
(12) United States Patent
Cui et al.

USOO9727319B1

US 9,727,319 B1
*Aug. 8, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(63)

(51)

(52)

(58)

REDUCING COMPLATION TIME USING
PROFILE-DIRECTED FEEDBACK

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Shimin Cui, Toronto (CA); William G.
O'Farrell, Markham (CA); Graham K.
Yiu, Toronto (CA)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 15/292,638

Filed: Oct. 13, 2016

Related U.S. Application Data
Continuation of application No. 157014.330, filed on
Feb. 3, 2016, now Pat. No. 9,535,673.

Int. C.
G06F 9/45 (2006.01)
U.S. C.
CPC G06F 8/4441 (2013.01)
Field of Classification Search
CPC G06F 8/4441; G06F 8/443; G06F 11/3466
USPC ... 717/153, 154, 158
See application file for complete search history.

FRSEWE COE

(56) References Cited

U.S. PATENT DOCUMENTS

8,387,026 B1 2/2013 Hundt et al.
8,806.463 B1* 8/2014 Li G06F 8. 443

717/151
9,015,684 B1 4/2015 Koh et al.

2011/001646.0 A1 1/2011 Archambault G06F 8,4442
717,158

2014/0298307 A1* 10/2014 Johnson G06F 8. 443
717,158

OTHER PUBLICATIONS

U.S. Appl. No. 157014.330, “Reducing Compilation Time Using
Profile-Directed Feedback', filed Feb. 3, 2016, 22 pages.
IBM Appendix P: “List of IBM Patents or Patent Applications to be
Treated as Related”, Dated Oct. 13, 2016, 2 pages.

* cited by examiner
Primary Examiner — Anna Deng
(74) Attorney, Agent, or Firm — Stephen R. Yoder
(57) ABSTRACT
A method for significantly reducing compilation time of an
application program is provided for compiling the program
using profile-directed feedback (PDF). The method applies
an additional analysis process between a training run of the
application program and a whole program compilation of the
application. This analysis process examines a PDF profile
file(s) produced during the training run and aggregates data
from the PDF file to determine a maximum block counter
associated with each source file of the application. Only
those source files having maximum block counters in a
specified top percent of all the source files of the application
have their fat binaries included in the whole program
compilation.

20 Claims, 4 Drawing Sheets

|- S255

U.S. Patent Aug. 8, 2017 Sheet 1 of 4 US 9,727,319 B1

CLIENT, 104

NEWORK, 114

C. ENT, C

CLIENT, 112

APPLICATION MANAGEMENTSUB-SYSTEM, 102
APPLICATION MANAGEMENT COMPUTER, 200
comMUNICATION MEMORY, re
UNIT,202 208 PERSISTENT

WMVMww. STORAGE, 21C

ROCESSOR | PROGRAM,
SET, 204 300

| | | yo INTERFACE
| | | | SET,206

EXERNA
DEVICES,

U.S. Patent Aug. 8, 2017 Sheet 2 of 4 US 9,727,319 B1

FRS EVE COMPLE S255

EXEC JTE FRST OUTPUT - S260

GENERATE ANALYZE NFORMATON

SECON) LEWEL COMPLE

250

U.S. Patent Aug. 8, 2017 Sheet 3 of 4 US 9,727,319 B1

PROGRAM, 300

FRS PASE TRAINING RUN
COMPLATON MOD, 3 ()
MO), 305

PDF AALYSS SECOND PHASE
MOID 35 COMPLATON

MOD, 32.

U.S. Patent Aug. 8, 2017 Sheet 4 of 4 US 9,727,319 B1

Source File Maximum Block Counts

10000000000 to
OOOOOOOOO .

OOOOOOOO

10000000 .
OOOOOO

100000 wo
10000 to
1000

N 00 -
e :

404 10 to
:

20 56 92 128 164200236272308344380416452488524560596,632
2 38 74 110 46 182218254. 290326362398.434: 470506542 57864 650

Fie me
4 is

40

US 9,727,319 B1
1.

REDUCING COMPLATION TIME USING
PROFILE-DIRECTED FEEDBACK

BACKGROUND

The present invention relates generally to the field of
computer software, and more particularly to program com
pilation.

Generally, a computer program is written in a high level
computer language, such as C or FORTRAN. Such com
puter program is required to be complied into a machine
language that can be executed by a computer. Compiling
allows a computer to run and understand the program
without the need of the programing language used to create
it. Program compilation involves many or all of the follow
ing operations: lexical analysis, preprocessing, parsing.
semantic analysis (syntax-directed translation), code gen
eration, and code optimization.
Among many compilation techniques, profile-directed

feedback (PDF) is a compiler optimization technique in
computer programming that uses profiling to improve pro
gram runtime performance. PDF is a two-stage compilation
process that provides a compiler with data characteristic of
typical program behavior. An instrumented executable is
first run in a number of different scenarios for an arbitrary
amount of time, producing a profile data file. A second
compilation using the profile data file then produces an
optimized executable.

SUMMARY

In one aspect of the present invention, a method is
provided comprising: executing training executable code
using training data, the training executable code being
generated from code portions of an application program, the
training executable code including a block counter and a call
counter, updating the block counter and the call counter
during execution of the training executable code according
to the number of times one code portion of the code portions
is executed during a training run; storing the updated block
counter and the updated call counter as profile-directed
feedback information associated with the training execut
able code; performing an analysis on the profile-directed
feedback information to produce analyzed information, at
least by aggregating data of the profile-directed feedback
information to determine a maximum block count associated
with the one code portion; and compiling the code portions
to produce compiled code output using information includ
ing the training executable code and the analyzed informa
tion, wherein the compiling includes: adding select inter
mediate code portions of the code portions having maximum
block counts in a predetermined top percentage, the select
intermediate code portions included in the training execut
able code when the training executable code is generated
from the code portions; and Substituting executable code in
the training executable code for excluded intermediate code
of the code portions, the excluded intermediate code being
intermediate code not included in the training executable
code when the training executable code is generated from
the code portions.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

FIG. 1 is a schematic view of a first embodiment of a
system according to the present invention;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 2 is a flowchart depicting an embodiment of a

method that may be performed, at least in part, by the system
depicted in FIG. 1;

FIG. 3 is a schematic view of a machine logic (for
example, software) portion of the system depicted in FIG. 1;
and

FIG. 4 depicts an example of a logarithmic chart showing
the fall-off in block counters across all the source files
according to an embodiment of the present invention.

DETAILED DESCRIPTION

A method for significantly reducing compilation time of
an application program is provided for compiling the pro
gram using profile-directed feedback (PDF). The method
applies an additional analysis process between a training run
of the application program and a whole program compilation
of the application. This analysis process examines a PDF
profile file(s) produced during the training run and aggre
gates data from the PDF file to determine a maximum block
counter associated with each Source file of the application.
Only those source files having maximum block counters in
a specified top percent of all the source files of the appli
cation have their fat binaries included in the whole program
compilation. The present invention may be a system, a
method, and/or a computer program product. The computer
program product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present invention.
The computer readable storage medium can be a tangible

device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals perse. Such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.
Computer readable program instructions described herein

can be downloaded to respective computing/processing
devices from a computer readable storage medium, or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network, and/or a wireless network. The network may
comprise copper transmission cables, optical transmission
fibers, wireless transmission, routers, firewalls, Switches,
gateway computers, and/or edge servers. A network adapter
card or network interface in each computing/processing
device receives computer readable program instructions
from the network, and forwards the computer readable

US 9,727,319 B1
3

program instructions for storage in a computer readable
storage medium within the respective computing/processing
device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer, or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, Such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture, including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus, or other device to produce a computer imple
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow
chart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible

10

15

25

30

35

40

45

50

55

60

65

4
implementations of systems, methods, and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the Figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions, or acts, or carry out combinations of
special purpose hardware and computer instructions.
The present invention will now be described in detail with

reference to the Figures. FIG. 1 is a functional block diagram
illustrating various portions of networked computers system
100, in accordance with one embodiment of the present
invention, including: application management Sub-system
102; client sub-systems 104, 106, 108, 110, 112; communi
cation network 114; application management computer 200;
communication unit 202; processor set 204; input/output
(I/O) interface set 206; memory device 208; persistent
storage device 210; display device 212; external device set
214; random access memory (RAM) devices 230; cache
memory device 232; and program 300.

Client sub-system 104, 106, 108, 110 and 112 may be a
laptop computer, tablet computer, netbook computer, per
Sonal computer (PC), a desktop computer, a personal digital
assistant (PDA), a Smartphone, or any programmable elec
tronic device capable of communicating with the application
management Sub-systems 102 via network 114.

Sub-system 102 is, in many respects, representative of the
various computer Sub-system(s) in the present invention.
Accordingly, several portions of sub-system 102 will now be
discussed in the following paragraphs.

Sub-system 102 may be a laptop computer, tablet com
puter, netbook computer, personal computer (PC), a desktop
computer, a personal digital assistant (PDA), a Smartphone,
or any programmable electronic device capable of commu
nicating with the client sub-systems via network 114. Pro
gram 300 is a collection of machine readable instructions
and/or data that is used to create, manage, and control certain
software functions that will be discussed in detail below.

Sub-system 102 is capable of communicating with other
computer sub-systems via network 114. Network 114 can be,
for example, a local area network (LAN), a wide area
network (WAN) such as the Internet, or a combination of the
two, and can include wired, wireless, or fiber optic connec
tions. In general, network 114 can be any combination of
connections and protocols that will Support communications
between server and client sub-systems.

Sub-system 102 is shown as a block diagram with many
double arrows. These double arrows (no separate reference
numerals) represent a communications fabric, which pro
vides communications between various components of Sub
system 102. This communications fabric can be imple
mented with any architecture designed for passing data
and/or control information between processors (such as
microprocessors, communications and network processors,
etc.), system memory, peripheral devices, and any other

US 9,727,319 B1
5

hardware component within a system. For example, the
communications fabric can be implemented, at least in part,
with one or more buses.
Memory 208 and persistent storage 210 are computer

readable storage media. In general, memory 208 can include
any suitable volatile or non-volatile computer readable stor
age media. It is further noted that, now and/or in the near
future: (i) external device(s) 214 may be able to supply,
some or all, memory for sub-system 102; and/or (ii) devices
external to sub-system 102 may be able to provide memory
for sub-system 102.

Program 300 is stored in persistent storage 210 for access
and/or execution by one or more of the respective computer
processors 204, usually through one or more memories of
memory 208. Alternatively, a portion of program 300 may be
stored in client sub-system 104, 106, 108, 110 and 112.
Persistent storage 210: (i) is at least more persistent than a
signal in transit; (ii) stores the program (including its soft
logic and/or data), on a tangible medium (Such as magnetic
or optical domains); and (iii) is Substantially less persistent
than permanent storage. Alternatively, data storage may be
more persistent and/or permanent than the type of storage
provided by persistent storage 210.

Program 300 may include both machine readable and
performable instructions, and/or Substantive data (that is, the
type of data stored in a database). In this particular embodi
ment, persistent storage 210 includes a magnetic hard disk
drive. To name some possible variations, persistent storage
210 may include a solid state hard drive, a semiconductor
storage device, read-only memory (ROM), erasable pro
grammable read-only memory (EPROM), flash memory, or
any other computer readable storage media that is capable of
storing program instructions or digital information.
The media used by persistent storage 210 may also be

removable. For example, a removable hard drive may be
used for persistent storage 210. Other examples include
optical and magnetic disks, thumb drives, and Smart cards
that are inserted into a drive for transfer onto another
computer readable storage medium that is also part of
persistent storage 210.

Communications unit 202, in these examples, provides
for communications with other data processing systems or
devices external to sub-system 102. In these examples,
communications unit 202 includes one or more network
interface cards. Communications unit 202 may provide
communications through the use of either, or both, physical
and wireless communications links. Any software modules
discussed herein may be downloaded to a persistent storage
device (such as persistent storage device 210) through a
communications unit (such as communications unit 202).

I/O interface set 206 allows for input and output of data
with other devices that may be connected locally in data
communication with computer 200. For example, I/O inter
face set 206 provides a connection to external device set
214. External device set 214 will typically include devices
Such as a keyboard, keypad, a touch screen, and/or some
other suitable input device. External device set 214 can also
include portable computer readable storage media Such as,
for example, thumb drives, portable optical or magnetic
disks, and memory cards. Software and data used to practice
embodiments of the present invention, for example, program
300, can be stored on such portable computer readable
storage media. In these embodiments the relevant software
may (or may not) be loaded, in whole or in part, onto
persistent storage device 210 via I/O interface set 206. I/O
interface set 206 also connects in data communication with
display device 212.

10

15

25

30

35

40

45

50

55

60

65

6
Display device 212 provides a mechanism to display data

to a user and may be, for example, a computer monitor or a
Smart phone display screen.
The programs described herein are identified based upon

the application for which they are implemented in a specific
embodiment of the present invention. However, it should be
appreciated that any particular program nomenclature herein
is used merely for convenience, and thus the present inven
tion should not be limited to use solely in any specific
application identified and/or implied by Such nomenclature.

Program 300 operates to insert a very fast additional
analysis phase between an applications training run and a
second phase compilation of the application. This analysis
phase examines a profile-directed feedback (PDF) file(s)
produced during the training run and aggregates the data to
determine the maximum block counter associated with each
source file. Additionally, program 300 may include a first
phase compilation of the application and a second phase
compilation of the application. In the second phase compi
lation, program 300 determines that only those source files
having maximum block counters in the specified (or prede
termined) top percentage of files have their fat binaries
included in the second phase PDF whole program compi
lation. Further, program 300 applies aliasing information
from all the source files for an additional enhancement of
compilation.
Some embodiments of the present invention recognize the

following facts, potential problems and/or potential areas for
improvement with respect to the current state of the art: (i)
although PDF-based compilation can significantly enhance
performance of the compiled application program, it also
greatly increase compilation time; (ii) besides the large
amount of intermediate code that needs to be processed, a
whole program optimization is often by its nature a highly
serialized task; and/or (iii) the heavily executed portions of
an application program are likely clustered together in a
small number of source files.

Profile-directed feedback (PDF), also referred to as pro
file-based optimization (PBO), is used in static compilation
for improving optimization of application programs by
compiling the programs in two stages or level. In the first
stage, programs are specially compiled at a lower level of
optimization, and then run on a set of training data. Further,
in the first stage of compilation, counters (typically block
counters) and call counters are inserted to count the number
of times that each particular piece of code is executed during
the training run. The information regarding counters is then
fed to the second phase of compilation where the informa
tion is used to guide optimization decisions. For example,
hot code can be inclined and cold code can be outlined,
while hot loops can be unrolled. Further this PDF approach/
technique can be applied to monitor the values that variables
are most likely to take on during execution, which can be
used to determine, for example, which virtual functions are
most likely to be called, and which can lead to better inlining
decisions.

While PDF-based compilation can significantly enhance
performance of the compiled program, the significant draw
back is that it can greatly increase compilation time of the
program. To best take advantage of the PDF information, the
second phase/stage of compilation is usually a whole pro
gram optimization, referred to as inter-procedural analysis
(IPA), where the entire program is analyzed for optimization
opportunities. For large programs, this phase can take a long
time, for example, several hours.

Specifically, for the whole program optimization, the
second phase optimizer first reads all of the intermediate

US 9,727,319 B1
7

code in all the fat binaries that make up the application, and
then matches each code block that is executed against the
runtime file (PDF file) of counters that is generated during
the program's training run phase. Second, the whole pro
gram/second phase optimizer is run on the code of the entire
application, using the PDF counter information to guide
optimization, generating optimized intermediate code.
Third, the intermediate code generated from the second
phase optimizer is used to generate executable binary code.
This may be done by a separate optimization phase, in which
case the PDF counters themselves can be added as directives
to the intermediate form to further guide the optimization
that occurs in the final phase.
As mentioned, this PDF-based process can produce

highly optimized programs, but at the cost of very lengthy
compilation times. In addition to a large amount of inter
mediate code that needs to be processed, the whole program
optimization is usually a highly serialized task. Conse
quently, the PDF second phase of compiling some large
commercial applications can last for hours, which is a major
impediment to using PDF.

Further, large applications typically have their code
spread over hundreds or thousands of source files, plus
several hundred include files. Typically, in Such large appli
cations, the heavily executed portions of the application (i.e.
the “hot” code) are likely organized or clustered together in
a small number of source files, while many other source files
have code devoted to set-up, error handling, and/or other
relatively “cold portions of code. For example, during the
training run of a large application, about 97% to 98% of the
application time is spent in code contained in about 10% (or
less) of the source files. And those 10% of source files may
contain about 15% of the code measured by lines of code. In
the case of a very large commercial application, less than 8%
of the source files may account for 98% of the execution
time in a training run.
AS Such, some embodiments of the present inventions can

greatly speed up the second phase compilation by limiting
the number of source files that are included in PDF second
phase compilation. Specifically, executable binaries (usually
produced in the first phase of PDF compilation) are used to
substitute for those fat binaries not included in the second
phase. If executable binaries for the source files that are not
included in the second phase, for some reason, are not
available from the first phase of PDF compilation, such
executable binaries can be produced through a highly par
allelized compilation with lowered (and hence fast-to-com
pile) optimization. Therefore, only a fraction of the fat
binaries need to be subject to the PDF-based whole program
optimization.
Some embodiments of the present invention, may reduce

the second phase compilation time by a factor of 5 (i.e., the
second phase run five times faster), with no measurable
impact on performance. That is, the time for the second
phase of PDF optimization can be significantly reduced,
with minimal or no impact on the performance of the
compiled application while permitting nearly all of the PDF
opportunities to be exploited through IPA. Such a remark
able speedup in the second phase of PDF compilation is
achieved by judiciously choosing the files that are to be
included. The results of the PDF training run are used to
guide this choice.
Some embodiments of the present invention include alias

ing information for further enhance the optimization of the
second phase of PDF compilation. The aliasing information
is included separately in fat binaries, and S all aliasing

10

15

25

30

35

40

45

50

55

60

65

8
information can be quickly scanned and included in the
whole program optimization of those files which are actually
optimized.

FIG. 2 shows flowchart 250 depicting a first method
according to the present invention. FIG. 3 shows program
300 for performing at least some of the method steps of
flowchart 250. This method and associated software will
now be discussed, over the course of the following para
graphs, with extensive reference to FIG. 2 (for the method
step blocks) and FIG. 3 (for the software blocks).

Processing begins at step S255, where first phase compi
lation module (“mod) 305 compile at a first level (i.e., a first
phase of PDF compilation) a set of code portions of an
application to produce a first output. The compiling at the
first level includes inserting block counters and call counters
to count a number of times one code portion of the set of
code portions is executed. From the set of code portions of
the application program (that is, a set for source files), the
first phase of PDF compilation produces fat binaries includ
ing intermediate forms or code and executable intermedi
ates. Herein the fat binaries are so called because they
contain additional information besides the (ultimately)
executable instructions. The intermediate form describes the
structure of the application program and information about
the data types used, and so forth, which would not be
deductible from just a binary code. The first output is
generated by linking all the executable intermediates, and is
referred to as a training executable code. Further the training
executable code includes inserted block counter and call
COunterS.

Processing proceeds to step S260, where training run
module 310 executes the first output using a set of training
data. The block counters and the call counters are updated
with counts of the number of times one code portion of the
set of code portions is executed during a training run to
create profile-directed feedback information associated with
the set of code portions. After running the executable
training code using a set of training data, a PDF information
may be generated, for example, including as follows (notes:
the PDF information may be a binary form of the profile data
generated during training, but for illustrative purpose a
textual form of the profile information is produced by a
tool):

dt Q3 10xalanc 1814Variables Stack10StackEntryFy
(9046): 217536636

(VariablesStack.cpp)
Block Counters:

610-647217536636
647-648O
648.217536636

Block coverage=66% (2/3)
Call Counters:

610217536636
removeReference Q2 10xalanc 1 827XalanReference

CountedObjectFPQ2 10xalanc 1.8 27XalanRefer
enceCountedObject(567)
6480 d1 FPv(175)

On the first line of the above example a function named
(dt Q3 10xalanc 1814.Variables Stack10StackEntryFv)
is followed by a unique id for that function (9046), which is
followed by a call counter (217536636) indicating the
number of times this function is called during the training
run. Following the call counter is the name of a source file
in which this function is defined (Variables.Stack.cpp.). After
that, a list of block counters (note: indicators such as
610-647 indicate a range of code blocks), is followed by a
set of call counters for the functions that this function (9046)
calls.

US 9,727,319 B1
9

Processing proceeds to step S265, where PDF analysis
module 315 performs an analysis on the profile-directed
feedback information to produce analyzed information. The
analysis includes aggregating data of the profile-directed
feedback information to determine a maximum block count
associated with one source file in the set of code portions. In
this example, the analysis is to look at all the block and call
counters associated with all the functions in each source file
Such as Variables.Stack.cpp. and find the maximum value.
Further, VariablesStack.cpp may be mentioned several times
in the PDF profile information, so the maximum block
counter must be aggregated. The source files in the set of
code portions is sorted in order of maximum block count.
This means that the Source files containing the hottest code
come first in the sorted list, with the top 'n' percentage of
those files being chosen for inclusion in a second phase of
PDF optimization, where n is a configurable number.

In some embodiments of the present invention, a process
ing is required for include files. Functions containing
executable code may be defined in include files. The blocks
of code contained in include files are listed in a PDF profile
file generated during the training run, but may not not
directly incorporated into a second phase PDF compilation,
as they are only indirectly incorporated by virtue of being
included in a first-class source file, such as a C or .cpp file
for C and/or C++ programming language. (herein, C and
C++ source files having include files are referred to as
first-class source files and the corresponding include files are
referred to as second class files.) However files with hot
code blocks should have their fat binary code available for
a second phase or level PDF optimization. For that reason,
any first class source file that includes an include file having
hot code should be incorporated into a second phase PDF
compilation. For example, in the case of C programming
langue, if X.C includes y.h, and y.h has a function definition
that has hot blocks, then X.C should be in a set of code
chosen for a second phase PDF compilation, even if it would
otherwise have been excluded. In some cases, y.h may have
hot blocks, but those blocks are within a function that has a
cold call in X.C. X.C should be considered hot, but if by call
counters alone X.C would be missed even it includes code
that is hot. Therefore, the “hotness' of y.h should be trans
ferred to X.C. A method for such transfer would be to
examine all the functions called in X.C., and find those
functions that are defined in include files, and then transfer
the maximum block counter of any Such function to X.C. In
Some cases, however, a function included in include files
may appear cold and yet has cold call to Some other
functions with hot blocks that may be in a different include
file, thus, those calls need to be tracked down, and so on.
Some embodiments of the present invention provide an

efficient and fast method to track down include file func
tions. Upon analyzing the training PDF profile, a data
structure (herein referred to as Map F) is created for func
tions defined in include files. The data structure maps each
Such function both to its maximum block counter as deter
mined by immediate inspection, and a set of functions that
it calls which are themselves defined in include files. This
bookkeeping proceeds in linear time as the PDF profile file
is scanned. For functions defined in first-class source files a
separate data structure is used to record for each Such source
file, all the functions called in that source file. In the example
above, the entry for Variables Stack.cpp would indicate it
calls the following functions:

removeReference Q2 10xalanc 1 827XalanReference
CountedObjectFPQ2 10xalanc 1.8 27XalanRefer
enceCountedObject and d1 FPV.

5

10

15

25

30

35

40

45

50

55

60

65

10
The call to d1 FPV appears cold, but it may be discov

ered to be a hot function from an include file. Prior to
generating results on maximum block counters, the transi
tively maximum block counter for each function in an
include file is determined. Transitively maximum for a
function means the maximum block counter for that func
tion, or for any function it calls, transitively to the end of the
call chain. Having made that calculation, the maximum
block counter for each source file is compared to the
transitively maximum block counter for all functions it calls,
and the highest counter would be selected thereby possibly
increasing the maximum block counter for that source file.
In this way, the X.C would adopt the transitively maximum
block counter of the function it calls in y.h, and therefore is
considered hot enough to be included in a second phase PDF
compilation. Because the source file is included, the code it
incorporates from its included files would be available to the
optimizer, and can be inlined, unrolled, and/or otherwise
improved to make a resulting executable faster.

In some embodiments of the present invention, calculat
ing the transitively maximum block counter quickly is to not
directly chase down the call chains. Instead, the Map F data
structure is considered as a whole and a fixed point closure
is performed on it. To do this the data structure is iterated,
and Scanned linearly function by function. At each stage the
maximum block counter from called functions is pushed up
to their callers. However, because a maximum operation is
performed at each stage, the parent count may not change.
When no change is made to any function maximum counter,
a fixed point is found and closure is reached. In some
embodiments of the present invention, the number of itera
tions to accomplish this is Small in practice. For example, for
a very large commercial application that is examined, there
are over 40,000 functions spread over in excess of 1000
include files. Yet it takes only seven iterations to find the
fixed point of all the include functions. The entire processing
of the PDF profile data, including scanning the PDF file,
building the data structures, computing the fixed point, and
printing the results is accomplished in 1.5 seconds. This
could subsequently reduce hours off a second phase com
pilation time.

Table 1 shows an example output from analysis of a PDF
file information (also referred to as a profile analyzer).

TABLE 1.

An example of Output from a PDF profile analyzer.

Filename Max Block Count

XalanDOMString.cpp 1819419228
XalanReferenceCountedObject.cpp 984655464
XalanDOMStringCache.cpp 6371.11310
XalanBitmap.cpp 571 O32136
Xalan(RNameByValue.cpp 31928.2070
XPath.cpp 296376110
Variablesstack.cpp 29584.0185
XToken.cpp. 216O17112
Xalan(RNameByReference.cpp 191498O2S
XObject.cpp 191139985
XObjectFactoryDefault.cpp 190604060
XPathExecutionContextDefault.cpp 176581236
StylesheetExecutionContextDefault.cpp 176581236
XSLTEngineImpl.cpp 140596741
XalanNode.cpp 1293981.75
DoubleSupport.cpp 104164275
XalanoutputStream.cpp 86270274
ElemNumber.cpp 86270274
AttributeListImpl.cpp 86270274

US 9,727,319 B1
11

In the above example, the maximum block counters of the
various source files fall off very rapidly from the highest to
the lowest, as shown in FIG. 4. FIG. 4 depicts logarithmic
chart 400 showing fall-off line 402 for block counters 404
across all the source files 406. As can be seen from FIG. 4,
about 10% of the source files have 97% of the block counts.
Thus, compilation of a second phase could be sped up by 5
times, with no measurable impact on performance.

Processing proceeds to stop at step S270, where second
phase compilation module 320 compile at a second level the
set of code portions of the application to produce a second
output using information including the first output and the
analyzed information. In this example, by using the analysis
results or analyzed information from step s265, only those
source files with maximum block counters in the top x'
percent of files have their fat binaries (intermediate forms)
included in the second phase PDF whole program compi
lation (also referred to as a second level compilation). The
value of x' can be adjusted by experiment or rule-of-thumb.
A good first rule of thumb may be the top 10% of source
files. In some applications examined, when using 11% of the
Source files, the second phase compile time is lowered by
five times. In this example, the fat binaries included in the
second phase compilation is from the first output of the first
phase compilation. The second output produced from the
second phase compilation includes executable intermediates
generated by the second phase compilation. Further, the
second output may include executable intermediates gener
ated by the first phase compilation for which the correspond
ing intermediates forms (fat binaries) from the first phase
compilation are not included in the second phase compila
tion, that is, for those fat binaries (produced in the first phase
compilation) not included in the second phase compilation,
their corresponding executable intermediates from the first
phase compilation are reused and combined with the execut
able intermediates generated from the second phase compi
lation. A final executable application program may further
be produced by linking both the executable intermediates
from the first phase compilation and the executable inter
mediates from the second phase compilation.

In some embodiments of the present invention, an addi
tional enhancement of optimization in the second phase
compilation may further be achieved by using aliasing
information that can be included from all the source files. In
Some compilers, the aliasing information is available in a
separate section of each fat binary, and therefore can be
quickly scanned and included in the whole program opti
mization phase, even for files where the intermediate form
code itself is excluded. Even with such aliasing information
included, the second phase compilation is still far faster than
including and optimizing all the intermediate form code
generated from the first phase, and would produce better
optimization for the intermediate form code that is included.
An example of this is as follows: Suppose that a function

X defined in a source file X.C has a call to a function Y.
defined in a source filey.C. The functionX is hot, or has hot
portions, but the call to Y is cold, and Y itself has no other
hot portions. Thus, the source file X.C would be included in
the second phase compilation buty.C would not be included.
Nonetheless, the aliasing analysis performed by the first
phase compilation and included in the fat binaries may be
useful in compiling file X.C. Specifically, the aliasing infor
mation for y.C may include important information about the
function Y's use of its pointer arguments and return values,
and about global data that Y does or does not access. For
example, if Y returns a pointer value, the aliasing informa
tion may indicate that the return value does not alias with the

10

15

25

30

35

40

45

50

55

60

65

12
arguments. For reference parameters, the aliasing informa
tion may indicate that the arguments are not “address
taken.” These can be vital clues for code optimization ofx.C.
even though the call from X to Y may be cold. Lack of
aliasing information for that call could wind up pessimizing
some of the code in the hot portions of X. This is because
while compiling X, the compilation optimizer would be
examining reaching definitions, def-use and use-def chains,
and/or live ranges, any of which could be impacted by the
cold call. Thus, using aliasing information that is quickly
accessible, while ignoring cold code, can give an approach
to maximizing PDF-based optimization opportunities, while
still greatly minimizing compilation time.
Some embodiments of the present invention may include

one, or more, of the following features, characteristics
and/or advantages: (i) the amount of compilation time for
optimizing a program as a whole is greatly reduced; (ii)
minimal or no impact on the performance of the compiled
application program is introduced; (iii) as an additional
enhancement of optimization, aliasing information is
included from all the source files; and/or (iv) a special
processing is required for included files.
Some helpful definitions follow:
Present invention: should not be taken as an absolute

indication that the subject matter described by the term
“present invention' is covered by either the claims as they
are filed, or by the claims that may eventually issue after
patent prosecution; while the term “present invention' is
used to help the reader to get a general feel for which
disclosures herein that are believed as maybe being new, this
understanding, as indicated by use of the term “present
invention,” is tentative and provisional and Subject to
change over the course of patent prosecution as relevant
information is developed and as the claims are potentially
amended.

Embodiment: see definition of “present invention'
above similar cautions apply to the term "embodiment.”

and/or: inclusive or; for example, A, B and/or C means
that at least one of A or B or C is true and applicable.

Computer: any device with significant data processing
and/or machine readable instruction reading capabilities
including, but not limited to: desktop computers, mainframe
computers, laptop computers, field-programmable gate array
(FPGA) based devices, Smartphones, personal digital assis
tants (PDAs), body-mounted or inserted computers, embed
ded device style computers, application-specific integrated
circuit (ASIC) based devices.

What is claimed is:
1. A method comprising:
executing training executable code using training data, the

training executable code being generated from code
portions of an application program, the training execut
able code including a block counter and a call counter;

updating the block counter and the call counter during
execution of the training executable code according to
a number of times one code portion of the code portions
is executed during a training run;

storing the updated block counter and the updated call
counter as profile-directed feedback information asso
ciated with the training executable code;

performing an analysis on the profile-directed feedback
information to produce analyzed information, at least
by aggregating data of the profile-directed feedback
information to determine a maximum block count
associated with the one code portion; and

US 9,727,319 B1
13

compiling the code portions to produce compiled code
output using information including the training execut
able code and the analyzed information, wherein the
compiling includes:
adding select intermediate code portions of the code

portions having maximum block counts in a prede
termined top percentage, the select intermediate code
portions included in the training executable code
when the training executable code is generated from
the code portions; and

Substituting executable code in the training executable
code for excluded intermediate code of the code
portions, the excluded intermediate code being inter
mediate code not included in the training executable
code when the training executable code is generated
from the code portions.

2. The method of claim 1, further comprising:
producing intermediate code when compiling the code

portions; and
generating executable binary code using the compiled

code output;
wherein:
the compiled code output includes the intermediate code.
3. The method of claim 1, wherein the compiling the code

portions includes analyzing aliasing information from
Source files in the code portions.

4. The method of claim 1, further comprising:
creating the training executable code by compiling the

code portions, wherein the creating includes inserting
the block counter and the call counter to count a
number of times a single code portion of the code
portions is executed during execution of the training
executable code.

5. The method of claim 4, wherein the training executable
code includes intermediate codes in fat binaries produced
during compiling the code portions to create the training
executable code.

6. The method of claim 1, wherein performing the analy
sis further includes matching one code block of the code
portions with a block counter generated during the training
U.

7. The method of claim 1, wherein the predetermined top
percentage is a configurable value.

8. The method of claim 1, wherein the compiled code
output includes intermediate codes in fat binaries produced
during the compiling.

9. A computer program product comprising a computer
readable storage medium having stored thereon:

first program instructions programmed to execute training
executable code using training data, the training
executable code being generated from code portions of
an application program, the training executable code
including a block counter and a call counter,

second program instructions programmed to update the
block counter and the call counter during execution of
the training executable code according to a number of
times one code portion of the code portions is executed
during a training run;

third program instructions programmed to store the
updated block counter and the updated call counter as
profile-directed feedback information associated with
the training executable code:

fourth program instructions programmed to perform an
analysis on the profile-directed feedback information to
produce analyzed information, at least by aggregating

10

15

25

30

35

40

45

50

55

60

65

14
data of the profile-directed feedback information to
determine a maximum block count associated with the
one code portion; and

fifth program instructions programmed to compile the
code portions to produce compiled code output using
information including the training executable code and
the analyzed information, the fifth program instructions
including:
program instructions programmed to add select inter

mediate code portions of the code portions having
maximum block counts in a predetermined top per
centage, the select intermediate code portions
included in the training executable code when the
training executable code is generated from the code
portions; and

program instructions programmed to Substitute execut
able code in the training executable code for
excluded intermediate code of the code portions, the
excluded intermediate code being intermediate code
not included in the training executable code when the
training executable code is generated from the code
portions.

10. The computer program product of claim 9, further
comprising:

sixth program instructions programmed to produce inter
mediate code when compiling the code portions; and

seventh program instructions programmed to generate
executable binary code using the compiled code output;

wherein:
the compiled code output includes the intermediate codes.
11. The computer program product of claim 9, wherein the

compiling the code portions includes analyzing aliasing
information from source files in the code portions.

12. The computer program product of claim 9, further
comprising:

sixth program instructions programmed to create the
training executable code by compiling the code por
tions, wherein the creating includes inserting the block
counter and the call counter to count a number of times
a single code portion of the code portions is executed
during execution of the training executable code.

13. The computer program product of claim 9, wherein
the training executable code includes intermediate codes in
fat binaries produced during compiling the code portions to
create the training executable code.

14. The computer program product of claim 9, wherein
the fourth program instructions include:

program instructions programmed to match one code
block of the set of code portions with a block counter
generated during the training run.

15. The computer program product of claim 9, wherein
the compiled code output includes intermediate codes in fat
binaries produced during the compiling.

16. A computer system comprising:
a processor set; and
a computer readable storage medium; wherein:
the processor set is structured, located, connected, and/or

programmed to run program instructions stored on the
computer readable storage medium; and

the program instructions include:
first program instructions programmed to execute training

executable code using training data, the training
executable code being generated from code portions of
an application program, the training executable code
including a block counter and a call counter,

second program instructions programmed to update the
block counter and the call counter during execution of

US 9,727,319 B1
15

the training executable code according to a number of
times one code portion of the code portions is executed
during a training run;

third program instructions programmed to store the
updated block counter and the updated call counter as
profile-directed feedback information associated with
the training executable code:

fourth program instructions programmed to perform an
analysis on the profile-directed feedback information to
produce analyzed information, at least by aggregating
data of the profile-directed feedback information to
determine a maximum block count associated with the
one code portion; and

fifth program instructions programmed to compile the
code portions to produce compiled code output using
information including the training executable code and
the analyzed information, the fifth program instructions
including:
program instructions programmed to add select inter

mediate code portions of the code portions having
maximum block counts in a predetermined top per
centage, the select intermediate code portions
included in the training executable code when the
training executable code is generated from the code
portions; and

program instructions programmed to substitute execut
able code in the training executable code for
excluded intermediate code of the code portions, the

5

10

15

25

16
excluded intermediate code being intermediate code
not included in the training executable code when the
training executable code is generated from the code
portions.

17. The computer system of claim 16, further comprising:
sixth program instructions programmed to produce inter

mediate code when compiling the code portions; and
seventh program instructions programmed to generate

executable binary code using the compiled code output;
wherein:
the compiled code output includes the intermediate codes.
18. The computer system of claim 16, wherein the com

piling the code portions includes analyzing aliasing infor
mation from source files in the code portions.

19. The computer system of claim 16, further comprising:
sixth program instructions programmed to create the

training executable code by compiling the code por
tions, wherein the creating includes inserting the block
counter and the call counter to count a number of times
a single code portion of the code portions is executed
during execution of the training executable code.

20. The computer program product of claim 16, wherein
the fourth program instructions include:

program instructions programmed to match one code
block of the set of code portions with a block counter
generated during the training run.

ck ck ck ck ck

