
(12) United States Patent
Klotz

USOO9721021B2

US 9,721,021 B2
Aug. 1, 2017

(10) Patent No.:
(45) Date of Patent:

(54) PERSONALIZED SEARCH RESULTS

(71) Applicant: Quixey, Inc., Mountain View, CA (US)

(72) Inventor: Leigh Klotz, Mountain View, CA (US)

(73) Assignee: Quixey, Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 485 days.

(21) Appl. No.: 14/288,058

(22) Filed: May 27, 2014

(65) Prior Publication Data

US 2015/0347585 A1 Dec. 3, 2015

(51) Int. Cl.
G06F 7/00 (2006.01)
G06F 7700 (2006.01)
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC. G06F 17/30867 (2013.01); G06F 17/3053

(2013.01)
(58) Field of Classification Search

CPC G06F 17/30867; G06F 17/30761; H04L
67/303

USPC .. 707/7O6
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,827,170 B1 11/2010 Horling et al.
8,370,428 B1* 2/2013 Bayliss HO4L 51,046

455,411
2004/0004731 A1* 1/2004 Itagaki HO4N 1.6094

358/19
2006/0026119 A1* 2, 2006 Mirrashid GO6F 17,30038

10-N Search Engine
160

consideration set) is

110

120-(Query Wrapper

Search Query 12

auery Parameters)-J24
Oewice Profile 23

y SmartPhife

Personal
Computing

Dewice

90? (Encoded Device Profile 26e

Recreated Dewice Profile 26 23
a.

Gas CDoc Found"

8

2007/00 16638 A1* 1/2007 Elbury GO6F 8.65
TO9,201

2007/0021108 A1* 1/2007 Bocking HO4M 1904
455,414.1

2007,0180354 A1* 8, 2007 Rivers-Moore ... GO6F 17,30899
715/205

2008/O195588 A1 8, 2008 Kim et al.
2010.0167696 A1* 7, 2010 Smith HO4W 8, 183

455,411

(Continued)

OTHER PUBLICATIONS

Bloom filter calculator: <http://hurst/bloomfilters, accessed on
May 26, 2014.

(Continued)

Primary Examiner — Binh V Ho
(74) Attorney, Agent, or Firm — Harness, Dickey &
Pierce, P.L.C.

(57) ABSTRACT

The disclosure relates to personalizing search results based
on the device features of a user device. An example method
for personalizing search results includes receiving an
encoded device profile indicating the device features of the
device. The device features indicate one or more native
applications installed on the device. The device features may
further indicate native applications recently executed by the
device, native applications that have been deleted from the
user device, and/or web applications recently accessed by
the user device. The method further includes identifying the
device features of the device based on the encoded device
profile, receiving a search query from the device, and
performing an application search based on the search query
to identify a consideration set of records. The method further
includes adjusting the consideration set based on the device
features and generating search results based on the adjusted
consideration set.

20 Claims, 8 Drawing Sheets

Stragonland
areased sis 134

&rass rise: ssp. sassisticiang,

Wife Saaret
syst
fixts wee: 'we 888: axissis,

US 9,721,021 B2
Page 2

(56) References Cited 2014/02O1767 A1* 7, 2014 Seiden HO4N 21,44218
725/12

U.S. PATENT DOCUMENTS 2014/0248864 A1* 9/2014 Rangarajan HO4W 4/OO1
455,418

2010/0217690 A1* 8, 2010 Lee G06Q 30/0601 2014/0250433 A1* 9/2014 Stekkelpak GO6F 9/44505
TO5/26.1 717/176

2010/0281102 A1* 11/2010 Chinta GO6F 21,53 2014/0282480 A1* 9, 2014 Matthew GO6F 8.65
TO9,203 717/172

2011/0208801 A1* 8, 2011 Thorkelsson HO4L 67.2814 2015, 0013013 A1 1/2015 Li G06F 21/60
TO9,203 T26/26

2012, 0021774 A1* 1/2012 Mehta G06Q 30/0282 2015,0220943 A1* 8, 2015 Dossick HO4L 67/22
455,456.3 705/7.29

2012fO239519 A1* 9, 2012 Wu GO6F 17,3O867 2015,0317559 A1* 11/2015 Cronin G06F 3/0482
TO5/26.3 TO6/46

2012/027840.6 A1* 11/2012 Meisels G06Q 10/107 2016/0021215 A1* 1/2016 Spencer G06F 8.54
TO9,206 717,115

2012/0323876 A1* 12/2012 Lymberopoulos G06F 17/30867
707/7O6

2013/0046979 A1* 2/2013 Karp G06F 21/34 OTHER PUBLICATIONS

2013/011 1592 A1* 5, 2013 Zhu cos' 5 B. H. Bloom. Space-time trade-offs in hash coding with allowable
726/25 errors. Communications of the ACM. 13(7), 1970.

2013,0173637 A1* 7, 2013 Kim G06Q 30/02 Base91 Encoder Sample Code: <https://github.com/aberaud
707/748 base91-python, accessed May 26, 2014.

2013/0290318 A1 10/2013 Shapira et al. Cache-, Hash- and Space-Efficient Bloom Filters: <http://algo2.iti.
2013,02903.19 A1 ck 10/2013 Glover et al. kit.edu/singler/publications/cacheefficientbloomfilters-wea2007.
2013/0290321 A1* 10/2013 Shapira ''': pdf, accessed on May 26, 2014.
2013/0290322 A1 10, 2013 ProSnitz et al. yen.wikipedia.org.wiki Bloom iller. accessed on May 26,
2013/0290344 A1 10, 2013 Glover et al.
2013/0339334 A1* 12, 2013 Brown G06F 17/30867 <https://blog.twitter.com/2011/engineering-behind

707/7O6 twitter'6E2%80%99s-new-search-experience>, accessed on May
2013/0339472 A1* 12/2013 Ruellan H04L 67/2842 26, 2014.

TO9,214 International Search Report and Written Opinion for related WO
2014,0006409 A1 1/2014 ProSnitz et al. Application No. PCT/US2015/032119 dated Jul. 30, 2015.
2014f00749 15 A1* 3, 2014 Neill GO6F 9/44505

TO9,203 * cited by examiner

US 9,721,021 B2 Sheet 1 of 8 Aug. 1, 2017 U.S. Patent

U.S. Patent Aug. 1, 2017 Sheet 2 of 8 US 9,721,021 B2

2.

142

ross.ork
s's

SE, ES33SS

vior. S:3&:
*3: Wii: gisi'ss ::::::: fast:.

U.S. Patent Aug. 1, 2017 Sheet 3 of 8

2.

23

122- late night dine is by Fine

OpenTable 142a
Link: late night diners..."

TripAdvisor 142a
Link: late night diners..." w

F.G. 1C

US 9,721,021 B2

Y. 33

US 9,721,021 B2 Sheet 4 of 8 Aug. 1, 2017 U.S. Patent

US 9,721,021 B2 Sheet S of 8 Aug. 1, 2017 U.S. Patent

US 9,721,021 B2 Sheet 6 of 8 Aug. 1, 2017 U.S. Patent

U.S. Patent Aug. 1, 2017 Sheet 7 of 8 US 9,721,021 B2

M

-410

itiate A Searci Sessic

Receive A Search Query From The idser Device

-46

identify A Consideration Set Of Applications

MX XXXX XXX XXX XXX XXX XXXX XXXX XXX XXXX XXXX XXX l -418

l 242
Adjust The Consideration Set Of Applications Sased On The X

ReCreated evice Profe

Generate Search Resuits Based Of The Adjusted
Consideration Set Of Applications

- 424

Provide Search Resis C. else; evice

U.S. Patent Aug. 1, 2017 Sheet 8 of 8 US 9,721,021 B2

itiate A Search Sessic

14

(fe Recreated evice Profile

Y -522

Generate Search Results Of Application States Based On
The Adjusted Consideration Set

s - 524

Provide Search Resis C. else; evice

US 9,721,021 B2
1.

PERSONALIZED SEARCH RESULTS

TECHNICAL FIELD

This disclosure relates to personalizing search results
based on a device profile of user device.

BACKGROUND

Search engines are becoming a primary service for
accessing information using the Internet. In addition to web
pages, users are increasingly turning to special purpose
applications to obtain sought after information. Thus, there
is an ever growing demand for applications that perform
specific functionalities.

SUMMARY

One aspect of the disclosure provides a method for
personalizing search results based on the device features of
a user device. The method includes receiving an encoded
device profile indicating device features of the user device
by a processing device. The device features at least indicate
one or more native applications installed on the user device.
In some implementations, the device features further include
a list of native applications recently executed by the user
device, a list of native applications that have been deleted
from the user device, and/or a list of web applications
recently accessed by the user device. The method further
includes identifying the device features of the user device
based on the encoded device profile, receiving a search
query from the user device, and performing an application
search based on the search query to identify a consideration
set of records. The method further includes adjusting the
consideration set based on the device features to obtain an
adjusted consideration set and generating search results
based on the adjusted consideration set.

According to some implementations, the encoded device
profile includes a Bloom filter having a plurality of Boolean
values stored at a plurality of index addresses thereof. The
Bloom filter can indicate the device features of the user
device. In some of these implementations, recreating the
device profile includes obtaining a list of potential applica
tions and for each potential application identified in the list
of potential applications: i) feeding an application identifier
of the potential application into a hash procedure to obtain
k index addresses; ii) querying the Bloom filter at the k
indexes addresses; and iii) selectively adding the application
identifier to the device features of the user device based on
the checking. The value of k is an integer greater than one.

In some implementations of the method, the consideration
set indicates a plurality of application records obtained from
an application datastore. The plurality of application records
indicate applications that are relevant to the search query.
Additionally or alternatively, the consideration set can indi
cate a plurality of application state records obtained from an
application state datastore. In these implementations, the
plurality of application state records indicate states of one or
more records that are relevant to the search query. According
to Some implementations, adjusting the consideration set
includes for each record in the consideration set i) deter
mining a result score of the record based on one or more
features of the record and one or more features of the query
and ii) selectively boosting the result score based on the
device features of the user device. The records may be
ranked in the consideration set based on the respective result
scores thereof. According to other implementations, adjust

10

15

25

30

35

40

45

50

55

60

65

2
ing the consideration set includes for each record in the
consideration set determining a result score of the record
based on one or more features of the record, one or more
features of the query, and the device features of the user
device. The records may be ranked in the consideration set
based on the respective result scores thereof.

According to Some implementations, the method further
include receiving a request to initiate a search session from
the user device initiating the search session, assigning a
session identifier to the search session, and associating the
session identifier to the device features of the user device. In
Some of these implementations, the session identifier is used
to retrieve the device features of the user device when the
search query is received from the user device and when
Subsequent search queries are received from the user device.
In some implementations the method includes storing the
identified device features of the user device in a recreated
device profile.

According to another aspect of the disclosure, a search
engine includes a storage device including one or more
computer readable mediums and a processing device execut
ing computer readable instructions. The computer readable
instructions, when executed by the processing device, cause
the processing device to receive an encoded device profile
indicating device features of a user device. The device
features at least indicate one or more native applications
installed on the user device. In some implementations, the
device features further include a list of native applications
recently executed by the user device, a list of native appli
cations that have been deleted from the user device, and/or
a list of web applications recently accessed by the user
device. The computer readable instructions further cause the
processing device to identify the device features of the user
device based on the encoded device profile, receive a search
query from the user device, and perform an application
search based on the search query to identify a consideration
set of records. The computer readable instructions further
cause the processing device to adjust the consideration set
based on the device features to obtain an adjusted consid
eration set and generate search results based on the adjusted
consideration set.

According to some implementations, the encoded device
profile includes a Bloom filter having a plurality of Boolean
values stored at a plurality of index addresses thereof. The
Bloom filter can indicate the device features of the user
device. In some of these implementations, recreating the
device profile includes obtaining a list of potential applica
tions and for each potential application identified in the list
of potential applications: i) feeding an application identifier
of the potential application into a hash procedure to obtain
k index addresses; ii) querying the Bloom filter at the k
indexes addresses; and iii) selectively adding the application
identifier to the device features of the user device based on
the checking. The value of k is an integer greater than one.

In some implementations of the search engine, the con
sideration set indicates a plurality of application records
obtained from an application datastore. The plurality of
application records indicate applications that are relevant to
the search query. Additionally or alternatively, the consid
eration set can indicate a plurality of application state
records obtained from an application state datastore. In these
implementations, the plurality of application state records
indicate states of one or more records that are relevant to the
search query. According to some implementations, adjusting
the consideration set includes for each record in the consid
eration set i) determining a result score of the record based
on one or more features of the record and one or more

US 9,721,021 B2
3

features of the query and ii) selectively boosting the result
score based on the device features of the user device. The
records may be ranked in the consideration set based on the
respective result scores thereof. According to other imple
mentations, adjusting the consideration set includes for each 5
record in the consideration set determining a result score of
the record based on one or more features of the record, one
or more features of the query, and the device features of the
user device. The records may be ranked in the consideration
set based on the respective result scores thereof. 10

According to Some implementations, the computer read
able instructions further cause the processing device to
receive a request to initiate a search session from the user
device initiate the search session, assign a session identifier
to the search session, and associate the session identifier to 15
the device features of the user device. In some of these
implementations, the session identifier is used to retrieve the
device features of the user device when the search query is
received from the user device and when Subsequent search
queries are received from the user device. In some imple- 20
mentations, the computer readable instructions further cause
the processing device to store the identified device features
of the user device in a recreated device profile.
The details of one or more implementations of the dis

closure are set forth in the accompanying drawings and the 25
description below. Other aspects, features, and advantages
will be apparent from the description and drawings, and
from the claims.

DESCRIPTION OF DRAWINGS 30

FIG. 1A is a schematic illustrating an example environ
ment of a search engine.

FIGS. 1B and 1C are schematics illustrating examples of
search results being displayed by a user device. 35

FIG. 2A is a schematic illustrating example components
of a user device.

FIG. 2B is a schematic illustrating an example of gener
ating a Bloom filter using a list of applications.

FIG. 3 is a schematic illustrating example components of 40
a search engine.

FIG. 4 is a flow chart illustrating an example set of
operations for a method for performing a function based
application search.

FIG. 5 is a flow chart illustrating an example set of 45
operations for a method for performing an application state
search.

Like reference symbols in the various drawings indicate
like elements.

50

DETAILED DESCRIPTION

FIG. 1A illustrates an example environment 10 for pro
cessing search queries 122. The example environment 10
includes a search engine 300 and one or more user devices 55
200. The search engine 300 is a system of one or more
computing devices (e.g., server devices). The search engine
300 is configured to receive a search query 122 and a device
profile 126 from a user device 200 and to provide person
alized search results 130 to the user device 200 based on the 60
search query 122 and a device profile 126. Search results
130 can include one or more result objects that the search
engine 300 outputs to the user device 200, whereby the user
device 200 displays the search results 130. The result objects
may contain information pertaining to an item that is rel- 65
evant to the search query 122. Examples of search results
130 may include, but are not limited to, listings of websites,

4
applications, products, and/or services. A search engine 300
determines the search results 130 by identifying items that
are relevant to the information conveyed in the search query
122 (and in Some cases one or more other query parameters
124).
The search engine 300 utilizes the device profile 126 (and

possibly other information, such as user information) to
tailor the search results 130 to the user device 200 that
provides the search query 122. In some implementations, the
search engine 300 ranks the items or selects which items to
include in the search results 130 based on the device profile
126. A device profile 126 is a data structure that defines one
or more device features 128 of a user device 200. The device
features can identify a list of native applications 218 (FIG.
2A) that are installed on the user device 200, a list of native
applications 218 that were recently executed by the user
device 200, a list of web applications 216 (FIG. 2A) that
were recently accessed by the user device 200 (e.g.,
executed by the web browser of the user device 200), and/or
a list of applications that were deleted from the user device
200. The device profile 126 can further include additional
features, such as an operating system of the user device 200,
a maker of the user device 200, a model of the user device
200, and/or a list of peripheral devices (e.g., camera, fin
gerprint scanner, etc.) of the user device 200.
The search engine 300 can be configured to perform

application searches. Application searches are searches that
relate to applications 110. An application 110 can refer to
computer readable instructions that cause a computing
device (e.g., a user device 200) to perform a task. In some
examples, an application 110 may be referred to as an 'app.”
Example applications 110 include, but are not limited to,
produce and service review applications, navigation appli
cations, news and information applications, messaging
applications, media streaming applications, Social network
ing applications, and games. Applications 110 can be
executed on a variety of different user devices 200. For
example, applications can be executed on mobile computing
devices, such as Smartphones 200b, tablets 200a, wearable
computing devices (e.g., headsets and/or watches), or
vehicle infotainment devices. Applications 110 can also be
executed on other types of user devices 200 having other
form factors, such as laptop computers 200c, desktop com
puters, or other consumer electronic devices. Applications
110 can be native applications 218 or web applications 216.
Native applications 218 are applications that are installed on
a user device 200 and at least partially executed on the user
device 200. In some examples, native applications may be
installed on a user device 200 prior to the purchase of the
user device 200. In other examples, a user device 200 may
download a native application from a digital distribution
platform such as the APP STORE(R) digital distribution
platform developed by Apple Inc. or the GOOGLE PLAYR)
digital distribution platform developed by Google Inc. In
these examples, the user device 200 downloads and installs
the application at the request of a user. In some examples, all
of a native application’s functionality is performed by the
user device 200 on which the application is installed. These
native applications may function without communication
with other computing devices (e.g., via the Internet). In other
examples, a native application installed on a user device 200
may access information from a remote computing device
(e.g., a server) at runtime. For example, a weather applica
tion installed on a user device 200 may access the latest
weather information via a remote server and display the
accessed weather information to the user through the
installed weather application. Web applications 216 are

US 9,721,021 B2
5

applications that a user accesses using a web browser
application executed by the user device 200.

Application searches can include “function based appli
cation searches' and/or “application state searches.” A func
tion based application search is a search for applications 110
that are relevant to the search query 122. In a function based
application search, the result objects each indicate an appli
cation 110 that is relevant to the search query 122. Each
result object can contain content relating to the application.
For example, if the search query 122 contains the query
terms “listen to music, the search results 130 (see e.g., FIG.
1B) can include result objects 133 that provide descriptions
of various audio streaming/playback applications. In another
example, if the search query 122 contains the query terms
“addictive games, the search results 130 can include result
objects that can include descriptions of specific popular
gaming applications, highly rated gaming applications, and/
or games that reviewers have described as “addictive.” In
some implementations, the content of a result object 133
corresponding to an application 110 can include a descrip
tion of the application 110, one or more screen shots of the
application 110, a rating of the application 110, one or more
reviews of the application 110, and/or a link to a digital
distribution platform to download the application 110.

FIG. 1B illustrates an example of search results 130
resulting from a function based application search. In the
illustrated example, the user device 200 is displaying search
results 130 corresponding to the search query “play a fun
game.” In the illustrated example, the search results 130
include organic search results 132 and an advertisement 134.
The organic search results 132 are search results that are
relevant to the search query 122. The organic search results
132 may include one or more result objects 133, each result
object 133 corresponding to a different application 110. Each
result object 133 may include, for example, a description of
the application 110, one or more screen shots of the adver
tised application 110, and/or a link 136 to a digital distri
bution platform whereby the user can opt to download the
application 110 from the digital distribution platform.
Should the user desire to download the application 110, the
user can select the link 136 to launch the digital distribution
platform. The search results 130 illustrated in FIG. 1B are
provided for example only. The search results 130 may be
arranged in any suitable manner.

Additionally or alternatively, the application search
engine 300 can perform application state searches. An
application state search identifies specific states of applica
tions 110 that are relevant to the search query 122. The result
objects resulting from an application state search can include
state links to different states of one or more applications 110.
A state of an application 110 can refer to a specific screen or
functionality of the application 110. For example, in
response to a search query 122 containing the query terms
“late-night food, an application state search can include a
state link to an entry for a review of a local diner provided
by a restaurant reviewing application (e.g., the YELPR)
application by Yelp. Inc.). In this example, the user can
select the state link to the entry for the review, and the user
device 200 can launch the application 110 to a state that
contains the review.
A state link can refer to an object that includes text and/or

images that a user may select (e.g., touch) via a user
interface of the user device 200. In some implementations,
the state link includes an application access mechanism. An
application access mechanism allows a user device 200 to
access a state of an application. An application access
mechanism can include one or more application resource

10

15

25

30

35

40

45

50

55

60

65

6
identifiers, one or more web resource identifiers (e.g., Uni
form Resource Locators “URLs”), and/or one or more
commands for accessing the state of the application. An
application resource identifier is a string of letters, numbers,
and/or symbols that references a specific state of a native
application. An application resource identifier can include a
reference to the native application 218, as well as a portion
that the native application 218 can use to launch to the
specified State. Some native applications may not be con
figured to receive application resource identifiers. In Such a
case, the one or more commands can be executed by the user
device 200 to access a specific state of the application 110.
For example, the one or more commands may be embodied
in a script, that when executed cause the user device to
launch a native application indicated in the script and to
input one or more parameters to the native application to
access the specific state. A user can select a state link (e.g.,
click or press the link) to launch the application 110 to the
specified State. For example, a state link to a music stream
ing application can include a resource identifier that identi
fies a particular playlist or song in a manner understood by
the media streaming application. When the user selects the
state link to the music streaming application, the user device
200 can attempt to launch a native version of the music
streaming application using an application resource identi
fier contained in the state link. When launched using the
application URL, the music streaming application can begin
playing back the selected playlist or song.

FIG. 11C illustrates an example of search results 130
resulting from an application state search. In the illustrated
example, the user device 200 is displaying search results 130
corresponding to the search query “Late night diners by me.”
In the illustrated example, the search results 130 include
state links 142 to different applications. Each state link 142
can be displayed in a result object 133. Furthermore, some
of the result objects 133 may link to a default state (e.g.,
home page) of an application 110. For example, state link
142a links to the default page of the YELPR) application.
The user can select one of the state links 142 to launch the
corresponding native application to the given state. In some
implementations, if the native application 218 is not
installed on the user device 200, the user device 200 can
attempt to launch a web application 216 using a web
resource identifier contained in the state link or can launch
a digital distribution platform where the user can download
the native application. The search results 130 illustrated in
FIG. 1C are provided for example only. The search results
130 may be arranged in any Suitable manner.

During an application search, the search engine 300
tailors the search results 130 based on the device features
contained in the device profile 126. For instance, if the
search engine 300 is performing a function based application
search, the search engine 300 can adjust the search results
130 such that applications that are not installed on the user
device 200 are ranked higher than applications that are
installed on the user device 200 in the search results 130. In
another example, if the search engine 300 is performing an
application state search, the search engine 300 can adjust the
search results 130 so that states of applications that are
installed on the user device 200 are ranked higher than states
of applications that are not installed on the user device 200.
In yet another example, when performing any application
search, the search engine 300 can adjust the search results
130 so that applications that have been deleted from the user
device 200 do not appear in the search results or are ranked

US 9,721,021 B2
7

less than applications that are installed on the user device
200 and/or applications that have never been installed on the
user device 200.

The user device 200 can communicate the device profile
126 to the search engine 300 at any suitable time. In some
implementations, the user device 200 communicates the
device profile 126 upon initiating a search session. A search
session is a period during which the user device 200 sends
search queries 122 to the search engine 300. Upon initiating
a search session, the search engine 300 can assign a session
identifier (“session ID') to the search session. The user
device 200 can provide the device profile 126 to the search
engine 300 and the search engine 300 can associate the
session ID with the device profile 126. The search engine
300 may associate other information to the session ID as
well. For instance, the search engine 300 can associate a user
profile to the session ID. In some implementations, the user
device 200 communicates a search query 122 in a query
wrapper 120. A query wrapper 120 is a data structure that
contains the search query 122 and other query parameters
124 (e.g., a location of the user device 200, an operating
system of the user device 200, a user account of the user).
In some implementations, the other query parameters 124
include the session ID. According to these implementations,
when the user device 200 transmits query wrappers 120
during the search session the search engine 300 can look up
device profile 126 using the session ID, so long as the search
session corresponding to the session ID is still valid. In these
implementations, the privacy of the user may be protected,
as information regarding a user's device is associated with
a session ID rather than the user. In some implementations,
the user device 200 communicates the device profile 126
with the search query 122 in the query wrapper 120. In these
implementations, the device profile 126 does not need to be
transmitted at the initiation of a search session. Further, in
these implementations, the privacy of the user may be
protected, as information regarding the user's device 200
encoded in the Bloom filter is transmitted directly with the
search wrapper 120 in a compact format and so secondary
storage is not necessary. In some implementations, the
search engine 300 stores the device profile 126 with a user
profile of the user. In these implementations, the search
engine 300 can store the device profile 126 and the user
device 200 can periodically update the data contained in the
device profile 126.

In some implementations, the user device 200 encodes the
device profile 126 into an encoded device profile 126e to
reduce the amount of data being communicated to the search
engine 300. The user device 200 can compress the device
profile 126 using one or more Bloom filters. A Bloom filter
is a space-efficient probabilistic data structure that can be
used to determine whether an element is a member of a set.
In some implementations, a Bloom filter is an array of m bits
that stores Boolean values (e.g., one or Zero). The search
engine 300 can query the encoded device profile 126e to
obtain the device features 128. For example, the search
engine 300 can query the Bloom filter to identify the
information contained therein with a high degree of cer
tainty. Alternatively, the user device 200 can compress the
device profile 126 into a suitable format. For example, the
user device 200 can compress the device profile 126 using
a compression algorithm Such as Deflate or BZip2.

FIG. 2A illustrates example components of a user device
200. The user device 200 can include a processing device
210, a network interface 220, a storage device 230, and a

10

15

25

30

35

40

45

50

55

60

65

8
user interface 240. The user device 200 can include addi
tional components not depicted in FIG. 2 (e.g., accelerom
eter, sensors, GPS module).
The processing device 210 includes memory (e.g., RAM

and/or ROM) that stores computer readable instructions and
one or more processors that execute the computer readable
instructions. In implementations where the processing
device 210 includes more than one processor, the processors
can execute in a distributed or individual manner. The
processing device can execute an operating system 212, a
search application 214, a web browser application 216, and
one or more other native applications 218. The operating
system 212 acts as an interface between higher level appli
cations 214, 216, 218 and the processing device 210.
The network interface 220 includes one or more devices

that are configured to communicate with the network 150.
The network interface 220 can include one or more trans
ceivers for performing wired or wireless communication.
Examples of the network interface 220 can include, but are
not limited to, a transceiver configured to perform cellular
communications (e.g., transmission using the third genera
tion (3G) or fourth generation (4G) telecommunications
standards), a transceiver configured to perform communi
cations using the IEEE 802.11 wireless standard, an Ethernet
port, a wireless transmitter, and a universal serial bus (USB)
port.
The storage device 230 can include one or more computer

readable mediums that store data. The storage device 230
can store some or all of the computer readable instructions
that define the search application 214, the web browser
application 216, and the one or more other native applica
tions 218. The storage device 230 can store other data as
well (e.g., media contents, application data, contacts, docu
ments).
The user interface 240 can include one or more devices

that allow a user to interact with the user device 200. The
user interface 240 can include one or more of for example,
a touchscreen, a QWERTY keyboard, a display device,
speakers, a touchpad, and a microphone. The user interface
240 receives input from the user and provides the input to
the processing device 210. The user interface 240 receives
output from the processing device 210 and presents (e.g.,
displays) the output to the user.
The web browser application 216 is an application 110

that requests web data from a web browser and displays the
data on the user interface device 240. The web browser
application 216 can be used to access web applications. A
web application 216 may be identified by a web resource
identifier (e.g., a URL). In some implementations, the web
browser application 216 can access a specific state of a web
application by accessing a web server located in the domain
portion of a web resource identifier and providing a request
to the web server using the state parameters indicated in the
path portion of the web resource identifier.
The native applications 218 are applications 110 that are

executed, in part, by the processing device 210. Native
applications 218 can be developed by third parties and made
available to consumers in a variety of manners. For instance,
a user can download a native application to the user device
200 from a digital distribution platform or from a website
associated with the third party. Additionally or alternatively,
the user can load a native application into the storage device
230 of the user device 200 from a removable media, such as
a CD-ROM. Native applications 218 can provide any suit
able functionality.
The search application 214 receives a search query 122

from a user via the user interface 240 and transmits the

US 9,721,021 B2

search query 122 to the search engine 300. The search
application 214 is also configured to determine a device
profile 126 of the user device 200, which the search appli
cation 214 also transmits to the search engine 300. The
search engine 300 returns the search results 130 to the search
application 214. The search application 214 displays the
search results 130 (e.g., as shown in FIGS. 1B and 1C). In
the illustrated example, the search application 214 is shown
as a native application. Alternatively, the search application
214 can be a web application 216 that is executed via the
web browser 216.

In some implementations, the search application 214
initiates a search session with the search engine 300. In some
of these implementations, the search application 214 can
transmit a request to the search engine 300 to initiate the
search session. The search engine 300 can initiate a search
session and can communicate information regarding the
search session to the search application 214. The informa
tion regarding the search session can include the session ID.
In some implementations, the search application 214 com
municates the device profile 126 to the search engine 300
during the initiation of the search session or after the search
engine 300 has initiated the search session.
The search application 214 generates the device profile

126 indicating one or more device features. As previously
mentioned, the device features included in the device profile
126 can include a list of native applications 218 currently
installed on the user device 200, a list of native applications
218 recently used on the user device, and/or a list of native
applications 218 that have been deleted from the user device
200. Each native application 218 indicated in the lists of
native applications 218 can be represented by an application
identifier (“application IDs). An application ID 266 may be,
for example, any suitable numeric or alphanumeric String.
The application ID 266 may be assigned to the application
by, for example, the digital distribution platform that offers
the application or the search engine 300. In some imple
mentations, the application ID 266 can be the name of the
application 110, 218.
The search application 214 can obtain the list(s) of native

applications 218 from the operating system. Additionally or
alternatively, the search application 214 can monitor the
installation, use, and/or deletion of native applications on the
user device 200 to determine the list(s) of native applications
218. In some implementations, the search application 214
monitors the web browser application 216 to determine web
applications 216 that were recently accessed using the web
browser application 216. For each identified native applica
tion, the search application 214 determines the application
ID of the native application and adds the application ID to
the list of native applications 218.

In some implementations, the search application 214 can
encode the lists into an encoded device profile 126e. Accord
ing to Some implementations, the encoded device profile
126e is a Bloom filter. The search application 214 can
provide the encoded device profile 126e to the search engine
300 during initiation of the search session. Alternatively, the
search application 214 can provide the encoded device
profile 126e at query time (i.e., with each search query 122
transmitted to the search engine 300).

FIG. 2B illustrates an example of the search application
214 adding information (e.g., a list of applications) to a
Bloom filter 260. As previously mentioned, the Bloom filter
260 an array of m bits that stores Boolean values (e.g., one
or Zero). The search application 214 employs a hash proce
dure 262 to add information to the Bloom filter 260. The
hash procedure 262 receives a value corresponding to an

5

10

15

25

30

35

40

45

50

55

60

65

10
instance of the information (e.g., an application identifier
from a list of applications) and generates k (e.g., four or five)
hash values between 0 and m-1. Each of the khash values
output by the hash procedure 262 corresponds to a different
index address (i.e. element) of the Bloom filter 260. For each
of the khash values output by the hash procedure 262, the
search application 214 sets the element at the index address
indicated by the hash value equal to one. In this way, the
search application 214 has added the instance of the infor
mation to the Bloom filter 260. In some scenarios, the search
application 214 may have previously set one or more of the
elements of the Bloom filter 260 to one (i.e., from one or
more previous instances of information that the search
application 214 added to the Bloom filter 260). In these
scenarios, the search application 214 keeps the values equal
to one. The search application 214 can iteratively perform
the above procedure to add each instance of the information
to the Bloom filter 260. In some implementations, the search
application can 214 convert the Bloom filter 260 to a string
of ASCII characters (e.g., a base 91 string of characters),
Such that the search application 214 can communicate the
string to the search engine 300.

In operation, the search application 214 receives a list 264
of applications 110 (e.g., a list of native applications 218
installed on the user device 200) and generates a Bloom filter
260 based on the list 264 of applications 110. Each appli
cation 110 indicated in the list 264 of applications 110 may
be represented by a unique application identifier 266 (an
“application ID'). For each application ID 266 in the list 264
of applications 110, the search application 214 adds the
application ID 266 to the Bloom filter 260 using the hash
procedure 262. In the example of FIG. 2B, the search
application 214 is adding an application ID 266 of 3981 to
the Bloom filter 260. The search application 214 feeds the
application ID 266 (e.g., 3981) to the hash procedure 262
and the hash procedure outputs four hash values (e.g., 1, 7.
10, and 245). The search application 214 sets the elements
of the Bloom filter 260 at index addresses 1, 7, 10, and 245
equal to 1. The search application 214 can feed each
application ID 266 to the hash procedure 262 and can update
the Bloom filter 260 based on the outputs of the hash
procedure 262.
The hash procedure 262 may include up to k different

hash functions that produce k different hash values. Alter
natively, the hash procedure 262 can include a single hash
function that takes an additional argument i. In the latter
scenario, the value of i is given k unique values to output k
different hash values. In some implementations, the hash
procedure utilizes a pair of hash functions (e.g., H1(X) and
H2(x) and a combination function that takes the inter
argument i. The result of the combination C(H1(x), H2(x),
i) is the effective calculation of the hash function K(x)
without re-calculation of either H1(x) or H2(x). The hash
procedure can utilize any Suitable hash function or func
tions. In some implementations, the hash procedure can
utilize non-cryptographic hash functions, such as the Mur
murHash. The hash procedure 262 can modulo the k outputs
of the hash function or functions by m (i.e., the number of
elements in the Bloom filter 260) to obtain the k index
addresses of the Bloom filter 260. In some implementations,
search application 214 can perform the above procedure for
the different lists of applications 110. For example, the
search application 214 can perform the above procedure for
the list of native applications 218 installed on the user device
200, the list of native applications 218 recently executed by
the user device 200, a list of web applications 216 recently
accessed by the user device 200, and/or the list of native

US 9,721,021 B2
11

applications 218 deleted from the user device 200. In these
implementations, the search application 214 can generate a
separate Bloom filter 260 for each list. In some of the some
implementations, the separate Bloom filters 260 can be
combined into a single partitioned Bloom filter, whereby 5
each partition of the Bloom filter 260 corresponds to a
different list of applications 110 (e.g., a first partition cor
responding to a list of installed native applications, a second
partition corresponding to a list of recently executed and/or
accessed applications, and a third partition corresponding to 10
a list of deleted applications). Alternatively, the search
application 214 can combine a plurality of lists into a single
list 264 that is encoded into the Bloom filter 260. In these
implementations, the search application 214 can add one or
more characters to the application ID 266 to indicate which 15
list 264 the item belongs. In some of these implementations,
the search application 214 can add an unrecognized char
acter (i.e., a character that is not used in application IDs,
such as “%” or “S”) followed by an indicator of the list 264
to which the item belongs. For instance, if an application 110 20
having the ID 12345 is installed on the user device 200 and
has been recently executed on the user device 200, the
search application 214 may create two items to include in the
Bloom filter 260. The two items may be, for example,
12345SI and 12345SR, thereby indicating that the applica- 25
tion 110 is installed on the device 200 and recently executed
on the device 200. In this way, the hash procedure 262
outputs kindex addresses for the value 12345SI and kindex
addresses for the value 12345SR, such that a single Bloom
filter 260 can indicate that the application having the appli- 30
cation ID 12345 is installed on and recently executed by the
user device 200. The search application 214 can add the
indicators to the application IDs 266 in any other suitable
manner. For example, the search application 214 can add the
indicator followed by the unrecognized character to the 35
beginning of the application IDs 266 (e.g., IS12345).

The values of m and k (the Bloom filter 260 parameters)
can be selected to reduce the length of the bloom filter 260
and/or reduce the probability of false positives. The greater
the value of m, the less likely it is to have a false positive at 40
the cost of a longer Bloom filter 260. In some implementa
tions, the width of the Bloom filter 260, m, and the number
of outputs of the hash procedure 262 (e.g., the number of
hash functions in the hash procedure 262), k, can be deter
mined according to equations (1) and (2), provided as 45
follows:

- t EP) (1) n = ceiling
ln(2)? 50

= flood's (2) k = flood In(2)

where n is the total number of items that could be added to 55
the Bloom filter 260 (e.g., the number of known applica
tions) and p is a given probability of a false positive (e.g., a
maximum allowable false positive rate). For example, in a
scenario where n=100 total elements to can be added to the
Bloom filter 260 (e.g., application IDs to be added to the 60
Bloom filter 260) and a 99% confidence rate of the Bloom
filter 260 is desired (i.e., a one percent (1%) false positive
probability), the Bloom filter 260 can be encoded with
m=959 bits and k=7 hash procedure such that the Bloom
filter 260 size is approximately ten (10) bits per element to 65
be added thereto. It is noted that adding elements to the
Bloom filter 260 does not per se increase the size of the

12
Bloom filter 260; rather, the Bloom filter 260 can be sized
for the given capacity (n) to maintain the specified prob
ability. When representing the resulting Bloom filter 260 as,
for example, a string encoded in base 91 for ease of
transmission in an HTTP request, the byte size of the filter
represented in an ASCII string becomes ceiling(959*(256/
91)/8/0.86)=138 bytes. For 99.9% confidence (0.1% false
positive) and 100 entries, m=1438 bits, k=10 hash procedure
outputs, and a base 91 string length is 207 bytes. These sizes
are well within the capacity of a small HTTP GET request.
Without change in functionality, further reductions in size of
the Bloom filter 260 may be accomplished by using more
space-efficient choices of Bloom filters 260, such as Blocked
Bloom filters or Golomb-Compressed Sequences, since all
the elements in the set are known at once.

In some implementations, the Bloom filter parameters (m
and k) are determined off-line based on the expected value
of n (e.g., the expected maximum number of application IDs
in the list or lists of applications), the desired false positive
rate, and equations (1) and (2). In these implementations, the
Bloom filter parameters are fixed and may be hard-coded in
the search application 214. In other implementations, the
search application 214 calculates the Bloom filter param
eters based on the device features of the user device 200, the
desired false positive rate, and equations (1) and (2). In these
implementations, the search application 214 can determine
the Bloom filter parameters prior to generating the Bloom
filter 260 and after determining the list or lists of applica
tions. The number of application IDs 266 in the list or lists
can be used to determine n. Further, in these implementa
tions, the search application 214 can provide the values of m
and/or k with the Bloom filter 260, so that the search engine
300 can recreate the device profile of the user device.

While the search application 214 is described as encoding
at least a portion of the device profile 126 into a Bloom filter
260, the search application 214 can utilize suitable com
pression techniques to compress the device profile 126. For
example, the search application 214 can compress the device
profiles 126 using known compression techniques (e.g.,
Deflate, BZIP2, or LZMA). The search application 214 can
provide the compressed device profile 126 to the search
engine 300. For example, the search application 214 can
provide the compressed device profile at predetermined
times (e.g., once a week), at query time, or at the initiation
of a search session.
The search application 214 is further configured to present

a graphical user interface (“GUI) that allows a user to enter
a search query 122 and displays search results 130. In some
implementations, the GUI can display a search bar 123
(FIGS. 1B and 1C) whereby the user can provide text and/or
speech input into the search bar 123. Additionally, or alter
natively, the operating system 212 of the user device 200 can
display the search bar 123 on the home screen of the user
device 200, whereby a user can enter the search query 122
directly from the home screen. In these implementations,
when the user enters the search query 122 into the search bar
displayed on the home screen and executes the search, the
operating system 212 of the user device 200 can launch the
search application 214, which generates a query wrapper
120 containing the search query 122 and Zero or more other
query parameters 124. The search application 214 can obtain
the other query parameters 124 in any suitable manner. For
example, the search application 214 can obtain information
regarding the device 200 (e.g., device type, operating system
type, operating system version) from a file in the storage
device 230 or in the memory of the processing device 210.
Additionally or alternatively, the search application 214 can

US 9,721,021 B2
13

obtain information regarding the device from a sensor or
component of the user device 200 (e.g., the geo-location can
be obtained from a GPS module of the user device 200). The
search application 214 can create a query wrapper 120 based
on the provided search query 122 and the obtained query
parameters 124.
The search application 214 transmits the query wrapper

120 to the search engine 300, which responds with the
search results 130. The search application 214 displays the
search results 130 in the graphical user interface (GUI) 240
of the search application 214 (e.g., FIGS. 1B and 1C). As
previously discussed, the search application 214 can display
state links 142 to access resources that are relevant to the
query parameters. The state links 142 can include applica
tion resource identifiers that can be used to launch a third
party application and access a specific state within the third
party application. When the user selects a state link 142, the
search application 214 can initiate the accessing of the third
party application at the specific state. In some implementa
tions, the search application 214 attempts to launch a native
application 218 version of a third party application. To
initiate launching the native application 218 to the specific
state, the search application 214 provides an instruction to
launch the third party application to the operating system
212 using the information provided in the state link. The
operating system 212 can attempt to launch a native appli
cation 218 indicated by an application resource identifier
365b in the state link, and if unsuccessful, can attempt to
access the third party application via the web browser
application 216 (i.e., leverage the web application version of
the third party application).

FIG. 3 illustrates an example of the search engine 300.
The search engine 300 is configured to receive search
queries 122 and device profiles 126 from user devices 200
and to perform application searches (e.g., function based
application searches or application state searches) based on
the search queries 122 and device profiles 126. The search
engine 300 can include a processing device 310, a network
interface device 320, and a storage device 330.
The processing device 310 can include memory (e.g.,

RAM and/or ROM) that stores computer readable instruc
tions and one or more physical processors that execute the
computer readable instructions. In implementations where
the processing device 310 includes more than one processor,
the processors can operate in an individual or distributed
manner. Furthermore, in these implementations the two or
more processors can be in the same computing device or can
be implemented in separate computing devices (e.g., rack
mounted servers). The processing device 310 can execute a
search module 312 and a device profile decoder 314. The
processing device 310 can execute additional components
not shown.
The network interface device 320 includes one or more

devices that can perform wired or wireless (e.g., WiFi or
cellular) communication. Examples of the network interface
device 320 include, but are not limited to, a transceiver
configured to perform communications using the IEEE
802.11 wireless standard, an Ethernet port, a wireless trans
mitter, and a universal serial bus (USB) port.
The storage device 330 can include one or more computer

readable storage mediums (e.g., hard disk drives and/or flash
memory drives). The storage mediums can be located at the
same physical location or at different physical locations
(e.g., different servers and/or different data centers). The
storage device 230 can store one or more of an application
datastore 332, an application state datastore 336, and device
profiles 126 of one or more user devices 200.

5

10

15

25

30

35

40

45

50

55

60

65

14
The search module 312 receives a search query 122 and

generates the search results 130 based thereon. The search
module 312 can perform any suitable type of search to
identify the search results 130. For example, the search
module 312 can perform function based application searches
and/or application state searches.

In some implementations, the search module 312 can
initiate a search session. The search module 312 receives a
request from a user device 200 to initiate a search session.
The search module 312 can open a new search session and
assign a session ID to the new search session. The search
module 312 can respond to the user device 200 with the
session ID. In these implementations, the user device 200
can provide the session ID in Subsequent query wrappers
120 for the duration of the search session. In some imple
mentations, the user device 200 can provide the device
profile 126 of the user device 200 during or upon initiation
of the search session. In these implementations, the search
module 312 associates the session ID to the device profile
126 so that the search module 312 can look up the device
profile 126 when it receives subsequent query wrappers 120
containing the session ID.

In implementations where the device profile 126 is
encoded in a Bloom filter 260, the device profile decoder
314 queries the encoded device profile 126e to obtain the
device features 128 of a user device 200. The device profile
decoder 314 can receive the encoded device profile 126e at
the initiation of a search session. Alternatively, the device
profile decoder 314 can receive the encoded device profile
126e at query time (e.g., the user device 200 transmits the
encoded device profile 126e with each search query 122).
The device profile decoder 314 queries the encoded

device profile 126 according to the manner by which the
device profile 126 was encoded. As previously discussed
and according to Some implementations, an encoded device
profile 126e can include one or more Bloom filters 260,
whereby the one or more Bloom filters 260 represent a one
or more list of applications (e.g., application IDs 266 of
applications 110 installed on a user device 200, application
IDs 266 of applications 110 recently executed by the user
device 200, application IDs 266 of web applications 216
recently accessed by the user device 200, or application IDs
266 of applications 110 deleted from the user device 200).
The device profile decoder 314 queries the Bloom filters 260
(or partitions of the Bloom filter 260) to obtain the different
lists of applications 110.

In implementations where the encoded device profile 126
includes a Bloom filter 260, the device profile decoder 314
utilizes a hashing procedure 262 that is identical or Substan
tially identical (that is, outputs the same values in response
to identical input) to the hashing procedure 262 executed by
the search application 214 to determine the likely contents of
the device profile 126. Initially, the device profile decoder
314 obtains a list of potential applications 110. The list of
potential applications 110 can be the consideration set 160 of
applications determined by the search module 312 (dis
cussed below) or can be the entire collection of applications
that have application records 334 stored in the application
datastore 332. Each of the potential applications 110 has a
corresponding application ID 266. The device profile
decoder 314 retrieves an application ID 266 of an applica
tion 110 of a set of potential applications 110 and feeds the
application ID 266 to the hashing procedure 262. The output
of the hashing procedure 262 is k values, each value
representing a different index address. Thus, the device
profile decoder 314 inputs an application ID 266 into the
hashing procedure 262, which outputs k index addresses.

US 9,721,021 B2
15

Alternatively, the device profile decoder 314 can utilize a
lookup table that stores pre-calculated results of the hashing
procedure 262. The lookup table can provide the results of
the hashing procedure 262 for the application IDs 266 of
each possible application 110 represented in the application
datastore 332 (e.g., via application records 334). In some of
these implementations, the lookup table can associate appli
cation IDs 266 or application names to the k index
addresses.
The device profile decoder 314 checks the values of the

elements of the Bloom filter 260 at each of the k index
addresses, and if the values of the elements of each of the k
indexes addresses are equal to one, then the device profile
decoder 314 determines that the retrieved application ID
likely belongs to a list of application IDs 266. For example,
drawing from the example given with respect to FIG. 2B, the
device profile decoder 314 may retrieve an application ID
266 of 3981 and may feed the application ID 266 into the
hashing procedure 262. The hash procedure 262 outputs the
values 1, 7, 10, and 245. The device profile decoder 314 then
checks the values of the Bloom filter 260 at the index
addresses 1, 7, 10, and 245. If each of the values are equal
to one, the device profile decoder 314 determines that it is
likely that the user device 200 included the application 110
corresponding to the application ID 266 of 3981 in a list of
applications 110 (with a Bloom filter 260, there does exist a
possibility of false positives but not of false negatives). If
any of the elements at one or more of the index addresses are
equal to Zero, the device profile decoder 314 determines that
the application corresponding to the application ID 266 does
not belong in the list of applications 110. The device profile
decoder 314 repeats this process for each application in the
set of potential applications 110 to obtain a list of application
IDs 266 (e.g., application IDs 266 of native applications 218
that are likely on the user device 200, native applications
218 that are likely recently executed by the user device 200,
web applications 216 that were likely recently accessed by
the user device 200, or native applications 218 that were
likely deleted from the user device 200). If the compressed
device profile 126 includes more than one Bloom filter 260,
this process is repeated for each Bloom filter 260.

In implementations where the user device 200 (e.g.,
search application 212) adds characters to an application ID
266 to indicate which list or lists the application 110 belongs
to, the device profile decoder 314 can recreate the applica
tion IDs 266 of the potential applications 110 in the same
manner. Drawing from the example provided above, if the
potential applications include the application having the
application ID 12345, the device profile decoder 314 can
query the Bloom filter 260 using the following application
IDS: 12345SI (installed on the user device 200), 12345SR
(recently executed by the user device 200), and 12345SD
(deleted from the user device 200). In this way, the device
decoder 314 can determine whether the application is
installed, recently executed, and/or deleted from the user
device 200 using a single Bloom filter 260.

In some implementations, the device profile decoder 314
can recreate a device profile 126r of the user device 200
based on the querying of the encoded device profile 126e. In
some of these implementations, the recreated device profile
126r is a device-specific lookup table indicating the device
features 128 of the user device 200. For example, the device
profile decoder 314 can create a device-specific lookup table
that indicates a list of native applications that are installed on
the user device 200, a list of native applications 218 recently
executed by the user device 200, list of web applications 216
recently accessed by the user device 200, and/or a list of

5

10

15

25

30

35

40

45

50

55

60

65

16
applications 110 that were deleted from the user device 200.
The recreated device profile 128R can be associated with the
session ID of a search session and/or can be associated with
a user profile that the user device 200 is associated with.

In implementations where the device profile 126 is com
pressed, the device profile decoder 314 can decompress the
device profile 126 to obtain the device features. In these
implementations, the device profile decoder 314 can utilize
known decompression techniques to decompress the device
profile 126. The device profile decoder 314 can generate a
recreated device profile 126r based on the results of the
decompression (e.g., a device-specific lookup table). The
recreated device profile 126r table can be associated with the
session ID of a search session and/or can be associated with
a user profile that the user device 200 is associated with.

In implementations where the device profile 126 is
received at the beginning of a search session, the device
profile decoder 314 can cache the recreated device profile
126r (e.g., the user specific lookup table) in the storage
device 230. In these implementations, the search module
312 can assign the session ID to the recreated device profile
128R of the user device 200 that requested the search
session, such that when the search module 312 receives a
Subsequent query wrapper 120 containing the session ID, the
search module 312 can retrieve the recreated device profile
126r of the user device 200. Alternatively, an encoded
device profile 126e can be cached and can be queried each
time a new search query 122 is received and processed. In
other implementations, the encoded device profile 126 is
received with a search query 122 and the device profile
decoder 314 queries the encoded device profile 126e while
the search engine 300 processes the search query 122.
The search module 312 receives a query wrapper 120

containing the search query 122 and one or more query
parameters 124 from a user device 200. The search module
312 identifies the search results 130 based on the search
query 122 and/or the one or more query parameters 124. The
search module 312 utilizes a recreated device profile 126r
corresponding to the user device 200 tailor the search results
130 to the user device 200. In some implementations, the
recreated device profile 126r is used to rank the items
included in the search results 130. Additionally or alterna
tively, the search module 312 may utilize the recreated
device profile 126r to include/exclude items in/from the
search results 130.

In implementations where the search module 312 per
forms function based application searches, the search mod
ule 312 can utilize the application data store 332 to perform
the search. The application datastore 332 may include one or
more databases, indices (e.g., inverted indices), files, or
other data structures storing this data. The application data
store 332 includes application data of different applications
110. The application data of an application 110 may include
keywords associated with the application 110, reviews asso
ciated with the application 110, the name of the developer of
the application 110, the platform of the application 110, the
price of the application 110, application statistics (e.g., a
number of downloads of the application and/or a number of
ratings of the application), a category of the application 110.
and other information. The application datastore 332 may
include metadata for a variety of different applications 110
available on a variety of different operating systems.

In some implementations, the application datastore 332
stores the application data in application records 334. Each
application record 334 can correspond to an application 110
and may include the application data pertaining to the
application 110. An example application record 334 includes

US 9,721,021 B2
17

an application name, an application ID 266, and other
application features. The application record 334 may gen
erally represent the application data stored in the application
datastore 332 that is related to an application 110.
The application name may be the trade name of the

application represented by the data in the application record
334. The application ID 266 identifies the application record
334 (or application 110) amongst the other application
records 334 (or other applications 110) included in the
application datastore 332. In some implementations, the
application ID 266 may uniquely identify the application
record 334. In some implementations, the application ID is
also used by the user device 200 to populate the device
profile 126. In some implementations, the application ID
266 is a unique ID that the digital distribution platform that
offers the application assigns to the application. In other
implementations, the search engine 300 assigns application
IDs 266 to each application 110 when creating an applica
tion record 334 for the application 110.

The application features may include any type of data that
may be associated with the application 110 represented by
the application record 334. The application features may
include a variety of different types of metadata. For example,
the application features may include structured, semi-struc
tured, and/or unstructured data. The application features
may include information that is extracted or inferred from
documents retrieved from other data sources (e.g., digital
distribution platforms, application developers, blogs, and
reviews of applications) or that is manually generated (e.g.,
entered by a human).
The application features may include the name of the

developer of the application 110, a category (e.g., genre) of
the application 110, a description of the application 110
(e.g., a description provided by the developer), a version of
the application 110, the operating system the application is
configured for, and the price of the application 110. The
application features further include feedback units provided
to the application. Feedback units can include ratings pro
vided by reviewers of the application 110 (e.g., four out of
five stars) and/or textual reviews (e.g., “This app is great').
The application features can also include application statis
tics. Application statistics may refer to numerical data
related to the application 110. For example, application
statistics may include, but are not limited to, a number of
downloads of the application 110, a download rate (e.g.,
downloads per month) of the application, and/or a number of
feedback units (e.g., a number of ratings and/or a number of
reviews) that the application has received. The application
features may also include information retrieved from web
sites, such as comments associated with the application,
articles associated with the application (e.g., wiki articles),
or other information. The application features may also
include digital media related to the application 110, such as
images (e.g., icons associated with the application and/or
screenshots of the application) or videos (e.g., a sample
Video of the application).
The search module 312 receives a query wrapper 120 that

contains a search query 122 and in some scenarios, one or
more query parameters 124. The search module 312 may
perform various analysis operations on the search query 122.
For example, analysis operations performed by the search
module 312 may include, but are not limited to, tokenization
of the search query 122, filtering of the search query 122,
Stemming the search query 122, synonymization of the
search query 122, and stop word removal. In some imple
mentations, the search module 312 may further generate one
or more reformulated search queries based on the search

10

15

25

30

35

40

45

50

55

60

65

18
query 122 and the query parameters 124. Reformulated
search queries are search queries that are based on some
Sub-combination of the search query 122 and the query
parameters 124.

In some implementations, the search module 312 identi
fies a consideration set 160 of applications (e.g., a list of
applications) based on the search query 122 and, in some
implementations, the reformulated queries. In some
examples, the search module 312 may identify the consid
eration set 160 by identifying applications 110 that corre
spond to the search query 122 or the reformulated search
queries based on matches between terms of the query 122
and terms in the application data of the application (e.g., in
the application record 334 of the application). For example,
the search module 312 may identify one or more applica
tions represented in the application datastore 332 based on
matches between tokens representing the terms of the search
query 122 and words included in the application records 334
of those applications 110. The consideration set 160 may
include a list of application IDs and/or a list of application
aCS.

The search module 312 may be further configured to
perform a variety of different processing operations on the
consideration set 160 to obtain the search results 130. In
Some implementations, the search module 312 may generate
a result score for each of the applications 110 included in the
consideration set 160. In some examples, the search module
312 may cull the consideration set 160 based on the result
scores of the applications contained therein. For example,
the Subset may be those applications 110 having the greatest
result scores or have result scores that exceed a threshold.
The information conveyed in the search results 130 may
depend on how the search module 312 calculates the result
scores. For example, the result scores may indicate the
relevance of an application to the search query 122, the
popularity of an application in the marketplace, the quality
of an application, and/or other properties of the application.
The search module 312 may generate result scores of

applications 110 in a variety of different ways. In general,
the search module 312 may generate a result score for an
application 110 based on one or more scoring features. The
search module 312 may associate the scoring features with
the application 110 and/or the query 122. An application
scoring feature may include any data associated with an
application 110. For example, application scoring features
may include any of the application features included in the
application record 334 or any additional parameters related
to the application 110. Such as data indicating the popularity
of an application 110 (e.g., number of downloads) and the
ratings (e.g., number of stars) associated with the application
110. A query scoring feature may include any data associated
with a search query 122. For example, query scoring fea
tures may include, but are not limited to, a number of words
in the search query 122, the popularity of the search query
122 (e.g., the frequency at which users provide the same
search query 122), and the expected frequency of the words
in the search query 122. An application-query scoring fea
ture may include any data, which may be generated based on
data associated with both the application 110 and the search
query 122 (e.g., the query that resulted in the search module
312 identifying the application record 334 of the application
110). For example, application-query scoring features may
include, but are not limited to, parameters that indicate how
well the terms of the query match the terms of the identified
application record 334. The search module 312 may gener
ate a result score for an application based on at least one of

US 9,721,021 B2
19

the application scoring features, the query scoring features,
and the application-query scoring features.
The search module 312 may determine a result score

based on one or more of the scoring features listed herein
and/or additional scoring features not explicitly listed. In
Some examples, the search module 312 may include one or
more machine-learned models (e.g., a Supervised learning
model) configured to receive one or more scoring features.
The one or more machine-learned models may generate
result scores based on at least one of the application scoring
features, the query scoring features, and the application
query scoring features. For example, the search module 312
may pair the query 122 with each application 110 and
calculate a vector of features for each (query, application)
pair. The vector of features may include application scoring
features, query scoring features, and application-query scor
ing features. The search module 312 may then input the
vector of features into a machine-learned regression model
to calculate a result score that may be used to rank the
applications 110 in the consideration set 160. In some
examples, the machine-learned regression model may
include a set of decision trees (e.g., gradient boosted deci
sion trees). In another example, the machine-learned regres
sion model may include a logistic probability formula. In
Some examples, the machine learned task can be framed as
a semi-supervised learning task, where a minority of the
training data is labeled with human curated scores and the
rest are used without human labels. The foregoing is one
example manner by which the search module 312 can
calculate a result score. According to Some implementations,
the search module 312 can calculate result scores in alternate
aS.

In some implementations, the search module 312 may
also utilize one or more of the device features 128 of the
recreated device profile 126 R to determine the result score
for the application 110. For instance, whether the application
110 is already installed on the user device 200 or was deleted
from the user device 200 can influence the result score
(namely, the application 110 may be less relevant to the
search query is it is already installed or has been deleted
from the device 200). The search module 312 can feed the
device features 128 from the recreated device profile 126r
into the machine learned model(s) along with the other
features of the application 110.

In other implementations, the search module 312 per
forms variable boosting on the result scores based on the
device features 128 contained in the recreated device profile
126r. In these implementations, the search module 312 may
implement business rules that take into account the device
features 128 to determine whether to perform variable
boosting. Variable boosting can include multiplying a result
score of an application 110 in the consideration set by a
boosting factor. A boosting factor can be a value that either
increases (> 1) or decreases (<1) the result score of an
application 110. The values of the boosting factors can be
selected in any Suitable manner. In an example, one business
rule may instruct the search module 312 to multiply the
result score by a first boosting factor (e.g., 0.8) if the
application 110 is installed on the user device 200 and by a
second boosting factor (e.g., 0.5) if the application 110 has
been deleted from the user device 200. Another example
business rule may instruct the search module 312 to multiply
the result score by a first boosting factor (e.g., 0.8) if the
application 110 is installed on the user device 200 and to
remove the application 110 from the consideration set 160 if
the application 110 has been deleted from the user device
200. In another example, the business rule may instruct the

5

10

15

25

30

35

40

45

50

55

60

65

20
search module 312 to multiply the result score by a boosting
factor (1.5) if the application 110 is not indicated in the
device profile (i.e., the application 110 has never been
installed on the user device). The foregoing are examples of
business rules. The search module 312 may implement any
other suitable additional or alternative business rules.
The search module 312 may use the result scores in a

variety of different ways. In some examples, the search
module 312 may use the result scores to rank the applica
tions 110 in the consideration set 160 and that are ultimately
included in the search results 130. In these examples, a
greater result score may indicate that the application 110 is
more relevant to the search query 122 and/or the query
parameters 124 than an application 110 having a lesser result
score. Additionally or alternatively, the search module 312
can cull the consideration set 160 by removing applications
110 from the consideration set 160 that have result scores
that do not exceed a minimum threshold. The search module
312 can include any remaining applications 110 of the
consideration set 160 in the search results 130. In examples
where the search results 130 are displayed as a list of
application descriptions (e.g., an icon of an application 110
and a description of the application 110) on a user device
200, the application descriptions associated with larger
result scores may be listed nearer to the top of the displayed
search results 130 (e.g., near to the top of the screen). In
these examples, application descriptions having lesser result
scores may be located farther down the displayed search
results 130 (e.g., off screen) and may be accessed by a user
scrolling down the screen of the user device 200 or viewing
a Subsequent page of search results 130.
The search module 312 can generate result objects 133 for

each application 110 indicated in the consideration set 160
(after processing). The search module 312 can generate a
result object 133 based on the application records 334. The
result object 133 can include a link to a digital distribution
platform where the application 110 can be purchased and/or
downloaded. The link can include a resource identifier (e.g.,
an application resource identifier and/or a web resource
identifier) to a state of the digital distribution platform where
the application 110 can be downloaded. The result object
133 can further include additional data. The additional data
can be textual (e.g., a description of the application state) or
non-textual (an icon or screen shot). The search module 312
can obtain the additional data from the application record
334 of the corresponding application 110.

In some implementations, the search module 312 per
forms application state searches. The search module 312 can
perform an application state search in any Suitable manner.
In particular, the search module 312 determines one or more
state links to include in the search results based on a received
search query 122, the device profile 126, and Zero or more
additional parameters 124.

In some implementations where the search module 312
performs application state searches, the search module 312
can utilize the application state datastore 336 to perform the
search. The application datastore 332 may include one or
more databases, indices (e.g., inverted indices), files, or
other data structures storing this data. The application state
datastore 336 includes application state data of different
states of applications 110 as well as application data of the
corresponding applications 110. The application state data of
a state may include keywords appearing at the specified
state, one or more resource identifiers (e.g., an application
resource identifier) for accessing the state, a state identifier
(“state ID'), a screen shot of the state of the application 110.
and/or a description of the specified State.

US 9,721,021 B2
21

In some implementations, the application state datastore
336 stores the application state data in application state
records 338. Each application state record 338 can corre
spond to a different application state. Thus, an application
110 may have hundreds or thousands of states corresponding
thereto. For example, the YELPR) application may have a
different state record for each entry in the YELPR) system.
Thus, each restaurant, store, bakery or spa, may have a
corresponding application state record 338. Each application
state record 338 may include the keywords appearing at the
specified State, one or more resource identifiers, descrip
tions, non-textual information (e.g., screen shots), descrip
tions of the state, and a state ID. The state ID may be used
to identify the application state record 338 from other state
records 338 stored in the application state datastore 336.
Each application state record 338 may also reference the
application record 334 to which the record 338 corresponds
or can include the application data of the corresponding
application 110 in the application state record 338.
The search module 312 receives a query wrapper 120 that

contains a search query 122 and in some scenarios, one or
more query parameters 124. The search module 312 may
perform various analysis operations on the search query 122.
For example, analysis operations performed by the search
module 312 may include, but are not limited to, tokenization
of the search query 122, filtering of the search query 122,
Stemming the search query 122, synonymization of the
search query 122, and stop word removal. In some imple
mentations, the search module 312 may further generate one
or more reformulated search queries based on the search
query 122 and the query parameters 124. Reformulated
search queries are search queries that are based on some
Sub-combination of the search query 122 and the query
parameters 124.

In some implementations, the search module 312 identi
fies a consideration set 160 of application states (e.g., a set
of application state records 338) based on the search query
122 and, in some implementations, the reformulated queries.
The consideration set 160 of application states can identify
one or more states of an application 110 as well as the
applications 110 themselves. In some examples, the search
module 312 may identify the consideration set 160 by
identifying application states that correspond to the search
query 122 or the reformulated search queries based on
matches between terms of the query 122 and terms in the
application state data of the application state record 338. For
example, the search module 312 may identify a set of state
records 338 in the application state datastore 336 based on
matches between tokens representing the search query 122
or reformulated queries and words included in the applica
tion state records 338, such as words included in the
application state information. The consideration set 160 of
application States can identify multiple states of a single
application 110 and/or application states of different appli
cations 110. For example, the consideration set 160 can
identify two different states of a first application 110 and
three states of a second application 110.

The search module 312 may be further configured to
perform a variety of different processing operations on the
consideration set 160 of application states to obtain the
search results 130. In some implementations, the search
module 312 may generate a result score for each of the
application states indicated in the consideration set 160. In
Some examples, the search module 312 may cull the con
sideration set 160 based on the result scores of the applica
tions 110 contained therein. The information conveyed in the
search results 130 may depend on how the search module

10

15

25

30

35

40

45

50

55

60

65

22
312 calculates the result scores. For example, a result score
may indicate the relevance of an application state to the
search query 122.
The search module 312 may generate a result score of an

application state in a variety of different ways. In general,
the search module 312 may generate a result score for an
application state based on one or more scoring features. The
search module 312 may associate the scoring features with
the application 110 and/or the query 122. An application
record scoring feature (hereinafter “record scoring feature')
may include any data associated with an application state
record 338. For example, record scoring features may be
based on any data included in the application state informa
tion of the application state record. Example record scoring
features may be a quality score, whether the application state
record 338 includes a resource identifier that leads to a
default state or a deeper native application state, and, for
newly generated application state records, the number of
application state records used to generate the newly gener
ated application state record, as described hereinafter. A
query scoring feature may include any data associated with
the search query 122. For example, query scoring features
may include, but are not limited to, a number of words in the
search query 122, the popularity of the search query 122, and
the expected frequency of the words in the search query 122.
A record-query scoring feature may include any data which
may be generated based on data associated with both the
application state record 338 and the search query 122 that
resulted in identification of the function record by the search
module 312. For example, record-query scoring features
may include, but are not limited to, parameters that indicate
how well the terms of the search query 122 match the terms
of the application state information of the identified appli
cation state record 338. The search module 312 may gen
erate a result score for function record based on at least one
of the record scoring features, the query scoring features,
and the record-query scoring features.
The search module 312 may determine a result score

based on one or more of the scoring features listed herein
and/or additional scoring features not explicitly listed. In
Some examples, the search module 312 may include one or
more machine learned models (e.g., a Supervised learning
model) configured to receive one or more scoring features.
The one or more machine learned models may generate
result scores based on at least one of the record scoring
features, the query scoring features, and the record-query
scoring features. For example, search module 312 may pair
the search query 122 with each application state record 338
and calculate a vector of features for each (query, record)
pair. The vector of features may include one or more record
scoring features, one or more query scoring features, and
one or more record-query scoring features. The search
module 312 may then input the vector of features into a
machine-learned regression model to calculate a result score
for the application state record 338. In some examples, the
machine-learned regression model may include a set of
decision trees (e.g., gradient boosted decision trees). In
another example, the machine-learned regression model
may include a logistic probability formula. In some
examples, the machine learned task can be framed as a
semi-supervised learning task, where a minority of the
training data is labeled with human curated scores and the
rest are used without human labels. The foregoing is one
example manner by which the search module 312 can
calculate a result score of an application state record 338.
According to some implementations, the search module 312
can calculate result scores in alternate manners.

US 9,721,021 B2
23

In some implementations, the search module 312 may
also utilize one or more of the device features 128 in the
recreated device profile 128R to determine the result score
for the application state record 338. For instance, whether an
application 110 corresponding to the application state record
338 is already installed on the user device 200, was recently
executed by the user device 200, recently accessed by the
user device 200, or was deleted from the user device 200 can
influence the result score. For example, if an application 110
is installed on or was recently executed by the user device
200, then the model may determine that the application state
record 338 is more relevant to the search query 122 (e.g., the
result score is greater than it would have been). Conversely,
if the application 110 has been deleted from the user device
200, the model may determine that the application state
record 338 is less relevant (e.g., the result score is less than
it would have normally been). The search module 312 can
feed the device features 128 from the recreated device
profile 126r into the machine learned model(s) along with
the other features of the application 110.

In other implementations, the search module 312 per
forms variable boosting on the result scores based on the
device features. In these implementations, the search module
312 may implement business rules that take into account the
device features. For example, one business rule may instruct
the search module 312 to multiply the result score of
application states corresponding to an application 110 by a
first boosting factor (e.g., 1.3) if the application 110 is
installed on the user device 200 and by a second boosting
factor (e.g., 1.5) if the application 110 has been recently
executed by the user device 200. Another example business
rule may instruct the search module 312 to multiply the
result score by a third boosting factor (e.g., 0.5) or remove
the application states corresponding to the application 110 if
the application 110 from the consideration set 160 has been
deleted from the user device 200. The foregoing are
examples of business rules. The search module 312 may
implement additional or alternative business rules.
Once scored, the search module 312 can generate the

search results 130 based on the results scores and the
application state records 338 to which the results scores
correspond. The search module 312 can rank the application
state records 338 based on the results scores. In these
implementations, a greater result score may indicate that the
application state record 338 is more relevant to the search
query 122 and/or the query parameters 124 than an appli
cation state record 338 having a lesser result score. Addi
tionally or alternatively, the search module 312 can cull the
consideration set 160 by removing application State records
338 from the consideration set 160 that have result scores
that do not exceed a minimum threshold. The search module
312 can include any remaining applications 110 of the
consideration set 160 in the search results 130. Furthermore,
the search module 312 can group the application state
records 338 according to the application 110 to which the
application state records 338 correspond. For instance, if
two application state records 338 correspond to a first
application 110 and three application state records 338
correspond to a second record, the search module 312 may
group two application state records 338 together and the
other three applications state records 338 together. The
search module 312 may further rank the application state
records 338 within the individual groupings.
The search module 312 can generate result objects for

each application state records 338 that it determines to
include in the search results. The search module 312 can
generate a result object for each application state record 338.

5

10

15

25

30

35

40

45

50

55

60

65

24
The result object can include a state link and additional data.
The state link can include one or more resource identifiers
(e.g., an application resource identifier and/or a web
resource identifier) and/or commands for accessing the
application state. The search module 312 can obtain the one
or more resource identifiers from the application state record
338. The additional data can be textual (e.g., a description of
the application state) or non-textual (an icon or screen shot).
The search module 312 can obtain the additional data from
the application state record 338 or from an application
record 334 of the corresponding application 110. In some
implementations, the search module 312 generates execut
able code (e.g., a JSON file) that contains the search results
130 (e.g., the result objects).
The search module 312 transmits the search results to the

user device 200 (from any type of application search). In
some implementations, the user device 200 can render the
search results into a displayable format. The user device 200
can display the search results 130 via its user interface 240.

Referring now to FIG. 4, an example set of operations for
a method 400 for performing an application search is
illustrated. In the example of FIG. 4, the application search
is a function based application search. For purposes of
explanation, the method 400 is explained with respect to the
components of the search engine 300.
At operation 410, the search module 312 initiates a search

session. The search module 312 may initiate the search
session in response to a request for a search session from a
user device 200. The search module 312 can open a new
search session and assign a session ID to the new search
session. The search module 312 can communicate the ses
sion ID to the user device 200, thereby confirming initiation
of the search session.
At operation 412, the search module 312 receives an

encoded device profile 126e from the user device 200. The
user device 200 can transmit the encoded device profile 126e
during the initiation of the search session or with a Subse
quent search query 122 (e.g., in the query wrapper 120 of the
search query 122). The encoded device profile 126e indi
cates one or more device features 128. The device features
128 can include a list of applications 110 that are installed
on the user device 200, a list of applications 110 that were
recently executed by the user device 200, list of web
applications web applications 216 recently accessed by the
user device 200, and/or a list of applications 110 that have
been deleted from the user device 200.
At operation 414, the search module 312 receives a search

query 122 from the user device 200. The user device 200
may include the search query 122 in a query wrapper 120.
The user device 200 may further include additional param
eter 124 in the query wrapper 120. In some implementations,
the user device 200 can provide an encoded device profile
126e in the query wrapper 120.
At operation 416, the search module 312 identifies a

considerations set of applications 110. In some implemen
tations, identifies one or more application records 334 from
the application datastore 332 based on the search query 122
and Zero or more additional query parameters 124, as
discussed above (e.g., a function based application search).
The consideration set 160 identifies application records that
are at least somewhat relevant to the search query 122 and/or
one or more of the query parameters 124.
At operation 418, the device profile decoder 314 recreates

a device profile 126r of the requesting user device 200 based
on the encoded device profile 126e. According to some of
these implementations, the encoded device profile 126e
includes one or more Bloom filters 260 or a Bloom filter 260

US 9,721,021 B2
25

having one or more partitions. In these implementations,
each Bloom filter 260 or each partition of a single Bloom
filter 260 can indicate a different list of applications 110
(e.g., a list of native applications 218 that are installed on the
user device 200, a list of native applications 218 that were
recently executed by the user device 200, list of web
applications 216 recently accessed by the user device 200,
and/or a list of native applications 218 that have been deleted
from the user device 200). The device profile decoder 314
can obtain a list of potential applications 110 that indicates
one or more applications that could be represented by the
Bloom filter 260. In some implementations, the list of
potential applications 110 indicates all of the applications
110 represented in the application datastore 332. In other
implementations, the device profile decoder 314 utilizes the
consideration set 160 to determine the list of potential
applications 110. The device profile decoder 314 utilizes the
application IDs 266 of the applications 110 indicated in the
list of potential applications 110 to query the Bloom filter
260. For each application ID 266, the device profile decoder
314 feeds the application ID 266 to the hash procedure 262
to obtain kindex addresses. The device profile decoder 314
checks the values of the elements at the kindex addresses.
If all of the k elements are equal to one, then the device
profile decoder 314 determines that the application 110
corresponding to the application ID 266 was likely included
in the list of applications 110 communicated in the encoded
device profile 126e. The device profile decoder 314 can add
the application 110 to the recreated device profile 126r of the
user device 200, as discussed above. The device profile
decoder 314 can repeat this process for each application 110
indicated in the list of potential applications 110. In this way,
the device profile decoder 314 recreates the device profile
126r thereby identifying at least some of the device features
of the user device 200.

In some implementations, the encoded device profile 126e
is a compressed device profile. In these implementations, the
device profile decoder can decompress the encoded device
profile 126 and can recreate the device profile 126r based on
the results of the decompression.

At operation 420, the search module 312 adjusts the
consideration set 160 based on the recreated device profile
126. In implementations, the search module 312 feeds the
device features 128 of the recreated device profile 126r into
a machine learned scoring model when scoring each appli
cation 110 in the consideration set 160. For each application
110 in the consideration set 160, the search module 312 can
feed the device features 128, as they pertain to the applica
tion 110 (e.g., whether the application 110 is installed on the
user device 200, recently executed by the user device,
recently accessed by the user device 200, and/or deleted
from the user device 200), into the machine learned scoring
model along with application scoring features of the appli
cation 110, query scoring feature of the query, and applica
tion-query scoring features which relate the search query
122 to the application 110. The machine learned scoring
model outputs a result score of the application 110 which
takes into account the device features 128 of the user device
126 as they pertain to the application 110.

In other implementations, the search module 312 deter
mines the result scores of each application 110 using the
scoring models without taking into account the device
features 128 of the user device 200. In these implementa
tions, the search module 312 performs variable boosting on
the result scores based on the device features 128 and one or
more business rules. For example, the search module 312
can multiply the result score of an application 110 by a first

10

15

25

30

35

40

45

50

55

60

65

26
boosting factor (e.g., 0.8), if the application 110 is installed
on the user device 200 and/or by a second boosting factor
(e.g., 0.3), if the application 110 has been deleted from the
user device 200.
The search module 312 can rank the applications 110 in

the consideration set 160 based on the results scores thereof.
Additionally or alternatively, the search module 312 can cull
the consideration set 160 based on the result scores. For
example, the search module 312 can remove applications
110 from the consideration set 160 that have result scores
that are below a threshold.
At operation 422, the search module 312 generates the

search results 130 based on the adjusted consideration set
160. In some implementations, the search module 312
generates result objects using the application data contained
in the application 110 records 334 indicated by the consid
eration set 160. At operation 424, the search module 312
communicates the search results to the user device 200.

Referring now to FIG. 5, an example set of operations for
a method 500 for performing an application search is
illustrated. In the example of FIG. 5, the application search
is an application state search. For purposes of explanation,
the method 500 is explained with respect to the components
of the search engine 300.
At operation 510, the search module 312 initiates a search

session. The search module 312 may initiate the search
session in response to a request for a search session from a
user device 200. The search module 312 can open a new
search session and assign a session ID to the new search
session. The search module 312 can communicate the ses
sion ID to the user device 200, thereby confirming initiation
of the search session.
At operation 512, the search module 312 receives an

encoded device profile 126e from the user device 200. The
user device 200 can transmit the encoded device profile 126e
during the initiation of the search session or with a Subse
quent search query 122 (e.g., in the query wrapper 120 of the
search query 122). The encoded device profile 126e can
indicate one or more device features 128. The device fea
tures can include a list of applications 110 that are installed
on the user device 200, a list of applications 110 that were
recently executed by the user device 200, list of web
applications 216 recently accessed by the user device 200,
and/or a list of applications 110 that have been deleted from
the user device 200.
At operation 514, the search module 312 receives a search

query 122 from the user device 200. The user device 200
may include the search query 122 in a query wrapper 120.
The user device 200 may further include additional param
eter 124 in the query wrapper 120. In some implementations,
the user device 200 can provide the encoded device profile
126e in the query wrapper 120.
At operation 516, the search module 312 identifies a

considerations set of application states. In some implemen
tations, identifies one or more application state records 338
from the application state datastore 336 based on the search
query 122 and Zero or more additional query parameters
124, as discussed above (e.g., application state search). The
consideration set 160 identifies application state records that
are at least somewhat relevant to the search query 122 and/or
one or more of the query parameters 124.
At operation 518, the device profile decoder recreates a

device profile 126r of the requesting user device 200 based
on the encoded device profile 126e. In some implementa
tions, the encoded device profile 126e includes one or more
Bloom filters 260 or a Bloom filter 260 having one or more
partitions. In these implementations, each Bloom filter 260

US 9,721,021 B2
27

or each partition of a single Bloom filter 260 can indicate a
different list of applications 110 (e.g., a list of applications
110 that are installed on the user device 200, a list of
applications 110 that were recently executed by the user
device 200, list of web applications 216 recently accessed by
the user device 200, and/or a list of applications 110 that
have been deleted from the user device 200). The device
profile decoder 314 can obtain a list of potential applications
110 that indicates one or more applications 110 that could be
represented by the Bloom filter 260. In some implementa
tions, the list of potential applications 110 indicates all of the
applications 110 represented in the application datastore
332. In other implementations, the device profile decoder
314 utilizes the consideration set 160 to determine the list of
potential applications 110. The device profile decoder 314
utilizes the application IDs 266 of the applications 110
indicated in the list of potential applications to query the
Bloom filter 260. For each application ID 266, the device
profile decoder 314 feeds the application ID 266 to the hash
procedure 262 to obtain k index addresses. The device
profile decoder 314 checks the values of the elements at the
k index addresses. If all of the k elements are equal to one,
then the device profile decoder 314 determines that the
application 110 corresponding to the application ID 266 was
likely included in the list of applications 110 communicated
in the encoded device profile 126e. The device profile
decoder 314 can add the application 110 to the recreated
device profile 126r of the user device 200, as discussed
above. The device profile decoder 314 can repeat this
process for each application 110 indicated in the list of
potential applications 110. In this way, the device profile
decoder 314 recreates the device profile 126r thereby iden
tifying at least some of the device features of the user device
2OO.

In some implementations, the encoded device profile 126e
is a compressed device profile. In these implementations, the
device profile decoder can decompress the encoded device
profile 126 and can recreate the device profile 126r based on
the results of the decompression.

At operation 520, the search module 312 adjusts the
consideration set 160 based on the recreated device profile
126. In some implementations, the search module 312 feeds
the device features 128 of the recreated device profile 126r
into a machine learned scoring model when scoring each
application state indicated in the consideration set 160. For
each application state indicated in the consideration set 160,
the search module 312 can feed the device features 128, as
they pertain to the application 110 of the application state
(e.g., whether the application 110 is installed on the user
device 200, recently executed by the user device, accessed
by the user device 200, and/or deleted from the user device
200), into the machine learned scoring model along with
record scoring features of the application state, query scor
ing feature of the query, and application-query scoring
features which relate the search query 122 to the application
state. The machine learned scoring model outputs a result
score of the application state which takes into account the
device features as they pertain to the application 110 to
which the application state corresponds.

In other implementations, the search module 312 deter
mines the result scores of each application state using the
scoring models without taking into account the device
features 128 of the user device 200. In these implementa
tions, the search module 312 performs variable boosting on
the result scores based on the device features 128 and one or
more business rules. For example, the search module 312
can multiply the result score of an application 110 by a first

10

15

25

30

35

40

45

50

55

60

65

28
boosting factor (e.g., 1.7), if the application 110 is installed
on the user device 200 and/or by a second boosting factor
(e.g., 0.4), if the application 110 has been deleted from the
user device 200.
The search module 312 can rank the applications 110 in

the consideration set 160 based on the results scores thereof.
Additionally or alternatively, the search module 312 can cull
the consideration set 160 based on the result scores. For
example, the search module 312 can remove applications
from the consideration set 160 that have result scores that are
below a threshold. Furthermore, the search module 312 can
group the application state records 338 indicated by the
consideration set 160 based on the applications to which the
application state records 338 pertain.
At operation 522, the search module 312 generates the

search results 130 based on the adjusted consideration set
160. In some implementations, the search module 312
generates result objects using the application state data
contained in the application state records 338 indicated by
the consideration set 160. In these implementations, the
search module 312 can generate a state link for each result
object based on the resource identifier(s) contained in the
application state record 338. The state links can be included
in the respective result objects. At operation 524, the search
module 312 communicates the search results to the user
device 200.
The methods 400, 500 of FIGS. 4 and 5 are provided for

example and not intended to limit the scope of the disclo
sure. The ordering of the operations described can be altered
without departing from the scope of the disclosure. For
instance, the recreating the device profile 126r can be
performed when the device profile is received or after the
consideration set 160 has been identified. In another
example, the device profile 126e can be received at the
initiation of the search session or with a search query.

Various implementations of the systems and techniques
described here can be realized in digital electronic and/or
optical circuitry, integrated circuitry, specially designed
ASICs (application specific integrated circuits), computer
hardware, firmware, software, and/or combinations thereof.
These various implementations can include implementation
in one or more computer programs that are executable
and/or interpretable on a programmable system including at
least one programmable processor, which may be special or
general purpose, coupled to receive data and instructions
from, and to transmit data and instructions to, a storage
system, at least one input device, and at least one output
device.

These computer programs (also known as programs,
Software, Software applications or code) include machine
instructions for a programmable processor, and can be
implemented in a high-level procedural and/or object-ori
ented programming language, and/or in assembly/machine
language. As used herein, the terms “machine-readable
medium' and “computer-readable medium” refer to any
computer program product, non-transitory computer read
able medium, apparatus and/or device (e.g., magnetic discs,
optical disks, memory, Programmable Logic Devices
(PLDs)) used to provide machine instructions and/or data to
a programmable processor, including a machine-readable
medium that receives machine instructions as a machine
readable signal. The term “machine-readable signal” refers
to any signal used to provide machine instructions and/or
data to a programmable processor.

Implementations of the Subject matter and the functional
operations described in this specification can be imple
mented in digital electronic circuitry, or in computer soft

US 9,721,021 B2
29

ware, firmware, or hardware, including the structures dis
closed in this specification and their structural equivalents,
or in combinations of one or more of them. Moreover,
Subject matter described in this specification can be imple
mented as one or more computer program products, i.e., one
or more modules of computer program instructions encoded
on a computer readable medium for execution by, or to
control the operation of data processing apparatus. The
computer readable medium can be a machine-readable Stor
age device, a machine-readable storage Substrate, a memory
device, a composition of matter effecting a machine-read
able propagated signal, or a combination of one or more of
them. The terms “data processing apparatus”, “computing
device' and "computing processor encompass all appara
tus, devices, and machines for processing data, including by
way of example a programmable processor, a computer, or
multiple processors or computers. The apparatus can
include, in addition to hardware, code that creates an execu
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them. A propagated signal is
an artificially generated signal, e.g., a machine-generated
electrical, optical, or electromagnetic signal, that is gener
ated to encode information for transmission to suitable
receiver apparatus.
A computer program (also known as an application,

program, Software, Software application, Script, or code) can
be written in any form of programming language, including
compiled or interpreted languages, and it can be deployed in
any form, including as a stand-alone program or as a
module, component, subroutine, or other unit suitable for
use in a computing environment. A computer program does
not necessarily correspond to a file in a file system. A
program can be stored in a portion of a file that holds other
programs or data (e.g., one or more scripts stored in a
markup language document), in a single file dedicated to the
program in question, or in multiple coordinated files (e.g.,
files that store one or more modules, Sub programs, or
portions of code). A computer program can be deployed to
be executed on one computer or on multiple computers that
are located at one site or distributed across multiple sites and
interconnected by a communication network.
The processes and logic flows described in this specifi

cation can be performed by one or more programmable
processors executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

Processors suitable for the execution of a computer pro
gram include, by way of example, both general and special
purpose microprocessors, and any one or more processors of
any kind of digital computer. Generally, a processor will
receive instructions and data from a read only memory or a
random access memory or both. The essential elements of a
computer are a processor for performing instructions and
one or more memory devices for storing instructions and
data. Generally, a computer will also include, or be opera
tively coupled to receive data from or transfer data to, or
both, one or more mass storage devices for storing data, e.g.,
magnetic, magneto optical disks, or optical disks. However,
a computer need not have such devices. Moreover, a com
puter can be embedded in another device, e.g., a mobile
telephone, a personal digital assistant (PDA), a mobile audio

10

15

25

30

35

40

45

50

55

60

65

30
player, a Global Positioning System (GPS) receiver, to name
just a few. Computer readable media suitable for storing
computer program instructions and data include all forms of
non-volatile memory, media and memory devices, including
by way of example semiconductor memory devices, e.g.,
EPROM, EEPROM, and flash memory devices; magnetic
disks, e.g., internal hard disks or removable disks; magneto
optical disks; and CD ROM and DVD-ROM disks. The
processor and the memory can be Supplemented by, or
incorporated in, special purpose logic circuitry.
To provide for interaction with a user, one or more aspects

of the disclosure can be implemented on a computer having
a display device, e.g., a CRT (cathode ray tube), LCD (liquid
crystal display) monitor, or touch screen for displaying
information to the user and optionally a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user's client device in response
to requests received from the web browser.
One or more aspects of the disclosure can be implemented

in a computing system that includes a backend component,
e.g., as a data server, or that includes a middleware com
ponent, e.g., an application server, or that includes a frontend
component, e.g., a client computer having a graphical user
interface or a Web browser through which a user can interact
with an implementation of the subject matter described in
this specification, or any combination of one or more Such
backend, middleware, or frontend components. The compo
nents of the system can be interconnected by any form or
medium of digital data communication, e.g., a communica
tion network. Examples of communication networks include
a local area network (“LAN) and a wide area network
(“WAN”), an inter-network (e.g., the Internet), and peer-to
peer networks (e.g., ad hoc peer-to-peer networks).
The computing system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other. In some implemen
tations, a server transmits data (e.g., an HTML page) to a
client device (e.g., for purposes of displaying data to and
receiving user input from a user interacting with the client
device). Data generated at the client device (e.g., a result of
the user interaction) can be received from the client device
at the server.

While this specification contains many specifics, these
should not be construed as limitations on the scope of the
disclosure or of what may be claimed, but rather as descrip
tions of features specific to particular implementations of the
disclosure. Certain features that are described in this speci
fication in the context of separate implementations can also
be implemented in combination in a single implementation.
Conversely, various features that are described in the context
of a single implementation can also be implemented in
multiple implementations separately or in any suitable Sub
combination. Moreover, although features may be described
above as acting in certain combinations and even initially
claimed as such, one or more features from a claimed

US 9,721,021 B2
31

combination can in Some cases be excised from the combi
nation, and the claimed combination may be directed to a
Sub-combination or variation of a Sub-combination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir
cumstances, multi-tasking and parallel processing may be
advantageous. Moreover, the separation of various system
components in the embodiments described above should not
be understood as requiring such separation in all embodi
ments, and it should be understood that the described
program components and systems can generally be inte
grated together in a single software product or packaged into
multiple software products.
A number of implementations have been described. Nev

ertheless, it will be understood that various modifications
may be made without departing from the spirit and scope of
the disclosure. Accordingly, other implementations are
within the scope of the following claims. For example, the
actions recited in the claims can be performed in a different
order and still achieve desirable results.
What is claimed is:
1. A method comprising:
receiving, by a processing device, an encoded device

profile indicating device features of a user device,
wherein the device features indicate one or more native
applications installed on the user device;

identifying, by the processing device, the device features
of the user device based on the encoded device profile;

receiving, by the processing device, a search query from
the user device;

performing, by the processing device, an application
search based on the search query to identify a consid
eration set of records, wherein each record in the
consideration set of records corresponds to a respective
native application;

for each record in the consideration set of records:
generating, by the processing device, a result score

based on at least one of an application scoring
feature, a query scoring feature, and an application
query scoring feature, wherein:
the application scoring feature includes data corre

sponding to a popularity of the record;
the query scoring feature includes at least one of a

number of words in the search query, a popularity
of the search query, and an expected frequency of
words in the search query; and

the application-query scoring feature includes
parameters that indicate a degree of matching
between words of the search query and words of
the record;

determining, by the processing device, a boosting fac
tor based on the device features of the user device,
wherein the boosting factor is a first value in
response to the respective native application not
being installed on the user device, and wherein the
boosting factor is a second value in response to the
respective native application being installed on the
user device;

adjusting, by the processing device, the result score
based on the boosting factor;

generating, by the processing device, search results based
on a subset of the consideration set of records, wherein
the subset is selected based on the result scores of the
consideration set of records; and

10

15

25

30

35

40

45

50

55

60

65

32
transmitting, by the processing device, the search results

to the user device.
2. The method of claim 1, wherein the encoded device

profile comprises a Bloom filter having a plurality of Bool
ean values stored at a plurality of index addresses thereof,
wherein the Bloom filter is indicative of the one or more
native applications installed on the user device.

3. The method of claim 2, wherein recreating the device
profile comprises:

obtaining a list of potential applications; and
for each potential application identified in the list of

potential applications:
feeding an application identifier of the potential appli

cation into a hash procedure to obtain k index
addresses, where k is an integer greater than one;

querying the Bloom filter at the k indexes addresses;
and

selectively adding the application identifier to the
device features of the user device based on the
checking.

4. The method of claim 1, wherein the device features
further comprise a list of native applications recently
executed by the user device and/or a list of native applica
tions that have been deleted from the user device.

5. The method of claim 1, wherein the device features
further comprise a list of web applications recently accessed
by the user device.

6. The method of claim 1, wherein the consideration set
of records is identified from a plurality of application
records stored in an application datastore, wherein the
plurality of application records indicates applications that
are relevant to the search query.

7. The method of claim 1, wherein the consideration set
of records is identified from a plurality of application state
records stored in an application state datastore, wherein the
plurality of application state records indicates states of one
or more records that are relevant to the search query.

8. The method of claim 1, further comprising:
receiving, by the processing device, a request to initiate a

search session from the user device;
initiating, by the processing device, the search session;
assigning, by the processing device, a session identifier to

the search session; and
associating, by the processing device, the session identi

fier to the device features of the user device.
9. The method of claim 8, wherein the session identifier

is used to retrieve the device features of the user device in
response to the search query being received from the user
device and in response to Subsequent search queries being
received from the user device.

10. The method of claim 1, further comprising storing, by
the processing device, the identified device features of the
user device in a recreated device profile.

11. A search engine comprising:
a storage device including one or more non-transitory

computer readable mediums storing computer readable
instructions;

a processing device in communication with the storage
device and executing the computer readable instruc
tions, the computer readable instructions causing the
processing device to:
receive an encoded device profile indicating device

features of a user device, the device features at least
indicating one or more native applications installed
on the user device;

identify the device features of the user device based on
the encoded device profile;

US 9,721,021 B2
33

receive a search query from the user device:
perform an application search based on the search

query to identify a consideration set of records,
wherein each record in the consideration set of
records corresponds to a respective native applica
tion;

generate, for each record in the consideration set of
records, a result score based on at least one of an
application scoring feature, a query scoring feature,
and an application-query scoring feature, wherein:
the application scoring feature includes data corre

sponding to a popularity of the record;
the query scoring feature includes at east one of a

number of words in the search query, a popularity
of the search query, and an expected frequency of
words in the search query; and

the application-query scoring feature includes
parameters that indicate a degree of matching
between words of the search query and words of
the record;

determine, for each record in the consideration set of
records a boosting factor based on the device fea
tures of the user device, wherein the boosting factor
is a first value in response to the respective native
application not being installed on the user device,
and wherein the boosting factor is a second value in
response to the respective native application being
installed on the user device:

adjust, for each record in the consideration set of
records, the result score based on the boosting factor;

generate search results based on a subset of the con
sideration set of records wherein the subset is
selected based on the result scores of the consider
ation set of records; and

transmit the search results to the user device.
12. The search engine of claim 11, wherein the encoded

device profile comprises a Bloom filter having a plurality of
Boolean values stored at a plurality of index addresses
thereof, wherein the Bloom filter is indicative of the one or
more native applications installed on the user device.

13. The search engine of claim 12, wherein recreating the
device profile comprises:

obtaining a list of potential applications; and
for each potential application identified in the list of

potential applications:

10

15

25

30

35

40

34
feeding an application identifier of the potential appli

cation into a hash procedure to obtain k index
addresses, where k is an integer greater than one:

querying the Bloom filter at the k indexes addresses;
and

Selectively adding the application identifier to the
device features of the user device based on the
checking.

14. The search engine of claim 11, wherein the device
features further comprise a list of native applications
recently executed by the user device and/or a list of native
applications that have been deleted from the user device.

15. The search engine of claim 11, wherein the device
features further comprise a list of web applications recently
accessed by the user device.

16. The search engine of claim 11, wherein the consid
eration set of records is identified from a plurality of
application records stored in an application datastore,
wherein the plurality of application records indicates appli
cations that are relevant to the search query.

17. The search engine of claim 11, wherein the consid
eration set of records is identified from a plurality of
application state records stored in an application state data
store, wherein the plurality of application state records
indicates states of one or more records that are relevant to
the search query.

18. The search engine of claim 11, wherein the computer
readable instructions, when executed by the processing
device, further cause the processing device to:

receive a request to initiate a search session from the user
device;

initiate the search session;
assign a session identifier to the search session; and
associate the session identifier to the device features of the

user device.
19. The search engine of claim 18, wherein the session

identifier is used to retrieve the device features of the user
device in response to the search query being received from
the user device and in response to subsequent search queries
being received from the user device.

20. The search engine of claim 11, wherein the computer
readable instructions, when executed by the processing
device, further cause the processing device to store the
identified device features of the user device in a recreated
device profile.

