
(12) United States Patent

USOO971.0367B1

(10) Patent No.: US 9,710,367 B1
Nagineni (45) Date of Patent: Jul.18, 2017

(54) METHOD AND SYSTEM FOR DYNAMIC 2007/0022407 A1* 1/2007 Givoni G06F 11.3414
TEST CASE CREATION AND ck 717/124
DOCUMENTATION TO THE TEST 2007, 0080205 A1 * 4, 2007 You G06F 5.

REPOSITORY THROUGH AUTOMATION 2008, 0208958 A1* 8, 2008 Huff G06F 11.30
TO9,203

(71) Applicant: IP Holding Company LLC, 2008/0256315 A1 * 10, 2008 Awai G06F 11.1448
Hopkinton, MA (US) T11 162

2011/0202901 A1* 8, 2011 Givoni G06F 11.3414
(72) Inventor: Shylaja Nagineni, Bangalore (IN) 717/125

2013,0097586 A1* 4, 2013 Chandra G06F 11,3684

(73) Assignee: EMC IP Holding Company LLC, f * 3/ R. 124
Hopkinton, MA (US) 2014,0081919 A1 3f2014 Matsumoto Goof';

2015,0007149 A1 1/2015 Maddella GO6F 8,70
(*) Notice: Subject to any disclaimer, the term of this aCCa 717 131

patent is extended or adjusted under 35 2015/01684.82 A1* 6/2015 Flynn GO1R 31.2889
U.S.C. 154(b) by 0 days. 324/754.07

2016,0070641 A1* 3, 2016 Printz G06F 11.3692
(21) Appl. No.: 14/928,986 717/124

2016/0132420 A1* 5, 2016 Kuo G06F 11,3684
1-1. 717/130

(22) Filed: Oct. 30, 2015 2016/0232061 A1* 8, 2016 Gaschler G06F 11.1461

(51) Int. Cl. * cited by examiner
G06F 9/44 (2006.01)
G06F II/36 (2006.01) Primary Examiner — Chameli Das

(52) U.S. Cl. (74) Attorney, Agent, or Firm — Staniford Tomita LLP
CPC G06F II/3684 (2013.01)

(58) Field of Classification Search (57) ABSTRACT
CPC ... GO6F 11 (3684
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

9,280,453 B1*
2003/0070118 A1*

2004/O107415 A1*

2005/O193269 A1*

2006/023O320 A1*

3, 2016
4, 2003

6, 2004

9, 2005

10, 2006

Covarrubias G06F 11,3684
Nakao GO1R 31,31854

T14? 30
Melamed G06F 11,3684

717/124
Haswell G06F 11,3684

714,38.13
Salvador G06F 11,3684

714,38.1

A set of automated unit test components is stored. The
automated unit test components include executable code for
testing a backup system. The set of automated unit test
components are displayed on an electronic screen. A selec
tion of a Subset of the unit test components from a user is
received. An automated test case is created based on the
selected Subset of automated unit test components. The
automated test case is stored. After the automated test case
is created, the automated test case is parsed to derive a
manual test case corresponding to the automated test case.
The manual test case is stored.

14 Claims, 6 Drawing Sheets

SOS
8-define 30 Stoica

splay on an electron

fter creation of the automated
case corresponding to the attornated test case

set of at stomated unit test coniboinents.
each unit test component including executable code

5.

Ée screen the set of automated unitiest
components

55

celle frcinatiser a selectle? glassel (ifthe Utinated in
test components

520

eate an automated test case based gn the selected subset of
the set of automated unit test components

test case, derive a manuattest :

Store the natuatesiase
535

US 9,710,367 B1 Sheet 2 of 6 Jul.18, 2017 U.S. Patent

U.S. Patent Jul.18, 2017 Sheet S of 6 US 9,710,367 B1

505 -a Pre-define and store a set of automated unit test components,
each unit test component including executable Code

510

Display on an electronic screen the set of automated unit test
components

515

Receive from a user a selection of a Subset of the automated unit
test components

52O

Create an automated test case based on the Selected Subset of
the set of automated unit test components

525

Store the automated test Case
527

After Creation of the automated test case, derive a manual test
case corresponding to the automated test case

530

545

Store the manual test Case
535

F.G. 5

US 9,710,367 B1
1.

METHOD AND SYSTEM FOR DYNAMIC
TEST CASE CREATION AND

DOCUMENTATION TO THE TEST
REPOSITORY THROUGH AUTOMATION

TECHNICAL FIELD

Embodiments are generally directed to Software testing
and, more particularly, to automating the creation and docu
mentation of test cases.

COPYRIGHT NOTICE

A portion of the disclosure of this patent document
contains material which is subject to copyright protection.
The copyright owner has no objection to the facsimile
reproduction by anyone of the patent disclosure, as it
appears in the Patent and Trademark Office patent files or
records, but otherwise reserves all copyright rights whatso
eVe.

BACKGROUND

Quality assurance (QA) refers to the process of checking
to see whether a product or service meets expectations. It is
desirable to test software products in order to identify and fix
defects, bugs, and other problems before the products are
deployed in a production or customer environment. For
example, a backup application in a production environment
that fails to properly backup data could be disastrous in the
event that data needs to be restored. An e-commerce appli
cation that fails to properly process payments may lead to
missed orders and lost revenue. If defects are reported, it is
desirable to attempt to reproduce them and document the
steps in order to trace the problem and retest the updated
code.

Typically, test cases are created manually for a particular
Software system, product, service, or application. Once the
manual test cases have been created, they can then be
automated. Automating a test case from a manual test case
allows a particular set of actions or operations to be per
formed against the system being tested automatically or with
little or no user involvement. The conventional process to
automate a test case, however, is very laborious: an auto
mation engineer reviews each and every step of a previously
created manual test case and develops a custom Script.
Efforts are often duplicated because in many cases a test case
will include steps that overlap with the steps of another test
case. Any changes or updates to a manual test case must be
manually propagated to the corresponding automated Script.
It can be very difficult to keep these two in sync.

In some cases, a test case may not be automated because
of the time required to create and maintain the correspond
ing automated test Script. This can lead to increased devel
opment time because testing may need to be carried out
manually. Another problem with traditional methods of
testing is that exploratory or ad hoc testing scenarios are
often not documented. That is, ad hoc or exploratory test
cases are not usually documented in the test repository.
Thus, testers may execute some non-documented test cases.

Executing non-documented test cases can cause discrep
ancies in the test metrics. The lack of a record can lead to
uncertainty as to exactly what has been tested. Thus, testers
often have to spend a good amount of time to document the
exploratory test cases even though Such test cases may be
used sparingly. The dilemma is that a tester may spend a
good amount of time automating the exploratory test cases

10

15

25

30

35

40

45

50

55

60

65

2
but the time spent to automate may not be worth spending
as they may not be used later or may be used relatively
infrequently. Further, defects that are escalated can require a
specific scenario to be tested. These test cases are often not
documented in the test repository. In some cases, even
though they are documented they are not executed as they
require a specific scenario which could be a corner case or
require a complex setup or a negative test case.

Therefore, there is a need for systems and techniques that
provide for dynamic test case creation and documentation to
the test repository through automation. It would be desirable
to provide for the dynamic creation of a test case and
running of it in automated way. Such systems and techniques
can provide more confidence in the quality of the product
and can reduce the number and severity of mistakes in the
future releases as such issues can be easily tested in the
current release.
The Subject matter discussed in the background section

should not be assumed to be prior art merely as a result of
its mention in the background section. Similarly, a problem
mentioned in the background section or associated with the
subject matter of the background section should not be
assumed to have been previously recognized in the prior art.
The Subject matter in the background section merely repre
sents different approaches, which in and of themselves may
also be inventions. EMC, Data Domain, Data Domain
Restorer, and Data Domain Boost are trademarks of EMC
Corporation.

BRIEF DESCRIPTION OF THE FIGURES

In the following drawings like reference numerals desig
nate like structural elements. Although the figures depict
various examples, the one or more embodiments and imple
mentations described herein are not limited to the examples
depicted in the figures.

FIG. 1 is a diagram of a large-scale network implementing
a test case automation process to develop and document
dynamic test cases for a backup application, under some
embodiments.

FIG. 2 shows an overall flow of a system for test case
automation according to a specific embodiment.

FIG. 3 shows a block diagram of an architecture of a
system for test case automation according to a specific
embodiment.

FIG. 4 shows another block diagram of an architecture of
a system for test case automation according to a specific
embodiment.

FIG. 5 shows a flow diagram for generating and docu
menting a dynamic automated test case according to a
specific embodiment.

FIG. 6 shows an example of a graphical user interface for
creating a dynamic automated test case according to a
specific embodiment.

DETAILED DESCRIPTION

A detailed description of one or more embodiments is
provided below along with accompanying figures that illus
trate the principles of the described embodiments. While
aspects of the invention are described in conjunction with
such embodiment(s), it should be understood that it is not
limited to any one embodiment. On the contrary, the scope
is limited only by the claims and the invention encompasses
numerous alternatives, modifications, and equivalents. For
the purpose of example, numerous specific details are set
forth in the following description in order to provide a

US 9,710,367 B1
3

thorough understanding of the described embodiments,
which may be practiced according to the claims without
some or all of these specific details. For the purpose of
clarity, technical material that is known in the technical
fields related to the embodiments has not been described in
detail so that the described embodiments are not unneces
sarily obscured.

It should be appreciated that the described embodiments
can be implemented in numerous ways, including as a
process, an apparatus, a system, a device, a method, or a
computer-readable medium such as a computer-readable
storage medium containing computer-readable instructions
or computer program code, or as a computer program
product, comprising a computer-usable medium having a
computer-readable program code embodied therein. In the
context of this disclosure, a computer-usable medium or
computer-readable medium may be any physical medium
that can contain or store the program for use by or in
connection with the instruction execution system, apparatus
or device. For example, the computer-readable storage
medium or computer-usable medium may be, but is not
limited to, a random access memory (RAM), read-only
memory (ROM), or a persistent store, Such as a mass storage
device, hard drives, CDROM, DVDROM, tape, erasable
programmable read-only memory (EPROM or flash
memory), or any magnetic, electromagnetic, optical, or
electrical means or system, apparatus or device for storing
information. Alternatively or additionally, the computer
readable storage medium or computer-usable medium may
be any combination of these devices or even paper or
another Suitable medium upon which the program code is
printed, as the program code can be electronically captured,
via, for instance, optical scanning of the paper or other
medium, then compiled, interpreted, or otherwise processed
in a Suitable manner, if necessary, and then stored in a
computer memory. Applications, Software programs or com
puter-readable instructions may be referred to as compo
nents or modules. Applications may be hardwired or hard
coded in hardware or take the form of software executing on
a general purpose computer or be hardwired or hard coded
in hardware such that when the software is loaded into
and/or executed by the computer, the computer becomes an
apparatus for practicing the invention. Applications may
also be downloaded, in whole or in part, through the use of
a software development kit or toolkit that enables the
creation and implementation of the described embodiments.
In this specification, these implementations, or any other
form that the invention may take, may be referred to as
techniques. In general, the order of the steps of disclosed
processes may be altered within the scope of the invention.

Disclosed herein are methods and systems for dynami
cally creating automated test cases and documenting the test
cases. In a specific embodiment, the system is configured to
test a backup application or backup system. The backup
application allows for backing up and restoring data and can
be used as part of a disaster recovery solution for large-scale
networks. Some embodiments of the invention involve
automated backup recovery techniques in a distributed sys
tem, such as a very large-scale wide area network (WAN).
metropolitan area network (MAN), or cloud based network
system, however, those skilled in the art will appreciate that
embodiments are not limited thereto, and may include
Smaller-scale networks, such as LANs (local area networks).
Thus, aspects of the one or more embodiments described
herein may be implemented on one or more computers

10

15

25

30

35

40

45

50

55

60

65

4
executing Software instructions, and the computers may be
networked in a client-server arrangement or similar distrib
uted computer network.

FIG. 1 illustrates a computer network system 100 that
implements one or more embodiments of a system for
backing up and restoring data. In system 100, a number of
clients 104 are provided to serve as backup clients or nodes.
A network or backup server computer 102 is coupled
directly or indirectly to these clients through network 110.
which may be a cloud network, LAN, WAN or other
appropriate network. Network 110 provides connectivity to
the various systems, components, and resources of system
100, and may be implemented using protocols such as
Transmission Control Protocol (TCP) and/or Internet Pro
tocol (IP), well known in the relevant arts. In a distributed
network environment, network 110 may represent a cloud
based network environment in which applications, servers
and data are maintained and provided through a centralized
cloud computing platform. In an embodiment, system 100
may represent a multi-tenant network in which a server
computer runs a single instance of a program serving
multiple clients (tenants) in which the program is designed
to virtually partition its data so that each client works with
its own customized virtual application, with each virtual
machine (VM) representing virtual clients that may be
supported by one or more servers within each VM, or other
type of centralized network server.
The data generated within system 100 may be stored in a

backup media of a backup storage node 114. The backup
media may be located at any number of persistent storage
locations and devices, such as local client storage, server
storage, or network storage, which may at least be partially
implemented through storage device arrays, Such as RAID
components. In an embodiment network 100 may be imple
mented to provide Support for various storage architectures
such as storage area network (SAN), Network-attached
Storage (NAS), or Direct-attached Storage (DAS) that make
use of large-scale network accessible storage devices, such
as large capacity tape or drive (optical or magnetic) arrays.
In an embodiment, the target storage devices, such as tape or
disk array may represent any practical storage device or set
of devices, such as tape libraries, virtual tape libraries
(VTL), fiber-channel (FC) storage area network devices, and
OST (OpenStorage) devices. In a specific embodiment,
however, the target storage devices represent disk-based
targets implemented through virtual machine technology.

For the embodiment of FIG. 1, network system 100
includes backup server 102, one or more backup clients 104,
and backup storage node 114. A backup client executes
processes 112 for backing up data to the storage node,
restoring the backed up data, and coordinating with backup
server processes 120 on the backup server and processes 116
on the storage node. The backup server processes include
processes to index the backups and identify which savesets
reside on which backup devices or volumes. The backup
storage node executes processes 116 for receiving backup
information from the backup client, writing data to the
backup devices or Volumes, sending tracking information to
the backup server to track the data written to the devices or
Volumes, and reading the data from the devices or volumes
at the request of the client during a recovery.

In an embodiment, system 100 may represent a Data
Domain Restorer (DDR)-based deduplication storage sys
tem, and a storage server or node having the backup media
may be implemented as a DDR Deduplication Storage
server provided by EMC Corporation. However, other simi
lar backup and storage systems are also possible. System

US 9,710,367 B1
5

100 may utilize certain protocol-specific namespaces that
are the external interface to applications and include NFS
(network file system) and CIFS (common internet file sys
tem) namespaces, as well as a virtual tape library (VTL) or
DD Boost provided by EMC Corporation. In general, DD
Boost (Data Domain Boost) is a system that distributes parts
of the deduplication process to the backup server or appli
cation clients, enabling client-side deduplication for faster,
more efficient backup and recovery. A data storage deploy
ment may use any combination of these interfaces simulta
neously to store and access data. Data Domain (DD) devices
in system 100 may use the DD Boost backup protocol to
provide access from servers to DD devices. The DD Boost
library exposes APIs (application programming interfaces)
to integrate with a Data Domain system using an optimized
transport mechanism. These API interfaces exported by the
DD Boost Library provide mechanisms to access or manipu
late the functionality of a Data Domain file system, and DD
devices generally support both NFS and CIFS protocol for
accessing files.
The computing environment shown in FIG. 1 further

includes an automation server system 125. The automation
server system may be referred to as a QA System, automa
tion tool, automation framework, or automation Suite. The
automation server includes storage 130 and several modules
including a test case management console 135, a test auto
mation harness 145, and a test case documenter 150. The test
automation harness includes a test automation engine 155, a
test execution engine 160, and a test results engine 165.
Storage includes a repository 170 that stores automated
basic test blocks, a repository 175 that stores test data, and
a repository 180 that stores dynamically generated auto
mated test cases 185 and manual test cases 190 that corre
spond to the dynamically generated automated test cases.
The modules run on one or more computing machines. It

should be appreciated that the modules shown in FIG. 1 can
be functional entities where implementation of the functions
may vary. For example, in some cases, the test case docu
mentation module and test automation harness may be
combined into one code module. In other cases, the test case
documentation module and test automation harness reside in
separate code modules. As another example, the dynamic
test cases may be stored with or separately from the manual
test cases, and so forth.

In a specific embodiment, a method is provided that
creates a test case from automation and adds the test case to
the test repository. This process is the complete opposite of
traditional techniques where the test case is first captured in
a test repository and later chosen and automated. A test case
can be created based on certain parameters provided using a
web-based automation user interface (UI).

FIG. 2 shows an overall flow 205 of the test case
automation system according to a specific embodiment.
Some specific flows are presented in this application, but it
should be understood that the process is not limited to the
specific flows and steps presented. For example, a flow may
have additional steps (not necessarily described in this
application), different steps which replace some of the steps
presented, fewer steps or a Subset of the steps presented, or
steps in a different order than presented, or any combination
of these. Further, the steps in other embodiments may not be
exactly the same as the steps presented and may be modified
or altered as appropriate for a particular process, application
or based on the data.

In brief, in a step 210, the automation server system
receives a user selection of an automated test component. In
a step 215, the system creates an automated test case. In a

10

15

25

30

35

40

45

50

55

60

65

6
step 220, the system adds the test case to the test repository
programmatically. In a step 225, the system runs the auto
mated test case. In a step 230, the system facilitates the
maintenance and running of the test case in every build or
release of the software product that is tested.
Some benefits include better and cleaner test metrics;

better quality of the product with more test coverage; little
or no effort on automating exploratory tests; little or no effort
on manual test case creation in the test repository; little or no
effort on running newly documented test cases as they are
already run in automated way; improved test coverage; and
less time spent on exploratory testing.

FIG. 3 shows a diagram of an architectural design and
flow of the test case automation system according to a
specific embodiment. As shown in the example of FIG. 3, a
test repository 305 stores a set of automated basic test
components or blocks 310. A user can select one or more
specific basic test components to form test cases 315 and
which may be grouped into test suites 320. The test cases can
be supplied with test data 325 and provided as input to a test
automation harness 330. The test automation harness
includes a test automation engine 335, a test execution
engine 340, and a test results engine 345. The test automa
tion engine analyzes the selected basic test components and
generates automated test cases 350. An automated test case
may be referred to as a dynamic automated test case. The
dynamic automated test cases are provided as input to the
test execution engine which runs the dynamic automated test
cases. The test results engine generates test reports based on
the execution of the test cases.

FIG. 4 shows another diagram of an architectural design
and flow of the test case automation system according to a
specific embodiment. The diagram shown in FIG. 4 is a
continuation of the diagram shown in FIG. 3 and shows
dynamic automated test cases 350 being added program
matically to a test repository 420.

Referring back to FIG. 1, as discussed, repository 170
stores a set of pre-defined automated basic test blocks. An
automated basic test block can refer to the smallest unit of
a test case and is automated. An automated basic test block
may be referred to as an automated test component or
automated unit test component. In a specific embodiment,
the basic test components are automated as an initial step.
That is, the test components include executable code or
Script. These automated test components function as the test
blocks in automating the test cases. These test blocks can be
arranged in a very flexible manner along with various types
of data to Stitch together dynamic test cases. These dynamic
test cases can be derived from customer Scenarios or corner
cases or exploratory test scenarios.
A problem with the conventional style of automation is

that a manual test case may be automated in one Script and
it can be very time-consuming to verify manual test cases.
For example, typically the QA process first begins with the
development of manual test cases. Some of the manual test
cases may then be selected for automation. To automate a
manual test case, a QA automation engineer must review
each step of an existing manual test case and then develop
the automated test script. There can be many different
manual test cases, but there is often overlap between at least
Some of the test case steps. Thus, the QA automation
engineer often finds herself developing portions of an auto
mated test Script for a particular test case that was previously
developed for another test case. This duplication of work is
very inefficient and increases the overall time required to
teSt.

US 9,710,367 B1
7

In a specific embodiment, a method of automation as
disclosed herein provides for creating manual test cases in
the test repository based on the Scripts that are automated. In
other words, in this specific embodiment, automated test
Scripts are developed before manual test cases are created.
The manual test cases are created after the automated test
Scripts. The test case automation system facilitates the
creation of automated and manual test cases. Test cases can
be created very easily and run. As a result, many more test
cases can be developed to ensure that a particular product
(e.g., Software product, system, component, module, or
service) is thoroughly tested, performs as expected, and is
relatively free of bugs, problems, and defects. This helps to
increase confidence in the quality of the product because
many test scenarios can be covered.
An automated test block may specify or define one or

more commands, actions, tasks, or operations to be per
formed for the product being tested. The product or system
to be tested may include a software product, component,
application program, portion of an application program,
database, service, application programming interface (API),
function, library, code component, code module, and so
forth.

For example, an automated test block may include an
executable script or code that specifies one or more actions
to be performed Such as launch application, access login
page, input user credentials (e.g., user name and password),
create test file, create test directory, configure, and so forth.
An automated test block may specify a task to be performed
by the file system associated with the system being tested
(e.g., create file, create directory, rename file, or rename
directory), a task to be performed by the system being tested,
or both. Tasks to be performed by the system being tested
may include any action or combination of actions that are
available or associated the system being tested. There can be
actions to configure the system or device associated with the
system.
The automated test blocks may be tailored towards or

based on the system being tested. For example, in a specific
embodiment, the system being tested is a backup applica
tion. In this specific embodiment, the automated test blocks
may be associated with backup mechanisms, options, set
tings, configurations, properties, attributes, devices, or pro
cesses that are available in the backup application.

Repository 175 stores test data that may be provided as
input to a test case. Test data includes the data used by the
test cases. The test data may similarly be tailored towards or
based on the system being tested. For example, if the system
being tested is a backup application, the test data generated
may include various groups of different amounts of test data.
A first group of test data may be of a first size (e.g., 500
gigabytes (GB)). A second group of test data may be of a
second size (e.g., 1 terabyte (TB)), different from the first
size. For example, the first and second groups of data may
include first and second test databases, respectively. Gener
ating different amounts of backup test data helps to ensure
that the backup application will properly backup data
regardless of the amount. As another example, if the system
being tested is an e-commerce application, the test data
generated may include sample customer orders to be full
filled by the e-commerce application.
The test case management console provides a user inter

face for a user to select the components, such as the
pre-defined automated test blocks or unit test components,
which are to form a dynamic test case. The user interface
may be a graphical user interface (GUI) in which the user
uses a pointing device (e.g., mouse) to select the particular

10

15

25

30

35

40

45

50

55

60

65

8
components to be included in a test case. The interface may
include a programmatic interface. The interface may include
a command line interface. The test case management con
sole receives and packages the user selections. The user
selections are then passed or dispatched to the test automa
tion harness. The user can use the management console to
create, manage, update, maintain (e.g., delete test cases or
update test cases), and select the dynamic test cases to run.
The test automation harness includes a framework to

facilitate the automation of test cases. The selected auto
mated unit test components including a specification of test
data via the management console may be provided as input
to the framework, or more specifically, provided to the test
automation engine. The framework includes a collection of
Software to test a system or program unit of the system by
running it according to a test case and monitoring its
behavior and outputs.
The test automation engine is responsible for dynamic test

case creation. Dynamic test case creation includes the cre
ation or generation of the test steps programmatically. The
test automation engine is a component of the automation
framework that facilitates the automation of the user selec
tions into a dynamic test case. For example, the test auto
mation engine may integrate, assemble, or process the user
selected automated basic test blocks or unit test components,
test data specifications, and other test case options to form
a dynamic test case. The dynamic test case may include a
Script. A script may include parameters, data, values, and a
list of commands that can be executed without user inter
action.
Upon the creation of a dynamic test case, the dynamic test

case is stored in the test case repository. The test repository
provides a centralized location for storing all the test cases
which may include dynamic test cases, manual test cases, or
both.
The test execution engine is a component of the frame

work that is responsible for executing the dynamic test
cases. For example, the test execution engine may retrieve a
dynamic test case from the test case repository and run the
retrieved test case against the application to be tested. The
test results engine is a component of the framework that
reports the results of executed test cases (e.g., pass or fail).
For example, the results of an executed test may be dis
played by the test results engine on an electronic screen,
printed on a paper report, or both.
The test case documenter is responsible for parsing a

dynamic test case and translating the dynamic test case into
a corresponding manual test case. The manual test case can
then be stored in the test case repository. For example, in a
specific embodiment, the test case that is initially created by
the system is a dynamic test case that includes a script. A
Script conforms to the syntax of a particular scripting
language and can be difficult to understand—especially for
non-technical users or users who are not programmers or
developers. A manual test case, however, can be much easier
to understand because it describes the test case using a
natural language rather than a programming language. After
a dynamic test case is created, the test case documenter
provides an automatic abstraction or conversion of the
dynamic test case to a manual test case.
The test case documenter may use any competent tech

nique or combinations of techniques to derive a manual test
case from a dynamic test case. Such techniques may include,
for example, named entity recognition (NER), natural lan
guage generation (NLG), content determination, document
structuring, aggregation, lexical choice, referring expression

US 9,710,367 B1
9

generation, realization, syntax analysis, morphology analy
sis, and orthography analysis, among others.
The test case automation server system can maintain both

a dynamic test case and a corresponding or associated
manual test case. The dynamic test case is executable. That
is, the dynamic test case includes code or instructions that
can be executed by a computer processor. The dynamic test
case can be run like a program in the computer. A dynamic
test case may be formatted, for example, as a Windows
Script File (WSF), executable file format (.EXE), batch file
format (BAT), and so forth. The corresponding manual test
case may not be executable and may be formatted as a text
file (TXT), Microsoft Word document (DOC), Microsoft
Excel document (XLS), and so forth.

For example, table A below shows an example of a script
that may be generated by the test automation harness based
on a user's selection from the test case management console
of one or more automated basic test blocks or unit test
components.

TABLE A

nRow Count=Data Table.GlobalSheet.GetRow Count
systemutil..CloseProcessByName "chrome.exe"
For i = 1 to nRow Count

Systemutil..Run "chrome”, “http://networker backup.com'
Browser(“title :=.*). Page(“title:=.*).Sync
DataTable.GlobalSheet.SetCurrentRow(i)
sEmailid=Datatable(“UserName”,Global)
sPassWord=Datatable(“Password.dtGlobalSheet)
Browser(“title:=.*).Page(“title:=.*). WebEdit(“name:=Email). Set

sEmailid
Browser(“title:=.*).Page(“title:=.*). WebEdit(“name:=Passwd'). Set

sPassword
Browser(“title:=.*).Page(“title:=.*). WebEdit(“name:=Sign in')..Click
Browser(“title:=.*).Page(“title:=.*). Sync
wait(10)
If left(browser(“title:=.*).Page(“title:=.*).getROProperty (“title'),13) =

“Welcome'. Then msgbox(“Login Successful)
Else msgbox(“Login Unsuccessful)
End if
Systemuti

Next
..closeProcessByName "chrome.exe"

Table B shows an example of a manual test case based on
the automated script in table A above.

TABLE B

Step Description

1 Launch the backup application at the URL
<http://networker backup.com using the Chrome browser
Navigate to the login page
Enter a user email in the email field
Enter a user password in the password field
Click the sign in button

In the example above, the automated basic test blocks or
unit test components selected by the user for the test case
may include first, second, third, fourth, and fifth automated
basic test blocks or unit test components. The first test block
may specify a particular browser to be launched (e.g.,
Google Chrome, Microsoft Internet Explorer, or Apple
Safari). The second test block may specify navigation to the
login page. The third test block may specify the input of a
user email (or username) at the login page. The fourth test
block may specify the input of a user password at the login
page. The fifth test block may specify the clicking of the
sign-in or login button.

It should be appreciated that these are merely examples of
automated basic test blocks or unit test components. There

5

10

15

25

30

35

40

45

50

55

60

65

10
can be many other different automated test blocks or unit test
components. An automated block or component may specify
a single action, operation, command, or task or combina
tions of actions, operations, commands, or tasks. For
example, the entering of user credentials (e.g., user email/
username and password) may be combined into a single
automated basic test block or unit test component.

Organizations can decide the level of granularity in which
automated basic test blocks or unit test components should
be defined. Having automated basic test blocks at a very
granular level helps to reduce code duplication. For
example, having separate automated test blocks for launch
ing a particular browser and Supplying login credentials can
be more advantageous as compared to having a single
automated basic test block that both launches a particular
browser and Supplies login credentials.

In the latter, the script to Supply login credentials may
need to be written for each of the multiple browsers (e.g.
Chrome, Internet Explorer, and Safari). In the former, the
Script to Supply login credentials can be written once as a
single automated basic test block which can then be com
bined with other automated basic test blocks that launch
particular browsers. For example, to create a first test case
which tests logging into the application using a first browser
(e.g., Chrome), the user can select a first test block speci
fying the launch of the Chrome browser and select a second
test block that Supplies login credentials. To create a second
test case which tests logging into the application using a
second browser (e.g., Internet Explorer), different from the
first browser, the user can select a third test block specifying
the launch of the Internet Explorer browser and select the
second test block that Supplies the login credentials, and so
forth.

However, having many automated basic test blocks or
unit test components at a very granular level can be difficult
to manage because of the large number of test blocks or
components. A factor to consider when defining an auto
mated basic test block or unit test component includes the
number of steps or actions that are likely to be repeated in
other testing scenarios. A step or action that is likely to be
repeated in other testing scenarios may be defined within a
single automated basic test block. A step or action that is not
likely to be repeated in other testing scenarios may be
combined with other steps or actions in a single automated
basic test block.

FIG. 5 shows an overall flow 505 of a test case automation
system. In a step 510, a set of automated basic test blocks or
unit test components are pre-defined and stored. For
example, these automated unit test components may be
defined and stored before test cases have been created. In
other words, test cases may not exist when the automated
unit test components are defined and stored. Each automated
test component may be stored as a unit separate from another
automated test component. In some cases, an automated unit
test component may be independent of another automated
unit test component. The automated unit test components
may be decoupled from each other. For example, an auto
mated unit test component may be updated or deleted. The
updating or deleting may not affect another automated unit
test component. In other cases, an automated unit test
component may be dependent on another automated unit test
component. For example, an automated unit test component
may be updated or deleted. The updating or deleting may
affect another automated unit test component.

In a step 515, the test case automation system displays on
an electronic screen the set of automated unit test compo

US 9,710,367 B1
11

nents for a user to select. The user may be a technical user
(e.g., QA automation engineer) or a non-technical user.

In a step 520, the system receives from a user a selection
of a Subset of the automated unit test components. For
example, depending upon the test case that the user wishes
to have created, the system may receive one, two, three, four,
five, six, seven, eight, nine, ten, or more than ten selected
automated unit test components (e.g., 15, 20, 25, or more
than 25 selections). The system may prompt the user to input
a name for the automated test case that is to be created.

In a step 525, the system dynamically creates an auto
mated test case based on the selected subset of the set of
automated unit test components. Creating an automated test
case may include generating the automated test case based
on a sequence or order in which the automated unit test
components were selected. Selecting a first automated unit
test component before a second automated unit test compo
nent may generate a first automated test case. Selecting the
second automated unit test component before the first auto
mated unit test component may generate a second automated
test case, different from the first automated test case.

For example, the first automated unit test component may
include code for inputting a user name. The second auto
mated unit test component may include code for inputting a
password. The first automated test case may test a scenario
where a customer attempts to input a password after input
ting a user name. The second automated test case may test
a scenario where the customer attempts to input a password
before inputting a user name.

Creating an automated test case may include adding or
combining first and second scripts (or copies of the first and
second script) to form a third script. The first script is from
a first automated unit test component, and the second script
is from a second automated unit test component, different
from the first automated unit test component. In other words,
two or more automated unit test components may be
Stitched, linked, or chained together to form an automated
test case.

Creating an automated test case may include adding a
second Script to an end of a first Script, adding a second
Script to a beginning of the first Script, inserting the second
Script into the first script, editing or altering the first script
to accommodate the second Script, editing or altering the
second Script to accommodate the first script, editing or
altering the combined first and second Script, adding script
information to the combined first and second Script, deleting
Script information from the combined first and second Script,
replacing a portion of the first Script with a portion of the
second Script, adding or inserting data from a selected
automated unit test component, adding or inserting param
eters or settings or values from a selected automated unit test
component, editing or altering data based on a selected
automated unit test component, editing or altering param
eters or settings or values based on a selected automated unit
test component, or combinations of these.

In a step 527, the automated test case is stored. In a step
530, after creation of the automated test case, the system
parses the automated test case to automatically derive a
manual test case corresponding to the automated test case. In
other words, when the automated test case is created, the
corresponding manual test case may not yet exist. Rather,
the manual test case is created after the automated test case
is created. As discussed above, the system analyzes or
reviews the automated test case and, based on the analysis,
converts or translates the automated test case into a manual
test case.

10

15

25

30

35

40

45

50

55

60

65

12
In a step 535, the manual test case is stored. The manual

test case may be stored after the automated test case is stored
since the manual test case is not created until after the
automated test case is created. In other words, the automated
test case is stored before the manual test case is stored. Steps
515-535 can be repeated 545 to dynamically create and
document any number of additional test cases.

In another specific embodiment, the system may include
logic that randomly selects various automated unit test
components to form any number of automated test cases.
The logic can be used to mimic adhoc or exploratory testing.
The automated unit test components may be weighted
differently to increase the probability that a particular auto
mated unit test component will be selected more frequently
than another particular automated unit test component. For
example, an automated unit test component that tests a key
process (e.g., security) may be weighted more heavily than
another automated unit test component that tests a less
critical process. This helps to ensure good testing coverage
of the key processes and components under different sce
narios.

FIG. 6 shows an example of a graphical user interface
(GUI) 605 that may be displayed on an electronic screen for
the user by the test case management console. The GUI may
be displayed within a browser or other application program
window. In this specific embodiment, the automation system
is configured for testing a backup application. In this
example, the GUI includes a title bar 610, a first selection
box 615A, a second selection box 615B, a third selection
box 615C, a fourth selection box 615D, and a button 620.
The title bar indicates to the user that they are creating a

dynamic test case. The selection boxes lists the various sets
of automated basic test blocks or automated unit test com
ponents. The automated basic test blocks or unit test com
ponents may be classified or organized into any number of
groups in order to facilitate selection.
As discussed above, in a specific embodiment, a pre

requisite is that all the unit test components are automated
and available in the automation Suite. In other words, prior
to or before creating a test case, there will be a set of
automated unit test components that have been defined and
stored.

In the example shown in FIG. 6, the first selection box
lists automated unit test components that correspond to
various backup mechanisms available in the backup appli
cation. These backup mechanisms include a probe based
backup 625A, a block based backup (BBB) 625B, a parallel
saveset backup 625C, a client direct backup 625D, a check
point restart backup 625E, and a cluster backup 625F.

Probe backups are scheduled backups that rely on execut
ing a custom command/script on one or more clients within
a group to determine whether the backup should be run.
Additionally, rather than running just once per day, probe
backups are designed to be run as frequently as necessary
(e.g., as frequently as every 15 minutes) over a defined start
and stop window. In a probe backup, there can be a probe at
a backup client or host to detect changes.

In some embodiments, a client-based probe may review a
database. For example, a script may be used to generate a log
of activity taking place in a database. A probe may monitor
characteristics of a log (such as size, and so forth). If a
monitored characteristic reaches a user-defined criteria (Such
as a log reaching 1 GB in size), a probe may indicate that a
backup should be performed. The probe based automated
test component may include a script, for example, that
directs the installation of a probe at a backup test client.

US 9,710,367 B1
13

Block based backups (BBB) can read data directly from
the disk or volume. File systems can be backed up by
performing block based backups. This can significantly
speed up the backup of large/dense file systems. If there are
dense file systems (large scale IMAP (Internet Message
Access Protocol) servers for example), a BBB can increase
backup performance by up to an order of magnitude or more.

Parallel Save Streams (PSS) allows for a single High
Density File System (HDFS) to be split into multiple con
current savesets to speed up the backup walk process and
therefore the overall backup. For example, rather than
backing up a single file system or single saveset as a single
save operation, parallel save streams allow a single saveset
to be split into multiple streams. For example, there can be
options for two, three, four, or more than four parallel save
streams per saveset for PSS enabled clients. Parallel save
streams may include automatic stream reclaiming, which
can dynamically increase the number of active streams for a
saveset already running in PSS mode to maximize or
increase the utilization of client parallelism settings.
A client direct backup allows for a client to communicate

directly with the backup device rather than going through a
storage node.
The checkpoint restart mechanism allows for restarting a

backup in case of failure. For example, if for Some reason
the connection to a backup fails during the process, rather
than restarting it from the very start of the backup, the
backup application should be able to restart it from either the
last directory the save process had entered, or, the last file it
had started. The checkpoint restart automated test compo
nent may include a script, for example, that directs the
termination and re-establishment of a backup connection.

The second selection box lists different amounts of
backup test data that may be generated for backup. For
example, the user may select 5 megabytes (MB) of test data
to backup, 500 MB of test data to backup, 500 GB of test
data to backup, or any other amount as desired. This helps
to ensure that the backup application is capable of backing
up different amounts of data. In a specific embodiment, the
automated unit test components listed in the second selec
tion box correspond to pre-defined automated Scripts that
can generate the selected amount of backup test data.
The third selection box lists the type of backup target

device. In the example shown in FIG. 6, the options include
an FTD/AFTD (file type device/advanced file type device)
635A, Jukebox 635B, DD (Data Domain) appliance 635C,
and Avamar 635D. A file type device (FTD) refers to a basic
disk device. Advanced file type devices (AFTD) support
concurrent backup and restore operations. An AFTD may be
configured as a local disk or a network-attached disk. A
jukebox may include a device that stores multiple CD
ROMs and uses a mechanical arm, carousel or other device
to bring the disk to an optical station for reading and writing.
A jukebox can reside in a PC or be an external device. A
jukebox may hold as many as 500 disks or more and have
multiple readers and drives to allow a network of users to
simultaneously access data.
A DD (Data Domain) appliance may refer to a device

residing on the storage system that includes the DD Boost
processes, functions, module, or library. ADD Boost device
can store backup data in a highly compressed and dedupli
cated format. An Avamar data store provides a node-based
grid solution. Each node has a specific capacity and if
additional backup storage is required, additional nodes can
be added to the grid. Data is striped within the nodes and
also striped across the nodes for additional protection. In a
specific embodiment, the automated unit test components

10

15

25

30

35

40

45

50

55

60

65

14
listed in the third selection box correspond to pre-defined
automated Scripts that can configure or initialize the selected
backup device.
The fourth selection box lists the type of backup data type.

In the example shown in FIG. 6, the options include FTD/
AFTD 640A, database 640B, and application 640C. In a
specific embodiment, the automated unit test components in
the fourth selection box correspond to pre-defined auto
mated Scripts that generate data of the selected type.
Some of the options in FIG. 6 are highlighted as an

example to indicate the user's selection. Table C below
shows an example of a flow.

TABLE C

Step Description

1 The user chooses the automated unit test components, e.g.,
A1, A2 . . . B1, B2, ... C1, C2 . . . D1, D2 . . .

2 The user clicks the button “Create the test case 620:
The system performs the below operations 3a-3f.

3a Generates code with a test case name DynamicA1B2C3
with a backup of nature probe based with Y amount of data to
Data domain device with a backup data type as Database.

3b Runs the code.
3c. Captures the results in a log file.
3d Documents the test case steps
3e Updates test case repository
3f Executes the test case in test repository with a marking of pass

or fail.

In this example, the generated code (step 3a) includes
code to perform a probe based backup, code to generate a Y
amount of data to backup, code to configure the probe
backup to a Data Domain device, and code to generate a
database to backup. For example, the generated data may
include a database file, e.g., Microsoft Exchange Database
file (EDB file), database log files (e.g., LOG file), uncom
mitted log files, committed log files, or combinations of
these.

Tables D-G below show examples of pseudo code for the
selected automated unit test blocks for this example. Table
H below shows an example of pseudo code of a dynamic test
case that may be created from the selected automated unit
test blocks for this example.

TABLED

Block # 1 Take the back up
proc CreateBasicBkupPolicy pName sName asName aName client

{actionSchedule satDefault

TABLE E

Block # 2 Create data
set dname CreateDirs Shosts(STEST CMD HOST tree)/backup 15
for set i 1} {Si <= 5 incri {
Create 10 1k files in each of the 5 subdirs...fcir()-1 dir1-1
set fname CreateFiles Shosts.(STEST CMD HOST tree)/

TABLE F

Block # 3 Select device
if { LabelAnd MountVol \

Sdevices(STEST TAPE HOST STEST DEVICE PRIMARY..name)
TestBackup == -1 } {CleanupBasicBkupPolicy Spolicy Sas

fail Label and mount primary device \

US 9,710,367 B1
15

TABLE F-continued

Sdevices(STEST TAPE HOSTSTEST DEVICE PRIMARYname)
failed

TCEnd STC fail
return

TABLE G

Block # 4 Select the object to backup
File application folatabase

TABLE H

Dynamic test case

Step #1 Create the test case
Combination of all the above 4 blocks with the parameters taken from
the above UI.
Step #2 Run the test case
Step #3 Connect to Test repository API
Dim QCConnection
* Return the TDConnection object.
Set QCConnection = CreateCobject(“TDApiOle80.TDConnection')
QCConnection.InitConnectionEX “http:///qcbin'
QCConnection.login -<username>, <password
DEFAULT = Domain, QualityCenter Demo = Project

QCConnection.Connect “DEFAULT, “QualityCenter Demo”
Step #4 Results in a log file
log info “Created a back up with probebased
log info “Created the data
log info “Created the device'
log info “Created the database backup
log info "Created the test case in Test repository QC
log info “Ran the test case'
log info “Marked the test case status'

In a specific embodiment, a method includes storing a
plurality of automated unit test components, each automated
unit test component comprising executable code for testing
a backup system; displaying, on an electronic screen, the
plurality of automated unit test components; receiving, from
a user, a selection of a Subset of the plurality of automated
unit test components; creating an automated test case based
on the selected subset of the plurality of automated unit test
components; storing the automated test case; after the cre
ating an automated test case, parsing the automated test case
to derive a manual test case corresponding to the automated
test case; and storing the manual test case.

The plurality of automated unit test components may
include first, second, third, and fourth groups of automated
unit test components, wherein automated unit test compo
nents in the first group may include code for testing different
backup mechanisms of the backup system, automated unit
test components in the second group may include code for
generating different amounts of backup data, automated unit
test components in the third group may include code for
configuring different types of backup target devices, and
automated unit test components in the fourth group may
include code for generating different types of backup data.
The method may include executing the automated test

case against the backup system. In an embodiment, the
automated test case comprises executable code and the
manual test case does not comprise executable code. Cre
ating an automated test case may include adding a copy of
a first script to a copy of a second script, wherein the first
Script is from a first automated unit test component of the
Subset, and the second script is from a second automated unit
test component of the Subset.

10

15

25

30

35

40

45

50

55

60

65

16
In another specific embodiment, there is a system for

dynamically creating and documenting a test case to test a
backup application, the system comprising: a processor
based system executed on a computer system, a computer
readable memory having computer-executable code, the
computer-readable memory coupled to a processor of the
processor-based system, wherein the processor when
executing the computer-executable code is configured to:
store a plurality of automated unit test components, each
automated unit test component comprising executable code
for testing the backup application; display, on an electronic
screen, the plurality of automated unit test components;
receive, from a user, a selection of a subset of the plurality
of automated unit test components; create an automated test
case based on the selected subset of the plurality of auto
mated unit test components; store the automated test case;
after the creation of an automated test case, parse the
automated test case to derive a manual test case correspond
ing to the automated test case; and store the manual test case.

In another specific embodiment, there is a computer
program product, comprising a non-transitory computer
readable medium having a computer-readable program code
embodied therein, the computer-readable program code
adapted to be executed by one or more processors to
implement a method comprising: storing a plurality of
automated unit test components, each automated unit test
component comprising executable code for testing a backup
system; displaying, on an electronic screen, the plurality of
automated unit test components; receiving, from a user, a
selection of a subset of the plurality of automated unit test
components; creating an automated test case based on the
selected subset of the plurality of automated unit test com
ponents; storing the automated test case; after the creating an
automated test case, parsing the automated test case to
derive a manual test case corresponding to the automated
test case; and storing the manual test case.

In a specific embodiment, the dynamically generated
automated test cases and manual test cases are applied to
testing a backup application. It should be appreciated, how
ever, that the system can be configured to dynamically
generate automated test cases and manual test cases for any
type of application or system. Some specific examples of
other types of applications or systems include e-commerce
applications, social networking applications, e-learning
applications, mobile applications, productivity applications,
collaboration products, databases, and many more.

In the description above and throughout, numerous spe
cific details are set forth in order to provide a thorough
understanding of an embodiment of this disclosure. It will be
evident, however, to one of ordinary skill in the art, that an
embodiment may be practiced without these specific details.
In other instances, well-known structures and devices are
shown in block diagram form to facilitate explanation. The
description of the preferred embodiments is not intended to
limit the scope of the claims appended hereto. Further, in the
methods disclosed herein, various steps are disclosed illus
trating some of the functions of an embodiment. These steps
are merely examples, and are not meant to be limiting in any
way. Other steps and functions may be contemplated without
departing from this disclosure or the scope of an embodi
ment. Other embodiments include systems and non-volatile
media products that execute, embody or store processes that
implement the methods described above.

US 9,710,367 B1
17

What is claimed is:
1. A method comprising:
storing a plurality of automated unit test components,

each automated unit test component comprising
executable code for testing a backup system;

displaying, on an electronic screen, the plurality of auto
mated unit test components;

receiving, from a user, a selection of a Subset of the
plurality of automated unit test components;

creating an automated test case based on the selected
Subset of the plurality of automated unit test compo
nents, the automated test case comprising a program
ming language;

storing the automated test case;
after the creating an automated test case, parsing the

automated test case comprising the programming lan
guage to derive a manual test case comprising a natural
language and corresponding to the automated test case;
and

storing the manual test case, wherein the plurality of
automated unit test components comprises first, sec
ond, third, and fourth groups of automated unit test
components, wherein automated unit test components
in the first group comprise code for testing different
backup mechanisms of the backup system,

automated unit test components in the second group
comprise code for generating different amounts of
backup data,

automated unit test components in the third group com
prise code for configuring different types of backup
target devices, and

automated unit test components in the fourth group com
prise code for generating different types of backup data.

2. The method of claim 1 comprising:
executing the automated test case against the backup

system.
3. The method of claim 1 wherein the automated test case

comprises executable code and the manual test case does not
comprise executable code.

4. The method of claim 1 wherein the creating an auto
mated test case comprises:

adding a copy of a first script to a copy of a second Script,
wherein the first script is from a first automated unit test
component of the Subset, and the second Script is from
a second automated unit test component of the Subset.

5. The method of claim 1 wherein the manual test case
does not exist during the creating an automated test case.

6. The method of claim 1 wherein the automated test case
comprising the programming language is provided as input
to a test case documenter code module to obtain the manual
test case comprising the natural language.

7. A system for dynamically creating and documenting a
test case to test a backup application, the system comprising:

a processor-based system executed on a computer system,
a computer-readable memory having computer-execut
able code, the computer-readable memory coupled to a
processor of the processor-based system, wherein the
processor when executing the computer-executable
code is configured to:

store a plurality of automated unit test components, each
automated unit test component comprising executable
code for testing the backup application;

display, on an electronic screen, the plurality of automated
unit test components;

receive, from a user, a selection of a subset of the plurality
of automated unit test components;

10

15

25

30

35

40

45

50

55

60

65

18
create an automated test case based on the selected Subset

of the plurality of automated unit test components, the
automated test case comprising a programming lan
gllage.

store the automated test case;
after the creation of an automated test case, parse the

automated test case comprising the programming lan
guage to derive a manual test case comprising a natural
language and corresponding to the automated test case;
and

store the manual test case, wherein the plurality of auto
mated unit test components comprises first, second,
third, and fourth groups of automated unit test compo
nents, wherein automated unit test components in the
first group comprise code for testing different backup
mechanisms of the backup system,

automated unit test components in the second group
comprise code for generating different amounts of
backup data,

automated unit test components in the third group com
prise code for configuring different types of backup
target devices, and

automated unit test components in the fourth group com
prise code for generating different types of backup data.

8. The system of claim 7 wherein the processor-based
system is configured to:

executing the automated test case against the backup
system.

9. The system of claim 7 wherein the automated test case
comprises executable code and the manual test case does not
comprise executable code.

10. The system of claim 7 wherein the processor-based
system is configured to:
add a copy of a first script to a copy of a second Script,

wherein the first script is from a first automated unit test
component of the Subset, and the second Script is from
a second automated unit test component of the Subset.

11. A computer program product, comprising a non
transitory computer-readable storage medium stored a com
puter-readable program code embodied therein, the com
puter-readable program code adapted to be executed by one
or more processors to implement a method comprising:

storing a plurality of automated unit test components,
each automated unit test component comprising
executable code for testing a backup system;

displaying, on an electronic screen, the plurality of auto
mated unit test components;

receiving, from a user, a selection of a Subset of the
plurality of automated unit test components;

creating an automated test case based on the selected
Subset of the plurality of automated unit test compo
nents, the automated test case comprising a program
ming language;

storing the automated test case;
after the creating an automated test case, parsing the

automated test case comprising the programming lan
guage to derive a manual test case comprising a natural
language and corresponding to the automated test case;
and

storing the manual test case, wherein the plurality of
automated unit test components comprises first, Sec
ond, third, and fourth groups of automated unit test
components, wherein automated unit test components
in the first group comprise code for testing different
backup mechanisms of the backup system,

US 9,710,367 B1
19

automated unit test components in the second group
comprise code for generating different amounts of
backup data,

automated unit test components in the third group com
prise code for configuring different types of backup
target devices, and

automated unit test components in the fourth group com
prise code for generating different types of backup data.

12. The computer program product of claim 11 wherein
the method comprises:

executing the automated test case against the backup
system.

13. The computer program product of claim 11 wherein
the automated test case comprises executable code and the
manual test case does not comprise executable code.

14. The computer program product of claim 11 wherein
the creating an automated test case comprises:

adding a copy of a first script to a copy of a second Script,
wherein the first script is from a first automated unit test

10

15

component of the Subset, and the second Script is from 20
a second automated unit test component of the Subset.

k k k k k

20

