
(12) United States Patent
Kyre et al.

USOO9703766B1

US 9.703,766 B1
Jul. 11, 2017

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEMS AND METHODS FOR
GENERATING TABLES FROM
PRINTREADY DIGITAL SOURCE
DOCUMENTS

(71) Applicant: Datawatch Corporation, Bedford, MA
(US)

(72) Inventors: Mark Stephen Kyre, Winston-Salem,
NC (US); Jeffrey Lucas Eldridge,
Greensboro, NC (US); Austin
Alexander Spears, Greensboro, NC
(US); Samuel Allen Hudock,
Greensboro, NC (US)

(73) Assignee: Datawatch Corporation, Bedford, MA
(US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/993.988

(22) Filed: Jan. 12, 2016

(51) Int. Cl.
G06F 7700 (2006.01)
G06F 7/24 (2006.01)
G06F 7/2 (2006.01)
G06K I5/02 (2006.01)
GO6F 7/22 (2006.01)
GO6F 17/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/245 (2013.01); G06F 17/2II

(2013.01); G06F 17248 (2013.01); G06K
15/1814 (2013.01); G06F 17/212 (2013.01);
G06F 17/2247 (2013.01); G06F 17/30616

(2013.01); G06F 17/30864 (2013.01)
(58) Field of Classification Search

CPC G06K 9/00469; G06K 9/00403; G06F
17/30616; G06F 17/211-17/212: G06F

17/30864; G06F 17/2247

USPC 715/202-206, 762–764
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,723,210 A * 2/1988 Barker GO6F 17,2229
71.5/210

5,832,476 A 11/1998 Tada et al.
6,091,895 A 7/2000 Govindaraj

(Continued)

FOREIGN PATENT DOCUMENTS

EP 1030246 A2 8, 2000
WO WO-2005/098683 A2 10, 2005

OTHER PUBLICATIONS

Carey, M.J., BEA liquid data for WebLogic: XML-based enterprise
information integration, Data Engineering, pp. 800-803 (2004).

(Continued)

Primary Examiner — Quoc A Tran
(74) Attorney, Agent, or Firm — Choate, Hall & Stewart
LLP. William R. Haulbrook

(57) ABSTRACT

Systems and methods are provided for generating tables
from print-ready digital source documents. A document is
received and one or more text fragments are identified on a
rendered page of the document. A wrapping region collec
tion is generated, comprising one or more wrapping regions.
A tabular, narrative and label score is generated for each
wrapping region. A block type is assigned to each wrapping
region based on the scores. A wrapping region group and a
block set are generated. One or more tables are generated
based on text fragments corresponding to one of the one or
more blocks. The text fragments are organized into corre
sponding fields of the one or more tables.

16 Claims, 25 Drawing Sheets

es. Dsil D5 (DS 09 as 10 10 D, 39 0T 03 3.
25 D5 D.6 (D8 (0- 24} 08: 08 (D} (0.9) 3.4 (1) (0s (09) 38
2.8 L. 1 (1.2 (1-8; 48} 18: a 2.6 (1.8) (7.4 (18 (1.7 (18, 7.1

at the 5 B a to 3 is E 3 E3
(123) 3.8 (4.2 (44 (8-1} (18.5 7-4} (8.2} (.9) sBy it. (7.2 so
2.8 D9 (0.7 (Del it 3.9) (.9) (2-2) 28. 21y (2. te.)
4.8) 1.23 (1.23 (20) (23 (88) { (2.2 (22) (24) (2.0 (2.0 (0.5
83 (3) 62 (2) 88 23 12.4 (124 (19 (1.9 19 ()
s cos s 2 se (a) 28 H

09 O OB DS 4, 27 B is 2: 33
1. Ida 0.8 t). 2x 9 0.8 .d
S is 0, 0. 18 18 8 2LS sia as a 1.
05 2 0. too to coal or
1. (0.6) 58 (S,S) S.1 (4.8 (23

1% (86 1% 5s 9% &
0.0 00 0 0 (0.0 L oil

s s e i

28.
8
S

32) d
0.12)
0.

US 9,703,766 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

6,484, 150 B1 1 1/2002 Blinn et al.
6,865,576 B1 3/2005 Gong et al.
7,158,971 B1 1/2007 Bascom
7,275,061 B1 9, 2007 Kon et al.

2002fOO69247 A1 6, 2002 Paknad et al.
2002fOO73080 A1 6/2002 Lipkin
2003.0167213 A1 9/2003 Jammes et al.
2003/0172082 A1 9, 2003 Benoit et al.
2003/0198934 A1 10, 2003 Sendowski et al.
2005/0055363 A1 3/2005 Mather
2005/02895.24 A1* 12/2005 McGinnes G06F 8.10

T17,140
2012/0311436 A1* 12/2012 Steele GO6F 17,212

T15,246
2013/O124953 A1* 5, 2013 Fan GO6F 17,212

71.5/2O2

OTHER PUBLICATIONS

International Preliminary Report on Patentability for PCT/US05/
11437 (Oct. 21, 2008).
International Search Report for PCT/US05/11437 (Sep. 22, 2008).
Written Opinion for PCT/US05/11437 (Sep. 22, 2008).

* cited by examiner

U.S. Patent Jul. 11, 2017 Sheet 1 of 25 US 9,703,766 B1

:

e

U.S. Patent Jul. 11, 2017 Sheet 2 of 25 US 9,703,766 B1

1OOB

Receive Print Ready Digital
Source Document

152

Apply Wrapping Algorithm 154

Apply Classification Algorithm 156

Apply Aggregation Algorithm 158

Generate Tables 16O

FIG. 1B

US 9,703,766 B1 U.S. Patent

US 9,703,766 B1

SNN L - L - i.

R

-
nxi

t

s
L

L =

re

s
is

ask - A -

as a
stric

s
Y
is in
a

s
fy 8

sissy is

ki

s
N

s

s

st

..

s

as

Jul. 11, 2017 U.S. Patent

US 9,703,766 B1

s
st s

N. n

Sheet 5 Of 25

rts

ls

s
st

es

is
3-4

e

ed
is

as a
cNsistic
SSY

s

s

S

Jul. 11, 2017 U.S. Patent

US 9,703,766 B1 Sheet 7 Of 25 Jul. 11, 2017 U.S. Patent

US 9,703,766 B1 U.S. Patent

U.S. Patent Jul. 11, 2017 Sheet 9 Of 25 US 9,703,766 B1

2OOG

ACGuire Text Fragments 250

Add Text Fragments to Coordinate Map 252

254 Locate Uppermost, Leftmost Text Fragment

256

Uppermost,
Leftmost Text Fragment

Located?

Make the Uppermost, Leftmost Wrapping Region
Collection Complete 257 258- Text Fragment the Current

Fragment

Create Empty Wrapping Region
26O-1 and Make it the Current

Wrapping Region

No Yes

Create Empty Fragment Run
262-1 and Make it the Current

Fragment Run

264-1 Add Current Text Fragment to
Current Fragment Run

F.
266-1 Locate Next Horizontally Adjacent

Text Fragment

Make Next Make Next
Vertically Horizontally

Adjacent Text Adjacent Text
Fragment the Fragment the
Current Text Current Text
Fragment Fragment

Next Horiz.
Adjacent Text Fragment

Located?
277

FIG. 2G (I)

U.S. Patent Jul. 11, 2017 Sheet 10 of 25 US 9,703,766 B1

2OOG

Add Current Fragment Run to
End of Current Wrapping

Region and Remove Contents
From Current Fragment Run

Locate Next Vertically Adjacent
Text Fragment

Next Vert.
Adjacent Text Fragment

Located?

Add Current Wrapping Region to
Wrapping Region Collection

Remove Text Fragments in the
Current Wrapping Region from

the Coordinate Map

FIG. 2G(II)

U.S. Patent Jul. 11, 2017 Sheet 11 of 25 US 9,703,766 B1

Define New Separation Thresholds With Default Values 35O

Decrement Space Width Ratio by 0.5 352

Calculate SCOre 354

t Store Score as 358
Yes Best SCOre Space Width

Ratio = OOP

60

Starting With Default Value, Increment Space Width
Ratio by 0.5 362

Calculate SCOre 364

t Yes Store Score as 368
Best Score

3

Space Width
Ratio = 3. OP

7O

Starting With Default Value, Decrement Line Separation 372
Ratio by 0.25

Calculate Score 374

3

<ggsode
es. Store Score as

Line Separation Yes Best SCOre 378
Ratio = OOP

38O

FIG. 3(1)

U.S. Patent Jul. 11, 2017 Sheet 12 of 25 US 9,703,766 B1

300

Starting With Default Value, increment Line Separation
By 0.25 382

Calculate Score 384

Line Store Score as
Separation Ratio Best Score

= 1. O?
O

Output Best Scores 392

388

39

FIG. 3(II)

US 9,703,766 B1 Sheet 13 Of 25 Jul. 11, 2017 U.S. Patent

- - - - -}

U.S. Patent Jul. 11, 2017 Sheet 14 of 25 US 9,703,766 B1

4OOB

Generate and/or Retrieve Wrapping
Region Collection 450

Compute Tabular, Narrative and Label
Scores for each wrapping Region 452

Assign Block Type Based on Highest
Computed Score 454

FIG. 4B

U.S. Patent Jul. 11, 2017 Sheet 15 Of 25 US 9,703,766 B1

5OOA

Acquire Wrapping Regions 520

Create Empty Wrapping Region Group Set 522

For Each Wrapping Region, Create an Empty
Wrapping Region Group and Add the Wrapping 524

Region to it

Add Wrapping Region Groups to a
Coordinate Map 526

Locate Tallest, Uppermost, Leftmost Wrapping
Region Group of Tabular Block Type 528

530

Tallest, Uppermost
Leftmost Wrapping region

Group Located?
NO Yes

Make Located Wrapping Region
534 Group the Current Wrapping

Wrapping Region Redi
Group Set Complete 532 egion Group

Create Rectangle for Current
536 Wrapping Region group

Extend Left, Right Edges of
538 Rectangle

540 ldentify and Create List of
Intersecting Wrapping Region

Groups

FIG. 5A(1)

U.S. Patent Jul. 11, 2017 Sheet 16 of 25 US 9,703,766 B1

intersecting
Wrapping Region
Groups Remair in

Renowe Merged Wrapping
Region Groups from
Coordinate vap

Add Crent Wrapping Region
Group to Wrapping Region

Group Set
Remove Top Wrapping
Region Group from list

Sales--- Compute Merge Score

Merge Scores
st Threshold sy

verge Wrapping
Region Group

FIG. 5A(II)

U.S. Patent Jul. 11, 2017 Sheet 17 Of 25 US 9,703,766 B1

Acquire Wrapping Region Group Set 558

Create Empty Block Set 558

For Each Wrapping Region Group, Create
Empty Block and Add the Wrapping 56)

Region Group to it

Add Blocks to Coordinate vap 562

locate Widest, ppermost, leftmost
Block of abular type 5 S 4

5 8 6
Widest,

uppermost, leftmost Block
OCated?

Block Set
Complete 568 57C -- fake located Biock he

Carre?t Bock

No. Yes

Create Rectangle for Current
57-1 Bock

Extend Top. Bottom Edges of
574-1 Rectarge

576-1 identify and Create list of
intersecting Block

FIG. 5B(I)

U.S. Patent Jul. 11, 2017 Sheet 18 of 25 US 9,703,766 B1

5OOB

578

Intersecting
Blocks Remain

in List?

NO Yes

Remove Merged Blocks from 588
Coordinate Map

Add Curren Block to Block 590

582 Compute Merge Score

580 Remove Top Block from List

584

Yes NO

Merge

FIG. 5B(II)

Merge Scored
Threshold

US 9,703,766 B1 Sheet 19 Of 25 Jul. 11, 2017 U.S. Patent

US 9,703,766 B1 Sheet 20 of 25 Jul. 11, 2017 U.S. Patent

909

?. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~)

--- ---- --- --- --- --- --- --- --- ------ ------ !

US 9,703,766 B1

---------º---º---º-º-~~~~ |

Sheet 21 of 25 Jul. 11, 2017 U.S. Patent

US 9,703,766 B1 Sheet 22 of 25 Jul. 11, 2017 U.S. Patent

US 9,703,766 B1 Sheet 23 Of 25 Jul. 11, 2017 U.S. Patent

US 9,703,766 B1 Sheet 24 of 25 Jul. 11, 2017

eounose}}

U.S. Patent

?OJnOse!

U.S. Patent Jul. 11, 2017 Sheet 25 Of 25 US 9,703,766 B1

US 9,703,766 B1
1.

SYSTEMIS AND METHODS FOR
GENERATING TABLES FROM
PRINTREADY DIGITAL SOURCE

DOCUMENTS

FIELD OF THE INVENTION

The present invention relates generally to generating
tables and more particularly to systems and methods for
generating tables from print-ready digital source documents.

BACKGROUND

The digital world has given rise to the rapid growth and
expansion of data that is generated, stored, analyzed, and
used by a variety of entities including companies, organi
Zations, universities, and individuals. Data is continuously
being generated and organized into documents by millions
of users and their devices, such as mobile devices, comput
ers, wearable devices, point of sale terminals, navigation
devices, and a multitude of sensors stored thereon.

Often, data is compiled, aggregated and/or stored in
print-ready digital Source documents of file types such as
XPS, RTF, PDF and the like. Print-ready digital source
documents typically include a multitude of unstructured,
semi-structured and/or structured data that is distributed
onto fixed locations of a rendered page, rather than into
organized lines, rows, cells, or the like. In other words, data
on print-ready digital source documents is not organized
relative to each other, but is instead fixedly arranged with
relation to coordinates of a rendered page.

Print-ready digital source documents are used (e.g., gen
erated, transmitted, stored) in just about any conceivable
context or industry, including government, healthcare, edu
cation, retail, manufacturing, financial services, telecom,
and the like. Print-ready digital source documents are used,
for example, to store information, fix information onto
rendered pages, printing information, and send information
without risking that information being displaced throughout
the pages of the document.

The data in the print-ready digital source documents is
difficult to access because it is arranged in a non-tabular
format, which does not enable it to be easily selected, sorted,
modified, charted, and the like. One common theme among
entities and individuals generating and using print-ready
digital source documents is the desire to make their data
more easily accessible, for example, so that it can be
analyzed, filtered and used to efficiently and effectively
generate tables. This, in turn, makes print-ready digital
Source document data easier and quicker to consume (e.g.,
to generate tables), less prone to errors, and more reliable.

There is a need, therefore, for systems and methods that
allow for print-ready digital source documents files contain
ing tabular data to be used to generate tables, spreadsheets,
and the like. There is also a need for systems and methods
that identify relationships between data, classifies data, and
aggregates portions of databased on perceived relationship
between them. Moreover, there is a need for such systems
and methods to be executed with minimal user interaction.

SUMMARY

The example embodiments and implementations pre
sented herein meet the above-identified needs by providing
systems and methods for automatically creating tables using
auto-generated templates.

10

15

25

30

35

40

45

50

55

60

65

2
In some example embodiments, a method is provided for

generating tables from print-ready digital source documents.
The method comprises receiving (e.g., from memory, over a
network), by a processor of a computing device, a print
ready digital source document (e.g., XPS, RTF, PDF), the
digital source document comprising at least one rendered
page; identifying, by the processor, one or more text frag
ments in the at least one rendered page, each of the text
fragments comprising text, spatial coordinates indicating the
positioning of the text fragment on the rendered page, and an
index assigned based on the spatial coordinates on the
rendered page (e.g., starting from top left of page, moving
left to right and top to bottom); generating, by the processor,
a wrapping region collection comprising one or more wrap
ping regions, wherein each of the wrapping regions com
prises one or more fragment runs, and wherein each of the
one or more fragment runs comprises a Subset of the one or
more text fragments that are adjacent to one another and
within a predetermined horizontal separation threshold and
a vertical separation threshold; calculating, by the processor,
for each of the one or more wrapping regions of the
wrapping region collection, a tabular score, a narrative
score, and a label score, indicating how closely each of the
one or more wrapping regions is related to a tabular block
type, a narrative block type and a label block type, respec
tively; assigning, by the processor, a block type (e.g.,
tabular, narrative, label) to each of the one or more wrapping
regions based on the corresponding calculated tabular score,
narrative score and label score; generating a wrapping
region group set comprising one or more Wrapping region
groups, wherein each of the one or more wrapping region
groups comprises a subset of the one or more wrapping
regions that are spatially related to one another (e.g., hori
Zontally, left to right); generating, by the processor, a block
set comprising one or more blocks, wherein each of the one
or more blocks comprises a Subset of the one or more
wrapping region groups that are spatially related to one
another (e.g., vertically, top to bottom); and generating, by
the processor, one or more tables, each of the one or more
tables comprising the text fragments corresponding to one of
the one or more blocks, wherein each of the one or more
tables comprises the corresponding text fragments each
organized into corresponding fields (e.g., cells, arranged by
row and column) of the one or more tables.

In some example embodiments, generating each of the
one or more wrapping regions in the wrapping region
collection comprises: identifying, by the processor, a first
text fragment (e.g., based on the index of the text fragments,
starting with first indexed text fragment; text fragment i)
from among the one or more text fragments; assigning, by
the processor, a current text fragment flag to the first text
fragment, the current text fragment flag indicating a single
one of the one or more text fragments being processed;
generating, by the processor, a current wrapping region and
a current fragment run; adding, by the processor, the first text
fragment having the current text fragment flag assigned
thereto to the current fragment run; identifying, by the
processor, a second text fragment (e.g., based on the index
of the text fragments; the next text fragment on the rendered
page; text fragment i+1) from among the one or more text
fragments, the second text fragment being horizontally adja
cent (e.g., from left to right) to the first text fragment having
the current text fragment flag assigned thereto, within the
predetermined horizontal separation threshold; assigning, by
the processor, the current text fragment flag to the second
text fragment; adding, by the processor, the second text
fragment having the current text fragment flag assigned

US 9,703,766 B1
3

thereto to the current fragment run; adding, by the processor,
the current fragment run to the end of the current wrapping
region (e.g., thereby compiling a first line of text fragments
in a table), wherein the current wrapping region comprises
a bounding box comprising borders matching outer borders
of fragment runs comprised therein (e.g., expanded each
time the current fragment run is added); identifying, by the
processor, a third text fragment (e.g., based on the index of
the text fragments; the next text fragment on the rendered
page; text fragment i+1) from among the one or more text
fragments, the third text fragment being the leftmost of the
one or more text fragments that is within the predetermined
vertical separation threshold and the predetermined horizon
tal separation threshold of a bottom border of the bounding
box of the current wrapping region; assigning, by the
processor, the current text fragment flag to the third text
fragment; removing, by the processor, the contents of the
current fragment run; adding, by the processor, the third text
fragment having the current text fragment flag assigned
thereto to the current fragment run; identifying, by the
processor, a fourth text fragment (e.g., based on the index of
the text fragments; the next text fragment on the rendered
page; text fragment i+1) from among the one or more text
fragments, the fourth text fragment being horizontally adja
cent (e.g., from left to right) to the third text fragment having
the current text fragment flag assigned thereto, within the
predetermined horizontal separation threshold; assigning, by
the processor, the current text fragment flag to the fourth text
fragment; adding, by the processor, the fourth text fragment
having the current text fragment flag assigned thereto to the
current fragment run; and adding, by the processor, the
current fragment run to the end of the current wrapping
region (e.g., thereby compiling a second line of text frag
ments for the table).

In some example embodiments, identifying the third text
fragment is performed in response to identifying the absence
of other text fragments from among the one or more text
fragments that are horizontally adjacent (e.g., from left to
right) to the second text fragment.

In some example embodiments, the tabular score, the
narrative score and the label score of each of the one or more
wrapping regions are calculated based on one or more
attributes selected from the group consisting of (i) a nor
malization ratio, (ii) a density ratio, (iii) an alignment ratio,
(iv) a capital or non-alphabetic ratio, (v) a text fragment
quantity, and (vi) a bold count.

In some example embodiments, the block type assigned to
each of the one or more wrapping regions corresponds to the
highest of the tabular score, the narrative score, and the label
score calculated for the respective wrapping region.

In some example embodiments, the normalization ratio
indicates a degree of normalized fragments among the
Subset of the one or more text fragments corresponding to
each of the one or more wrapping regions, wherein the
density ratio indicates a density value of fragments among
the Subset of the one or more text fragments corresponding
to each of the one or more wrapping regions, wherein the
alignment ratio indicates the degree of aligned text frag
ments among the Subset of the one or more text fragments
corresponding to each of the one or more wrapping regions,
wherein the capital or non-alphabetic ratio indicates a degree
of text fragments, among the Subset of the one or more text
fragments corresponding to each of the one or more wrap
ping regions that begin with either a capital letter or a
non-alphabetic character, wherein the text fragment quantity
indicates a number of text fragments among the Subset of the
one or more text fragments corresponding to each of the one

10

15

25

30

35

40

45

50

55

60

65

4
or more wrapping regions, and wherein the bold count
indicates a number of text fragments among the Subset of the
one or more text fragments corresponding to each of the one
or more wrapping regions that comprise bold text.

In some example embodiments, a high normalization ratio
negatively impacts a corresponding tabular score, positively
impacts a corresponding narrative score, and positively
impacts a corresponding label score, wherein a high density
ratio negatively impacts a corresponding tabular score, posi
tively impacts a corresponding narrative score, and posi
tively impacts a corresponding label score, wherein a high
alignment ratio positively impacts a corresponding tabular
score, and negatively impacts a corresponding narrative
score, wherein a high capital or non-alphabetic ratio posi
tively impacts a corresponding tabular score, and negatively
impacts a corresponding narrative score, wherein a high text
fragment quantity negatively impacts a corresponding label
score, and wherein a high bold count positively impacts a
corresponding label score.

In some example embodiments, the tabular score, the
narrative score and the label score are values between 0.0
and 1.0, wherein if one of the one or more wrapping regions
comprises only a single number fragment, the tabular score
of the one of the one or more wrapping regions is 1.0, and
wherein if one of the one or more wrapping regions com
prises only a single text fragment, the label score of the one
of the one or more wrapping regions is 1.0.

In some example embodiments, the generating the wrap
ping region group set comprises: adding, by the processor,
each of the one or more wrapping regions to a corresponding
one of the one or more wrapping region groups, wherein
each of the one or more wrapping region groups comprises
spatial coordinates indicating the positioning of the one or
more wrapping region groups on the rendered page, and
wherein each of the one or more wrapping region groups
comprises a bounding box delineating outer borders of the
corresponding wrapping region; adding, by the processor,
the one or more wrapping region groups to a coordinate map
based on the spatial coordinates of the one or more wrapping
region groups; identifying, by the processor, among the one
or more Wrapping region groups, a current Wrapping region
group, the current wrapping region group being the tallest,
uppermost, and leftmost wrapping region group, on the
coordinate map, that comprises a tabular block type; iden
tifying, by the processor, a current wrapping region rectan
gular area matching the dimensions and spatial position of
the bounding box of the current wrapping region group;
extending, by the processor, the left and right borders of the
current wrapping region rectangular area to match the left
and right borders of the coordinate map; identifying, by the
processor, one or more intersecting wrapping region groups,
among the one or more wrapping region groups, that com
prise a bounding box intersecting the current wrapping
region rectangular area; calculating, by the processor, for
each of the one or more intersecting wrapping region groups,
a corresponding intersecting Wrapping region group merge
score; merging, by the processor, with the current wrapping
region group, each of the one or more intersecting wrapping
region groups comprising an intersecting Wrapping region
group merge score higher than a predetermined intersecting
wrapping region group merge threshold; removing, by the
processor, the current wrapping region group, including the
merged one or more intersecting Wrapping region groups,
from the coordinate map; and adding, by the processor, the
current Wrapping region group to the Wrapping region group
Set.

US 9,703,766 B1
5

In some example embodiments, each of the intersecting
wrapping region group merge scores is calculated based on
properties of the corresponding intersecting wrapping region
group and the current wrapping region group, the properties
being selected from the group consisting of (i) a vertical
alignment, (ii) block type, and (iii) matching lines.

In some example embodiments, the generating the block
set comprises: adding, by the processor, each of the one or
more wrapping region groups to a corresponding one of the
one or more blocks, wherein each of the one or more blocks
comprises spatial coordinates indicating the positioning of
the one or more blocks on the rendered page, and wherein
each of the one or more blocks comprises a bounding box
delineating outer borders of the corresponding wrapping
region group; adding, by the processor, the one or more
blocks to the coordinate map based on the spatial coordi
nates of the one or more blocks; identifying, by the proces
Sor, among the one or more blocks, a current block, the
current block being the widest, uppermost and leftmost
block on the coordinate map; identifying, by the processor,
a current block rectangular area matching the dimensions
and spatial position of the bounding box of the current block;
extending, by the processor, the top and bottom boundaries
of the current block rectangular area to match the top and
bottom boundaries of the coordinate map; identifying, by the
processor, one or more intersecting blocks, among the one or
more blocks, that comprise a bounding box intersecting the
current block rectangular area; calculating, by the processor,
for each of the one or more intersecting blocks, a corre
sponding intersecting block merge score; merging, by the
processor, with the current block, each of the one or more
intersecting blocks comprising an intersecting block merge
score higher than a predetermined intersecting block merge
threshold; removing, by the processor, the current block,
including the merged one or more intersecting blocks, from
the coordinate map; and adding, by the processor, the current
block to the block set.

In some example embodiments, each of the intersecting
block merge scores is calculated based on properties of the
corresponding intersecting block and the current block, the
properties being selected from the group consisting of: (i)
horizontal alignment, (ii) column position, (iii) column
alignment, and (iv) column data type.

In some example embodiments, the print-ready digital
source document is a fixed-layout file (e.g., PDF, XPS).

BRIEF DESCRIPTION OF THE DRAWINGS

The foregoing and other objects, aspects, features, and
advantages of the present disclosure will become more
apparent and better understood by referring to the following
description taken in conjunction with the accompanying
drawings.

FIG. 1A is a diagram illustrating a system for generating
tables from print-ready digital source documents, according
to an exemplary embodiment.

FIG. 1B illustrates a flow chart for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

FIG. 2A illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

FIG. 2B illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

10

15

25

30

35

40

45

50

55

60

65

6
FIG. 2C illustrates an interface for generating tables from

print-ready digital source documents according to an exem
plary embodiment.

FIG. 2D illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

FIG. 2E illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

FIG. 2F illustrates wrapping regions that have been joined
due to a higher vertical separation threshold, according to an
exemplary embodiment.

FIG. 2G(I) illustrates a flow chart for executing a wrap
ping algorithm according to an exemplary embodiment.

FIG. 2G(II) illustrates a flow chart for executing a wrap
ping algorithm according to an exemplary embodiment.

FIG. 3(I) illustrates a first part of a flow chart for
identifying optimal separation thresholds according to an
exemplary embodiment.

FIG. 3(II) illustrates a second part of a flow chart for
identifying optimal separation thresholds according to an
exemplary embodiment.

FIG. 4A illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

FIG. 4B illustrates a flow chart for executing a classifi
cation algorithm, according to an exemplary embodiment.

FIG. 5A(I) illustrates a first part of a flow chart for
executing a horizontal aggregation algorithm or a horizontal
aggregation portion of an aggregation algorithm, according
to an exemplary embodiment.

FIG. 5A(II) illustrates a second part of a flow chart for
executing a horizontal aggregation algorithm or a horizontal
aggregation portion of an aggregation algorithm, according
to an exemplary embodiment.

FIG. 5B (I) illustrates a first part of a flow chart for
executing a vertical aggregation algorithm or a vertical
aggregation portion of an aggregation algorithm, according
to an exemplary embodiment.

FIG. 5B (II) illustrates a second part of a flow chart for
executing a vertical aggregation algorithm or a vertical
aggregation portion of an aggregation algorithm, according
to an exemplary embodiment.

FIG. 5C illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.
FIG.5D illustrates an interface for generating tables from

print-ready digital source documents according to an exem
plary embodiment.

FIG. 5E illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.

FIG. 5F illustrates an interface for generating tables from
print-ready digital source documents according to an exem
plary embodiment.
FIG.5G illustrates an interface for generating tables from

print-ready digital source documents according to an exem
plary embodiment.

FIG. 6 is a block diagram of an example network envi
ronment for use in the methods and systems described
herein, according to an illustrative embodiment.

FIG. 7 is a block diagram of an example computing
device and an example mobile computing device, for use in
illustrative embodiments of the invention.

DETAILED DESCRIPTION

It should be understood that systems, devices, methods,
and processes of the claimed invention encompass variations

US 9,703,766 B1
7

and adaptations developed using information from the
embodiments described herein. Adaptation and/or modifi
cation of the systems, devices, methods, and processes
described herein may be performed by those of ordinary
skill in the relevant art.

Throughout the description, where articles, devices, and
systems are described as having, including, or comprising
specific components, or where processes and methods are
described as having, including, or comprising specific steps,
it should be understood that, additionally, there are articles,
devices, and systems of the present invention that consist
essentially of, or consist of the recited components, and that
there are processes and methods according to the present
invention that consist essentially of, or consist of the recited
processing steps.

It should be understood that the order of steps or order for
performing actions is immaterial So long as the invention
remains operable. Moreover, two or more steps or actions
may be conducted simultaneously.
The mention herein of any publication or patent applica

tion, for example, in the Background section, is not an
admission that such publication or patent application con
stitutes prior art with respect to any of the claims or subject
matter presented herein. The Background section is pre
sented for purposes of clarity and is not intended to be a
description of prior art with respect to any claim.

DEFINITIONS

In order for the present disclosure to be more readily
understood, certain terms are first defined below. Additional
definitions for the following terms and other terms are set
forth throughout the specification.

“Digital published text source' or “print-ready digital
source document’: Any published text that is in digital form
and expressed as a metalanguage, where the text content is
accessible along with its spatial location on the rendered
page.

“Rendered page’: The print-ready form of a page, where
text has been placed into the page's coordinate space along
with associated attributes (e.g. font face, size, and style).

“Unicode': A universal character encoding standard for
text stored in digital form.

“Whitespace: Any Unicode character that represents
horizontal or vertical space when rendered.

"Spatial coordinates’: The X and y locations used as a
spatial reference points for text objects (e.g., characters,
fragments) on a rendered page.

“Text fragment’: A string of non-whitespace Unicode
characters and associated spatial coordinates, which locate
and/or identify the location of the fragment on the rendered
page.

"Coordinate map': A collection of information (e.g., text
fragments) that is indexed by its/their spatial coordinates,
and ordered by its/their appearance on the rendered page,
from top to bottom and left to right.

“Horizontal separation threshold: The maximum spatial
distance allowed between horizontally adjacent text frag
ments, in order for them to be considered part of the same
fragment run.

“Fragment run': A collection of horizontally adjacent text
fragments whose horizontal separations fall within the hori
Zontal separation threshold.

“Vertical separation threshold': The maximum distance
allowed between the bottom of the bounding box of a

10

15

25

30

35

40

45

50

55

60

65

8
wrapping region and the next vertically adjacent text frag
ment below, in order for the fragment to be considered part
of the wrapping region.

“Wrapping region': A collection of vertically adjacent
fragment runs whose vertical separations fall within the
vertical separation threshold.

“Wrapping region collection’: The set of all wrapping
regions present on the rendered page.

"Bounding box”: A rectangle expressed in spatial coor
dinates that is used to define the bounds and location of text
fragments, fragment runs, wrapping regions, and the like on
the rendered page.

“Current text fragment’: The text fragment eligible for
inclusion in a fragment run.

“Current fragment run': The fragment run eligible for
inclusion in a wrapping region.

“Current wrapping region': The wrapping region eligible
for inclusion in the wrapping region collection.

“Tabular data: A grouping of structured data in which
text fragments can be arranged by rows and columns.

“Narrative data: A grouping of unstructured data that has
no tabular format. Occurs, for example, in the form of
sentences and paragraphs.

"Label data'. A single text fragment or grouping of text
fragments usually found above a section of narrative or
tabular data. Label data gives context to related sections of
text.

“Block type: The classification of tabular, narrative, or
label, which can be applied to a wrapping region or any
aggregation of Wrapping regions.

“Type score': A decimal value (e.g., between 0.0 and 1.0)
that is produced by calculating the weighted average of a
collection of sub-scores. This score is used to determine how
closely a region identifies as a tabular, narrative, or label
block type.

“Sub-score': A fractional value (e.g., between 0.0 and
1.0) is multiplied by a predetermined weight to generate an
associated score (e.g., type score, merge score).

“Normalized text fragment’: A collection of text frag
ments that are horizontally separated by no more than the
width of a predetermined number of characters (e.g., 3
characters). This width is determined based on the font
attributes of the text fragments (e.g., font face, size, and
style).

“Normalization ratio’: The number of normalized text
fragments divided by the total number of text fragments
within a wrapping region.

"Density ratio’: The percentage of a wrapping region’s
bounding box area occupied by text fragment bounding
boxes.

“Alignment’: Refers to the x-axis and/or y-axis value of
the left edge, right edge, top edge, bottom edge, or center
point of a bounding box and how it relates spatially to
another bounding box. That is, alignment may refer to a
horizontal or vertical relationship between two correspond
ing points of two bounding boxes.

“Alignment group': A collection of normalized text frag
ments whose bounding boxes are either left, right, or center
aligned.

“Alignment ratio’: The number of normalized text frag
ments that fit within at least one alignment group divided by
the total number of normalized text fragments within a
Wrapping region.

“Bold count’: The number of text fragments with bolded
text.

US 9,703,766 B1

“Capital or non-alphabetic ratio’: The number of normal
ized text fragments that start with either a capital letter or a
non-alphabetic character divided by the number of normal
ized text fragments.

"Wrapping region group': A collection of wrapping
regions. In addition to containing wrapping regions, wrap
ping region groups also contain a collection of lines and a
block type derived from its wrapping regions.

“Line': A collection of horizontally adjacent text frag
ments that are aligned relative to their font base line. Meant
to represent a line of text or single row of data in a table as
would appear on a printed page. Rendered pages do not
inherently possess the concept of lines, because they are
simply fragments of text with coordinate positions.

"Wrapping region group collection’: The set of all wrap
ping region groups present on the rendered page.

"Block column': A specialized type of wrapping region
group that contains metadata about the alignment (left, right,
center), data type, and line structure of the wrapping regions
it contains. The wrapping regions within a block column are
arranged vertically.

“Block table': A collection of adjacent and non-overlap
ping block columns. The block type, in some example
embodiments, is tabular. In addition to containing wrapping
regions, block tables also contain a collection of block
columns created by stripping the wrapping regions out of the
wrapping region groups and arranging them into vertical
groupings.

“Block table collection: The set of all block tables
present on the rendered page.

“Merge score': A decimal value (e.g., between 0.0 and
1.0) produced by calculating the weighted average of a
collection of sub-scores. This score is used to determine the
strength of the spatial relationship between two regions.
“Merge threshold': A predetermined decimal value (e.g.,

between 0.0 and 1.0) that determines the point at which a
merge score is high enough Such that two wrapping region
groups or block tables should be merged.

“Separation thresholds': The combination of space width
threshold, line separation threshold, and line affinity ratio
used by the wrapping algorithm to create wrapping regions.

“Space width threshold': A value (e.g., between 0.0 and
3.0) that represents the maximum amount of space that is
allowed between two text fragments in order to join them
into the same wrapping region. In some example embodi
ments, the space width threshold may have a default value
(e.g., 2.5).

“Line separation threshold': A value (e.g., between 0.0
and 1.0) that represents the maximum amount of vertical
space that is allowed between two lines in order to join them
into the same wrapping region. In some example embodi
ments, the line separation threshold may have a default value
(e.g., 0.5).

“Line affinity ratio”: A value used to determine the
maximum ratio of difference that can exist between the
heights of two text fragments in order to join them into the
same wrapping region. In some example embodiments, the
line affinity ratio may have a default value (e.g., 0.3).
System

FIG. 1A is a diagram illustrating a system 100A for
generating tables from print-ready digital source documents,
according to an exemplary embodiment.

System 100 includes computing devices 101 and 103.
which are connected to a server 107 via a network 105. The
server 107 and the computing devices 101 and 103 may
communicate over the network 105 using protocols such as
Internet Protocol Suite (TCP/IP), HTTP, FTP, IMAP, Fibre

10

15

25

30

35

40

45

50

55

60

65

10
Channel Protocol (FCP), Fibre Channel over Ethernet
(FCoE), Internet SCSI (iSCSI), and the like.

In some example implementations, the computing devices
101 and 103 include laptops, desktop computers, smart
phones, tablets, mobile devices, wearable devices, worksta
tions, personal digital assistants, mainframes, and the like.
The computing devices 101 and 103, and the server 107 each
include software and hardware (e.g., at least one processor
and at least one memory).

In some example embodiments, the computing devices
101 and 103 are used to generate tables from print-ready
digital source documents such as XPS, RTF or PDF-type
document and/or files. Generating tables is performed, for
example, using a table-generating tool, application, or the
like stored and/or executing on the computing devices 101
and/or 103. The table-generating tool, application or the like
is programmed to execute various algorithms, including, for
example, a wrapping algorithm, classification algorithm,
aggregation algorithm, thresholding algorithm, and the like.
Generating tables from print-ready digital source documents
is explained in more detail below with reference to FIGS.
1B-5. Generally, a table refers to an arrangement of data into
rows and columns, cells, fields, or the like.

In some example embodiments, the server 107 is a
platform that provides the functionality of the table-gener
ating tool, application or the like to the computing devices
101 and 103, for example, via the network 105. This
functionality can be provided, for example, as part of a
software-as-a-service (SaaS), platform-as-a-service (PaaS)
or infrastructure-as-a-service (IaaS) offering or architecture.
That is, the computing devices 101 and 103 may store,
generate or transmit print-ready digital source documents to
the server 107 for analysis and generation of tables. In other
example embodiments, the print-ready digital source docu
ments may be generated, transmitted for analysis, and/or
used to create tables at the server 107 by the computing
devices 101 and/or 103, via the network 105, and using an
application (e.g., web browser application) executing on or
accessible by the computing devices 101 and/or 103.
Process

FIG. 1B illustrates a flow chart 100B for generating tables
from print-ready digital Source documents according to an
exemplary embodiment. As shown in flow chart 100, at step
152, a print-ready digital source document is received by a
computing device (e.g., client computing device, cloud
computing device), for example, from a memory associated
with (e.g., incorporated in, connected to, communicatively
coupled to) the computing device or from another intercon
nected computing device. For example, the digital source
document may be retrieved by the computing device in
response to user instructions, or may be received when
transmitted or pushed to it. As described above, a print-ready
digital source document may be an XPS, RTF or PDF-type
document, and includes one or more rendered pages.

In some example embodiments, the print-ready digital
source document includes text with identifiable text charac
ters and text fragments. As described above, a text fragment
is a string of non-whitespace Unicode characters. Each text
character and/or text fragment is associated with spatial
coordinates (e.g., X,Y coordinates) identifying its corre
sponding location on a rendered page of the print-ready
digital source document. In this way, each rendered page
includes a coordinate map on which text fragments of the
rendered page (collectively “text fragment collection') are
indexed according to their spatial coordinates, from top to
bottom and left to right (e.g., in the manner in which English
language documents are typically read by humans). For

US 9,703,766 B1
11

example, the text fragment at the top left of the rendered
page is assigned an index value iO The next text fragment
to the right of the text fragment i=0 is assigned an index
value i=1 or i+1. The last text fragment indexed is the text
fragment at the bottom right portion of the rendered page.

In turn, at step 154, the computing device applies a
wrapping algorithm to the text fragments of the rendered
page to organize the text into spatial regions called "wrap
ping regions.” That is, wrapping regions are identified
and/or created. A group or set of wrapping regions on a
rendered page are referred to as a "wrapping region collec
tion.” The wrapping region algorithm is described in further
detail below with reference to FIGS 2A-2G.

At step 156, the computing device applies a classification
algorithm to wrapping regions such as the wrapping regions
in a wrapping region collection. The classification algorithm
assigns a type or block type to each of the wrapping regions.
The type or block type identifies and/or indicates the type of
data (e.g., text) with which the wrapping region is associ
ated, including (1) tabular data, (2) narrative data, and (3)
label data. In some example embodiments, the type or block
type of each wrapping region is identified by calculating a
tabular score, narrative score and label score and assigning
the type based on the identified scores. In some example
embodiments, the scores are calculated using various fea
tures and/or characteristics of the text or text fragments in
the wrapping regions. The classification algorithm is
described in further detail below with reference to FIGS 4A
and 4.B.

At step 158, the computing device applies an aggregation
algorithm to the wrapping regions such as the wrapping
regions in a wrapping region collection. The aggregation
algorithm identifies and/or combines wrapping regions that
are spatially (e.g., horizontally and vertically) related to one
another. In some example embodiments, the wrapping
regions that are combined are wrapping regions that are on
the same horizontal plane and/or vertical plane, on a ren
dered page, as a selected Wrapping region. The aggregation
algorithm aggregates Wrapping regions into wrapping region
groups and/or blocks. In some example embodiments, a
merge score is calculated to determine whether two spatially
related wrapping regions should be merged and/or com
bined. In some example embodiments, merge scores are
calculated using features of the wrapping regions as well as
characteristics of the relationship between multiple wrap
ping regions. The aggregation algorithm is described in
further detail below with reference to FIGS 5A-5G.

In turn, at step 160, tables are identified, generated and/or
output. The tables include text from a rendered page of the
print-ready digital source document. The tables include rows
and columns. Each intersection of a row and column on the
table is and/or corresponds to a cell or field of the table. In
Some example embodiments, each table corresponds to a
block identified and/or generated using the aggregation
algorithm. Each cell or field on the table includes a text
fragment from a block of the rendered page on the print
ready digital source document.

FIG. 2A illustrates an interface 200A for generating tables
from print-ready digital source documents according to an
exemplary embodiment. The interface 200A may be ren
dered, displayed and/or caused to be displayed via a graphi
cal display (e.g., monitor, Screen) of a computing device.
The interface 200A includes a panel, section or area 201 in
which text (and/or data) 203 of a print-ready digital source
document is displayed. In some example embodiments, the
text (and/or data) includes narrative data, tabular data and/or
label data. Although the text (and/or data) 203 in FIG. 2A is

10

15

25

30

35

40

45

50

55

60

65

12
an income statement including a large amount of tabular
data, it should be understood that the print-ready digital
Source document may include various types of information
distributed into any combination of types of data.

Interface 200A also includes a panel with input means
Such as checkboxes, slider bars, buttons, radial buttons, and
the like, which are used to set, change and/or input infor
mation to be used in the execution of a wrapping algorithm,
classification algorithm, aggregation algorithm, and/or sepa
ration threshold algorithm. For example, the input means
may be for setting, changing and/or inputting information
such as whether boxes should be displayed and/or drawn
around characters, text fragments, lines, and/or wrapping
regions; alignment of text (e.g., left, center right) and a
corresponding tolerance; a tolerance slider bar for appending
text fragments; slider bars for line separation, and the like.
It should be understood that the input means, in some
example embodiments, are not displayed in the interface
200A and the information is set, changed and/or input by an
administrator.
When a document is opened, imported, retrieved and/or

displayed in the interface 200A, various information is
identified and/or calculated. For example, text and text
fragments in the document are identified, spatial coordinates
of the text fragments on the page are determined and/or
calculated, and bounding boxes are identified and/or drawn
for each text fragment. In some example embodiments,
hovering a mouse, cursor or the like over a text fragment
causes a bounding box to be displayed (e.g., temporarily,
while mouse or cursor is hovered over the text fragment). A
bounding box may be a solid-border box or the like (e.g.,
dotted rectangle, colored, etc.) that, among other things,
identifies the outer boundaries of the text fragment.

FIG. 2B illustrates an interface 200B for generating tables
from print-ready digital Source documents according to an
exemplary embodiment. In FIG. 2B, the print-ready digital
document has been opened, text fragments are identified,
and bounding boxes for each text fragment are identified and
drawn in the panel 201. As shown in FIG. 2B, each box
and/or rectangle is and/or identifies a text fragment. For
example, in FIG. 2B, two text fragments have been labeled
as text fragment 205-1 (“Software’) and text fragment 205-2
(“Licenses”).
Wrapping Algorithm
As described above with reference to FIG. 1B, at step 154,

a wrapping algorithm is applied to text fragments of or on a
rendered page of a digital source document to organize the
text and/or text fragments into spatial regions called "wrap
ping regions.”

FIG. 2G illustrates a flow chart 200G for executing a
wrapping algorithm according to an exemplary embodiment.
At step 250, text fragments and their associated spatial
coordinates are identified on a rendered page of a print-ready
digital source document. In turn, at step 252, the identified
text fragments are added to a coordinate map corresponding
to the rendered page, based on the spatial coordinates of the
text fragments. The text fragments are indexed according to
their respective spatial coordinates, ordered by their appear
ance on the rendered page, from the top to bottom and left
to right, such that a topmost and leftmost text fragment is the
text fragment with the first index on the rendered page and
the text fragment to its right is the text fragment with the
second index on the rendered page. In this way, the text
fragment with the last index on the rendered page is the
bottom most and rightmost text fragment on the rendered
page.

US 9,703,766 B1
13

At Step 254, the uppermost and leftmost text fragment on
the coordinate map is located and/or identified. At step 256,
a determination is made as to whether an uppermost and
leftmost text fragment has been located on the coordinate
map at step 254. That is, the determination at step 256
identifies whether any text fragments remain to be pro
cessed. If it is determined at step 256 that an uppermost and
leftmost text fragment was not located and/or identified at
step 254, the wrapping algorithm concludes and/or deter
mines, at Step 257, that the wrapping region collection is
complete (e.g., that all text fragments on the rendered page
have been assigned to wrapping regions).
On the other hand, if it is determined at step 256 that an

uppermost and leftmost text fragment was indeed located
and/or identified at step 254, that text fragment (e.g., the
uppermost and leftmost text fragment located at step 254) is
labeled, assigned, marked and/or flagged as the current text
fragment at step 258. In turn, at step 260, an empty wrapping
region is created and/or generated, and is also labeled,
assigned, marked, and/or flagged as the current wrapping
region. At step 262, an empty fragment run is created and/or
generated, and is also labeled, assigned, marked and/or
flagged as the current fragment run.

At step 264, the current text fragment (e.g., the text
fragment located at step 254 and labeled as the current text
fragment at step 258) is added and/or appended to the
current fragment run (e.g., the fragment run created at step
262).

In turn, at Step 266, a next horizontally adjacent text
fragment, relative to the current text fragment, is located
and/or identified. More specifically, moving from left to
right on the X-axis, starting at the right edge of the current
text fragment (e.g., the right edge of the current text frag
ment's bounding box), the wrapping algorithm searches for
a text fragment that is within a predetermined horizontal
separation threshold. The horizontal separation threshold is
described in further detail below with reference to FIG. 3.
The horizontal separation threshold is or represents a dis
tance within which two text fragments must be located to be
considered to be horizontally adjacent to one another. A
higher horizontal separation threshold allows for more dis
tant text fragments to be deemed to be horizontally adjacent
to one another, as compared with a lower horizontal sepa
ration threshold.

At step 268, a determination is made as to whether a next
horizontally adjacent text fragment (e.g., a text fragment
within the horizontal separation threshold of the current text
fragment) was located and/or identified at step 266. If it is
determined at step 268 that a next horizontally adjacent text
fragment was indeed located at Step 266, that next horizon
tally adjacent text fragment is labeled, assigned, marked
and/or flagged as the current text fragment at step 270,
thereby replacing the previously identified current text frag
ment.

In turn, the wrapping algorithm proceeds at step 264 but
with a new text fragment (e.g., the text fragment located at
step 266) as the current text fragment. That is, the current
text fragment identified at step 266 and labeled as such at
step 270 is added to the current fragment run at step 264. The
wrapping algorithm repeats steps 264, 266, 268 and 270 for
as long as horizontally adjacent text fragments are identified
and, those identified horizontally adjacent text fragments are
added to or appended to the current text fragment run. In this
way, the resulting current text fragment run is a set of
horizontally adjacent text fragments that are within the
horizontal separation threshold.

5

10

15

25

30

35

40

45

50

55

60

65

14
FIG. 2C illustrates an interface 200C for generating tables

from print-ready digital Source documents according to an
exemplary embodiment. FIG. 2C includes text fragment
runs identified and/or highlighted by a corresponding
bounding box or the like. For example, in FIG. 2C, two text
fragment runs have been labeled as text fragment run 207-1
(“S Millions”), 207-2 (“Software Licenses”), and 207-3
(“9.9). That is, in FIG. 2C the individual text fragments
205-1 and 205-2 of FIG. 2B, which have been determined to
be within a horizontal separation threshold and are therefore
deemed to be horizontally adjacent, are combined to form a
fragment run 207-2. As can be seen in FIG. 2C, text
fragment “Software License' and “9.9, which are on the
same horizontal X-axis as one another, have not been
combined into a single fragment run because they are
sufficiently separated from one another and therefore outside
or beyond the horizontal separation threshold.

FIG. 2D illustrates an interface 200D for generating tables
from print-ready digital Source documents according to an
exemplary embodiment. In FIG. 2D, fragment runs are
identified by shaded boxes as opposed to the outlined/
bordered boxes of FIG. 2C.

Still with reference to FIG. 2G, if it is determined at step
268 that a next horizontally adjacent text fragment was not
located at step 266, the current text fragment run is added
and/or appended to the end of the current wrapping region,
and the contents of the current text fragment are removed at
step 272. This causes the current text fragment to be empty
after step 272. In turn, at step 274, a next vertically adjacent
text fragment, relative to the current wrapping region, is
located and/or identified. More specifically, moving down
wards (e.g., from top to bottom) on the Y-axis, starting at the
bottom edge of the current wrapping region, the wrapping
algorithm searches for the leftmost text fragment that is
within a predetermined vertical separation threshold and, in
Some example embodiments, within the horizontal bounds
of a bounding box of the current wrapping region. The
vertical separation threshold is described in further detail
below with reference to FIG. 3. The vertical separation
threshold is or represents a distance within which a wrap
ping region and a text fragment must be located to be
considered to be vertically adjacent to one another. A higher
vertical separation threshold allows for a more distant text
fragment to be deemed to be vertically adjacent to a wrap
ping region, compared with a lower vertical separation
threshold. FIG. 2F illustrates wrapping regions that have
been joined due to a higher vertical separation threshold as
compared with FIG. 2E, according to an exemplary embodi
ment.

At step 276, a determination is made as to whether a next
vertically adjacent text fragment (e.g., a text fragment within
the vertical separation threshold of the current wrapping
region) was located and/or identified at step 274. If it is
determined at step 276 that a next vertically adjacent text
fragment was indeed located at step 274, the next vertically
adjacent text fragment is labeled, assigned, marked and/or
flagged as the current text fragment at step 277, thereby
replacing the previous current text fragment.

In turn, the wrapping algorithm proceeds at step 264 but
with a new text fragment (e.g., the text fragment located at
step 274) as the current text fragment. That is, the current
text fragment identified at step 274 and labeled as such at
step 277 is added to the current fragment run at step 264. The
wrapping algorithm repeats steps 264, 266, 268 and 270 for
as long as horizontally adjacent text fragments are identified
and, those identified horizontally adjacent text fragments are
added to or appended to the current text fragment run. In this

US 9,703,766 B1
15

way, the resulting current text fragment run is a set of
horizontally adjacent text fragments that are within the
horizontal separation threshold.

FIG. 2E illustrates an interface 200E for generating tables
from print-ready digital source documents according to an
exemplary embodiment. FIG. 2E includes wrapping regions
that are identified and/or highlighted by a corresponding
bounding box or the like. For example, in FIG. 2E, two text
fragment runs have been labeled as text fragment run 209-1
and 209-2. That is, in FIG. 2E the individual text fragments
205-1 and 205-2 of FIG. 2B and/or the text fragment runs
207-1, 207-2 and 207-3 of FIG. 2C, which have been
determined to be within a vertical separation threshold and
are therefore deemed to be vertically adjacent, are combined
into respective wrapping regions. As can be seen in FIG. 2E,
text fragment run 207-1 and 207-2 of FIG. 2C, which are on
the same vertical y-axis as one another and within the
vertical separation threshold, are part of the wrapping region
209-1.

Still with reference to FIG. 2G, if it is determined at step
276 that a next vertically adjacent text fragment was not
located at step 274, the current wrapping region is added
and/or appended to the wrapping region collection at step
278. The text fragments in the current wrapping region are
removed from the coordinate map of the rendered page at
step 280.

In turn, the wrapping algorithm proceeds back to step 254,
in which an uppermost and leftmost text fragment is located
and/or identified in the coordinate map. In each Subsequent
iteration, the uppermost and leftmost text fragment located
at step 254 is different because text fragments have been
removed from the coordinate map at step 280. The algorithm
continues to be executed until the wrapping region collec
tion is complete, at step 257.
Separation Threshold Algorithm

FIG. 3 illustrates a flow chart 300 for identifying optimal
separation thresholds according to an exemplary embodi
ment. As described above, horizontal and/or vertical sepa
ration thresholds are used during the execution of a wrap
ping algorithm to identify text fragments that are
horizontally and/or vertically adjacent, respectively, and can
therefore be joined into fragment runs and/or wrapping
regions.

At step 350, a new set of separation thresholds is defined
with default space width thresholds and line separation
threshold values. In some example embodiments, the default
space width threshold and line separation threshold values
are multiples of a predetermined value (e.g., 0.25, 0.5). It
should be understood that multiples provided herein are
exemplary, and the predetermined multiple may be any
value that functions with the algorithms described herein.
The set of separation thresholds may include a horizontal
separation threshold and a vertical separation threshold. The
horizontal separation threshold is associated with a space
width threshold that is or represents the maximum amount of
horizontal space on a rendered page that is allowed between
two text fragments in order to join the text fragments into the
same fragment run and/or wrapping region. In some
example embodiments, the default space width threshold
defined at step 350 is a predetermined default value (e.g.,
2.5). It should be understood that default values provided
herein are exemplary, and the default values can be any
value that functions with the algorithms described herein.
The vertical separation threshold is associated with a line
separation threshold that is or represents the maximum
amount of vertical space on a rendered page that is allowed
between two lines (e.g. text fragments, fragment runs) in

10

15

25

30

35

40

45

50

55

60

65

16
order to join them into the same wrapping region. In some
example embodiments, the default line separation threshold
defined at step 350 is a predetermined default value (e.g.,
0.5). It should be understood that default values provided
herein are exemplary, and the default values can be any
value that functions with the algorithms described herein.

In turn, at step 352, the space width threshold of the
horizontal separation threshold is decremented by a prede
termined value (e.g., 0.5 (e.g., starting with the default value
(e.g., 2.5) in the first iteration)). At step 354, a score is
calculated for the horizontal separation threshold. Calculat
ing and/or computing a score (e.g., steps 354, 364,374,384)
is performed based on one or more sub-scores calculated for
the following metrics:

Wrapping region overlap: High numbers of overlaps
between wrapping regions produced by a set of sepa
ration thresholds negatively impacts the score for those
thresholds.

Single-line regions: High numbers of single-line wrap
ping regions produced by a set of separation thresholds
negatively impacts the score for those thresholds.

Multi-line regions: High numbers of multi-line wrapping
regions that do not have any overlaps produced by a set
of separation thresholds positively impacts the score for
those thresholds.

In some example embodiments, calculating a Sub-score
for a wrapping region overlap metric includes counting
and/or calculating the number of overlaps between wrapping
regions on the rendered (e.g., current) page. The overlaps
may be a space where the bounding boxes of two wrapping
regions intersect). In turn, the calculated count is divided by
the number of text fragments on the rendered page to obtain
a value (e.g., between 0.0 and 1.0). This obtained value is
subtracted from 1.0. In turn, the resulting value is multiplied
by a predetermined weight (e.g., 3) to produce a correspond
ing Sub-score.

In some example embodiments, calculating a Sub-score
for a multi-line region metric includes initializing a score
(e.g., to 0.0). In turn, the wrapping regions on the rendered
page that (1) consist of more than one fragment run (e.g.,
series of text fragments that can be considered to be on the
same line), and (2) that do not intersect with other wrapping
regions, are identified and/or located. For each Such identi
fied wrapping region, add to the score the number of text
fragments in each wrapping region divided by the number of
text fragments on the page (i.e., score-score--(fragmen
ts in each region/fragments on page)). In turn, the result
ing score is divided by the number of text fragments on the
page. The resulting value is multiplied by a predetermined
weight (e.g., 1) to produce a corresponding Sub-score.

In some example embodiments, calculating a Sub-score
for a single line regions metric includes counting and/or
calculating the number of wrapping regions on the rendered
page that consist of only one fragment run. This count is
divided by the number of text fragments on the current page
to obtain a value (e.g., between 0.0 and 1.0.). This obtained
value is subtracted from 1.0. In turn, the resulting value is
multiplied by a predetermined weight (e.g. 1) to produce a
corresponding Sub-score.

It should be understood that the values described in
connection with calculating the Sub-scores are part of an
exemplary embodiment, and other values may be used in
accordance with the algorithms described herein.

Still with reference to step 354, in some example embodi
ments, the score (e.g., block score) is a weighted average of
the Sub-scores. For example, Sub-scores may be combined
(e.g., to create a score) by taking the Sum of the Sub-scores

US 9,703,766 B1
17

to be combined and dividing that sum by the sum of the
weights for the Sub-scores (e.g., 3, 1, 1), to produce a value
(e.g., score) between 1.0 and 0.0.
At step 356, the calculated score is analyzed to determine

whether it is the best score calculated during the decrement
ing of the space width threshold. If it is determined at step
356 that the score calculated at step 354 is the best score, that
score is stored and/or marked, at step 358, as the best score
of the space width threshold decrementing process. In some
example embodiments, a best score is a highest score. On the
other hand, if it is determined at step 356 that the score
calculated at step 354 is not the best score, or once the best
score has been stored at step 358, the separation threshold
algorithm determines, at step 360, whether the space width
threshold is equal to a predetermined minimum value (e.g.,
0.0) (e.g., whether the space width threshold decrementing
process has reached an end).

If it is determined at step 360 that the space width
threshold is not equal to the predetermined minimum value
(e.g., 0.0), the separation threshold algorithm returns to step
352, where the space width threshold is decreased by a
predetermined multiple or amount (e.g., 0.5), and steps 354,
356,358, and 360 are repeated until the space width thresh
old has been decremented to the predetermined minimum
value (e.g., 0.0). Thus, each time the space width threshold
is decremented (e.g., by 0.5), a score is calculated and that
score is analyzed to determine whether it is the best score
(e.g., by comparing the newly calculated score to the best
score). If the newly-calculated score is better than the best
score, the best score is replaced with the newly calculated
score. At the end of the process, the best score during the
decrementing of the space width threshold is stored and
made accessible.

In turn, at step 360, if it is determined that the space width
threshold is equal to the predetermined minimum value
(e.g., 0.0), the separation threshold algorithm proceeds to a
process of incrementing the space width threshold. That is,
at step 362, the space width threshold of the horizontal
separation threshold is incremented by a predetermined
multiple or amount (e.g., 0.5) (e.g., starting with the default
value (e.g., of 2.5) in the first iteration). At step 364, a score
is calculated for the horizontal separation threshold. Calcu
lating and/or computing a score is done based on one or
more of the metrics discussed above in connection with step
354.
At step 366, the calculated score is analyzed to determine

whether it is the best (e.g., highest) score calculated during
the incrementing of the space width threshold. If it is
determined at step 366 that the score calculated at step 364
is the best score, that score is stored and/or marked, at step
368, as the best score of the space width threshold incre
menting. On the other hand, if it is determined at step 366
that the score calculated at step 364 is not the best score, or
once the best score has been stored at step 368, the separa
tion threshold algorithm determines, at step 370, whether the
space width threshold is equal to the predetermined maxi
mum value (e.g., 3.0) (e.g., whether the space width thresh
old incrementing process has reached an end).

If it is determined at step 370 that the space width
threshold is not equal to a maximum predetermined value
(e.g., 3.0), the separation threshold algorithm returns to step
362, where the space width threshold is increased by a
predetermined multiple or amount (e.g., 0.5), and steps 364,
366, 368, and 370 are repeated until the space width thresh
old has been incremented to the predetermined maximum
value (e.g., 3.0). Thus, each time the space width threshold
is incremented (e.g., by 0.5), a score is calculated and that

10

15

25

30

35

40

45

50

55

60

65

18
score is analyzed to determine whether it is the best score of
the process of incrementing the space width threshold (e.g.,
by comparing the newly calculated score to the best score).
If the newly-calculated score is better than the best score, the
best score of the process of incrementing the space width
threshold is replaced with the newly calculated score. At the
end of the process, the best (e.g., highest) score during the
incrementing of the space width threshold is stored and
made accessible.

In turn, at Step 372, a process of decrementing the line
separation threshold of the vertical separation threshold is
initiated. More specifically, at step 372, the line separation
threshold is decremented by a predetermined multiple or
amount (e.g., 0.25) (e.g., starting with the default value (e.g.,
of 0.5) in the first iteration). At step 374, a score is calculated
for the vertical separation threshold. Calculating and/or
computing a score is done based on the metrics described
above in connection with step 354.
At step 376, the calculated score is analyzed to determine

whether it is the best score calculated during the decrement
ing of the line separation threshold. If it is determined at step
376 that the score calculated at step 374 is the best score of
the process of decrementing the line separation threshold,
that score is stored and/or marked, at step 378, as the best
score of the line separation threshold decrementing. On the
other hand, if it is determined at step 376 that the score
calculated at step 374 is not the best score, or if the score is
stored as the best score in step 378, the separation threshold
algorithm determines, at step 380, whether the line separa
tion threshold is equal to a predetermined minimum value
(e.g., 0.0) (e.g., whether the line separation decrementing
process has reached an end).

If it is determined at step 380 that the line separation
threshold is not equal to 0.0, the separation threshold algo
rithm returns to step 372, where the line separation threshold
is decreased by a predetermined multiple or amount (e.g.,
0.25), and steps 374,376,378, and 380 are repeated until the
line separation threshold has been decremented to the pre
determined minimum value (e.g., 0.0.) Thus, each time the
line separation threshold is decremented (e.g., by 0.25), a
score is calculated and that score is analyzed to determine
whether it is the best score (e.g., by comparing the newly
calculated score to the best score). If the newly-calculated
score is better than the best (e.g., highest) score, the best
score is replaced with the newly calculated score. At the end
of the process, the best score during the decrementing of the
line separation threshold is stored and made accessible.

In turn, at step 380, if it is determined that the line
separation threshold is equal to the predetermined minimum
value (e.g., 0.0), the separation threshold algorithm proceeds
to a process of incrementing the line separation threshold.
That is, at step 382, the line separation threshold of the
vertical separation threshold is incremented by a predeter
mined multiple or amount (e.g., 0.25) (e.g., starting with the
default value (e.g., of 0.5) in the first iteration). At step 384,
a score is calculated for the vertical separation threshold.
Calculating and/or computing a score is done based on one
or more of the metrics discussed above in connection with
step 354.
At step 386, the calculated score is analyzed to determine

whether it is the best (e.g., highest) score calculated during
the incrementing of the line separation threshold. If it is
determined at step 386 that the score calculated at step 384
is the best score, that score is stored and/or marked, at step
388, as the best score of the line separation threshold
incrementing. On the other hand, if it is determined at step
386 that the score calculated at step 384 is not the best score,

US 9,703,766 B1
19

or once the best score has been stored at step 388, the
separation threshold algorithm determines, at step 390,
whether the line separation threshold is equal to a predeter
mined maximum value (e.g., 1.0) (e.g., whether the line
separation threshold incrementing process has reached an
end).

If it is determined at step 390 that the line separation
threshold is not equal to the predetermined maximum value
(e.g., 1.0), the separation threshold algorithm returns to step
382, where the line separation threshold is increased by a
predetermined multiple or amount (e.g., 0.25), and steps
384, 386,388, and 390 are repeated until the line separation
threshold has been incremented to the predetermined maxi
mum value (e.g., 1.0). Thus, each time the line separation
threshold is incremented (e.g., by 0.25), a score is calculated
and that score is analyzed to determine whether it is the best
(e.g., highest) score of the process of incrementing the line
separation threshold (e.g., by comparing the newly calcu
lated score to the best score). If the newly-calculated score
is better than the best score, the best score of the process of
incrementing the line separation threshold is replaced with
the newly calculated score. At the end of the process, the
best score during the incrementing of the line separation
threshold is stored and made accessible.

In turn, at step 392, the best score of each of the space
width threshold decrementing and incrementing processes,
and the best score of each of the line separation threshold
incrementing process are identified, output, made accessible,
or the like.

It should be understood that the default values described
above in connection with FIG. 3 correspond to an exemplary
embodiment, and therefore any default values can be used.
Likewise, values by which the space width threshold and
line separation threshold are decremented and incremented,
as well as the lowermost and uppermost cutoff values used
during the decrementing and incrementing of the space
width threshold and line separation threshold may vary.
Classification Algorithm

FIG. 4A illustrates an interface 400A for generating tables
from print-ready digital source documents according to an
exemplary embodiment. In FIG. 4A, the interface 400A
includes and/or displays various text and/or data, each of
which is assigned a block type using a classification algo
rithm described in further detail below with reference to
FIG. 4B. That is, in some example implementations, the text
and/or data is organized into wrapping regions, and each
wrapping region is assigned a block type such as narrative
data, tabular data or label data using the classification
algorithm. Once each wrapping region has been categorized
and/or assigned a block type, boxes, highlighting or the like
of different colors, shading, border type and the like are used
to visually indicate each wrapping region’s corresponding
block type.

For example, as shown in FIG. 4A, wrapping region 401
(and other wrapping regions with the same border (e.g.,
dashed, dotted, dashed-dotted)) is a wrapping region of
block type label, indicating that the wrapping region
includes label data; wrapping region 403 (and other wrap
ping regions with the same border) is a wrapping region of
block type narrative, indicating that the wrapping region
includes narrative data; and wrapping region 405 (and other
wrapping regions with the same border) is a wrapping region
of block type tabular, indicating that the wrapping region
includes tabular data.

FIG. 4B illustrates a flow chart 400B for executing a
classification algorithm, according to an exemplary embodi
ment. As shown in FIG. 4B, at step 450, a wrapping region

10

15

25

30

35

40

45

50

55

60

65

20
collection including one or more wrapping regions is
retrieved and/or generated (e.g., in accordance with the
process described above in connection with FIG. 2G). In
Some example embodiments, the wrapping region collection
includes wrapping regions corresponding to a rendered page
of a digital-source document. Each wrapping region in the
wrapping region collection includes vertically adjacent frag
ment runs, each of which includes one or more text frag
mentS.

In turn, at step 452, for each of the wrapping regions in the
wrapping region collection, a tabular score, a narrative score
and a label score is calculated. The calculated scores are
used to determine the block type corresponding to the
wrapping region. In some example embodiments, the met
rics and ratios described below (and which are also
described in further detail above in the “Definitions' sec
tion) are calculated and used to compute Sub-scores and, in
turn, type scores (e.g., scores).
To produce a tabular Sub-score for a wrapping region, the

following metrics and/or ratios are first calculated:
Normalization ratio: A high degree of normalized frag

ments in the wrapping region has a negative impact on
its tabular score.

Density ratio: A high fragment density value in the
wrapping region has a negative impact on its tabular
SCO.

Alignment ratio: A high degree of aligned (e.g., right, left,
center) text fragments in a wrapping region has a
positive impact on its tabular score.

Capital or non-alphabetic ratio: A high degree of normal
ized text fragments that begin with either a capital letter
or non-alphabetic character in a wrapping region has a
positive impact on its tabular score.

To produce a narrative sub-score for a wrapping region,
the following metrics and/or ratios are first calculated:

Normalization ratio: A high degree of normalized frag
ments in the wrapping region has a positive impact on
its narrative score.

Density ratio: A high fragment density value in the
wrapping region has a positive impact on its narrative
SCO.

Alignment ratio: A high degree of aligned text fragments
in the wrapping region has a negative impact on its
narrative score.

Capital or non-alphabetic ratio: A high degree of normal
ized text fragments that begin with either a capital letter
or non-alphabetic character in the wrapping region has
a negative impact on its narrative score

To produce a label Sub-score for a wrapping region, the
following metrics and/or ratios are first calculated:

Normalization ratio: A high degree of normalized frag
ments in the wrapping region has a positive impact on
its label score.

Density ratio: A high fragment density value in the
wrapping region has a positive impact on its label
SCO.

Text fragment quantity: A high number of text fragments
in the wrapping region has a negative impact on its
label score.

Bold count: A high number of bold text fragments in the
wrapping region has a positive impact on its label
SCO.

In some example embodiments, to calculate a normaliza
tion ratio, the number or count of fragment runs in a
wrapping region are calculated. In turn, the calculated count
of wrapping regions is divided by the number of text
fragments in the wrapping region.

US 9,703,766 B1
21

In some example embodiments, to calculate a density
ratio, in Stepa, a combined area of the text fragments within
a wrapping region is identified and/or calculated. In turn, in
Step B, the area of all the text fragment intersections is
subtracted from the combined area of the text fragments
within the wrapping region identified in Step A. In Step C,
the area identified in Step A is subtracted from the total area
of the wrapping region’s bounding box to obtain a value.
And, in turn, at Step D, the value obtained in Step C is
divided by the total area of the wrapping region’s bounding
box.

In some example embodiments, to calculate an alignment
ratio, a list of left aligned groupings of text fragments within
the wrapping region is identified and/or generated. In turn,
a list of right aligned groupings of text fragments within the
wrapping region is identified and/or generated. In turn, a list
of center aligned groupings of text fragments within the
wrapping region are identified and/or generated. The group
ings of left, right and center aligned text fragments are
aggregated and/or combined into a single list that does not
include duplicates. In turn, the count of groupings in the list
of all groupings (e.g., left, right, center) is divided by the
number of fragment runs in the wrapping region.

In some example embodiments, to calculate a capital or
non-alphabetic ratio, the starting character (e.g., first, lowest
index, leftmost) of the starting (e.g., first, lowest index,
leftmost) text fragment of each fragment run of the wrapping
region is identified and/or analyzed to calculate a count of
how many of those starting text characters are a capital letter
or otherwise any Unicode character that is not a lowercase
letter. In turn, the calculated count is divided by the number
fragment runs in the wrapping region.

In some example embodiments, to calculate a bold text
fragment count, the number of text fragments in the wrap
ping region whose font weight text property (e.g., the whole
text fragment or at least a portion of the text fragment) is
higher than a predetermined normal font weight.

The calculated metrics are in turn used to calculate
Sub-scores.

In some example embodiments, one or more tabular score
Sub-scores are calculated, including (1) a normalization ratio
Sub-score, (2) a density ratio Sub-score, (3) an alignment
ratio Sub-score, and (4) a capital or non-alphabetic ratio
Sub-score.

In some example embodiments, to calculate a tabular
score normalization ratio Sub-score, the normalization ratio
is calculated (e.g., using the process described above). In
turn, the normalization ratio is multiplied by a predeter
mined weight (e.g., 4) to produce the tabular score normal
ization ratio Sub-score. A high degree of normalized frag
ments in the wrapping region has a negative impact on its
tabular score.

In some example embodiments, to calculate a tabular
score density ratio Sub-score, the density ratio is calculated
(e.g., using the process described above). In turn, the density
ratio is Subtracted from a predetermined value (e.g., 1) and
that result is multiplied by a predetermined weight (e.g., 2)
to produce the tabular score density ratio Sub-score. A high
fragment density value in the wrapping region has a negative
impact on its tabular score.

In some example embodiments, to calculate a tabular
score alignment ratio Sub-score, the alignment ratio is cal
culated (e.g., using the process described above). In turn, the
alignment ratio is multiplied by a predetermined weight
(e.g., 2) to produce the tabular score alignment ratio Sub

10

15

25

30

35

40

45

50

55

60

65

22
score. A high degree of aligned (e.g., right, left, center) text
fragments in a wrapping region has a positive impact on its
tabular score.

In some example embodiments, to calculate a tabular
score capital or non-alphabetic ratio Sub-score, the capital or
non-alphabetic ratio is calculated (e.g., using the process
described above). In turn, the capital or non-alphabetic ratio
is multiplied by a predetermined weight (e.g. 2) to produce
the tabular score capital or non-alphabetic ratio Sub-score. A
high degree of normalized text fragments that begin with
either a capital letter or non-alphabetic character in a wrap
ping region has a positive impact on its tabular score.

In some example embodiments, one or more narrative
score Sub-scores are calculated, including (1) a normaliza
tion ratio Sub-score, (2) a density ratio Sub-score, (3) an
alignment ratio Sub-score, and (4) a capital or non-alphabetic
ratio Sub-score.

In some example embodiments, to calculate a narrative
score normalization ratio Sub-score, the normalization ratio
is calculated (e.g., using the process described above). In
turn, the normalization ratio is Subtracted from a predeter
mined value (e.g., 1) and multiplied by a predetermined
weight (e.g., 4) to produce the narrative score normalization
ratio Sub-score. A high degree of normalized fragments in
the wrapping region has a positive impact on its narrative
SCO.

In some example embodiments, to calculate a narrative
score density ratio Sub-score, the density ratio is calculated
(e.g., using the process described above). In turn, the density
ratio is multiplied by a predetermined weight (e.g., 2) to
produce the narrative score density ratio Sub-score. A high
fragment density value in the wrapping region has a positive
impact on its narrative score.

In some example embodiments, to calculate a narrative
score alignment ratio Sub-score, the alignment ratio is cal
culated (e.g., using the process described above). In turn, the
alignment ratio is subtracted from a predetermined value
(e.g., 1) and multiplied by a predetermined weight (e.g., 2)
to produce the narrative score alignment ratio Sub-score. A
high degree of aligned text fragments in the wrapping region
has a negative impact on its narrative score.

In some example embodiments, to calculate a narrative
score capital or non-alphabetic ratio Sub-score, the capital or
non-alphabetic ratio is calculated (e.g., using the process
described above). In turn, the capital or non-alphabetic ratio
is subtracted from a predetermined value (e.g. 1) and
multiplied by a predetermined weight (e.g., 2) to produce the
narrative score capital or non-alphabetic ratio Sub-score. A
high degree of normalized text fragments that begin with
either a capital letter or non-alphabetic character in the
wrapping region has a negative impact on its narrative score.

In some example embodiments, one or more label score
Sub-scores are calculated, including (1) a normalization ratio
Sub-score, (2) a density ratio Sub-score, (3) an text fragment
quantity Sub-score, and (4) a bold fragment count Sub-score.

In some example embodiments, to calculate a label score
normalization ratio Sub-score, the normalization ratio is
calculated (e.g., using the process described above). In turn,
the normalization ratio is subtracted from a predetermined
value (e.g. 1) and multiplied by a predetermined weight
(e.g., 4) to produce the label score normalization ratio
Sub-score. A high degree of normalized fragments in the
wrapping region has a positive impact on its label score.

In some example embodiments, to calculate a label score
density ratio Sub-score, the density ratio is calculated (e.g.,
using the process described above). In turn, the density ratio
is multiplied by a predetermined weight (e.g. 2) to produce

US 9,703,766 B1
23

the label score density ratio Sub-score. A high fragment
density value in the wrapping region has a positive impact
on its label score.

In some example embodiments, to calculate a label score
text fragment quantity Sub-score, the text fragment quantity
is calculated by counting and/or identifying the number of
text fragments in the wrapping region. A fragment quantity
cutoff (e.g., predetermined maximum number (e.g., 10)) is
set. If the text fragment count or quantity is less than the
fragment quantity cutoff, an intermediary score value is set
to a predetermined value (e.g., 0.99). Otherwise, if the text
fragment count or quantity is not less than the fragment
quantity cutoff, the intermediary score value is set, for
example tO: (1-(0.05*(text fragement count-frag
ment quantity cutoff))). The higher of 0.0 and the interme
diary score is selected and multiplied by a predetermined
weight (e.g., 4.0) to produce the label score text fragment
quantity Sub-score. A high number (e.g., quantity, count) of
text fragments in the wrapping region has a negative impact
on its label score.

In some example embodiments, to calculate a label score
bold fragment count Sub-score, a bold fragment count is
calculated (e.g., using the process described above). In turn,
the bold fragment count is analyzed to determine whether it
is equal to 0.0 and, if so, the label score boldfragment count
Sub-score is not calculated. Otherwise, an intermediary
value is calculated using the formula (1-(text fragment
count-bold fragment count)*0.05). The higher of a prede
termine value (e.g., 0.5) and the intermediary value is
selected and multiplied by a predetermined weight (e.g., 6.0)
to produce a label score bold fragment count Sub-score. A
high number of bold text fragments in the wrapping region
has a positive impact on its label score.

It should be understood that the above values used to
calculate the metrics and/or sub-scores are exemplary
embodiments, and other values may be used in accordance
with the present algorithms.

In some example embodiments, the Sub-scores are calcu
lated for all or a portion of the wrapping regions prior to
calculating the type scores. The type scores are used to
determine and/or identify how closely a wrapping region
identifies as a tabular, narrative or label block type wrapping
region. In some example embodiments, type scores (e.g.,
scores) are decimal values between (e.g., between 0.0 and
1.0) that are produced by calculating and combining the
sub-scores. That is, the tabular sub-scores are combined with
each other, the narrative sub-scores are combined with each
other, and the label sub-scores are combined with each other,
to generate the respective type scores. To combine Sub
scores, a sum of the sub-scores to be combined is divided by
the Sum of the weights used to calculate those sub-scores
(e.g., the weighted average of the Sub-scores corresponding
to the wrapping region).
As a result, type scores (e.g., tabular score, narrative

score, and label score) for each wrapping region are calcu
lated. That is, the type scores are calculated using the
calculated weighted average of the Sub-scores correspond
ing to the wrapping regions, thereby identifying how closely
each wrapping region is to a tabular, narrative or label block
type.

At step 454 of FIG. 4B, the block types (e.g., tabular,
narrative, label) are assigned to each wrapping region in the
wrapping region collection. In some example embodiments,
the block type that is assigned to a wrapping region is based
on the highest of the type scores computed at step 452 for
that wrapping region. Thus, if the label score is better (e.g.,
higher) than the narrative and tabular scores for a wrapping

5

10

15

25

30

35

40

45

50

55

60

65

24
region, the wrapping region is labeled, marked and/or iden
tified as a label-type wrapping region.

In some example embodiments, special conditions are
applied when assigning block types to each wrapping
region. For example, one special condition is that a wrap
ping region made up of a single numeric fragment is, in
Some example embodiments, is given a 1.0 tabular score.
Another special condition may be that a wrapping region
made up of a single text fragment is always given a
predetermined (e.g., 1.0) label score.

It should be understood that in some example embodi
ments, the scores, ratios, weights, and ranges described
above in connection with FIG. 4B can be modified to fit a
different model.
Aggregation Algorithms

FIG. 5A illustrates a flow chart 500A for executing a
horizontal aggregation algorithm or a horizontal aggregation
portion of an aggregation algorithm, according to an exem
plary embodiment. As shown in FIG. 5A, at step 520,
wrapping regions associated with a rendered page of a
print-ready digital source document are acquired, retrieved
and/or identified. In some example embodiments, the wrap
ping regions are associated with spatial coordinates on the
rendered page and their block types have been determined,
using, for instance, the wrapping and classification algo
rithms described above in connection with FIGS. 2G and
4B, respectively.
FIG.5C illustrates an interface 500C for generating tables

from print-ready digital Source documents according to an
exemplary embodiment. In FIG. 5C, wrapping regions that
have been acquired, retrieved and/or identified are delin
eated by corresponding bounding boxes. For instance, FIG.
5C illustrates wrapping regions such as wrapping region 501
and 503, each of which is associated with and/or has spatial
coordinates on the rendered page, as well as a corresponding
block type (e.g., tabular data).

In turn, at step 522, an empty wrapping region group set
(or wrapping region group collection) is created, generated
and/or retrieved. At step 524, for each wrapping region
acquired at step 520, a corresponding empty wrapping
region group is created, and each wrapping region is added
to its corresponding wrapping region group. In this way,
each wrapping region acquired at step 520 is added to its
own corresponding wrapping region group which contains
no other data.
At step 526, the wrapping region groups are added to a

coordinate map of the rendered page, based on the spatial
coordinates of the wrapping region groups. The wrapping
region groups are indexed according to their respective
spatial coordinates, for example, ordered by their appear
ance on the rendered page, from top down and left to right,
Such that a topmost and leftmost wrapping region group is
the wrapping region group with the first index on the
rendered page and the wrapping region group to its right is
the wrapping region group with the second index on the
rendered page. In this way, the wrapping region group with
the last index on the rendered page is the bottom most and
rightmost wrapping region group on the rendered page.
At step 528, the tallest, uppermost and leftmost wrapping

region group on the coordinate map that is of a tabular block
type is located. A determination is made at step 530 as to
whether a tallest, uppermost and leftmost wrapping region
group on the coordinate map that is of a tabular block type
was identified at step 528. That is, the determination at step
530 identifies whether any tabular wrapping region groups
remain to be processed. If it is determined at step 530 that
no such wrapping region groups were located and/or iden

US 9,703,766 B1
25

tified at step 528, the aggregation algorithm concludes
and/or determines, at step 532, that the wrapping region
group set is complete.
On the other hand, if it is determined at step 530 that a

tallest, uppermost and leftmost wrapping region group on
the coordinate map that is of a tabular block type was
identified and/or located at step 528, that wrapping region
group (e.g., the wrapping region group identified at step 528)
is labeled, assigned, marked and/or flagged as the current
wrapping region group at step 534.

In turn, at step 536, a rectangle is created, matching the
dimensions and spatial coordinates or position of the bound
ing box (e.g., rectangular area) of the current wrapping
region group. At step 538, the left and right edges, borders
and/or boundaries of the rectangle created at step 534 are
extended to match the right and left edges, borders and/or
boundaries of the bounding box of the coordinate map. FIG.
5D illustrates an interface 500D for generating tables from
print-ready digital source documents according to an exem
plary embodiment. As shown in FIG. 5D, rectangle 505 has
been created and its right and left edges have been extended
to match the right and left edges of the coordinate map. In
FIG. 5D, the rectangle 505 was created to match the dimen
sions and spatial position of the bounding box of wrapping
region 501, which is the tallest, uppermost and leftmost
wrapping region group that is of a tabular type.

At step 540, using the coordinate map, wrapping region
groups whose bounding boxes intersect with the rectangle
(e.g., rectangle 505) created at step 536 are identified and
added to a list (e.g., intersecting Wrapping region groups
list). That is, at step 540, each wrapping region group on the
coordinate map is analyzed to determine whether its bound
ing box at all intersects with the extended rectangle of the
current wrapping region group. At step 542, the list of
intersecting wrapping region groups is analyzed to deter
mine whether any wrapping region groups remain in it (e.g.,
to determine if any intersecting wrapping region groups still
need to be processed). If it is determined at step 542 that no
intersecting wrapping region groups remain in the list, the
aggregation algorithm proceeds to step 552, which is
described in further detail below.
On the other hand, if it is determined at step 542 that

intersecting wrapping region groups indeed remain in the list
(e.g., the list created at step 540), the intersecting wrapping
region group that is at the top of the list (e.g., first index) is
removed from the list at step 544. The wrapping region
group removed from the list at step 544 is analyzed and a
corresponding merge score is computed for that wrapping
region group at step 546.
The merge score calculated and/or computed at step 546

is used to determine if two wrapping region groups should
be merged (e.g., because the wrapping region groups have
similar and/or matching characteristics). For example, at
step 546, the merge score for the wrapping region group
removed from the list at step 544 indicates whether it should
be merged with the current wrapping region group. The
merge score is calculated from Sub-scores based on proper
ties of all or a portion of the wrapping region groups. In
Some example embodiments, the Sub-scores are decimal
values (e.g., between 0.0 and 1.0) that possess an integer
weight. The merge score is calculated by combining merge
score sub-scores. To combine the merge score sub-scores,
the sub-scores are summed and divided by the sum of the
weights used to calculate and/or corresponding to the Sub
SCOS.

10

15

25

30

35

40

45

50

55

60

65

26
For example, Sub-scores (e.g., merge score Sub-scores)

corresponding to the wrapping region groups are based on
and/or calculated on the following properties:

Vertical alignment: Top and bottom alignment between
two wrapping region groups has a positive impact on
their merge score.

Block type: Matching block types between two wrapping
region groups has a positive impact on their merge
SCO.

Matching lines: Lines that match on aspects such as
Vertical position and bounding box height have a posi
tive impact on the wrapping regions merge score.

In some example embodiments, to calculate a merge score
vertical alignment Sub-score, the Sub-score is initialized to a
predetermined value (e.g., 0.0). The top (e.g., based on
measurements or vertical coordinates of the top boundary on
the rendered page) of a first wrapping region and the top
(e.g., based on measurements or coordinates of the top
boundary on the rendered page) of a second wrapping region
to be potentially merged are compared. The absolute value
of the difference between the top of the first wrapping region
and the top of the second wrapping region is calculated. If
the calculated absolute value is within a predetermined
tolerance (e.g., 10 units), the first and second wrapping
regions are considered to be top aligned with one another. In
turn, the bottom (e.g., based on measurements or vertical
coordinates of the bottom boundary on the rendered page) of
the first wrapping region and the bottom (e.g., based on
measurements or vertical coordinates of the bottom bound
ary on the rendered page) of the second wrapping region are
compared. The absolute value of the difference between the
bottom of the first wrapping region and the bottom of the
second wrapping region is calculated. If the calculated
absolute value is within a predetermined tolerance (e.g., 10
units), the first and second wrapping regions are considered
to be bottom aligned. A match percentage between the first
and second wrapping regions is added to the corresponding
Sub-score. For example, if there is no match (e.g., based on
the vertical alignment) between the wrapping regions, the
match percentage added to the sub-score is 0.0; if there is a
partial match (e.g., Some vertical alignment), the match
percentage added to the sub-score is between 0.0 and 1.0:
and, if there is a perfect match (e.g., full vertical alignment),
the match percentage added to the Sub-score is 1.0. In turn,
the Sub-score is multiplied by a predetermined weight (e.g.,
3.0) to produce the merge score vertical alignment Sub
SCO.

In some example embodiments, to calculate a merge score
block type sub-score, the Sub-score is initialized to a pre
determined value (e.g., 0.0). If the type (e.g., narrative,
tabular, label) of a first wrapping region is equal to or the
same as the type of a second wrapping region, 1.0 is added
to the sub-score. In turn, the sub-score is multiplied by a
predetermined weight (e.g., 3.0) to produce the merge score
block type sub-score

In some example embodiments, to calculate a merge score
matching lines Sub-score, the Sub-score is initialized to a
predetermined value (e.g., 0.0). Among two wrapping
regions being considered to be merged, it is determined
which of the two wrapping regions has fewer lines. The
wrapping region of the two wrapping regions that has the
fewest number of lines is assigned and/or labeled as the first
wrapping region, and the other wrapping region is assigned
and/or labeled as the second wrapping region. For each line
the first wrapping region, it is determined whether there is a
matching line in the second wrapping region. In some
example embodiments, matching lines are two lines, in

US 9,703,766 B1
27

different wrapping regions, that have the same vertical
alignment as one another. A value is calculated by taking the
number of matching lines between the first and second
wrapping regions and dividing it by the absolute value of the
difference in the number of lines in the first wrapping region
and the number of lines in the second wrapping region (e.g.,
matching lines/(lines in first Wrapping region-lines in
second wrapping region)). The calculated value is added
to the sub-score and the sub-score is multiplied by a prede
termined weight (e.g., 3.0) to produce the merge score
matching lines Sub-score.

In turn, at step 548, the merge score calculated at step 546
for the wrapping region group removed from the list at step
544 is analyzed to determine whether it is equal to or greater
than a predetermined merge threshold. If it is determined at
step 548 that the merge score is not equal to or greater than
the merge threshold, the wrapping region group removed
from the list at Step 544 is not merged and the aggregation
algorithm returns to step 542. Steps 542, 544, 546 and 548
are repeated with the next intersecting wrapping region
group at the top of the list, until no intersecting wrapping
region groups remain in the list, at which point the aggre
gation algorithm proceeds to step 552, which is described in
further detail below.

If, on the other hand, it is determined at step 548 that the
merge score for the wrapping region group removed from
the list is indeed equal to or greater than the merge threshold,
the wrapping region group removed from the list is merged
into or with the current wrapping region group. In turn, the
aggregation algorithm returns to step 542. Steps 542, 544,
546 and 548 are repeated with the next intersecting wrap
ping region group at the top of the list, until no intersecting
wrapping region groups remain in the list, at which point the
aggregation algorithm proceeds to step 552, which is
described in further detail below.

At step 552, wrapping region groups that have been
merged with and/or into the current wrapping region group
are removed from the coordinate map. At step 554, the
current wrapping region group is added and/or appended to
the wrapping region group set created at step 522. In turn,
the aggregation algorithm returns to step 528, where the
tallest, uppermost and leftmost wrapping region group on
the coordinate map that is of a tabular block type is located.
It should be understood that the coordinate map, on each
Subsequent iteration, has had wrapping region groups
removed from it and therefore the tallest, uppermost and
leftmost wrapping region group on the coordinate map that
is of a tabular block type that is located on Subsequent
iterations is different than previously identified tallest,
uppermost and leftmost wrapping region groups on the
coordinate map that are of a tabular block type.
The horizontal aggregation algorithm described above in

connection with FIG. 5A results in wrapping regions being
merged. FIG. 5E illustrates an interface 500E for generating
tables from print-ready digital source documents according
to an exemplary embodiment. As shown in FIG. 5E, wrap
ping regions identified in FIG. 5D have been merged into
wrapping region groups such as wrapping region group 507.
A merge of wrapping regions indicates, in some instances,
that merged wrapping regions are, correspond to, and/or
should be considered as part of a same table.

FIG. 5B illustrates a flow chart 500B for executing a
Vertical aggregation algorithm or a vertical aggregation
portion of an aggregation algorithm, according to an exem
plary embodiment.
As shown in FIG. 5B, at step 556, a wrapping region

group set including wrapping region groups associated with

10

15

25

30

35

40

45

50

55

60

65

28
a rendered page of a print-ready digital Source document are
acquired, retrieved and/or identified. In some example
embodiments, the wrapping region groups are associated
with spatial coordinates on the rendered page and their block
types have been determined, using, for instance, the wrap
ping and classification algorithms described above in con
nection with FIGS. 2G and 4B, respectively. The wrapping
region groups, in some example embodiments, are acquired,
retrieved and/or identified using the horizontal aggregation
algorithm described above in connection with FIG. 5A.

In turn, at step 558, an empty block set (or block table
collection) is created, generated and/or retrieved. At step
560, for each wrapping region group in the wrapping group
set acquired at step 556, a corresponding empty block is
created, and each wrapping region group is added to its
corresponding block. In this way, each wrapping region
group acquired at step 556 is added to its own corresponding
block which contains no other data.
At step 562, the blocks are added to a coordinate map of

the rendered page, based on the spatial coordinates of the
blocks. The blocks are indexed according to their respective
spatial coordinates, for example, ordered by their appear
ance on the rendered page, from top down and left to right,
such that a topmost and leftmost block is the block with the
first index on the rendered page and the block to its right is
the block with the second index on the rendered page. In this
way, the block with the last index on the rendered page is the
bottom most and rightmost block on the rendered page.
At step 564, the widest, uppermost and leftmost block on

the coordinate map that is of a tabular block type is located.
The widest, uppermost and leftmost block in that priority
order (e.g., widest>uppermost-leftmost). A determination is
made at step 566 as to whether a widest, uppermost and
leftmost block on the coordinate map that is of a tabular
block type was identified or located at step 564. That is, the
determination at step 566 identifies whether any tabular
blocks remain to be processed. If it is determined at step 566
that no such blocks were located and/or identified at step
564, the aggregation algorithm concludes and/or determines,
at step 568, that the block set is complete.
On the other hand, if it is determined at step 566 that a

widest, uppermost and leftmost block on the coordinate map
that is of a tabular block type was identified and/or located
at step 564, that block (e.g., the block identified at step 564)
is labeled, assigned, marked and/or flagged as the current
block at step 570.

In turn, at step 572, a rectangle is created, matching the
dimensions and spatial coordinates or position of the bound
ing box (e.g., rectangular area) of the current block. At step
574, the top and bottom edges, borders and/or boundaries of
the rectangle created at step 572 are extended to match the
top and bottom edges, borders and/or boundaries of the
bounding box of the coordinate map. FIG. 5F illustrates an
interface 500F for generating tables from print-ready digital
Source documents according to an exemplary embodiment.
As shown in FIG.5F, rectangle 509 has been created and its
top and bottom edges have been extended to match the right
and left edges of the coordinate map. In FIG. 5F, the
rectangle 509 was created to match the dimensions and
spatial position of the bounding box of wrapping region
group which is the widest, uppermost and leftmost block on
the coordinate map that is of a tabular block type.
At step 576, using the coordinate map, blocks whose

bounding boxes intersect with the rectangle (e.g., rectangle
509) created at step 572 and extended at step 574 are
identified and added to a list (e.g., intersecting blocks list).
That is, at step 576, each block on the coordinate map is

US 9,703,766 B1
29

analyzed to determine whether its bounding box at all
intersects with the extended rectangle of the current block.
At step 578, the list of intersecting blocks is analyzed to
determine whether any blocks remain in it (e.g., to determine
if any intersecting blocks still need to be processed). If it is
determined at step 578 that no intersecting blocks remain in
the list, the aggregation algorithm proceeds to step 588,
which is described in further detail below.
On the other hand, if it is determined at step 578 that

intersecting blocks indeed remain in the list (e.g., the list
created at step 576), the intersecting block that is at the top
of the list (e.g., first index) is removed from the list at step
580. The block removed from the list at step 580 is analyzed
and a corresponding merge score is computed for that block
at step 582.
The merge score calculated and/or computed at step 582

is used to determine if two blocks should be merged (e.g.,
because the blocks have similar and/or matching character
istics). For example, at step 582, the merge score for the
block removed from the list at step 580 indicates whether it
should be merged with the current blocks. The merge score
is calculated from Sub-scores based on properties of all or a
portion of the blocks. In some example embodiments, the
sub-scores are decimal values (e.g., between 0.0 and 1.0)
that possess an integer weight. The merge score is calculated
by combining merge score sub-scores. The combine the
merge score Sub-scores, the Sub-scores are Summed and
divided by the sum of the weights used to calculate and/or
corresponding to the Sub-scores.

For example, properties calculated and/or used to produce
Sub-scores (e.g., merge score sub-scores) corresponding to
the blocks include:

Horizontal alignment: Left and right alignment between
two blocks has a positive impact on their merge score.

Column position: Horizontal overlap between the col
umns of two blocks has a positive impact on their
merge Score.

Column alignment: Columns with matching position as
well as matching wrapping region alignment (left,
right, center) have a positive impact on the merge score
of the blocks.

Column data type: Columns with matching position as
well as matching data type have a positive impact on
the merge score of the blocks.

In some example embodiments, to calculate a merge score
horizontal alignment Subs-score, the Sub-score is initialized
to a predetermined value (e.g., 0.0). The left side (e.g., based
on measurements or horizontal coordinates of the left
boundary on the rendered page) of a first block and the left
side (e.g., based on measurements or horizontal coordinates
of the left boundary on the rendered page) of a second block
are compared. The absolute value of the difference between
the left of the first block and the left of the second block is
calculated. If the calculated absolute value is within a
predetermined tolerance (e.g., 10 units), the first and second
blocks are considered to be left aligned. In turn, the right
side (e.g., based on measurements or horizontal coordinates
of the right boundary on the rendered page) of the first block
and the right side (e.g., based on measurements or horizontal
coordinates of the right boundary on the rendered page) of
the second block are compared. The absolute value of the
difference between the right of the first block and the right
of the second block is calculated. If the calculated absolute
value is within a predetermined tolerance (e.g., 10 units), the
first and second blocks are considered to be right aligned. A
match percentage between the first and second blocks is
added to the corresponding Sub-score. For example, if there

10

15

25

30

35

40

45

50

55

60

65

30
is no match (e.g., based on the horizontal alignment)
between the blocks, the match percentage added to the
Sub-score is 0.0; if there is a partial match (e.g., some
horizontal alignment), the match percentage added to the
sub-score is between 0.0 and 1.0; and, if there is a perfect
match (e.g., full horizontal alignment), the match percentage
added to the sub-score is 1.0. In turn, the sub-score is
multiplied by a predetermined weight (e.g., 3.0) to produce
the merge score horizontal alignment Sub-score.

In some example embodiments, to calculate a merge score
column position Sub-score, the Sub-score is initialized to a
predetermined value (e.g., 0.0). Among two blocks being
considered to be merged, it is determined which of the two
blocks has the fewest number of columns. The block of the
two blocks that has the fewest number of columns is
assigned and/or labeled as the first block, and the other block
is assigned and/or labeled as the second block. For each
column in the first block, it is determined whether there (1)
is a column in the second block that has matching and/or
similar horizontal alignment as the column in the first block,
and/or (2) are columns in the second block that have
horizontal overlap with the column in the first block. If a
column in the first block has a perfect horizontal alignment
to a column in the second block, it is considered to be
“strongly positioned. Each column in the second block that
is determined to be “strongly positioned causes the sub
score to be incremented by a predetermined amount (e.g.,
0.1). If a column in the first block has a partial horizontal
alignment to a column in the second block, it is determined
to be “weakly positioned. Each column in the second block
that is determined to be “weakly positioned causes the
sub-score to be incremented by a lesser predetermined
amount (e.g., 0.05) than for "strongly positioned columns.
In some example embodiments, if a column from the first
block is identified and/or determined to overlap multiple
columns in the second block, a Sub-score of 0.0 is automati
cally returned. In turn, the sub-score is multiplied by a
predetermined weight (e.g., 3.) to produce the merge score
column position Sub-score.

In some example embodiments, to calculate a merge score
column alignment Sub-score, the Sub-score is initialized to a
predetermined value (e.g., 0.0). Among two blocks being
considered to be merged, it is determined which of the two
blocks has the fewest number of columns. The block of the
two blocks that has the fewest number of columns is
assigned and/or labeled as the first block, and the other block
is assigned and/or labeled as the second block. For each
column in the first block, it is determined whether there is a
column in the second block that has the same left and/or
right alignment (e.g., based on measurements or horizontal
coordinates of the left and right boundaries on the rendered
page). The number of matching columns divided by the
absolute value of the difference in the number of columns in
the first block and the number of columns in the second
block are added to the Sub Score (e.g., matching columns/
(columns in first block-columns in second block)). The
Sub-score is multiplied by a predetermined weight (e.g., 3.0)
to produce the merge score column alignment Sub-score.

In some example embodiments, to calculate a merge score
column data type sub-score, the Sub-score is initialized to a
predetermined value (e.g., 0.0). Among two blocks being
considered to be merged, it is determined which of the two
blocks has the fewest number of columns. The block of the
two blocks that has the fewest number of columns is
assigned and/or labeled as the first block, and the other block
is assigned and/or labeled as the second block. For each
column in the first block, it is determined whether there is a

US 9,703,766 B1
31

column in the second block that has the same left and/or
right alignment (e.g., based on measurements or horizontal
coordinates of the left and right boundaries on the rendered
page). If such a column is identified the data type (e.g.,
tabular, label, narrative) of the column in the first block is
compared to the data type of the column in the second block.
If the data types of the two columns match and/or are equal
to each other, the sub-score is incremented by: 1/col
umns in first block (e.g., Sub-score-Sub-score--(1/col
umns in first block)). In turn, the Sub-score is multiplied
by a predetermined weight (e.g., 3.0) to produce the merge
score column data type Sub-score.

In turn, at step 584, the merge score calculated at step 582
for the block removed from the list at step 580 is analyzed
to determine whether it is equal to or greater than a prede
termined merge threshold. If it is determined at step 584 that
the merge score is not equal to or greater than the merge
threshold, the block removed from the list at step 580 is not
merged and the aggregation algorithm returns to step 578.
Steps 578, 580, 582 and 584 are repeated with the next
intersecting block at the top of the list, until no intersecting
blocks remain in the list, at which point the aggregation
algorithm proceeds to step 588, which is described in further
detail below.

If, on the other hand, it is determined at step 584 that the
merge score for the block removed from the list is indeed
equal to or greater than the merge threshold, the block
removed from the list is merged into or with the current
block. In turn, the aggregation algorithm returns to step 578.
Steps 578, 580, 582 and 584 are repeated with the next
intersecting block at the top of the list, until no intersecting
blocks remain in the list, at which point the aggregation
algorithm proceeds to step 588, which is described in further
detail below.

At step 588, blocks that have been merged with and/or
into the current block are removed from the coordinate map.
At step 590, the current block is added and/or appended to
the block set created at step 558. In turn, the aggregation
algorithm returns to step 564, where the widest, uppermost
and leftmost block on the coordinate map that is of a tabular
block type is located. It should be understood that the
coordinate map, on each Subsequent iteration, has had
blocks removed from it and therefore widest, uppermost and
leftmost block on the coordinate map that is of a tabular
block type that is located on subsequent iterations is different
than previously identified widest, uppermost and leftmost
blocks on the coordinate map that are of a tabular block type
is located.
The vertical aggregation algorithm described above in

connection with FIG. 5B results in blocks being merged into
a block set. FIG. 5G illustrates an interface 500G for
generating tables from print-ready digital source documents
according to an exemplary embodiment. As shown in FIG.
5G, blocks are merged into a block set such as block set 511.
A merge of blocks indicates, in some instances, that merged
blocks are, correspond to, and/or should be considered as
part of a same table.
A table is generated from and/or corresponds to the block

set, such that each text fragment in a block set corresponds
to a field, cell or the like (e.g., row, column intersection). For
example, Table 1 below illustrates a portion of a table
generated from the block set 511 identified using the aggre
gation algorithm described in connection with FIGS.5A and
SB:

10

15

25

30

35

40

45

50

55

60

65

TABLE 1.

Actual- Percent
S Millions Mar-14 Mar-15 Mar-15E Estimate Difference

Software 4.4 3.9 3.9 O.3 9%
Licenses
Maintenance 3.1 3.3 3.3 (0.0) O%
Professional O.S O.3 O.3 (0.1) -36%
Services

Total Revenues 8.O 7.5 7.5 O.2 296

FIG. 6 shows an illustrative network environment 600 for
use in the methods and systems described herein. In brief
overview, referring now to FIG. 6, a block diagram of an
exemplary cloud computing environment 600 is shown and
described. The cloud computing environment 600 may
include one or more resource providers 602a, 602b, 602c
(collectively, 602). Each resource provider 602 may include
computing resources. In some implementations, computing
resources may include any hardware and/or software used to
process data. For example, computing resources may
include hardware and/or software capable of executing
algorithms, computer programs, and/or computer applica
tions. In some implementations, exemplary computing
resources may include application servers and/or databases
with storage and retrieval capabilities. Each resource pro
vider 602 may be connected to any other resource provider
602 in the cloud computing environment 600. In some
implementations, the resource providers 602 may be con
nected over a computer network 608. Each resource provider
602 may be connected to one or more computing device
604a, 604b, 604c (collectively, 604), over the computer
network 608.
The cloud computing environment 600 may include a

resource manager 606. The resource manager 606 may be
connected to the resource providers 602 and the computing
devices 604 over the computer network 608. In some
implementations, the resource manager 606 may facilitate
the provision of computing resources by one or more
resource providers 602 to one or more computing devices
604. The resource manager 606 may receive a request for a
computing resource from a particular computing device 604.
The resource manager 606 may identify one or more
resource providers 602 capable of providing the computing
resource requested by the computing device 604. The
resource manager 606 may select a resource provider 602 to
provide the computing resource. The resource manager 606
may facilitate a connection between the resource provider
602 and a particular computing device 604. In some imple
mentations, the resource manager 606 may establish a
connection between a particular resource provider 602 and
a particular computing device 604. In some implementa
tions, the resource manager 606 may redirect a particular
computing device 604 to a particular resource provider 602
with the requested computing resource.

FIG. 7 shows an example of a computing device 700 and
a mobile computing device 750 that can be used in the
methods and systems described in this disclosure. The
computing device 700 is intended to represent various forms
of digital computers, such as laptops, desktops, worksta
tions, personal digital assistants, servers, blade servers,
mainframes, and other appropriate computers. The mobile
computing device 750 is intended to represent various forms
of mobile devices, such as personal digital assistants, cel
lular telephones, Smartphones, and other similar computing
devices. The components shown here, their connections and

US 9,703,766 B1
33

relationships, and their functions, are meant to be examples
only, and are not meant to be limiting.
The computing device 700 includes a processor 702, a

memory 704, a storage device 706, a high-speed interface
708 connecting to the memory 704 and multiple high-speed
expansion ports 710, and a low-speed interface 712 con
necting to a low-speed expansion port 714 and the storage
device 706. Each of the processor 702, the memory 704, the
storage device 706, the high-speed interface 708, the high
speed expansion ports 710, and the low-speed interface 712,
are interconnected using various busses, and may be
mounted on a common motherboard or in other manners as
appropriate. The processor 702 can process instructions for
execution within the computing device 700, including
instructions stored in the memory 704 or on the storage
device 706 to display graphical information for a GUI on an
external input/output device, such as a display 716 coupled
to the high-speed interface 708. In other implementations,
multiple processors and/or multiple buses may be used, as
appropriate, along with multiple memories and types of
memory. Also, multiple computing devices may be con
nected, with each device providing portions of the necessary
operations (e.g., as a server bank, a group of blade servers,
or a multi-processor System).
The memory 704 stores information within the computing

device 700. In some implementations, the memory 704 is a
Volatile memory unit or units. In some implementations, the
memory 704 is a non-volatile memory unit or units. The
memory 704 may also be another form of computer-readable
medium, Such as a magnetic or optical disk.
The storage device 706 is capable of providing mass

storage for the computing device 700. In some implemen
tations, the storage device 706 may be or contain a com
puter-readable medium, Such as a floppy disk device, a hard
disk device, an optical disk device, or a tape device, a flash
memory or other similar solid state memory device, or an
array of devices, including devices in a storage area network
or other configurations. Instructions can be stored in an
information carrier. The instructions, when executed by one
or more processing devices (for example, processor 702),
perform one or more methods, such as those described
above. The instructions can also be stored by one or more
storage devices such as computer- or machine-readable
mediums (for example, the memory 704, the storage device
706, or memory on the processor 702).
The high-speed interface 708 manages bandwidth-inten

sive operations for the computing device 700, while the
low-speed interface 712 manages lower bandwidth-inten
sive operations. Such allocation of functions is an example
only. In some implementations, the high-speed interface 708
is coupled to the memory 704, the display 716 (e.g., through
a graphics processor or accelerator), and to the high-speed
expansion ports 710, which may accept various expansion
cards (not shown). In the implementation, the low-speed
interface 712 is coupled to the storage device 706 and the
low-speed expansion port 714. The low-speed expansion
port 714, which may include various communication ports
(e.g., USB, BluetoothR), Ethernet, wireless Ethernet) may be
coupled to one or more input/output devices. Such as a
keyboard, a pointing device, a scanner, or a networking
device Such as a Switch or router, e.g., through a network
adapter.
The computing device 700 may be implemented in a

number of different forms, as shown in the figure. For
example, it may be implemented as a standard server 720, or
multiple times in a group of such servers. In addition, it may
be implemented in a personal computer Such as a laptop

5

10

15

25

30

35

40

45

50

55

60

65

34
computer 722. It may also be implemented as part of a rack
server system 724. Alternatively, components from the com
puting device 700 may be combined with other components
in a mobile device (not shown). Such as a mobile computing
device 750. Each of such devices may contain one or more
of the computing device 700 and the mobile computing
device 750, and an entire system may be made up of multiple
computing devices communicating with each other.
The mobile computing device 750 includes a processor

752, a memory 764, an input/output device such as a display
754, a communication interface 766, and a transceiver 768,
among other components. The mobile computing device 750
may also be provided with a storage device. Such as a
micro-drive or other device, to provide additional storage.
Each of the processor 752, the memory 764, the display 754,
the communication interface 766, and the transceiver 768,
are interconnected using various buses, and several of the
components may be mounted on a common motherboard or
in other manners as appropriate.
The processor 752 can execute instructions within the

mobile computing device 750, including instructions stored
in the memory 764. The processor 752 may be implemented
as a chipset of chips that include separate and multiple
analog and digital processors. The processor 752 may pro
vide, for example, for coordination of the other components
of the mobile computing device 750, such as control of user
interfaces, applications run by the mobile computing device
750, and wireless communication by the mobile computing
device 750.
The processor 752 may communicate with a user through

a control interface 758 and a display interface 756 coupled
to the display 754. The display 754 may be, for example, a
TFT (Thin-Film-Transistor Liquid Crystal Display) display
or an OLED (Organic Light Emitting Diode) display, or
other appropriate display technology. The display interface
756 may comprise appropriate circuitry for driving the
display 754 to present graphical and other information to a
user. The control interface 758 may receive commands from
a user and convert them for submission to the processor 752.
In addition, an external interface 762 may provide commu
nication with the processor 752, so as to enable near area
communication of the mobile computing device 750 with
other devices. The external interface 762 may provide, for
example, for wired communication in Some implementa
tions, or for wireless communication in other implementa
tions, and multiple interfaces may also be used.
The memory 764 stores information within the mobile

computing device 750. The memory 764 can be imple
mented as one or more of a computer-readable medium or
media, a volatile memory unit or units, or a non-volatile
memory unit or units. An expansion memory 774 may also
be provided and connected to the mobile computing device
750 through an expansion interface 772, which may include,
for example, a SIMM (Single InLine Memory Module) card
interface. The expansion memory 774 may provide extra
storage space for the mobile computing device 750, or may
also store applications or other information for the mobile
computing device 750. Specifically, the expansion memory
774 may include instructions to carry out or supplement the
processes described above, and may include secure infor
mation also. Thus, for example, the expansion memory 774
may be provided as a security module for the mobile
computing device 750, and may be programmed with
instructions that permit secure use of the mobile computing
device 750. In addition, secure applications may be provided

US 9,703,766 B1
35

via the SIMM cards, along with additional information, such
as placing identifying information on the SIMM card in a
non-hackable manner.
The memory may include, for example, flash memory

and/or NVRAM memory (non-volatile random access
memory), as discussed below. In some implementations,
instructions are stored in an information carrier and, when
executed by one or more processing devices (for example,
processor 752), perform one or more methods, such as those
described above. The instructions can also be stored by one
or more storage devices, such as one or more computer- or
machine-readable mediums (for example, the memory 764,
the expansion memory 774, or memory on the processor
752). In some implementations, the instructions can be
received in a propagated signal, for example, over the
transceiver 768 or the external interface 762.

The mobile computing device 750 may communicate
wirelessly through the communication interface 766, which
may include digital signal processing circuitry where nec
essary. The communication interface 766 may provide for
communications under various modes or protocols, such as
GSM voice calls (Global System for Mobile communica
tions), SMS (Short Message Service), EMS (Enhanced
Messaging Service), or MMS messaging (Multimedia Mes
saging Service), CDMA (code division multiple access),
TDMA (time division multiple access), PDC (Personal
Digital Cellular), WCDMA (Wideband Code Division Mul
tiple Access), CDMA2000, or GPRS (General Packet Radio
Service), among others. Such communication may occur, for
example, through the transceiver 768 using a radio-fre
quency. In addition, short-range communication may occur,
such as using a Bluetooth R, Wi-FiTM, or other such trans
ceiver (not shown). In addition, a GPS (Global Positioning
System) receiver module 770 may provide additional navi
gation- and location-related wireless data to the mobile
computing device 750, which may be used as appropriate by
applications running on the mobile computing device 750.
The mobile computing device 750 may also communicate

audibly using an audio codec 760, which may receive
spoken information from a user and convert it to usable
digital information. The audio codec 760 may likewise
generate audible sound for a user, Such as through a speaker,
e.g., in a handset of the mobile computing device 750. Such
Sound may include Sound from Voice telephone calls, may
include recorded sound (e.g., voice messages, music files,
etc.) and may also include sound generated by applications
operating on the mobile computing device 750.
The mobile computing device 750 may be implemented in

a number of different forms, as shown in the figure. For
example, it may be implemented as a cellular telephone 780.
It may also be implemented as part of a smart-phone 782,
personal digital assistant, or other similar mobile device.

Various implementations of the systems and techniques
described here can be realized in digital electronic circuitry,
integrated circuitry, specially designed ASICs (application
specific integrated circuits), computer hardware, firmware,
software, and/or combinations thereof. These various imple
mentations can include implementation in one or more
computer programs that are executable and/or interpretable
on a programmable system including at least one program
mable processor, which may be special or general purpose,
coupled to receive data and instructions from, and to trans
mit data and instructions to, a storage system, at least one
input device, and at least one output device.

These computer programs (also known as programs,
Software, Software applications or code) include machine
instructions for a programmable processor, and can be

10

15

25

30

35

40

45

50

55

60

65

36
implemented in a high-level procedural and/or object-ori
ented programming language, and/or in assembly/machine
language. As used herein, the terms machine-readable
medium and computer-readable medium refer to any com
puter program product, apparatus and/or device (e.g., mag
netic discs, optical disks, memory, Programmable Logic
Devices (PLDs)) used to provide machine instructions and/
or data to a programmable processor, including a machine
readable medium that receives machine instructions as a
machine-readable signal. The term machine-readable signal
refers to any signal used to provide machine instructions
and/or data to a programmable processor.
To provide for interaction with a user, the systems and

techniques described here can be implemented on a com
puter having a display device (e.g., a CRT (cathode ray tube)
or LCD (liquid crystal display) monitor) for displaying
information to the user and a keyboard and a pointing device
(e.g., a mouse or a trackball) by which the user can provide
input to the computer. Other kinds of devices can be used to
provide for interaction with a user as well; for example,
feedback provided to the user can be any form of sensory
feedback (e.g., visual feedback, auditory feedback, or tactile
feedback); and input from the user can be received in any
form, including acoustic, speech, or tactile input.
The systems and techniques described here can be imple

mented in a computing system that includes a back end
component (e.g., as a data server), or that includes a middle
ware component (e.g., an application server), or that
includes a front end component (e.g., a client computer
having a graphical user interface or a Web browser through
which a user can interact with an implementation of the
systems and techniques described here), or any combination
of such back end, middleware, or front end components. The
components of the system can be interconnected by any
form or medium of digital data communication (e.g., a
communication network). Examples of communication net
works include a local area network (LAN), a wide area
network (WAN), and the Internet.
The computing system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.
What is claimed is:
1. A method for generating tables from print-ready digital

Source documents, comprising:
receiving, by a processor of a computing device, a print

ready digital source document, the digital Source docu
ment comprising at least one rendered page;

identifying, by the processor, one or more text fragments
in the at least one rendered page, each of the text
fragments comprising text, spatial coordinates indicat
ing the positioning of the text fragment on the rendered
page, and an index assigned based on the spatial
coordinates on the rendered page;

generating, by the processor, a wrapping region collection
comprising one or more Wrapping regions,
wherein each of the wrapping regions comprises one or
more fragment runs, and

wherein each of the one or more fragment runs com
prises a Subset of the one or more text fragments that
are adjacent to one another and within a predeter
mined horizontal separation threshold and a vertical
separation threshold;

calculating, by the processor, for each of the one or more
wrapping regions of the wrapping region collection, a

US 9,703,766 B1
37

tabular score, a narrative score, and a label score,
wherein each of the tabular score, narrative score, and
label score is a measure of qualification of a wrapping
region as a tabular block type, as a narrative block type,
or as a label block type, respectively;

assigning, by the processor, a block type to each of the one
or more wrapping regions based on the corresponding
calculated tabular score, narrative score and label
Score;

generating a Wrapping region group set comprising one or
more Wrapping region groups,

wherein each of the one or more wrapping region groups
comprises a Subset of the one or more wrapping regions
that are spatially related to one another,

generating, by the processor, a block set comprising one
or more blocks,

wherein each of the one or more blocks comprises a
Subset of the one or more wrapping region groups that
are spatially related to one another; and

generating, by the processor, one or more tables, each of
the one or more tables comprising the text fragments
corresponding to one of the one or more blocks,
wherein each of the one or more tables comprises the

corresponding text fragments, each organized into
corresponding fields of the one or more tables;

wherein the tabular score, the narrative score and the label
score of each of the one or more wrapping regions are
calculated based on one or more attributes selected
from the group consisting of (i) a normalization ratio,
(ii) a density ratio, (iii) an alignment ratio, (iv) a capital
or non-alphabetic ratio, (v) a text fragment quantity,
and (vi) a bold count;

wherein (i) the normalization ratio is the number of
normalized text fragments divided by the total number
of text fragments within a wrapping region, (ii) the
density ratio is the percentage of a bounding box area
of a wrapping region occupied by text fragment bound
ing boxes, (iii) the alignment ratio is the number of
normalized text fragments that fit within at least one
alignment group divided by the total number of nor
malized text fragments within a wrapping region, (iv)
the capital or non-alphabetic ratio is the number of
normalized text fragments that start with either a capital
letter or a non-alphabetic character divided by the
number of normalized text fragments, (v) the text
fragment quantity is a number of text fragments among
the Subset of the one or more text fragments corre
sponding to each of the one or more wrapping regions,
and (vi) the bold count is the number of text fragments
with bolded text.

2. The method of claim 1, wherein the generating each of
the one or more wrapping regions in the wrapping region
collection comprises:

identifying, by the processor, a first text fragment from
among the one or more text fragments;

assigning, by the processor, a current text fragment flag to
the first text fragment, the current text fragment flag
indicating a single one of the one or more text frag
ments being processed;
generating, by the processor, a current wrapping region

and a current fragment run;
adding, by the processor, the first text fragment having

the current text fragment flag assigned thereto to the
current fragment run;

identifying, by the processor, a second text fragment
from among the one or more text fragments, the
second text fragment being horizontally adjacent to

10

15

25

30

35

40

45

50

55

60

65

38
the first text fragment having the current text frag
ment flag assigned thereto, within the predetermined
horizontal separation threshold;

assigning, by the processor, the current text fragment flag
to the second text fragment;

adding, by the processor, the second text fragment having
the current text fragment flag assigned thereto to the
current fragment run;

adding, by the processor, the current fragment run to the
end of the current wrapping region,
wherein the current wrapping region comprises a

bounding box comprising borders matching outer
borders of fragment runs comprised therein;

identifying, by the processor, a third text fragment from
among the one or more text fragments, the third text
fragment being the leftmost of the one or more text
fragments that is within the predetermined vertical
separation threshold and the predetermined horizontal
separation threshold of a bottom border of the bounding
box of the current wrapping region;

assigning, by the processor, the current text fragment flag
to the third text fragment;

removing, by the processor, the contents of the current
fragment run;

adding, by the processor, the third text fragment having
the current text fragment flag assigned thereto to the
current fragment run;

identifying, by the processor, a fourth text fragment from
among the one or more text fragments, the fourth text
fragment being horizontally adjacent to the third text
fragment having the current text fragment flag assigned
thereto, within the predetermined horizontal separation
threshold;

assigning, by the processor, the current text fragment flag
to the fourth text fragment;

adding, by the processor, the fourth text fragment having
the current text fragment flag assigned thereto to the
current fragment run; and

adding, by the processor, the current fragment run to the
end of the current wrapping region.

3. The method of claim 2, wherein the identifying the
third text fragment is performed in response to identifying
the absence of other text fragments from among the one or
more text fragments that are horizontally adjacent to the
second text fragment.

4. The method of claim 3, wherein if the tabular score is
higher than the narrative score and is higher than the label
score, the one or more wrapping region is labeled, marked
and/or identified as a tabular-type wrapping region,

wherein if the narrative score is higher than the tabular
score and is higher than the label score, the one or more
wrapping region is labeled, marked and/or identified as
a narrative-type wrapping region, and

wherein if the label score is higher than the narrative score
and is higher than the tabular score, the one or more
wrapping region is labeled, marked and/or identified as
a label-type wrapping region.

5. The method of claim 1,
wherein an increase in normalization ratio causes a

decrease in a corresponding tabular score, causes an
increase in a corresponding narrative score, and causes
an increase in a corresponding label score,

wherein an increase in density ratio causes a decrease in
a corresponding tabular score, causes an increase in a
corresponding narrative score, and causes an increase
in a corresponding label score,

US 9,703,766 B1
39

wherein an increase in alignment ratio causes an increase
in a corresponding tabular score, and causes a decrease
in a corresponding narrative score,

wherein an increase in capital or non-alphabetic ratio
causes an increase in a corresponding tabular score, and 5
causes a decrease in a corresponding narrative score,

wherein an increase in text fragment quantity causes a
decrease in a corresponding label score, and

wherein an increase in bold count causes an increase in a
corresponding label score.

6. The method of claim 1,
wherein the tabular score, the narrative score and the label

score are values between 0.0 and 1.0,
wherein if one of the one or more wrapping regions

comprises only a single numeric fragment, the tabular
score of the one of the one or more wrapping regions
is 1.0, and

wherein if one of the one or more wrapping regions
comprises only a single text fragment, the label score of
the one of the one or more wrapping regions is 1.0.

7. The method of claim 1, wherein the generating the
Wrapping region group set comprises:

adding, by the processor, each of the one or more wrap
ping regions to a corresponding one of the one or more
Wrapping region groups,
wherein each of the one or more wrapping region

groups comprises spatial coordinates indicating the
positioning of the one or more wrapping region
groups on the rendered page, and

wherein each of the one or more wrapping region
groups comprises a bounding box delineating outer
borders of the corresponding wrapping region;

adding, by the processor, the one or more wrapping region
groups to a coordinate map based on the spatial coor
dinates of the one or more wrapping region groups;
identifying, by the processor, among the one or more

Wrapping region groups, a current Wrapping region
group, the current wrapping region group being the
tallest, uppermost, and leftmost wrapping region
group, on the coordinate map, that comprises a
tabular block type:

identifying, by the processor, a current wrapping region
rectangular area matching the dimensions and spatial
position of the bounding box of the current wrapping
region group;

extending, by the processor, the left and right borders
of the current wrapping region rectangular area to
match the left and right borders of the coordinate
map:

identifying, by the processor, one or more intersecting
Wrapping region groups, among the one or more
wrapping region groups, that comprise a bounding
box intersecting the current wrapping region rectan
gular area;

calculating, by the processor, for each of the one or
more intersecting Wrapping region groups, a corre
sponding intersecting Wrapping region group merge
Score;

merging, by the processor, with the current wrapping
region group, each of the one or more intersecting
Wrapping region groups comprising an intersecting
Wrapping region group merge score higher than a
predetermined intersecting wrapping region group
merge threshold;

10

15

25

30

35

40

45

50

55

60

65

40
removing, by the processor, the current wrapping

region group, including the merged one or more
intersecting wrapping region groups, from the coor
dinate map; and

adding, by the processor, the current wrapping region
group to the Wrapping region group set.

8. The method of claim 7, wherein each of the intersecting
wrapping region group merge scores is calculated based on
properties of the corresponding intersecting wrapping region
group and the current wrapping region group, the properties
being selected from the group consisting of (i) a vertical
alignment, (ii) block type, and (iii) matching lines.

9. The method of claim 7 wherein the generating the block
set comprises:

adding, by the processor, each of the one or more wrap
ping region groups to a corresponding one of the one or
more blocks,

wherein each of the one or more blocks comprises spatial
coordinates indicating the positioning of the one or
more blocks on the rendered page, and

wherein each of the one or more blocks comprises a
bounding box delineating outer borders of the corre
sponding Wrapping region group:

adding, by the processor, the one or more blocks to the
coordinate map based on the spatial coordinates of the
one or more blocks;

identifying, by the processor, from the spatial coordinates
indicating the positioning of the one or more blocks, the
spatial coordinates defining the bounds of the bounding
box of the one or more blocks, among the one or more
blocks, a current block, the current block being the
block that has the widest bounding box, and has spatial
coordinates indicating the positioning of the block on
the rendered page in the uppermost and leftmost posi
tion on the coordinate map:

identifying, by the processor, a current block rectangular
area matching the dimensions and spatial position of
the bounding box of the current block;

extending, by the processor, the top and bottom bound
aries of the current block rectangular area to match the
top and bottom boundaries of the coordinate map:

identifying, by the processor, one or more intersecting
blocks, among the one or more blocks, that comprise a
bounding box intersecting the current block rectangular
area,

calculating, by the processor, for each of the one or more
intersecting blocks, a corresponding intersecting block
merge Score;

merging, by the processor, with the current block, each of
the one or more intersecting blocks comprising an
intersecting block merge score higher than a predeter
mined intersecting block merge threshold;

removing, by the processor, the current block, including
the merged one or more intersecting blocks, from the
coordinate map; and

adding, by the processor, the current block to the block
Set.

10. The method of claim 9, wherein each of the intersect
ing block merge scores is calculated based on properties of
the corresponding intersecting block and the current block,
the properties being selected from the group consisting of
(i) horizontal alignment, (ii) column position, (iii) column
alignment, and (iv) column data type.

11. The method of claim 1, wherein the print-ready digital
Source document is a fixed-layout file.

12. A system for generating tables from print-ready digital
Source documents, comprising:

US 9,703,766 B1
41

at least one memory, and
a processor communicatively coupled to the at least one
memory, wherein the processor is operable to:
receive the digital source document comprising at least

one rendered page;
identify one or more text fragments in the at least one

rendered page, each of the text fragments comprising
text, spatial coordinates indicating the positioning of
the text fragment on the rendered page, and an index
assigned based on the spatial coordinates on the
rendered page;

generate a wrapping region collection comprising one
or more Wrapping regions,
wherein each of the wrapping regions comprises one

or more fragment runs, and
wherein each of the one or more fragment runs

comprises a Subset of the one or more text frag
ments that are adjacent to one another and within
a predetermined horizontal separation threshold
and a vertical separation threshold;

calculate for each of the one or more wrapping regions
of the wrapping region collection, a tabular score, a
narrative score, and a label score, wherein each of
the tabular score, narrative score, and label score is
a measure of qualification of a wrapping region as a
tabular block type, as a narrative block type, or a
label block type:

assign a block type to each of the one or more wrapping
regions based on the corresponding calculated tabu
lar score, narrative score and label score;

generate a Wrapping region group set comprising one or
more wrapping region groups,

wherein each of the one or more wrapping region
groups comprises a Subset of the one or more wrap
ping regions that are spatially related to one another;

generate a block set comprising one or more blocks,
wherein each of the one or more blocks comprises a

Subset of the one or more wrapping region groups
that are spatially related to one another; and

generate one or more tables, each of the one or more
tables comprising the text fragments corresponding
to one of the one or more blocks,

wherein each of the one or more tables comprises the
corresponding text fragments each organized into
corresponding fields of the one or more tables;

wherein the tabular score, the narrative score and the label
score of each of the one or more wrapping regions are
calculated based on one or more attributes selected
from the group consisting of (i) a normalization ratio,
(ii) a density ratio, (iii) an alignment ratio, (iv) a capital
or non-alphabetic ratio, (v) a text fragment quantity,
and (vi) a bold count;

wherein (i) the normalization ratio is the number of
normalized text fragments divided by the total number
of text fragments within a wrapping region, (ii) the
density ratio is the percentage of a bounding box area
of a wrapping region occupied by text fragment bound
ing boxes, (iii) the alignment ratio is the number of
normalized text fragments that fit within at least one
alignment group divided by the total number of nor
malized text fragments within a wrapping region, (iv)
the capital or non-alphabetic ratio is the number of
normalized text fragments that start with either a capital
letter or a non-alphabetic character divided by the
number of normalized text fragments, (v) the text
fragment quantity is a number of text fragments among
the Subset of the one or more text fragments corre

10

15

25

30

35

40

45

50

55

60

65

42
sponding to each of the one or more wrapping regions,
and (vi) the bold count is the number of text fragments
with bolded text.

13. The system of claim 12, wherein to generate each of
the one or more wrapping regions in the wrapping region
collection, the processor is further operable to:

identify a first text fragment from among the one or more
text fragments;

assign a current text fragment flag to the first text frag
ment, the current text fragment flag indicating a single
one of the one or more text fragments being processed;

generate, by the processor, a current wrapping region and
a current fragment run;

add, by the processor, the first text fragment having the
current text fragment flag assigned thereto to the cur
rent fragment run;

identify a second text fragment from among the one or
more text fragments, the second text fragment being
horizontally adjacent to the first text fragment having
the current text fragment flag assigned thereto, within
the predetermined horizontal separation threshold;

assign the current text fragment flag to the second text
fragment;

add the second text fragment having the current text
fragment flag assigned thereto to the current fragment
run;

add the current fragment run to the end of the current
Wrapping region,
wherein the current wrapping region comprises a

bounding box comprising borders matching outer
borders of fragment runs comprised therein;

identify a third text fragment from among the one or more
text fragments, the third text fragment being the left
most of the one or more text fragments that is within the
predetermined vertical separation threshold and the
predetermined horizontal separation threshold of a bot
tomborder of the bounding box of the current wrapping
region;

assign the current text fragment flag to the third text
fragment;

remove the contents of the current fragment run;
add the third text fragment having the current text frag

ment flag assigned thereto to the current fragment run;
identify a fourth text fragment from among the one or
more text fragments, the fourth text fragment being
horizontally adjacent to the third text fragment having
the current text fragment flag assigned thereto, within
the predetermined horizontal separation threshold;

assign the current text fragment flag to the fourth text
fragment;

add the fourth text fragment having the current text
fragment flag assigned thereto to the current fragment
run; and

add the current fragment run to the end of the current
Wrapping region.

14. The system of claim 13, wherein the identification of
the third text fragment is performed in response to identi
fying the absence of other text fragments from among the
one or more text fragments that are horizontally adjacent to
the second text fragment.

15. The system of claim 14, wherein the block type
assigned to each of the one or more wrapping regions
corresponds to the highest of the tabular score, the narrative
score, and the label score calculated for the respective
Wrapping region.

US 9,703,766 B1
43

16. The system of claim 12,
wherein an increase in normalization ratio causes a

decrease in a corresponding tabular score, causes an
increase in a corresponding narrative score, and causes
an increase in a corresponding label score,

wherein an increase in density ratio causes a decrease in
a corresponding tabular score, causes an increase in a
corresponding narrative score, and causes an increase
in a corresponding label score,

wherein an increase in alignment ratio causes an increase
in a corresponding tabular score, and causes a decrease
in a corresponding narrative score,

wherein an increase in capital or non-alphabetic ratio
causes an increase in a corresponding tabular score, and
causes a decrease in a corresponding narrative score,

wherein an increase in text fragment quantity causes a
decrease in a corresponding label score, and

wherein an increase in bold count causes an increase in a
corresponding label score.

k k k k k

10

15

44

