
(12) United States Patent
Huang

USO097 15398B2

US 9,715,398 B2
Jul. 25, 2017

(10) Patent No.:
(45) Date of Patent:

(54) PROGRAM CODE LOADING METHOD OF
APPLICATION AND COMPUTING SYSTEM
USING THE SAME

(71) Applicant: MStar Semiconductor, Inc., Hsinchu
Hsien (TW)

(72) Inventor: Chien-Hsing Huang, New Taipei (TW)

(73) Assignee: MSTAR SEMICONUCTOR, INC.,
Hsinchu Hsien (TW)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 227 days.

(21) Appl. No.: 14/840,443

(56) References Cited

U.S. PATENT DOCUMENTS

2009 OO13192 A1* 1/2009 Chen G06F 11.1004
T13, 189

2010.0064127 A1 3/2010 Lee G06F 11.1417
713/2

FOREIGN PATENT DOCUMENTS

CN 1302O16
CN 10 1556547 B

T 2001
10/2009

* cited by examiner

Primary Examiner — Nitin Patel
(74) Attorney, Agent, or Firm — WPAT, PC

(65) Prior Publication Data A program code loading method of an application is applied
US 2017/OO31696 A1 Feb. 2, 2017 tO a computing system that stores a program code of an

application in a flash memory. The program code is loaded
(30) Foreign Application Priority Data in a recording mode, including generating an initial address

and a data length of a second program code of the applica
Jul. 27, 2015 (TW) 10412427OA tion by executing a first program code of the application.

According to the initial address and data length, the second
(51) Int. Cl. program code is loaded from the flash memory to a DRAM.

G06F 9/00 (2006.01) A replay file, including the initial address and the data length
G06F 15/177 (2006.01) of the second program code, is generated and stored to the
G06F 9/445 (2006.01) flash memory. The program code is loaded in a replay mode,

(52) U.S. Cl. including loading the second program code from the flash
CPC G06F 9/44578 (2013.01) memory to the DRAM according to the initial address and

(58) Field of Classification Search data length of the second program code in the replay file.
None
See application file for complete search history. 14 Claims, 6 Drawing Sheets

Generate initial address and data length of second
section of program code of application by executing S222

first section of program code of application
S220

Loading second section of program code of ----
application from flash memory to DRAM

according to initial address and data length of -S224
second section of program Code of application

Generating replay file, replay file comprising initial address
and data length of second section of program code S226

Loading second section of program code of S230
application from flash memory to DRAM

according to initial address and data length of S232
second section of program code in replay file

U.S. Patent Jul. 25, 2017 Sheet 1 of 6 US 9,715,398 B2

130 110 100

processor

FIG. 1

Generate initial address and data length of second |
section of program code of application by executing S222

first section of program Code of application :

Loading second section of program code of --- d
application from flash memory to DRAM

according to initial address and data length of -S224
second section of program Code of application

Generating replay file, replay file comprising initial address
and data length of second section of program code S226

Loading second section of program Code of
application from flash memory to DRAM

according to initial address and data length of -S232
second section of program code in replay file

U.S. Patent Jul. 25, 2017 Sheet 2 of 6 US 9,715,398 B2

S310
After

executing
boot procedure,

determining whether
to load program Code of NYes
application in recording
mode or replay mode
according to whether

replay file exists
in flash

NO

S320

Loading
program
Code of

application S330
in t

recording -

S341

Section
of program code of

application to be executed
next is loaded into

DRAM?

Yes No

S342

Executing Loading program
Section of Code of application to

program Code be executed next from
of application to flash to DRAM, and
be eXecuted updating miss rate

S343
Miss
rate is

Yes1 greater than No
predetermined

S344 value? S34

Deleting
replay file
from flash

Not deleting
replay file
from flash

memory memory
-

U.S. Patent Jul. 25, 2017 Sheet 3 of 6 US 9,715,398 B2

120
%PC3

FIG. 4A

3PCó

FIG. 4B

U.S. Patent Jul. 25, 2017 Sheet 4 of 6 US 9,715,398 B2

120

%PC6BO
6PCnó B1
%2C22 B2

U.S. Patent Jul. 25, 2017 Sheet S of 6 US 9,715,398 B2

Yrc Y.

Lire is

U.S. Patent Jul. 25, 2017 Sheet 6 of 6 US 9,715,398 B2

120

PC
%PC1% B2

Lic
%PC3% b2

US 9,715,398 B2
1.

PROGRAM CODE LOADING METHOD OF
APPLICATION AND COMPUTING SYSTEM

USING THE SAME

This application claims the benefit of Taiwan application
Serial No. 104124270, filed Jul. 27, 2015, the subject matter
of which is incorporated herein by reference.

BACKGROUND OF THE INVENTION

Field of the Invention
The invention relates in general to a program code loading

method of a computing system, and more particularly to a
program code loading method of an application of a com
puting System.

Description of the Related Art
With the development of technologies, computing sys

tems are extensive applied. In a boot procedure of a com
puting system, a processor usually sequentially loads and
executes a bootloader and a system kernel, and loads and
executes a specific application after completing the boot
procedure. For example, the specific application is a frame
work application. In general, the data amount of an appli
cation is quite large, and so a program code of an application
is loaded and executed in a section divided manner. In the
section divided loading and execution process, the processor
only learns which other section of the program code of the
application is next to be loaded after completely executing
one section of the program code. That is, the activation
speed the application cannot be accelerated through pre
loading the program code to be executed.

SUMMARY OF THE INVENTION

The invention is directed to a program code loading
method of an application and a computing system using the
program code loading method. A loading sequence of the
program code of the application is recorded in a recording
mode, and the program code of the application is pre-loaded
in a replay mode according to the program code loading
sequence previously recorded, thereby accelerating the acti
Vation speed of the application.

According to an aspect of the present invention, a com
puting system is provided. The computing system includes
a flash memory, a dynamic random access memory (DRAM)
and a processor. The flash memory stores a program code of
an application. In a recording mode, the processor loads the
program code of the application, including generating an
initial address and a data length of a second section of the
program code by executing a first section of the program
code of the application, loads the second section of the
program code of the application from the flash memory to
the DRAM according to the initial address and the data
length of the second section of the program code, generates
a replay file including the initial address and the data length
of the second section of the program code, and stores the
replay code to the flash memory. In a replay mode, the
processor loads the program code of the application, includ
ing loading the second section of the program code of the
application from the flash memory to the DRAM according
to the initial address and the data length of the second
section of the program code in the replay file.

According to another aspect of the present invention, a
program code loading method of an application is provided.
The program code loading method is applied to a computing
system that stores a program code of an application in a flash
memory. In a recording mode, the program code of the

5

10

15

25

30

35

40

45

50

55

60

65

2
application is recorded, including generating an initial
address and a data length of a second section of the program
code of the application by executing a first section of the
program code of the application. According the initial
address and the data length of the second section of the
program code of the application, the second section of the
program code of the application is loaded from the flash
memory to the DRAM. A replay file, including the initial
address and the data length of the second section of the
program code, is generated and stored to the flash memory.
In a replay mode, the program code of the application is
loaded, including loading the second section of the program
code of the application from the flash memory to the DRAM
according to the initial address and the data length of the
second section of the program code in the replay file.
The above and other aspects of the invention will become

better understood with regard to the following detailed
description of the preferred but non-limiting embodiments.
The following description is made with reference to the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram of a computing system
according to an embodiment of the present invention;

FIG. 2 is a flowchart of a program loading method of an
application according to an embodiment of the present
invention;

FIG. 3 is a flowchart of a program loading method of an
application according to another embodiment of the present
invention;

FIG. 4A to FIG. 4C are schematic diagrams of loading a
program code of an application to a DRAM in a recording
mode; and

FIG. 5A to FIG. 5C are schematic diagram of loading a
program code of an application to a DRAM in a replay
mode.

DETAILED DESCRIPTION OF THE
INVENTION

A computing system capable of accelerating an activation
speed of an application by pre-loading a program code of the
application is provided according to an embodiment of the
present invention. FIG. 1 shows a schematic diagram of a
computing system according to an embodiment of the pres
ent invention. A computing system 100 includes a flash
memory 110, a dynamic random access memory (DRAM)
120 and a processor 130. The flash memory 110 stores
program codes of a bootloader, a system kernel and an
application. When the computing system 100 is powered on,
the processor 130 sequentially loads the program codes of
the bootloader and the system kernel from the flash memory
110 to the DRAM 120 to execute the bootloader and the
system kernel. The processor 130 then loads the program
code of the application from the flash memory 110 to the
DRAM 120 to execute the application. For example, the
application may be a framework application, e.g., an
Android framework application.

FIG. 2 shows a flowchart of a program code loading
method of an application according to an embodiment of the
present invention. In the embodiment, in a boot procedure of
the computing system 100, in a recording mode, the pro
cessor 130 loads a program code of an application to be
executed (step S220). Step S220 further includes steps S222
to S226. In a next boot procedure of the computing system
100, the processor 130 switches to a replay mode, and loads

US 9,715,398 B2
3

the program code of the application to be executed (step
S230). Step S230 further includes step S232.

In the recording mode, after completely executing the
boot procedure and the system kernel, the processor 130
loads an initial program code PCi of the application to be
executed from the flash memory 110 to the DRAM 120 to
execute the loaded program code. Before the processor 130
completes executing the initial program code PCi, the pro
cessor 130 is unaware of a next section of program code to
be executed. Thus, only after completely executing the
initial program code PCi, the processor 130 can then load a
next program code PC1 to be execute from the flash memory
110 to the DRAM 120 to execute the loaded program code.
Similarly, only after completely executing the program code
PC1, the processor 130 can then load a next program code
PC2 to be executed from the flash memory 110 to the
DRAM 120 to execute the loaded program code. For
example, after completely executing the program code PCi.
the processor 130 generates an initial address AD1 (e.g.,
0x2000 0000) and a data length DL1 (e.g., 100 MB) of the
program code PC1 (step S222). Next, the processor 130
loads the program code PC1 to be executed from the flash
memory 110 to the DRAM 120 according to the initial
address AD1 and the data length DL1 of the program code
PC1 to execute the loaded program code (step S224).
Similarly, after completely executing the program code PC1,
the processor 130 generates an initial address AD2 (e.g.,
0x5000 0000) and a data length DL2 (e.g., 200 MB) of the
next program code PC2 to be executed. Next, the processor
130 loads the program code PC2 from the flash memory 110
to the DRAM 120 according to the initial address AD2 and
the data length DL2 of the program code PC2 execute the
loaded program code, and so forth. Thus, the processor 130
executes a plurality of sections of program codes PC1-PCn.
After generating the initial address AD1 and the data length
DL1 of the program code PC1, the processor 130 writes the
initial address AD1 and the data length DL1 of the program
code PC1 into a replay file (step S226). Similarly, after
generating the initial address AD2 and the data length DL2
of the program code PC2, the processor 130 writes the initial
address AD2 and the data length DL2 of the program code
PC2 into the reply file, and so forth. After the processor 130
executes the program codes PC1 to PCn of the application,
the replay file expectedly includes the initial addresses AD1
to ADn and the data lengths DL1 to DLn of the program
codes PC1 to PCn. In one embodiment, the numbers of the
initial addresses and the data lengths stored in the replay file
are constant. That is, instead of storing the initial addresses
and data lengths of all sections of the program codes of the
applications, the replay file stores the initial addresses AD1
to ADn and the data lengths DL1 to DLn of N sections of
program codes (PC1 to PCn) of a plurality of sections of
program codes of the application. For example, assume that
the replay file stores the initial addresses and data lengths of
only 20 sections of program codes of the application. If there
are 30 program code sections, the replay file stores only the
initial addresses and data lengths of 20 program code
sections and does not store the initial address and data
lengths of the remaining 10 program code sections. In one
embodiment, the processor 130 stores the replay file in the
flash memory 110. As data stored in the flash memory 110
is kept intact even after powering off the flash memory 110.
the processor 130 is allowed to load the program code of the
application according to the replay file stored in the flash
memory 110 when the processor 130 is powered on next
time.

5

10

15

25

30

35

40

45

50

55

60

65

4
In the replay mode, after completely executing the boot

procedure and the system kernel, the processor 130 loads a
section of initial program code PCi of the application to be
executed from the flash memory 110 to the DRAM 120 to
execute the loaded program code. Different from the record
ing mode, the processor 130 may pre-load the program code
of the application from the flash memory 110 to the DRAM
120 according to the replay file in the flash memory 110
(step S232) for the processor 130 to execute. For example,
according to the initial address AD1 and the data length DL1
of the program code PC1 in the replay file, the processor 130
may pre-load the program code PC1 from the flash memory
110 to the DRAM 120; according to the initial address AD2
and the data length DL2 of the program code PC2 in the
replay file, the processor 130 may pre-load the program code
PC2 from the flash memory 110 to the DRAM 120; and so
forth. Thus, according to the initial addresses AD1 to ADn
and the data lengths DL1 to DLn of the program codes PC1
to PCn in the replay file, the processor 130 may pre-load the
program codes PC1 to PCn from the flash memory 110 to the
DRAM 120.

In one embodiment, the processor 130 may be a single
core processor, and loads and executes the program code of
the application in parallel in a time-division multiplexed
manner. In another embodiment, the processor 130 may be
a multi-core processor that processes the task of loading and
executing the program code in parallel by different cores.
For example, while one core executes the initial program
code PCi, another core at the same time pre-loads the
program code PC1 from the flash memory 110 to the DRAM
120 according to the initial address AD1 and data length
DL1 of the program code PC1 in the replay file.
AS Such, when the program code to be executed by the

processor 130 is pre-loaded into the DRAM 120, the pro
cessor 130 may directly execute the program code to be
executed according to the program code pre-loaded into the
DRAM 120, thereby accelerating the activation speed of the
application. For example, when the processor 130 learns that
the program code to be executed next has been the program
code PC2 after executing the program code PCi, if the
program code PC2 is pre-loaded into the DRAM 120, the
processor 130 may directly execute the program code PC2
pre-loaded into the DRAM 120, thereby accelerating the
activation speed of the application.

FIG. 3 shows a flowchart of a program code loading
method of an application according to another embodiment
of the present invention. In the embodiment, after the
computing system 100 executes the boot procedure, the
processor 130 determines whether to load the program code
of the application in the recording mode (S320) or in the
replay mode (S330) according to whether the replay file
exists in the flash memory 110. Steps S341 to S346 are
further included in the replay mode.

After the computing system 100 executes the boot pro
cedure, the processor 130 checks whether the replay file
exists in the flash memory 110 (step S310). For example, the
replay file is stored at a predetermined position in the flash
memory 110. After the computing system 100 executes the
boot procedure, the processor 130 checks whether the replay
file exists at the predetermined position in the flash memory
110. Step S330 is performed when the replay file exists in the
flash memory 110, or else step S320 is performed when the
replay file does not exist in the flash memory 110.

In step S320, the processor 130 loads the program code of
the application to be executed in the recording mode. Step
S320 is similar to step S220, and associated details shall be
omitted herein.

US 9,715,398 B2
5

In step S330, the processor 130 loads the program code of
the application to be executed in the replay mode. Step S330
further includes steps S341 to S346.

After completely executing the program code (e.g., PC1),
the processor 130 learns that the next section of program
code (e.g., PC2) is to be executed. Next, the processor 130
determines whether the program code PC2 to be executed
next has been loaded into the DRAM 120 (step S341).
When the processor 130 determines that the program code

PC2 is pre-loaded into the DRAM 120, the processor 130
may directly execute the program code PC2 pre-loaded into
the DRAM 120 (step S346).
When the processor 130 determines that the program code

PC2 is not pre-loaded into the DRAM 120, the processor
130 loads the program code PC2 to be executed from the
flash memory 110 to the DRAM 120, and updates a miss rate
(step S342). For example, the miss rate records the number
of times that the processor 130 fails to find the program code
to be executed from the DRAM 120 in the replay mode. In
one embodiment, the processor 130 records the miss rate by
a variable number. When the processor 130 fails to find the
program code to be executed from the DRAM, the processor
130 updates the miss rate by adding the value of the miss rate
by 1.

After updating the miss rate, the processor 130 determines
whether the miss rate is greater than a predetermined value
(step S343). Step S344 is performed when the miss rate is
greater than the predetermined value, or else step S345 is
performed when the miss rate is not greater than the prede
termined value. The predetermined value may be deter
mined by a designer.
When the processor 130 determines that the miss rate is

greater than the predetermined value, the processor 130
deletes the replay file from the flash memory 110 (step
S344). For example, a miss rate greater than the predeter
mined value represents an excessive error in the information
recorded in the replay file. Thus, the processor 130 deletes
the replay file, and causes the computing system 100 to load
the program code of the application according to a common
process. That is, instead of determining whether a section of
program code to be executed next has been loaded into the
DRAM 120 after the processor 130 completes executing one
section of program code, the processor 130 loads a section
of program code to be executed next from the flash memory
110 to the DRAM 120 only after the processor 130 com
pletes executing a current section of program code.
When the processor 130 determines that the miss rate is

not greater than the predetermined value, the processor 130
does not delete the replay file stored from the flash memory
110 (step S345). For example, a miss rate that is not greater
than the predetermined value means that the error of the
information recorded in the replay file is within a tolerable
range. Thus, the processor 130 does not delete the replay file,
and continues loading the program code of the application
from the flash memory 110 to the DRAM 120 according to
the replay file.

FIG. 4A to FIG. 4C are schematic diagrams of loading a
program code of an application to the DRAM 120 in the
recording mode according to an embodiment of the present
invention. In one embodiment, the DRAM 120 includes a
cache address space 122 and an allocated address space 121
of the application. The cache address space 122 is divided
into multiple blocks b0 to bm. The allocated address space
121 is divided into multiple blocks B0 to BM. The allocated
address space 121 is an address space that the computing
system 100 allocates for storing the program code of the
application to be executed by the processor 130. The cache

10

15

25

30

35

40

45

50

55

60

65

6
address space 122 is an address space that the computing
system 100 allocates for storing the program code of the
application pre-loaded according to the replay file and to be
executed by the processor 130. When the processor 130 is to
execute the program code of the application pre-loaded
according to the replay file, the processor 130 duplicates the
program code to be executed from the cache address space
122 to the allocated address space 121 of the application.

Referring to FIG. 4A to FIG. 4C, in the embodiment, after
the processor 130 completes executing the boot procedure
and the system kernel, the initial program code PCi of the
application is loaded from the flash memory 110 to the
allocated address space 121 of the DRAM 120. For example,
as shown in FIG. 4A, the initial program code PCi is loaded
to the block B0. Next, after the processor 130 completes
executing the program code PCi, the program code PC1 of
the application to be executed next has been loaded from the
flash memory 110 to the allocated address space 121 of the
DRAM 120. It should be noted that, each time the processor
130 completes executing the initial program code PCi, the
program code PC1 of the application to be executed next is
not necessarily the same section of the program code. That
is to say, after the processor 130 completes executing the
initial program code PCi, the program code of the applica
tion to be executed next may be the first section of the
program code of the application or may be the second
section of the program code of the application. Therefore,
the program code PC1 in the embodiment refers to the
program code section to be executed after completely
executing the initial program code PCi. For example, as
shown in FIG. 4B, assuming that the program code PC1 of
the application to be executed is the M" section of program
code of the application after the processor completes execut
ing the initial program code PCi, the program code PC1 is
loaded into the block BM, and so forth. Thus, in the
recording mode, the program codes PC1 to PCn of the
application are loaded from the flash memory 110 to the
allocated address space 121 of the DRAM 120. For example,
as shown in FIG. 4C (not entirely shown), assuming that the
program code PC2 of the application to be executed next is
the 2" section of program code of the application after the
processor 130 completes executing the program code PC1,
the program code PC2 is loaded into the block B2; assuming
that the program code PCn to be executed next after the
processor 130 completes executing the program code PCn-1
is the 1 section of program code of the application, the
program code PCn is loaded into the block B1. That is, in the
embodiment, the initial code PCi is loaded into the block B0,
and the program codes PC1 to PCn are loaded into the
corresponding blocks in the allocated address space accord
ing to the program code section sequence of the application.
For example, if the program code PC1 is the 2" section of
the program code of the application, the program code PC1
is loaded to the block B2; if the program code PC2 is the 1
section of the program code of the application, the program
code PC2 is loaded into the block B1, and is not limited to
the circumstances shown in FIG. 4A to FIG. 4C.

FIG. 5A to FIG. 5C show schematic diagrams of loading
a program code of an application to the DRAM 120 in the
replay mode according to an embodiment of the present
invention. In the embodiment, after the processor 130 com
pletes executing the boot procedure and the system kernel,
the initial program code PCi of the application is loaded
from the flash memory 110 to the allocated address space
121 of the DRAM 120 for the processor 130 to execute. The
program codes PC1 to PCn corresponding to the replay file
are sequentially loaded from the flash memory 110 to the

US 9,715,398 B2
7

cache address space 122 of the DRAM 120, as shown in
FIG. 5A. For example, the initial program code PCi is
loaded into the block B0 of the allocated address space 121,
the program code PC1 is loaded to the block b0 of the cache
address space 122, the program code PC2 is loaded to the
block b1 of the cache address space 122, and the program
code PC3 is loaded to the block b2 of the cache address
space 122. In FIG. 5A, the program codes PC1 to PC3 are
loaded into the cache address 122 of the DRAM 120, and the
program codes PC4 to PCn are not yet loaded into the cache
address space 122 of the DRAM 120.

Next, after the processor 130 completes executing the
initial program code PCi and generates the program code to
be executed next, the processor 130 determines whether the
program code to be executed next has been loaded into the
cache address space 122 of the DRAM 120. After it is
determined that the program code to be executed next has
been loaded into the cache address space 122 of the DRAM
120, the processor 130 duplicates the program code to be
executed next from the cache address space 122 of the
DRAM 120 to the allocated address space 121 of the
application in the DRAM 120 to execute the duplicated
program code. After it is determined that the program code
to be executed next has not been loaded into the cache
address space 122 of the DRAM 120, the processor 110
loads the program code to be executed next from the flash
memory 110 to the allocated address space 121 of the
application in the DRAM 120 to execute the loaded program
code.

For example, after determining whether the program code
to be executed next has been loaded into the cache address
space 122 of the DRAM 120, in a situation where the
program codes PC1 to PC3 of the application are already
loaded into the cache address space of the DRAM 120, and
the program codes PC4 to PCn of the application are not yet
loaded into the cache address space 122 of the DRAM 1200,
if the program code to be executed next is the program code
PC2, the processor 130 duplicates the program code PC2
from the cache address space 122 of the DRAM 120 to the
allocated address space 121 of the application in the DRAM
120 to execute the duplicated program code, as shown in
FIG. 5B. In FIG. 5B, a dotted arrow represents that the
program code PC2 is duplicated from the block b1 of the
cache address space 122 to the block B1 of the allocated
address space 121. If the program code to be executed next
is PC4, the processor 130 loads the program code PC4 from
the flash memory 110 to the allocated address space 121 of
the application in the DRAM 120 to execute the loaded
program code, as shown in FIG. 5C. In FIG. 5C, a dotted
arrow represents that the program code PC4 is loaded from
the flash memory 110 to the block BM of the allocated
address space 121.

According to the above embodiments of the present
invention, an application may be activated in two modes. In
the recording mode, an initial address and a data length of
a section of program code of an application are recorded in
a replay file. In a replay mode, while the processor is
executing the section of program code of the application
stored in a DRAM, according to the initial address and the
data length recorded in the replay file, the processor may
pre-load a section of program code of the application not yet
stored to the DRAM or a section of program code of the
application to be subsequently used from the flash memory
to the DRAM. Thus, the flash memory is not required to wait
to access a section of program code of the application to be
executed next only when the processor learns the section of

10

15

25

30

35

40

45

50

55

60

65

8
program code of the application to be executed next, thereby
accelerating the activation speed of the application.

While the invention has been described by way of
example and in terms of the preferred embodiments, it is to
be understood that the invention is not limited thereto. On
the contrary, it is intended to cover various modifications
and similar arrangements and procedures, and the scope of
the appended claims therefore should be accorded the broad
est interpretation so as to encompass all Such modifications
and similar arrangements and procedures.
What is claimed is:
1. A computing system that pre-loads a program code of

an application, comprising:
a flash memory, storing the program code of the applica

tion;
a dynamic random access memory (DRAM); and
a processor, performing a following method:

in a recording mode, loading the program code of the
application, comprising:
generating an initial address and a data length of a

second section of the program code by executing
a first section of the program code of the applica
tion;

loading the second section of the program code of
the application from the flash memory to the
DRAM according to the initial address and the
data length of the second section of the program
code of the application; and

generating a replay file, the replay file comprising
the initial address and the data length of the
second section of the program code, and storing
the replay file to the flash memory; and

in a replay mode, loading the program code of the
application, comprising:
loading the second section of the program code of

the application from the flash memory to the
DRAM according to the initial address and the
data length of the second section of the program
code in the replay file.

2. The computing system according to claim 1, wherein:
the DRAM further comprises a cache address space and

an allocated address space of the application, and the
cache address space is different from the allocated
address space;

in the recording mode, the second section of the program
code is loaded into the allocated address space of the
application; and

in the replay mode, the second section of the program
code is loaded into the cache address space according
to the replay file.

3. The computing system according to claim 2, wherein
the method performed by the processor further comprises:

in the replay mode, the step of loading the program code
of the application further comprises:
determining whether a section of the program code of

the application to be executed next has been loaded
into the DRAM; and

after it is determined that the section of the program
code to be executed next has been loaded into the
DRAM, duplicating the section of the program code
of the application to be executed next from the cache
address space to the allocated address space of the
application.

4. The computing system according to claim 2, wherein
the method performed by the processor further comprises:

in the replay mode, the step of loading the program code
of the application further comprises:

US 9,715,398 B2

determining whether a section of the program code of
the application to be executed next has been loaded
into the DRAM; and

after it is determined that the section of the program
code to be executed next has not been loaded into the
DRAM, loading the section of the program code of
the application to be executed next from the flash
memory to the allocated address space of the appli
cation.

5. The computing system according to claim 1, wherein
the method performed by the processor further comprises:

in the replay mode, the step of loading the program code
of the application further comprises:
determining whether a section of the program code of

the application to be executed next has been loaded
into the DRAM;

after it is determined that the section of the program
code of the application to be executed next has not
been loaded into the DRAM, updating a miss rate;

determining whether the miss rate is greater than a
predetermined value; and

after it is determined that the miss rate is greater than
the predetermined value, deleting the replay file from
the flash memory.

6. The computing system according to claim 5, wherein
the method performed by the processor further comprises:

after executing a boot procedure, determining to load the
program code of the application either in the recording
mode or in the replay mode according to whether the
replay file exists in the flash memory.

7. The computing system according to claim 6, wherein
the application is a framework application.

8. A method that pre-loads a program code of an appli
cation, applied to a computing system that stores the pro
gram code of the application to a flash memory, the method
comprising:

in a recording mode, loading the program code of the
application, comprising:
generating an initial address and a data length of a

second section of the program code by executing a
first section of the program code of the application;

loading the second section of the program code of the
application from the flash memory to the DRAM
according to the initial address and the data length of
the second section of the program code of the
application; and

generating a replay file, the replay file comprising the
initial address and the data length of the second
section of the program code, and storing the replay
file to the flash memory; and

in a replay mode, loading the program code of the
application, comprising:
loading the second section of the program code of the

application from the flash memory to the DRAM

5

10

15

25

30

35

40

45

50

10
according to the initial address and the data length of
the second section of the program code in the replay
file.

9. The method according to claim 8, wherein:
in the recording mode, the second section of the program

code is loaded into an allocated address space of the
application in the DRAM; and

in the replay mode, the second section of the program
code is loaded into a cache address space in the DRAM:
the cache address space is different from the allocated
address space.

10. The method according to claim 9, wherein the step of
loading the program code of the application in the replay
mode further comprises:

determining whether a section of the program code of the
application to be executed next has been loaded into the
DRAM; and

after it is determined that the section of the program code
to be executed next has been loaded into the DRAM,
duplicating the section of the program code of the
application to be executed next from the cache address
space to the allocated address space of the application.

11. The method according to claim 9, wherein the step of
loading the program code of the application in the replay
mode further comprises:

determining whether a section of the program code of the
application to be executed next has been loaded into the
DRAM; and

after it is determined that the section of the program code
to be executed next has not been loaded into the
DRAM, loading the section of the program code of the
application to be executed next from the flash memory
to the allocated address space of the application.

12. The method according to claim 8, wherein the step of
loading the program code of the application in the replay
mode further comprises:

determining whether a section of the program code of the
application to be executed next has been loaded into the
DRAM:

after it is determined that the section of the program code
of the application to be executed next has not been
loaded into the DRAM, updating a miss rate:

determining whether the miss rate is greater than a
predetermined value; and

when it is determined that the miss rate is greater than the
predetermined value, deleting the replay file from the
flash memory.

13. The method according to claim 12, further compris
1ng:

after executing a boot procedure, determining to load the
program code of the application either in the recording
mode or in the replay mode according to whether the
replay file exists in the flash memory.

14. The method according to claim 13, wherein the
application is a framework application.

