataagocata ttggctacaa aaagoocagg gacataacaa	tggtatttgt s	960
tggggtaatc aactgtttgt tactgtggta gataccacac gcagtaccaa	catgacatta 10	020
tgtgcatccg taactacatc ttccacatac accaattctg attataaaga	gtacatgcgt 10	080
catgtggaag agtatgattt acaatttatt tttcaattat gtagcattac	attgtctgct 11	140
gaagtaatgg cctatattca cacaatgaat ccctctgttt tggaagactg	gaactttggg 12	200
ttatcgcctc ccccaaatgg tacattagaa gatacctata ggtatgtgca	gtcacaggcc 12	260
attacctgtc aaaagcccac tcctgaaaag caaaagccag atccctataa	gaacettagt 13	320
ttttgggagg ttaatttaaa agaaaagttt tctagtgaat tggatcagta	teetttggga 13	380
cgcaagtttt tgttacaaag tggatatagg ggacggtcct ctattcgtac	cggtgttaag 14	140
cgccctgctg tttccaaagc ctctgctgcc cctaaacgta agcgcgccaa	aactaaaagg 15	500
taa	15	503
taa <210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV	15	503
<210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE:	15	503
<210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV		60
<210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6	agttgttgcc	
<210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa	agttgttgcc tagacttctt :	60
<210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttc	agttgttgcc tagacttctt : gccaaaggtg :	60 120
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttc gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt</pre>	agttgttgcc tagacttctt : gccaaaggtg : atttgcattg :	60 120 180
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttcg gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa</pre>	agttgttgcc tagacttctt : gccaaaggtg : atttgcattg : cacaggccta :	60 120 180 240
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttc gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctctttttga tcccacaaca caacgtttgg tatgggcatg</pre>	agttgttgcc tagacttctt gccaaaggtg atttgcattg cacaggccta cctaaataaa	60 120 180 240 300
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttcg gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctctttttga tcccacaaca caacgtttgg tatgggcagg gaggtgggca ggggacagcc attaggtgtg ggtgtaagtg gacatccttt</pre>	agttgttgcc tagacttctt gccaaaggtg atttgcattg cacaggcta cctaaataaa cagggttaat	60 120 180 240 300
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttc gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctctttttga tcccacaaca caacgtttgg tatgggcatg gaggtgggca ggggacagcc attaggtgtg ggtgtaagtg gacatccttt tatgatgatg ttgaaaattc agggagtggt ggtaaccctg gacaggataa</pre>	agttgttgcc tagacttctt : gccaaaggtg : atttgcattg : cacaggcta : cctaaataaa : cagggttaat :	60 120 180 240 300 360
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagtto gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctctttttga tcccacaaca caacgtttgg tatgggcatg gaggtgggca ggggacagcc attaggtgtg ggtgtaagtg gacatccttt tatgatgatg ttgaaaattc agggagtggt ggtaaccctg gacaggataa gttggtatgg attataaaca aacacaatta tgcatggttg gatgtgcccc</pre>	agttgttgcc tagacttctt gccaaaggtg atttgcattg cacaggccta cctaaataaa cagggttaat ccctttgggc	60 120 180 240 360 420 180
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgoctagcg acagcacagt atatgtgcct cetectaace etgtatecaa acggatgett atgttacteg caccaacata ttttateatg ecageagted geagtgggte ateettattt tteeataaaa egggetaaca aaaetgttgt teaggatate aatacagggt atttaaggtg gtgttaccag ateetaacaa eetgactegt etettttga teceacaaca caaegtttgg tatgggeatg gaggtgggea ggggacagee attaggtgtg ggtgtaagtg gacateette tatgatgatg ttgaaaatte agggagtggt ggtaaceetg gacaggataa gttggtatgg attataaaca aacacaatta tgeatggttg gatgtgeeee gagcattggg gtaaaggtaa acagtgtaet aatacacetg tacaggetgg</pre>	agttgttgcc tagacttctt : gccaaaggtg : atttgcattg : cacaggctaa : cagggttaat : cactttgggc : tgactgcccg : aggctttggt :	60 120 180 240 360 360 420 480
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttc gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctcttttga tcccacaaca caacgtttgg tatgggcatg gaggtgggca ggggacagcc attaggtgtg ggtgtaagtg gacatccttt tatgatgatg ttgaaaattc agggagtggt ggtaaccctg gacaggataa gttggtatgg attataaaca aacacaatta tgcatggttg gatgtgcccc gagcattggg gtaaaggtaa acagtgtact aatacacctg tacaggctgg cccttagaac ttattaccag tgttatacag gatggcgata tggttgacac</pre>	agttgttgcc tagacttctt gccaaaggtg atttgcattg cacaggcta cctaaataaa cagggttaat tgactgccg aggctttggt tatatgtggc	60 120 180 240 300 360 420 480 540
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttog gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctcttttga tcccacaaca caacgtttgg tatgggcatg gaggtgggca ggggacagcc attaggtgtg ggtgtaagtg gacatccttt tatgatgatg ttgaaaattc agggagtggt ggtaaccctg gacaggataa gttggtatgg gtaaaggtaa acagtgtact aatacacgt taggtgcacg cccttagaac ttattaccag tgttatacag gatggcgata tggttgacac gcattgaatt ttgctgattt gcagaccaat aaatcagatg ttcctattga</pre>	agttgttgcc tagacttctt gccaaaggtg atttgcattg cacaggccta cctaaataaa cagggttaat tgactgcccg aggctttggt tatatgtggc tgatagatta	60 120 180 240 300 360 420 480 540 5500
<pre><210> SEQ ID NO 6 <211> LENGTH: 1497 <212> TYPE: DNA <213> ORGANISM: Artifical <220> FEATURE: <223> OTHER INFORMATION: HPV <400> SEQUENCE: 6 atgcctagcg acagcacagt atatgtgcct cctcctaacc ctgtatccaa acggatgctt atgttactcg caccaacata ttttatcatg ccagcagttcg gcagtgggtc atccttattt ttccataaaa cgggctaaca aaactgttgt tcaggatatc aatacagggt atttaaggtg gtgttaccag atcctaacaa cctgactcgt ctcttttga tcccacaaca caacgtttgg tatgggcatg gaggtgggca ggggacagcc attaggtgtg ggtgtaagtg gacatccttt tatgatgatg ttgaaaattc agggagtggt ggtaaccctg gacaggataa gttggtatgg attataaca aacacaatta tgcatggttg gatgtgcccc gagcattggg gtaaaggtaa acagtgtact aatacacctg tacaggctgg cccttagaac ttattaccag tgttatacag gatggcgata tggttgacaca gctatgaatt ttgctgattt gcagaccaat aaatcagatg ttcctattga actacatgta aatatccaga ttatttacaa atggctgcag acccttatga actacatgta aatatccaga ttatttacaa atggctgcag acccttatga</pre>	agttgttgcc tagacttctt : gccaaaggtg : atttgcattg : cacaggctaa : cagggttaat : cacgggttaat : tgactgcccg : aggctttggt : tatatgtggc : ggctggcgag :	60 120 180 240 360 360 380 540 560

40

US 9,745,351 B2

41

-continued

gggagtag	jta t	atat	gtta	aa ca	accc	caago	c ggo	ctctt	tgg	tgto	cctct	zga	ggcad	caattg	900
tttaataa	ige c	atat	tgg	ct a	caaaa	aagco	c caq	gggad	cata	acaa	atggt	tat	ttgtt	ggggt	960
aatcaact	.gt t	tgti	cacto	gt go	gtaga	ataco	c aca	acgca	agta	ccaa	acato	gac	attat	gtgca	1020
tccgtaac	ta c	catct	tcca	ac at	cacad	ccaat	t t ct	gatt	ata	aaga	agtad	cat	gcgt	catgtg	1080
gaagagta	itg a	attta	acaat	t ta	attt	tcaa	a tta	atgta	agca	ttad	catto	gtc	tgctç	gaagta	1140
gtggccta	ita t	tcad	cacaa	at ga	aatco	cctct	c gti	ttgg	gaag	acto	ggaad	ctt	tgggt	tatcg	1200
cctccccc	aa a	atggt	cacat	t aq	gaaga	ataco	c tai	caggt	tatg	tgca	agtca	aca	ggcca	attacc	1260
tgtcaaaa	ige c	cact	cect	ga aa	aagca	aaaaq	g cca	agato	ccct	ataa	agaad	cct	tagti	tttgg	1320
gaggttaa	itt t	aaaa	agaaa	aa gi	ttt	ctagt	c gaa	attgg	gatc	agta	atcct	tt	ggga	cgcaag	1380
tttttgtt	ac a	aagt	cggat	ta ta	aggg	gacgo	g tco	ctcta	attc	gtad	ccggt	gt	taago	egeeet	1440
getgttte	ca a	agco	ctctç	ge tạ	geeed	ctaaa	a cgt	caago	cgcg	ccaa	aact	caa	aaggt	taa	1497
<210> SE <211> LE <212> TY <213> OR <220> FE <223> OT <400> SE	NGTH PE: QANI ATUR HER	H: 49 PRT SM: (E: INF(98 Art: DRMA			-	nce								
Met Ser 1	Asp	Ser	Thr 5	Val	Tyr	Val	Pro	Pro 10	Pro	Asn	Pro	Val	Ser 15	Lys	
Val Val	Ala	Thr 20	Asp	Ala	Tyr	Val	Lys 25	Arg	Thr	Asn	Ile	Phe 30	Tyr	His	
Ala Ser	Ser 35	Ser	Arg	Leu	Leu	Ala 40	Val	Gly	His	Pro	Tyr 45	Tyr	Ser	Ile	
Lys Lys 50	Val	Asn	Lys	Thr	Val 55	Val	Pro	Lys	Val	Ser 60	Gly	Tyr	Gln	Tyr	
Arg Val 65	Phe	Lys	Val	Val 70	Leu	Pro	Asp	Pro	Asn 75	Lys	Phe	Ala	Leu	Pro 80	
Asp Ser	Ser	Leu	Phe 85	Asp	Pro	Thr	Thr	Gln 90	Arg	Leu	Val	Trp	Ala 95	Суз	
Thr Gly	Leu	Glu 100	Val	Gly	Arg	Gly	Gln 105	Pro	Leu	Gly	Val	Gly 110		Ser	
Gly His	Pro 115	Leu	Leu	Asn	Lys	Tyr 120	Asp	Asp	Val	Glu	Asn 125	Ser	Gly	Gly	
Tyr Gly 130	Gly	Asn	Pro	Gly	Gln 135	Asp	Asn	Arg	Val	Asn 140	Val	Gly	Met	Asp	
Tyr Lys 145	Gln	Thr	Gln	Leu 150	Сүз	Met	Val	Gly	Cys 155	Ala	Pro	Pro	Leu	Gly 160	
Glu His	Trp	Gly	Lys 165	Gly	Thr	Gln	Суз	Ser 170	Asn	Thr	Ser	Val	Gln 175	Asn	
Gly Asp	Cys	Pro 180	Pro	Leu	Glu	Leu	Ile 185	Thr	Ser	Val	Ile	Gln 190	-	Gly	
Asp Met	Val 195	Asp	Thr	Gly	Phe	Gly 200	Ala	Met	Asn	Phe	Ala 205	Asp	Leu	Gln	
Thr Asn 210	Lys	Ser	Asp	Val	Pro 215	Leu	Asp	Ile	Сув	Gly 220	Thr	Val	Сув	Lys	
Tyr Pro 225	Asp	Tyr	Leu	Gln 230	Met	Ala	Ala	Asp	Pro 235	Tyr	Gly	Asp	Arg	Leu 240	
Phe Phe	Tyr	Leu	Arg	ГÀа	Glu	Gln	Met	Phe	Ala	Arg	His	Phe	Phe	Asn	

-continued

												0.011	0 111		
				245					250					255	
Arg	Ala	Gly	Thr 260		Gly	Glu	Pro	Val 265	Pro	Asp	Asp	Leu	Leu 270	Val	Lys
Gly	Gly	Asn 275	Asn	Arg	Ser	Ser	Val 280		Ser	Ser	Ile	Tyr 285	Val	His	Thr
Pro	Ser 290		Ser	Leu	Val	Ser 295		Glu	Ala	Gln	Leu 300	Phe	Asn	Lys	Pro
Tyr 305		Leu	Gln	Lys	Ala 310	Gln	Gly	His	Asn	Asn 315	Gly	Ile	Cys	Trp	Gly 320
Asn	His	Leu	Phe	Val 325	Thr	Val	Val	Asp	Thr 330	Thr	Arg	Ser	Thr	Asn 335	Met
Thr	Leu	Суз	Ala 340	Ser	Val	Ser	Lys	Ser 345	Ala		Tyr		Asn 350	Ser	Asp
Tyr	Lys	Glu 355			Arg		Val 360		Glu	Phe	Asp	Leu 365	Gln	Phe	Ile
Phe	Gln 370	Leu	Суз	Ser	Ile	Thr 375	Leu	Ser	Ala	Glu	Val 380	Met	Ala	Tyr	Ile
His 385		Met	Asn	Pro	Ser 390	Val	Leu	Glu	Asp	Trp 395	Asn	Phe	Gly	Leu	Ser 400
Pro	Pro	Pro	Asn	Gly 405	Thr	Leu	Glu	Asp	Thr 410	Tyr	Arg	Tyr	Val	Gln 415	Ser
Gln	Ala	Ile	Thr 420		Gln	Гла	Pro	Thr 425	Pro	Glu	ГЛа	Glu	Lys 430	Gln	Asp
Pro	Tyr	Lys 435	Asp	Met	Ser	Phe	Trp 440		Val	Asn	Leu	Lys 445	Glu	Lys	Phe
Ser	Ser 450	Glu	Leu	Asp	Gln	Phe 455		Leu	Gly	Arg	Lys 460	Phe	Leu	Leu	Gln
Ser 465		Tyr	Arg	Gly	Arg 470	Thr	Ser	Ala	Arg	Thr 475	Gly	Ile	Lys	Arg	Pro 480
Ala	Val	Ser	Lys	Pro 485	Ser	Thr	Ala	Pro	Lys 490	Arg	Lys	Arg	Thr	Lys 495	Thr
Lys	Lys														
<21 <21 <21 <22 <22	0> FI	ENGTH YPE : RGANI EATUH FHER	H: 50 PRT ISM: RE: INFO	02 Art: ORMA	ifica TION		-	nce							
Met					Ala	Thr	Val	Tyr		Pro	Pro	Val	Pro		Ser
1 Lys	Val	Val	Ser	5 Thr	Asp	Glu	Tyr	Val	10 Ala	Arg	Thr	Asn	Ile	15 Tyr	Tyr
			20		Arg		-	25		-			30	-	-
		35			Asn		40			-		45	-		
	50	-				55	-				60	-			-
65		-	-		Phe 70					75	_			-	80
Gly	Phe	Pro	Asp	Thr 85	Ser	Phe	Tyr	Asn	Pro 90	Asp	Thr	Gln	Arg	Leu 95	Val
Trp	Ala	Cys	Val	Glv	Val	Glu	Val	Glv	Arq	Glv	Gln	Pro	I.e.1	Glv	Val

-continued

Gly	Ile	Ser 115	Gly	His	Pro	Leu	Leu 120	Asn	Lys	Leu	Asp	Asp 125	Thr	Glu	Asn
Ala	Ser 130	Ala	Tyr	Ala	Ala	Asn 135	Ala	Gly	Val	Asp	Asn 140	Arg	Glu	Суз	Ile
Ser 145	Met	Asp	Tyr	Lys	Gln 150	Thr	Gln	Leu	Сув	Leu 155	Ile	Gly	Суз	Lys	Pro 160
Pro	Ile	Gly	Glu	His 165	Trp	Gly	Lys	Gly	Ser 170	Pro	СЛа	Thr	Asn	Val 175	Ala
Val	Asn	Pro	Gly 180	Asp	Суз	Pro	Pro	Leu 185	Glu	Leu	Ile	Asn	Thr 190	Val	Ile
Gln	Asp	Gly 195	Asp	Met	Val	Asp	Thr 200	Gly	Phe	Gly	Ala	Met 205	Asp	Phe	Thr
Thr	Leu 210	Gln	Ala	Asn	Lys	Ser 215	Glu	Val	Pro	Leu	Asp 220	Ile	Суз	Thr	Ser
Ile 225	Суз	Lys	Tyr	Pro	Asp 230	Tyr	Ile	ГЛа	Met	Val 235	Ser	Glu	Pro	Tyr	Gly 240
Asp	Ser	Leu	Phe	Phe 245	Tyr	Leu	Arg	Arg	Glu 250	Gln	Met	Phe	Val	Arg 255	His
Leu	Phe	Asn	Arg 260	Ala	Gly	Ala	Val	Gly 265	Asp	Asn	Val	Pro	Asp 270	Asp	Leu
Tyr	Ile	Lys 275	Gly	Ser	Gly	Ser	Thr 280	Ala	Asn	Leu	Ala	Ser 285	Ser	Asn	Tyr
Phe	Pro 290	Thr	Pro	Ser	Gly	Ser 295	Met	Val	Thr	Ser	Asp 300	Ala	Gln	Ile	Phe
Asn 305	Lys	Pro	Tyr	Trp	Leu 310	Gln	Arg	Ala	Gln	Gly 315	His	Asn	Asn	Gly	Ile 320
Сүз	Trp	Gly	Asn	Gln 325	Leu	Phe	Val	Thr	Val 330	Val	Asp	Thr	Thr	Arg 335	Ser
Thr	Asn	Met	Ser 340	Leu	Сүз	Ala	Ala	Ile 345	Ser	Thr	Ser	Glu	Thr 350	Thr	Tyr
Lys	Asn	Thr 355	Asn	Phe	Lys	Glu	Tyr 360	Leu	Arg	His	Gly	Glu 365	Glu	Tyr	Asp
Leu	Gln 370	Phe	Ile	Phe	Gln	Leu 375	Сүз	Lys	Ile	Thr	Leu 380	Thr	Ala	Asp	Ile
Met 385	Thr	Tyr	Ile	His	Ser 390	Met	Asn	Ser	Thr	Ile 395	Leu	Glu	Asp	Trp	Asn 400
Phe	Gly	Leu	Gln	Pro 405	Pro	Pro	Gly	Gly	Thr 410	Leu	Glu	Asp	Thr	Tyr 415	Arg
Phe	Val	Thr	Ser 420	Gln	Ala	Ile	Ala	Cys 425	Gln	Lys	His	Thr	Pro 430	Pro	Ala
Pro	Lys	Glu 435	Asp	Pro	Leu	Lys	Lys 440	Tyr	Thr	Phe	Trp	Glu 445	Val	Asn	Leu
ГÀа	Glu 450	Lys	Phe	Ser	Ala	Asp 455	Leu	Asp	Gln	Phe	Pro 460	Leu	Gly	Arg	Lys
Phe 465	Leu	Leu	Gln	Ala	Gly 470	Leu	Glu	Ala	ГЛа	Pro 475	ГЛа	Phe	Thr	Leu	Gly 480
Lys	Arg	Lys	Ala	Thr 485	Pro	Thr	Thr	Ser	Ser 490	Thr	Ser	Thr	Thr	Ala 495	Lys
Arg	Lys	Lys	Arg 500	Lys	Leu										

<210> SEQ ID NO 9 <211> LENGTH: 504

< 213	2.5 TY	YPE ·	PRT												
<21	<212> TYPE: PRT <213> ORGANISM: Artifical sequence <220> FEATURE:														
		THER		ORMA!	rion	: HPV	J								
<40	0> SI	EQUEI	ICE :	9											
Met 1	Arg	Pro	Ser	Asp 5	Asn	Thr	Val	Tyr	Leu 10	Pro	Pro	Pro	Ser	Val 15	Ala
Arg	Val	Val	Asn 20	Thr	Asp	Asp	Tyr	Val 25	Thr	Arg	Thr	Ser	Ile 30	Phe	Tyr
His	Ala	Gly 35	Ser	Ser	Arg	Leu	Leu 40	Thr	Val	Gly	Asn	Pro 45	Tyr	Phe	Arg
Val	Pro 50	Ala	Gly	Gly	Gly	Asn 55	Lys	Gln	Asp	Ile	Pro 60	Гла	Val	Ser	Ala
Tyr 65	Gln	Tyr	Arg	Val	Phe 70	Arg	Val	Gln	Leu	Pro 75	Asp	Pro	Asn	Lys	Phe 80
Gly	Leu	Pro	Asp	Thr 85	Ser	Ile	Tyr	Asn	Pro 90	Glu	Thr	Gln	Arg	Leu 95	Val
Trp	Ala	Сув	Ala 100	Gly	Val	Glu	Ile	Gly 105	Arg	Gly	Gln	Pro	Leu 110	Gly	Val
-		Ser 115	-				120		-		-	125			
	130	Ala				135				-	140		-		
145		Asp	-	-	150				-	155		-	-		160
		Gly		165	-		-	-	170		-	-		175	
		Gln	180	-	-			185			-		190		
	-	Gly 195	-			-	200	-	-	-		205	-		
	210	Gln				215					220				
225		LÀa			230					235					240
		Met		245					250					255	
Phe	Trp	Asn	Arg 260	Ala	Gly	Thr	Met	Gly 265	Asp	Thr	Val	Pro	Gln 270	Ser	Leu
Tyr	Ile	Lys 275	Gly	Thr	Gly	Met	Arg 280	Ala	Ser	Pro	Gly	Ser 285	Суз	Val	Tyr
Ser	Pro 290	Ser	Pro	Ser	Gly	Ser 295	Ile	Val	Thr	Ser	Asp 300	Ser	Gln	Leu	Phe
Asn 305	ГÀа	Pro	Tyr	Trp	Leu 310	His	Lys	Ala	Gln	Gly 315	His	Asn	Asn	Gly	Val 320
Сүз	Trp	His	Asn	Gln 325	Leu	Phe	Val	Thr	Val 330	Val	Asp	Thr	Thr	Arg 335	Ser
Thr	Asn	Leu	Thr 340	Ile	CÀa	Ala	Ser	Thr 345	Gln	Ser	Pro	Val	Pro 350	Gly	Gln
Tyr	Asp	Ala 355	Thr	Lys	Phe	Lys	Gln 360	Tyr	Ser	Arg	His	Val 365	Glu	Glu	Tyr
Asp	Leu 370	Gln	Phe	Ile	Phe	Gln 375	Leu	Сүз	Thr	Ile	Thr 380	Leu	Thr	Ala	Asp

-continued

		-concinued	
	lis Ser Met Asn Ser Ser 90 395	Ile Leu Glu Asp Trp 400	
Asn Phe Gly Val Pro P 405	ro Pro Pro Thr Thr Ser 410	Leu Val Asp Thr Tyr 415	
Arg Phe Val Gln Ser V 420	al Ala Ile Ala Cys Gln 425	Lys Asp Ala Ala Pro 430	
Ala Glu Asn Lys Asp P 435	ro Tyr Asp Lys Leu Lys 440	Phe Trp Asn Val Asp 445	
Leu Lys Glu Lys Phe S 450	er Leu Asp Leu Asp Gln 455	Tyr Pro Leu Gly Arg 460	
-	la Gly Leu Arg Arg Lys 70	Pro Thr Ile Gly Pro 480	
Arg Lys Arg Ser Ala P 485	ro Ser Ala Thr Thr Ala 490	Ser Lys Pro Ala Lys 495	
Arg Val Arg Val Arg A 500	la Arg Lys		
<pre><210> SEQ ID NO 10 <211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artif <220> FEATURE: <223> OTHER INFORMATIC <400> SEQUENCE: 10 catatgccta gcgacagcac <210> SEQ ID NO 11</pre>	ON: synthetic		26
<pre><211> LENGTH: 26 <212> TYPE: DNA <213> ORGANISM: Artif</pre>	ical sequence		
<220> FEATURE: <223> OTHER INFORMATION	ON: synthetic		
<400> SEQUENCE: 11			
gtcgacttac cttttagttt	tggcgc		26

55

The invention claimed is:

1. A method for producing a human papillomavirus (HPV) L1 protein, consisting of:

- a) expressing a HPV L1 gene encoding the HPV L1 protein in an *E. coli* expression system;
- b) disrupting the *E. coli*, which has expressed the HPV L1 protein, in a salt solution having a salt concentration of from 200 mM to 500 mM, centrifuging the solution comprising the disrupted *E. coli*, and isolating the supernatant without using chromatography;
- c) precipitating the HPV L1 protein from the supernatant of b) by decreasing the salt concentration of the supernatant of b) to from 100 mM to 0, inclusive, by using water or a low salt solution, and collecting the resultant precipitate;
- d) redissolving the precipitate of c) in a salt solution having a salt concentration of from 150 mM to 25006 mM, adding a reductant to it, and then centrifuging the resultant solution, and isolating the supernatant without ⁶⁰ using chromatography, wherein the supernatant contains the HPV L1 protein with a purity of at least 50%.

2. The method of claim 1, wherein the HPV L1 protein is HPV6 L1 protein.

3. The method of claim **2**, wherein the HPV L1 protein is 65 HPV6 L1 protein with 2, 3, 4, or 5 amino acids truncated at its N-terminal.

4. The method o claim **1**, wherein the HPV L1 protein is HPV6 L1 protein having a sequence set forth in SEQ ID NOs:1, 2, 3, or 4.

- **5**. The method of claim **1**, wherein the salt concentration in step d) is 200 mM-2000 mM.
- **6**. The method of claim **1**, wherein the purity is at least 70%.
- 7. The method of claim 1, wherein the salt in steps b), c) or d) is one or more of neutral salts.
- 8. The method of claim 1, wherein the salt in steps b), c) or d) is selected from alkali metal salt, ammonium salts, hydrochlorides, sulfates, bicarbonates, phosphate salts or hydrogenphosphates.
- **9**. The method of claim **1**, wherein the salt in steps b), c) or d) is selected from NaCl, KCl, NH_4Cl , and $(NH_4)_2SO_4$.
- 10. The method of claim 2, wherein the salt concentration in step d) is 200 mM-2000 mM.
- 11. The method of claim 2, wherein the purity is at least 70%.
- 12. The method of claim 2, wherein the salt in steps b), c) or d) is one or more of neutral salts.
- **13**. The method of claim **2**, wherein the salt in steps b), c) or d) is selected from alkali metal salt, ammonium salts, hydrochlorides, sulfates, bicarbonates, phosphate salts or hydrogenphosphates.

14. The method of claim 2, wherein the salt in steps b), c) or d) is selected from NaCl, KCl, NH_4Cl , and (NH_4) SO₄.

15. A method for obtaining a virus-like particles (VLP) of a human papillomavirus (HPV) 6 L1 protein, the method consisting of: 5

- a) expressing a HPV L1 gene encoding the HPV6 L1 protein in an *E. coli* expression system;
- b) disrupting the *E. coli*, which has expressed the HPV6 L1 protein, in a salt solution having a salt concentration of from 200 mM to 600 mM, centrifuging the solution 10 comprising the disrupted *E. coli*, and isolating the supernatant without using chromatography;
- c) precipitating the HPV L1 protein from the supernatant of b) by decreasing the salt concentration of the supernatant of b) to from 100 mM to 0, inclusive, by using 15 water or a low salt solution, and collecting the resultant precipitate;
- d) redissolving the precipitate of c) in a salt solution having a salt concentration of from 150 mM to 2500 mM, adding a reductant to it, and then centrifuging the 20 resultant solution, and isolating the supernatant without using chromatography, wherein the supernatant contains the HPV6 L1protein with a purity of at least 50%;
- e) further purifying the HPV 6 L1 protein with a purity of at least 50% obtained in step d) by chromatography; 25 and
- f) removing the reductant from the HPV 6L1 protein obtained in step e).

* * * * *