
(12) United States Patent
Nguyen et al.

US009.720847B2

US 9,720,847 B2
Aug. 1, 2017

(10) Patent No.:
(45) Date of Patent:

(54) LEAST RECENTLY USED (LRU) CACHE
REPLACEMENT IMPLEMENTATION USING
AFIFO STORING INDICATIONS OF
WHETHER AWAY OF THE CACHE WAS
MOST RECENTLY ACCESSED

(71) Applicant: Freescale Semiconductor, Inc., Austin,
TX (US)

(72) Inventors: Thang Q. Nguyen, Austin, TX (US);
John D. Coddington, Cedar Park, TX
(US); Sanjay R. Deshpande, Austin,
TX (US)

(73) Assignee: NXP USA, INC., Austin, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 256 days.

(21) Appl. No.: 13/943,958

(22) Filed: Jul. 17, 2013

(65) Prior Publication Data

US 2015/OO2641O A1 Jan. 22, 2015

(51) Int. Cl.
G06F 12/00 (2006.01)
G06F 2/22 (2016.01)
G06F 2/089 (2016.01)
G06F 2/23 (2016.01)
G06F 2/27 (2016.01)
G06F 2/28 (2016.01)
G06F 7/78 (2006.01)

(52) U.S. Cl.
CPC G06F 12/122 (2013.01); G06F 12/0891

(2013.01); G06F 12/123 (2013.01); G06F
12/127 (2013.01); G06F 12/128 (2013.01);

G06F 7/78 (2013.01)

2.

AR

EN

R
CORROER

22.

CACEii

STATUS WAYO
232

(58) Field of Classification Search
CPC. G06F 12/122; G06F 12/123; G06F 12/0891;

G06F 12/127; G06F 12/128: G06F 7/78
USPC 711/136, 128, 133, 144
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,353,425 A
5,717,916 A *
5,809,280 A *
6,784,892 B1*
8,364,900 B2

2002.0056O25 A1*
2005/OO55511 A1*
2007/0271416 A1

10/1994 Malamy et al.
2f1998 Verma
9, 1998 Chard et al. T11 160
8/2004 Munshi 345/557
1/2013 Caprioli et al.
5/2002 Qiu et al. T11 133
3/2005 Schreter T11 134
11/2007 Ahmed

(Continued)

OTHER PUBLICATIONS

H. Ghasemzadeh et al., Hardware Implementation of Stack-Based
Replacement Algorithms, Proceedings of World Academy of
Science.Engineering and Technology, vol. 16, Nov. 2006.

Primary Examiner — Hong Kim

(57) ABSTRACT

A method and apparatus for calculating a victim way that is
always the least recently used way. More specifically, in an
m-set, n-way set associative cache, each way in a cache set
comprises a valid bit that indicates that the way contains
valid data. The valid bit is set when a way is written and
cleared upon being invalidated, e.g., via a Snoop address,
The cache system comprises a cache LRU circuit which
comprises an LRU logic unit associated with each cache set.
The LRU logic unit comprises a FIFO of n-depth (in certain
embodiments, the depth corresponds to the number of ways
in the cache) and m-width. The FIFO performs push, pop
and collapse functions. Each entry in the FIFO contains the
encoded way number that was last accessed.

18 Claims, 10 Drawing Sheets

-23 y

AGWAYN
AG 2

AGAY
AA

AAAY
AA

AAAAY
AiiAY

238

US 9,720,847 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0052469 A1 2/2008 Fontenot et al. T11 133
2012fO24641.0 A1* 9, 2012 Xu 711/128
2013/029.7876 A1* 11/2013 Yu T11,122
2014/0237195 A1 8, 2014 Holland GO6F 5/10

T11 147

* cited by examiner

U.S. Patent Aug. 1, 2017 Sheet 1 of 10 US 9,720,847 B2

PROCESSOR CORE

CACE
SYS,

4.

EORY :

Z "OIH

US 9,720,847 B2 Sheet 2 of 10 Aug. 1, 2017 U.S. Patent

U.S. Patent Aug. 1, 2017 Sheet 3 of 10 US 9,720,847 B2

- 30 p?

ify AY3
SE
S.

SE3

AG SAS AA

CACENE FOR A

FG. 3

SETo VALDon Ruo | TAGoon-to-1 DAIAoon-top
SE vaLDion LRU TAGOF-10:k- DATAion-top
SE vaLD on 1 Liu. I TAGoniok DATA. on top
St. Datan-on-op

FIG. 4

9. "OIH

US 9,720,847 B2

#######|

Aug. 1, 2017 U.S. Patent

US 9,720,847 B2 Sheet S of 10 Aug. 1, 2017 U.S. Patent

U.S. Patent Aug. 1, 2017 Sheet 6 of 10 US 9,720,847 B2

TOPFIFo

D ENTRYo vo 72
X-XXXYYXX XXX XXXYYXX XXX XXXYYXX XXX XXXYYXXX -- ax

N 722

AY

SEL:2)

ViO3, 10|SEL.19 x:S

PUSH.
FFC POP CONTROL

COLLAPSE LOGIC
fi

SEL212
ENRY -
SNRY SEL20
ERY2 XRRR

ENRY 3

SEL3:2)

SEL3

U.S. Patent Aug. 1, 2017 Sheet 7 of 10 US 9,720,847 B2

82
- - - - - - - - - - - - - - f

WALDO 2

l, D D
CACE or 2. OS

LOOKUPREQ WAY

VALIDI

VALID2

WALD3

US 9,720,847 B2 Sheet 9 of 10 Aug. 1, 2017 U.S. Patent

COZI "OIH{{ZI "OIHVZI "OIH

US 9,720,847 B2 Sheet 10 of 10 Aug. 1, 2017 U.S. Patent

O £ I "OIH

00014% | -ka, ?las |1114) | -koff, |01?s

V 9 I "OIH

{{}{}{}{};

US 9,720,847 B2
1.

LEAST RECENTLY USED (LRU) CACHE
REPLACEMENT IMPLEMENTATION USING

AFIFO STORING INDICATIONS OF
WHETHER AWAY OF THE CACHE WAS

MOST RECENTLY ACCESSED

BACKGROUND OF THE INVENTION

The present invention relates in general to the field of
cache memories and more particularly to cache replacement
strategies used in cache memories.

DESCRIPTION OF THE RELATED ART

In general, data processing systems comprise a processor
(often referred to as a central processing unit (CPU)) that
executes instructions that are fetched from a main memory.
One method to improve the performance of the processor is
to use cache memory. Cache memory is high speed memory
that works with the processor and the main memory to
quickly provide information (e.g., instructions and/or data)
to the processor. By using a cache architecture, a faster
response time is possible than when the processor fetches all
information directly from the main memory. The improved
performance is possible because the cache usually contains
the information that the processor is likely to request from
memory. The cache is typically faster than the main
memory; therefore, the cache can usually provide the data
required by the processor much faster than the main
memory. Part of the methodology used to load information
into the cache is to predict and store the information that is
frequently used by the processor and is likely to be used by
the processor.
When the cache contains information requested by the

processor, this is referred to as a cache hit. if the cache does
not contain the information requested by the processor, then
this is referred to as a cache miss. On a miss, the information
is loaded from the main memory into the cache and is also
provided to the processor. The information is loaded into the
cache in anticipation that the processor will request the data
in an upcoming bus cycle. This process continues through
out the operation of the data processing system.

Caches typically include a cache tag array and a cache
data array. Each array is organized into a number of cache
lines. Each cache line includes a tag portion (contained in
the cache tag array)and a data portion contained in the cache
data array). The tag value in a line is compared with the
address of a memory request from the processor to deter
mine whether the requested data is present in the data
portion of that cache line, Validity information is associated
with each cache line to indicate whether the line contains
currently valid information and whether the information
conforms to the information stored within the main memory
(referred to as cache coherency). Caches are also typically
arranged in sets to provide a set associative cache. A set
associative cache is a hybrid between a fully associative
cache (which required parallel searches of all slots within
the cache), and direct mapped cache (which may cause
collisions of addresses which are mapped to the same slot).

Because a cache is much smaller than main memory, the
cache system often uses an algorithm to evict information
from the cache to make way for new information fetched
from main memory when the cache becomes full. One
known cache replacement algorithm used is the least
recently used (LRU) cache replacement algorithm in which
the least recently used cache line (also referred to as the
victim way) is evicted from the cache to make way for new

10

15

25

30

35

40

45

50

55

60

65

2
information. With set associative cache structures, when a
particular cache set is full (e.g., in Some embodiments all
ways of the set are valid), the LRU algorithm causes the least
recently used way to be evicted for the particular cache set.
Typically, rather than providing a true LRU algorithm, most
known cache designs implement Some type of pseudo-LRU
algorithms. The issue relating to pseudo-LRU algorithms is
that the victim way chosen is not necessarily always the least
recently used way.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention may be better understood, and its
numerous objects, features and advantages made apparent to
those skilled in the art by referencing the accompanying
drawings. The use of the same reference number throughout
the several figures designates a like or similar element.

FIG. 1 shows a block diagram of a data processing system
according to one embodiment of the present invention.

FIG. 2 shows a block diagram of a cache system.
FIG. 3 shows a block diagram of the organization of a

4-way associative cache.
FIG. 4 shows a block diagram of a cache structure of an

m-set, n-way cache view containing LRU and valid hits.
FIG. 5 shows a block diagram of portions of the controller

interacting with a cache set.
FIG. 6 shows a block diagram of an LRU circuit on a per

set basis.
FIG. 7 shows a block diagram of a 4-entry collapsible

FIFO.
FIG. 8 shows a block diagram of arbitration logic of the

LRU logic.
FIGS. 9A, 9B, and 9C show an example of an LRU

operation.
FIGS. 10A, 10B, and 10C show another example of an

LRU operation.
FIGS. 11A, 11B, and 11C show another example of an

LRU operation.
FIGS. 12A, 12B, and 12C show another example of an

LRU operation.
FIGS. 13A, 13B, and 13C show another example of an

LRU operation.

DETAILED DESCRIPTION

In general, some embodiments of the present invention set
forth a method and apparatus of a simple yet accurate
method of calculating a victim way that is always the least
recently used way.
More specifically, in certain embodiments, for an m-set,

n-way set cache (such as a set associative cache), each way
in a cache set comprises a valid bit that indicates that the way
contains valid data. Valid bit is set when a way is written and
cleared upon being invalidated, e.g., via a Snoop address.
The cache system comprises a cache replacement module,
which in certain embodiments comprises an LAU logic unit
associated with each cache set. The LRU logic unit com
prises a FIFO of n-depth (in certain embodiments, the depth
corresponds to the number of ways in the cache) and
m-width. An entry at the top of the FIFO represents the least
recently used entry white an entry at the bottom of the FIFO
represents the most recently used entry. By providing LRU
logic with a FIFO, the LRU control circuit efficiently
calculates a victim section that is always the least recently
accessed section where in certain embodiments, the calcu
lating is performed in a single memory cycle.

US 9,720,847 B2
3

The FIFO performs push, pop, collapse and collapse--
push functions. A push function places an entry at the bottom
of the FIFO. A pop function takes an entry from the top of
the FIFO. A collapse function takes an entry from anywhere
in the FIFO (a collapse function at the top of the FIFO is
equivalent to a pop function). A collapse+push function
takes an entry from somewhere in the FIFO and places the
entry at the bottom of the FIFO, effectively making this
entry the most recently used entry. In certain embodiments,
with a collapse-push function, the collapse and push func
tions are performed together and concurrently. Each entry in
the FIFO contains the encoded way number that was last
accessed. A cache access can either be a read, a write or a
Snoop. A push to the FIFO is performed when an invalid
cache way is written. A push and collapse of the FIFO are
performed simultaneously and together when a valid cache
way is read or written. A valid cache way is popped or
collapsed when the way is invalidated. In certain embodi
ments, the LRU logic further comprises arbitration logic
which selects a lowest available victim way number in a
cache set for any cache writes when one or more cache ways
are not valid. The LRU logic further comprises logic to
decode read, write and Snoop requests. When the FIFO is
full, the victim way number is at the top of the FIFO. When
the FIFO is not full, the victim way number is provided from
the arbitration logic unit.

In various embodiments, the cache replacement module
may be used in any set-associative cache hierarchies. Addi
tionally, cache replacement module may be used in any other
types of designs that have queues with a replacement
requirement.

Referring to FIG. 1, a block diagram of a data processing
system 100 is shown. The data processing system includes
a processor 102 as well as a memory 104 and a bus interface
unit 106. In one embodiment, the processor 102 includes at
least one processor core 112 as well as a cache system 114.
In other embodiments, the processor 102 may include mul
tiple cores. It will be appreciated that while the data pro
cessing system 100 shows a single unified cache, separate
instruction and data caches are contemplated. The processor
102 is coupled to the memory 104 via the bus interface unit
106. The memory 104 and the cache system 114 are man
aged by a memory management unit (MMU) 120. The
MMU 120 includes a translation lookaside buffer (TLB)
122. The memory 104 includes one or more memory
devices. The components of the data processing system 100
are coupled together by various buses used to pass control,
address, and data signals.

Referring to FIG. 2, a block diagram of a cache system
114 is shown. The cache system 114 includes a cache
memory 210 as welt as a controller 212 and error correction
code (ECC) logic 216. The controller 212 further includes an
LRU circuit 217.
The controller 212 receives an address signal (ADDR), an

enable signal (EN) and a read/write signal (R/W), and
provides the address signal, the enable signal, and the
read/write signal to the cache memory 210. In certain
embodiments, the controller 212 operates in accordance
with a cache coherency protocol such as the MESI cache
coherency protocol.
The ECC logic 216 provides and receives information

from the cache memory 210. The ECC logic 216 also
provides error information to the controller 212. More
specifically, the ECC logic 216 receives a data input (e.g., an
n-bit wide data input) from the data processing system 100
and generates a correction code based upon the data input
(e.g., a k-bit wide correction code). The data input and the

5

10

15

25

30

35

40

45

50

55

60

65

4
corresponding correction code are both provided to and
stored within the cache memory 210 (e.g., an n+k bit wide
input). The ECC logic 216 also receives data and correction
code information from the cache memory 210 (e.g., an n+k
bit wide data output) and generates a data output (e.g., an
n-bit wide data output) after confirming that the data is
correct based upon the correction code information. in
certain embodiments, the ECC logic 216 uses a hamming
code to provide single error correction and double error
detection (SEC-DED).
The cache memory 210 includes a plurality of cache ways

(also referred to as banks) 230 (WAY 0, WAY 1, WAY 2,
WAYN). Each way 230 includes a plurality of cache lines.
In certain embodiments, the cache ways 230 further include
a plurality of status ways 232, a plurality of tag ways 234,
and a plurality of data ways 236. The combination of the
information from a line of the status ways 232, a line of the
tag ways 234, and the data ways 236, provides a cache line.
it will be appreciated that these ways may be separate or
combined as a matter of design choice. In certain embodi
ments, the status ways store information used by the con
troller 212 to perform the MESI cache coherency protocol.

In general, when the processor core 112 makes a memory
access request, the MMU 120 translates the virtual address
of the request, via the TLB 122, and determines the corre
sponding physical address for the access. Note that some
address requests contain the physical address directly, and
do not require translation. The cache system 114 then
determines whether the information requested by the pro
cessor core 112 is present in a line of cache memory 210 by
comparing address information in the request to tag infor
mation in the tag array 234 as well as checking the line status
(e.g., via the valid bits of the line) to assure that the
information is valid. If the requested information is deter
mined to be present in cache memory 210, the information
read from the data array 236 is provided to the processor
core 112. If the requested information is not present in the
cache memory 210, the data processing system 100 accesses
the memory 104 using the physical address determined via
the TLB 122. The requested information is stored within the
cache system 114 and is also provided to the processor core
112.

Referring to FIG. 3, a block diagram showing the orga
nization of a 4-way associative cache 300 used in one
embodiment of the present invention is shown. Other cache
organizations or other types of associative caches are also
contemplated. FIG. 3 shows a cache having 4 ways (WAY
0, WAY 1, WAY 2, and WAY3) (e.g., portions), each having
4 sets (SET 0, SET 1. . . . SET 3) (e.g., sections). For each
set, there are 4 cache lines, one corresponding to each way.
Each cache line includes a tag portion (Tag) and a data
portion (Data). Any data stored in the cache system 114 is
contained in one of the lines.

Each line also includes an address tag (TAG) which
corresponds to the address of the data contained in the
blocks. Each line also includes a valid bit V which signifies
whether or not the data portion contains valid information.
Each line also includes a dirty bit D which is set to “1” when
the data contained in the line has been modified by the
processor (i.e., the line contains modified data) and is
therefore not consistent with the information in the corre
sponding physical memory location. If the data in a line is
“dirty,’” the modified data is eventually written to the physi
cal memory location. This process is referred to as "copy
back.’

Referring to FIG. 4, a block diagram of the cachestructure
for an m-set, n-way cache view containing LRU and valid

US 9,720,847 B2
5

bits is shown. More specifically, the cache structure com
prises an entry for each set of the cache. Each entry further
comprises a valid portion, an LRU number portion, a tag
portion, and a data portion. The valid portion comprises
valid bits corresponding to each way (Valid00:n-1,
Valid 10:n-1), Valid20:n-1), Valid30:n-1). The LRU
number portion comprises an LRU number entry (LRU0.
LRU1, LRU2, LRU(M-1). The LRU number entry indicates
that there is an LRU unit per cache set. Thus, if there are 256
sets, then there are 256 separate LRU units in which each
LRU unit has a corresponding FIFO. The tag portion com
prises tag entries corresponding to each way (TAG 00:n-1
0:k-1, TAG10:n-10:k-1, TAG20:n-10:k-1, TAG
(m-1)0:n-10:k-1). The data portion comprises data
entries corresponding to each way (Data00:n-10:p-1.
Data10:n-10:p-1, Data20:n-10:p-1. Data(m-1)0:
n-10:p-1).

FIG. 5 shows a block diagram of an LRU circuit 217 of
the controller 212 interacting with a cache set of the cache
210. More specifically, the controller 212 further includes
LRU logic 510, cache update logic 512, cache lookup logic
514, tag compare logic 516, and multiplexer 518, as well as
register 520, 522.
The LRU logic 510 receives from and provides informa

tion to the cache update logic 512, receives information from
the cache lookup logic 514, as well as the valid bits from
each set. The cache update logic 512 also receives an input
from the cache lookup logic 514, cache write information,
and cache invalidation information as well as the set infor
mation for addresses associated with writes or reads. The
cache update logic 512 provides outputs to the valid bits of
each way as well as cache data and tag data to each way.
The cache lookup logic 514 receives cache read informa

tion and cache hit tag indication as well as the tag informa
tion and set information for addresses associated with writes
or reads. The cache lookup logic 514 generates cache hit and
lookup way number information which is provided to reg
ister 522. The cache lookup logic 514 also provides an input
to the tag compare logic 516.

The tag compare logic 516 receives inputs from each of
the valid bits of each way as well as the tag data of each way.
The tag compare logic 516 also receives the tag information
for addresses associated with writes or reads. The tag
compare logic 516 generates a tag hit select output which is
provided to multiplexer 518. The multiplexer 518 also
receives cache data from each way. The multiplexer pro
vides the selected input as an output to register 520 which
provides the cache hit data as an output.

FIG. 6 shows a block diagram of an LRU circuit 510 on
a per set basis. More specifically, the LRU logic comprises
a FIFO 610 (i.e., a FIFO circuit), arbitration logic 612 (i.e.,
an arbitration circuit), and multiplexer 614 as well as update
valid logic 616. The FIFO 610 comprises a plurality of
entries (LRU WAY0, WAY1, LRU WAY1, . . . LRU WAY
(n-1)). In certain embodiments, the number of entries in the
FIFO corresponds to the number of ways in the cache.
The FIFO 610 receives a collapse, push, lookup way

number signal (COLLAPSE--PUSH+LOOKUPWAY it), a
collapse, way number signal (COLLAPSE-i-WAY it) and a
collapse, push, victim way number signal (COLLAPSE--
PUSH+VICTIM WAY it), The FIFO generates an LRU way
number signal (LRUWAY it) and a full signal (FULL). The
arbitration logic 612 receives a cache update request signal
as well as the valid bits for each way. The arbitration logic
612 generates a lowest way number signal (LOWEST WAY
it). The multiplexer 614 receives the lowest way number
signal, the LRU way number signal, and the full signal. The

10

15

25

30

35

40

45

50

55

60

65

6
update valid logic 616 receives a collapse, way number
signal (COLLAPSE-i-WAY it) and a collapse, push, victim
way number signal (COLLAPSE--PUSH+VICTIM WAY it).
The update valid logic 616 provides inputs to the valid bits
of each way.

FIG. 7 shows a block diagram of a 4-entry collapsible
FIFO which is one example of the FIFO 610. More specifi
cally, the FIFO includes FIFO control logic 710 as well as
four FIFO entries 712,714, 716, 718, corresponding to entry
0, entry 1, entry 2, and entry 3, respectively. Each FIFO
entry includes a first multiplexer 720, a second multiplexer
722, and a storage portion 724. The storage portion 724
stores an encoded way number as a FIFO entry as well as a
corresponding valid bit. I.e., FIFO entry 0 stores FIFO entry
0 as well as valid bit 0, FIFO entry 1 stores FIFO entry 1 as
well as valid bit 1, etc.
The FIFO control logic 610 receives a push signal, a pop

signal and a collapse signal as well as valid bits (0-3). The
FIFO control logic 710 also receives FIFO entry signals
(ENTRYO, ENTRY1, ENTRY2, ENTRY3). The FIFO con
trol logic 710 generates a plurality of select signals (SEL0
O), SEL01:2), SEL10, SEL11:2), SEL2O), SEL21:2)
and SEL30), SEL31:2) which are provided to the respec
tive FIFO entries 712, 714, 716, 718 to control the operation
of the FIFO entries. I.e., the SEL0 select signals are provided
to FIFO entry 0, the SEL1 select signals are provided to
FIFO entry 1, etc. The FIFO entries 712, 714, 716, 718 also
receive a way number signal (WAY it).
The FIFO 610 performs push, pop, collapse and collapse--

push functions. A push function places an entry at the bottom
of the FIFO 610 (e.g., FIFO entry 3). A pop function takes
an entry from the top of the FIFO 610 (e.g., FIFO entry 0).
A collapse function takes an entry from anywhere in the
FIFO 610 (a collapse function at the top of the FIFO is
equivalent to a pop function). A collapsed-push function
takes an entry from somewhere in the FIFO 610 and places
the entry at the bottom of the FIFO 610 (e.g., FIFO entry 3
effectively making this entry the most recently used entry. In
certain embodiments, with a collapse-push function, the
collapse and push functions are performed together and
concurrently. Each entry 712, 714, 716, 718 in the FIFO
contains the encoded way number that was last accessed.
The FIFO entry signals (ENTRYO, ENTRY1, ENTRY2,
ENTRY3) allow the FIFO control logic 710 to control
which way to collapse. Thus, the way that is being updated
or invalidated is compared against each entry in the FIFO
and based upon the FIFO entry signals the FIFO control
logic 610, generates a signal to cause a pop or collapse
function to be performed for the entry being updated as well
as the appropriate function for all entries below the entry
being updated in the FIFO.

FIG. 8 shows a block diagram of arbitration logic of the
LRU logic which is one example of arbitration logic 612.
More specifically, the arbitration logic includes a multi
plexer 810 as well as control logic 812. The control logic
812 receives the valid bits (e.g., valid 0-valid3 for a four
way implementation) as well as a cache lookup control
signal (CACHE LOOKUP REQ) and controls the multi
plexer 810 to provide entry identifiers 0-3 (2'ho, 2h1, 2h2,
2.h3) as the lowest way number when the FIFO is not full.
The arbitration logic 612 provides a lowest victim way
number that is used when the FIFO is not full. The arbitra
tion logic derives this information directly from the valid
bits of the respective entries, where valid bit valid 0 is
represented as entry 0 (2hO), valid bit valid 1 is represented
as 2h1, etc. When the FIFO is not full (i.e., not all valid bits
within the FIFO are set), then the arbitration logic 612

US 9,720,847 B2
7

identifies the lowest available way as the victim way. The
identification is performed based upon the valid bits of the
respective ways. For example, if the current valid bits 0:3
are 1110, then only way 3 is empty (i.e., available) as
valid3 is set as invalid. In this case, way 3 is identified as
the victim way by returning the entry identifier value 2.h3.
Alternately for example, if the current valid bits are 1010,
then there are two empty ways (ways 1 and 3). In this case,
the arbitration logic identifies the lowest way and thus the
way 1 is identified as the victim way by returning the entry
identifier 2h1.

FIGS. 9A, 9B, and 9C show an example of an LRU
operation for a 2-set, 4-way set associative cache. More
specifically, FIGS. 9A, 9B, and 9C show an example of a
read to set 0, way 0 followed by a write to set 0. Because this
example neither reads nor writes from set 1, the set 1 FIFO
is unaffected by the operations in this example. In this
example, referring to FIG. 9A, the initial example state of
the FIFO is FIFO entry 0 stores way entry number 3, FIFO
entry 1 stores way entry number 1, FIFO entry 2 stores way
entry number 0 and FIFO entry 3 stores way entry number
2. Additionally, the four binary valid bits for set 0 are all set
(e.g., VALID00:3=4'b1111).
Next referring to FIG.9B, after a read to set 0, way 3, the

state of the FIFO is FIFO entry 0 stores way entry number
1, FIFO entry 1 stores way entry number 0, FIFO entry 2
stores way entry number 2 and FIFO entry 3 stores way
entry number 3. Additionally, the four binary valid bits for
set 0 are all set (e.g., VALID00:34'b1111). Thus, the
FIFO performed a collapse and push operation of FIFO
entry 0. With the collapse and push operation of FIFO entry
0, the FIFO entry 0 was removed, the FIFO entry 1 was
progressed from FIFO entry 1 to FIFO entry 0, FIFO entry
2 was progressed from FIFO entry 2 to FIFO entry 1, FIFO
entry 2 was progressed from FIFO entry 1 to FIFO entry 2,
FIFO entry 3 was progressed from FIFO entry 3 to FIFO
entry 2 and way entry number 3 was stored to FIFO entry 3.

Next referring to FIG. 9C, after a write to set 0 (which is
stored in FIFO entry 1), the state of the FIFO is FIFO entry
0 stores way entry number 0, FIFO entry 1 stores way entry
number 2, FIFO entry 2 stores way entry number 3 and FIFO
entry 3 stores way entry number 1. Additionally, the four
binary valid bits for set 0 are all set (e.g., VALID00:3 =
4'b1111). Thus, the FIFO performed a collapse and push
operation of FIFO entry 0. With the collapse and push
operation of FIFO entry 0, the value stored in FIFO entry 0
was removed, the FIFO entry 1 was progressed from FIFO
entry 1 to FIFO entry 0, FIFO entry 2 was progressed from
FIFO entry 2 to FIFO entry 1, the FIFO entry 3 was
progressed from FIFO entry 3 to FIFO entry 2 and way entry
number 1 was stored to FIFO entry 3. In this operation, way
entry number 1 thus becomes the least recently used entry
and way entry 0 becomes the most recently used entry.

FIGS. 10A, 10B, and 10C show another example of an
LRU operation for a 2-set, 4-way set associative cache.
More specifically, FIGS. 10A, 10B, and 10C show an
example of an invalidation of way 3 and way 0. Because this
example neither reads nor writes from set 1, the set 1 FIFO
is unaffected by the operations in this example. In this
example, referring to FIG. 10A, the initial example state of
the FIFO is FIFO entry 0 stores way entry number 3, FIFO
entry 1 stores way entry number 1, FIFO entry 2 stores way
entry number 0 and FIFO entry 3 stores way entry number
2. Additionally, the four binary valid bits for set 0 are all set
(e.g., VALID00:3=4'b1111).

Next referring to FIG. 10B, after an invalidation of way
3, the state of the FIFO is FIFO entry 0 stores way entry

10

15

25

30

35

40

45

50

55

60

65

8
number 1, FIFO entry 1 stores way entry number 0, FIFO
entry 2 stores way entry number 2 and FIFO entry 3 is empty
(i.e., no valid information is stored within FIFO entry 3).
Additionally, three of the four binary valid bits for set 0 are
set valid while the fourth binary valid bit is set invalid (e.g.,
VALID00:3=4'b1110). Thus, the FIFO performed a col
lapse operation of FIFO entry 0. With the collapse operation
of FIFO entry 0, the FIFO entry 0 was removed, the FIFO
entry 1 was progressed from FIFO entry 1 to FIFO entry 0,
FIFO entry 2 was progressed from FIFO entry 2 to FIFO
entry 1, and FIFO entry 3 was progressed from FIFO entry
3 to FIFO entry 2. No information is stored to FIFO entry 3.
Next referring to FIG. 10C, after an invalidation of way

0 (which is stored in FIFO entry 1), the state of the FIFO is
FIFO entry 0 stores way entry number 1, FIFO entry 1 stores
way entry number 2, FIFO entries 2 and 3 are empty.
Additionally, two of the four binary valid bits for set 0 are
set valid while the third and the forth binary valid bits are set
invalid (e.g., VALID00:3=4'b1100), Thus, the FIFO per
formed a collapse operation of FIFO entry 1. With the
collapse operation of FIFO entry 1, the value stored in FIFO
entry 1 was removed and the FIFO entry 2 was progressed
from FIFO entry 2 to FIFO entry 1. No information is stored
to FIFO entries 2 and 3.

FIGS. 11A, 11B, and 11C show another example of an
LRU operation for a 2-set, 4-way set associative cache.
More specifically, FIGS. 11A, 11B and 11C show an
example of writes to set 0. Because this example neither
reads nor writes from set 1, the set 1 FIFO is unaffected by
the operations in this example. In this example, referring to
FIG. 11A, the initial example state of the FIFO is FIFO entry
0 stores way entry number 1 and FIFO entry 1 stores way
entry number 2. Additionally, the two of the four binary
valid bits for set 0 are set valid while the third and forth
binary valid bit is set invalid (e.g., VALID00:3=4'b11100).
Next referring to FIG. 11B, after a write to set 0, way 0,

the state of the FIFO is FIFO entry 0 stores way entry
number 1, FIFO entry 1 stores way entry number 2, FIFO
entry 2 stores way entry number 0 and FIFO entry 3 is
empty. Additionally, three of the four binary valid bits for set
0 are set valid while the forth binary valid bit is set invalid
(e.g., VALID000:34'b1110).
Next referring to FIG. 11C, after another write to set 0,

way 3, the state of the FIFO is FIFO entry 0 stores way entry
number 1, FIFO entry 1 stores way entry number 2, FIFO
entry 2 stores way entry number 0 and FIFO entry 3 stores
way entry number 3. Additionally, the four binary valid bits
fir set 0 are all set (e.g., VALID00:3=4'b1111).

FIGS. 12A, 12B, and 12C show another example of an
LRU operation for a 2-set, 4-way set associative cache.
More specifically, FIGS. 12A, 12B, and 12C show an
example of a read to set 0, way 1 followed by a read to set
0, way 3. Because this example neither reads nor writes from
set 1, the set 1 FIFO is unaffected by the operations in this
example. In this example, referring to FIG. 12A, the initial
example state of the FIFO is FIFO entry 0 stores way entry
number 3, FIFO entry 1 stores way entry number 1, FIFO
entry 2 stores way entry number 0 and FIFO entry 3 stores
way entry number 2. Additionally, the four binary valid bits
for set 0 are all set (e.g., VALID00:3=4'b1111).
Next referring to FIG. 12B, after a read to set 0, way 1,

the state of the FIFO is FIFO entry 0 stores way entry
number 3, FIFO entry 1 stores way entry number 0, FIFO
entry 2 stores way entry number 2 and FIFO entry 3 stores
way entry number 1. Additionally, the four binary valid bits
for set 0 are all set (e.g., VALID00:3=4'b1111). Thus, the
FIFO performed a collapse and push operation of FIFO

US 9,720,847 B2
9

entry 1. With the collapse and push operation of FIFO entry
1, the FIFO entry 1 was removed, the FIFO entry 2 was
progressed from FIFO entry 2 to FIFO entry 1, FIFO entry
3 was progressed from FIFO entry 3 to FIFO entry 2, and
way entry number 1 was stored to FIFO entry 3.

Next referring to FIG. 12C, after a read to set 0, way 3
(which is stored in FIFO entry 0), the state of the FIFO is
FIFO entry 0 stores way entry number 0, FIFO entry 1 stores
way entry number 2, FIFO entry 2 stores way entry number
1 and FIFO entry 3 stores way entry number 3. Additionally,
the four binary valid bits for set 0 are all set (e.g., VALID0
0:3=4"b1111). With the collapse and push operation of
FIFO entry 0, the FIFO entry 0 was removed, the FIFO entry
1 was progressed from FIFO entry 1 to FIFO entry 0, FIFO
entry 2 was progressed from FIFO entry 2 to FIFO entry 1,
and FIFO entry 3 was progressed from FIFO entry 3 to FIFO
entry 2 and FIFO entry 3 stores way entry number 3.

FIGS. 13A, 13B, and 13C show another example of an
LRU operation for a 2-set, 4-way set associative cache.
More specifically, FIGS. 13A, 13B, and 13C show an
example of a write to set 1 followed by a write to set 0. in
this example, referring to FIG. 13A, the initial example state
of the set 0 FIFO is set 0 FIFO entry 0 stores way entry
number 2, set 0 FIFO entry 1 stores way entry number 1, set
0 FIFO entry 2 stores way entry number 3 and set 0 FIFO
entry 3 stores way entry number 0. Additionally, the four
binary valid bits for set 0 are set valid (e.g., VALID00:3
=4'b1111). The initial example state of the set 1 FIFO is set
0 FIFO entries 0, 1, 2 and 3 are all empty (e.g., not
applicable). Additionally, the four binary valid bits for set 1
are set invalid (e.g., VALID10:3–4'b0000).

Next referring to FIG. 13B, after a write to set 1, the state
of the set 0 FIFO is set 0 FIFO entry 0 stores way entry
number 2, set 0 FIFO entry 1 stores way entry number 1, set
0 FIFO entry 2. stores way entry number 3 and set 0 FIFO
entry 3 stores way entry number 0. Additionally, the four
binary valid bits for set 0 are set valid (e.g., VALID00:3=
4'b1111). The state of the set 1 FIFO is set 0 FIFO entries 0
stores set 1 way entry 0. Additionally, the states of set 1
FIFO entries 1, 2 and 3 are all empty (e.g., not applicable).
Additionally, one of the four binary valid bits for set 1 is set
valid and the remaining valid bits for set 1 are set invalid
(e.g., VALID10:34'b1000),

Next referring to FIG. 13C, after a write to set 0, the state
of the set 0 FIFO is set 0 FIFO entry 0 stores way entry
number 1, set 0 FIFO entry 1 stores way entry number 3, set
0 FIFO entry 2 stores way entry number 0 and FIFO entry
3 stores way entry number 3. Additionally, the four binary
valid bits for set 0 are all set (e.g., VALID00:3=4'b1111).
Thus, the set 0 FIFO performed a collapse and push opera
tion of FIFO entry 0. The state of the set 1 FIFO is set 0 FIFO
entries 0 stores set 1 way entry 0. Additionally, the states of
set 1 FIFO entries 1, 2 and 3 are all empty (e.g., not
applicable). Additionally, one of the four binary valid bits for
set 1 is set valid and the remaining valid bits for set 1 are set
invalid VALID10:3=4'b1000).

Various illustrative embodiments have been described in
detail with reference to the accompanying figures. While
various details are set forth in the description, it will be
appreciated that the present invention may be practiced
without these specific details, and that numerous implemen
tation-specific decisions may be made to the invention
described herein to achieve the device designer's specific
goals, such as compliance with process technology or
design-related constraints, which will vary from one imple
mentation to another. White such a development effort might
be complex and time-consuming, it would nevertheless be a

10

15

25

30

35

40

45

50

55

60

65

10
routine undertaking for those of ordinary skill in the art
having the benefit of this disclosure. For example, selected
aspects are shown in block diagram form, rather than in
detail, to avoid limiting or obscuring the present invention.
Also for example, while the data processing system is shown
with a processor having a particular architecture with a
single core, other processor architectures are contemplated,
including multicore type processor architectures. Also for
example, various types of cache storage units such as ways,
banks, way unit blocks, sets and groups of bitcells may each
be considered to be sections within the cache.

For example, while the FIFO has been described using
performing collapse and push operations, it will be appre
ciated that under certain conditions, a collapse and push
operation is functionally equivalent to a pop operation.

Additionally, for example, while a 3:1 FIFO has been
described which includes three input multiplexers, it will be
appreciated that a 2:1 FIFO may also be used in which case
two input multiplexers are sufficient. With the three input
multiplexers of the described FIFO, collapse, push and pop
functions can all be performed in the same cycle. However,
in certain embodiments only pushing, collapsing and col
lapsing and pushing are performed in the same cycle, in
which case a 2:1 FIFO is sufficient.

Consequently, the invention is intended to be limited only
by the spirit and scope of the appended claims, giving full
cognizance to equivalents in all respects.

What is claimed is:
1. A memory system comprising:
a memory array, the memory array comprising a plurality

of portions and a plurality of sections, the portions
corresponding to ways within the memory array and
sections corresponding to sets within the memory
array; and,

a memory controller, the memory controller comprising a
least recently used (LRU) circuit, the LRU circuit
comprising a plurality of first in first out (FIFO) cir
cuits, each of the plurality of FIFO circuits storing
indications of a respective portion of the plurality of
portions in an order based upon whether the respective
portion of the plurality of portions was most recently
accessed; and wherein

each of the plurality of FIFO circuits is configured to
perform a collapse function based upon the indications
of a respective portion of the plurality of portions in the
order based upon whether the respective portion of the
plurality of portions was most recently accessed, the
collapse function allowing each of the plurality of FIFO
circuits to provide a true LRU function to the LRU
circuit such that a victim portion is always a last
recently used portion.

2. The memory system of claim 1 wherein:
at least one of a pop function and a collapse function is

performed by the FIFO circuit when a portion is
invalidated.

3. The memory system of claim 1 wherein:
a push function is performed by the FIFO circuit when an

invalid portion is written; and,
a push and collapse function is performed by the FIFO

circuit simultaneously and together when a valid por
tion is read or written.

4. The memory system of claim 3 wherein:
each entry in the FIFO comprises a portion number

indication relating to when the portion stored within the
entry was last accessed.

US 9,720,847 B2
11

5. The memory system of claim 1 wherein:
each portion of the cache comprises a valid bit, the valid

bit indicating that a portion of the cache comprises
valid data, the valid bit being set when the portion is
written and cleared upon being invalidated.

6. The memory system of claim 1 wherein:
the memory array comprises an m-set, n-way set associa

tive cache;
the memory controller comprises m LRU circuits corre

sponding to each set of the memory array.
7. The memory system of claim 6 wherein:
each of the m LRU circuits comprise a respective first in

first out (FIFO) circuit, each FIFO circuit being of
n-depth, each FIFO circuit storing at least some of the
plurality of ways in an order based upon whether a way
of the plurality of ways was most recently accessed.

8. The memory system of claim 7 wherein:
each entry in each of the FIFO circuits comprises a way
number indication relating to when the way stored
within the entry was last accessed via at least one of a
read or a write operation.

9. The memory system of claim 1 further comprising:
an arbitration circuit, the arbitration circuit selecting a

lowest available victim portion number in a set for any
Writes when one or more cache portions are not valid.

10. A method for performing a least recently used section
replacement operation comprising:

determining a victim portion of a memory array compris
ing a plurality of portions and a plurality of sections,
the portions corresponding to ways within the memory
array and sections corresponding to sets within the
memory array via a least recently used (LRU) control
circuit, the LRU circuit comprising a plurality of first in
first out (FIFO) circuits, each of the plurality of FIFO
circuits storing indications of a respective portion of the
plurality of portions in an order based upon whether a
the respective portion of the plurality of portions was
most recently accessed; and,

performing a collapse function via at least one of the
plurality of FIFO circuits based upon the indications of
a respective portion of the plurality of portions in the
order based upon whether the respective portion of the
plurality of portions was most recently accessed, the
collapse function allowing the each of the plurality of

10

15

25

30

35

40

12
FIFO circuits to provide a true LRU function to the
LRU circuit such that a victim portion is always a last
recently used portion.

11. The method of claim 10 further comprising:
performing a push function via the FIFO circuit when an

invalid portion is written; and,
performing a push and collapse function via the FIFO

circuit simultaneously and together when a valid por
tion is read or written.

12. The method of claim 10 further comprising:
performing at least one of a pop function and a collapse

function via the FIFO circuit when a section is invali
dated.

13. The method of claim 10 wherein:
each entry in the FIFO comprises a portion number

indication relating to when the portion stored within the
entry was last accessed.

14. The method of claim 13 wherein:
each portion of the cache comprises a valid bit, the valid

bit indicating that a portion of the cache comprises
valid data, the valid bit being set when the portion is
Written and cleared upon being invalidated.

15. The method of claim 10 wherein:
the memory array comprises an m-set, n-way set associa

tive cache;
the memory controller comprises m LRU circuits corre

sponding to each set of the memory array.
16. The method of claim 15 wherein:
each of the m LRU circuits comprise a respective first in

first out (FIFO) circuit, each FIFO circuit being of
n-depth, each FIFO circuit storing at least some of the
plurality of ways in an order based upon whether a way
of the plurality of ways was most recently accessed.

17. The method of claim 16 wherein:
each entry in each of the FIFO circuits comprises a way

number indication relating to when the way stored
within the entry was last accessed via at least one of a
read or a write operation.

18. The method of claim 10 further comprising:
selecting a lowest available victim portion number via an

arbitration circuit for any writes when one or more
cache ways are not valid.

