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Techniques are provided for sharding objects across differ 
ent compute nodes. In one embodiment, a database server 
instance generates, for an object, a plurality of in-memory 
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in-memory chunk, where each in-memory chunk includes a 
different portion of the object. The database server instance 
assigns each in-memory chunk to one of a plurality of 
computer nodes including the first in-memory chunk to a 
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second local memory of a second compute node. The 
database server instance stores an in-memory map that 
indicates a memory location for each in-memory chunk. The 
in-memory map indicates that the first in-memory chunk is 
located in the first local memory of the first compute node 
and that the second in-memory chunk is located in the 
second local memory of the second compute node. 
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SHARDING OF IN-MEMORY OBJECTS 
ACROSS NUMA NODES 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 5 

Benefit Claim 

This application claims priority to and is a Continuation 
in-part of U.S. patent application Ser. No. 14/337,164, filed 
Jul. 21, 2014, entitled “FRAMEWORK FOR NUMA 
AFFINITIZED PARALLEL QUERY ON IN-MEMORY 
OBJECTS WITHIN THE RDBMS, which claims priority 
to U.S. Provisional Patent Application No. 61/880,852 filed 
Sep. 21, 2013, the contents for each of which are hereby 
incorporated by reference in their entirety herein. 
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FIELD OF THE DISCLOSURE 

2O 
The present disclosure relates to database systems and, 

more specifically, to managing database objects that reside 
in memory in one format and on disk in another format. 

BACKGROUND 25 

Given that main memory is becoming cheaper and larger, 
new data formats are needed to speed query processing 
when data is stored in memory. Existing formats are 
designed for disk and, when stored in memory (e.g. in the 30 
buffer cache), the formats are not optimal for queries. For 
example, it is common for database systems to store data 
persistently in “disk blocks”. Typically, within each disk 
block, data is arranged in row-major format. That is, the 
values of all columns of one row are followed by the values 
of all columns for the next row. 

To speed up performance, Some of the disk blocks may be 
cached in a “buffer cache' within volatile memory. Access 
ing the data from Volatile memory is significantly faster than 
accessing the data from disk. However, even within the 
volatile memory, the data is still in the format of row-major 
disk blocks, which is not optimal for certain types of 
database operations. 

In contrast to row-major disk blocks, columnar formats 45 
have many attractive advantages for query processing in 
memory, Such as cache locality and compression. Conse 
quently, Some database servers now employ new table types 
for persistently storing data in column-major formats. In 
column-major format, the data may be read into volatile 50 
memory where it can be used to process certain queries more 
efficiently than would be possible if the data were stored in 
row-major disk blocks. 

Unfortunately, the task of migrating existing databases 
that persistently store data in row-major disk blocks to use 55 
of the new column-major table types is not trivial. Further, 
after performing Such a migration, query processing will be 
less efficient for the class of queries that can be performed 
more efficiently on data that is stored in row-major disk 
blocks. 60 

As an alternative, some database systems keep the data in 
row-major disk blocks, but employ column store indexes. 
Column store indexes do not replace existing tables, and 
therefore do not require the entire database to be migrated to 
new table structures. Rather, column store indexes act more 65 
as a traditional secondary index. For example, such column 
store indexes are still persisted to disk. Unfortunately, a 

35 

40 

2 
significant amount of overhead may be required to maintain 
Such indexes as updates are performed on the data indexed 
thereby. 
As yet another alternative, one may replicate a database, 

where a first replica of the database stores the data in 
conventional row-major disk blocks, while a second replica 
stores the data in a column-major format. When a database 
is replicated in this manner, queries that are most efficiently 
processed using row-major data may be routed to the first 
replica, and queries that are most efficiently processed using 
column-major data may be routed to the second replica. 

Unfortunately, this technique does not work well due to 
the lag that occurs between replicated systems. Specifically, 
at any given point in time, Some changes made at one of the 
replicas will not yet have been applied to the other replica. 
Consequently, the lag inherent in the replication mechanism 
may result in unpredictable artifacts and, possibly, incorrect 
results. 

Further, each transaction generally needs to see its own 
changes, even before those changes have been committed. 
However, database changes are not typically replicated until 
the changes have been committed. Thus, a transaction may 
be limited to using the replica at which the transactions 
uncommitted changes were made, even though the format of 
the data at the other replica may be more efficient for some 
operations. 
The approaches described in this section are approaches 

that could be pursued, but not necessarily approaches that 
have been previously conceived or pursued. Therefore, 
unless otherwise indicated, it should not be assumed that any 
of the approaches described in this section qualify as prior 
art merely by virtue of their inclusion in this section. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the drawings: 
FIG. 1 is a block diagram of a database system that 

concurrently maintains mirror format data in volatile 
memory and persistent format data on persistent storage, 
according to an embodiment; 

FIG. 2a is a block diagram of a table used for examples: 
FIG.2b is a block diagram of how data items for a table 

may be concurrently maintained in two formats, one of 
which is an in-memory format, according to an embodiment; 

FIG. 3 is a block diagram that illustrates journals stored 
in Volatile memory in conjunction with mirror format data, 
according to an embodiment; 

FIG. 4 is a block diagram illustrating how the data from 
a single table may be divided between IMCUs based on row 
ranges, according to an embodiment; 

FIG. 5a is a block diagram illustrating how different 
database server instances may be assigned to manage dif 
ferent sets of MF data, where the sets are based on row 
ranges: 

FIG. 5b is a block diagram illustrating how different 
database server instances may be assigned to manage dif 
ferent sets of MF data, where the sets are based on columns; 

FIG. 6 is a block diagram illustrating an SMU that stores 
a changed-row bitmap and a record of bit changes, according 
to an embodiment; 

FIG. 7 is a flowchart illustrating steps for performing a 
scan operation, according to an embodiment; 

FIG. 8 is a block diagram illustrating a structure for 
implementing a changed-row bitmap, according to an 
embodiment; and 
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FIG. 9 is a block diagram illustrating a computer system 
that may be used to implement the techniques described 
herein; 

FIG. 10 is a block diagram illustrating a system for 
managing space and objects within an in-memory area, 
according to an embodiment; 

FIG. 11 is a block diagram illustrating an example layout 
of stripes within an in-memory area, according to an 
embodiment: 

FIG. 12 is a block diagram illustrating an example in 
memory segment layout, according to an embodiment; 

FIG. 13 is a block diagram illustrating a multiprocessor 
system that allows NUMA afinitized parallel queries on 
in-memory objects, according to an embodiment; 

FIG. 14 is a block diagram of a set of NUMA nodes that 
maintain different in-memory chunks for an in-memory 
object, according to an embodiment; 

FIG. 15 is a table illustrating an auxiliary map that 
includes NUMA affinity information, according to an 
embodiment. 

DETAILED DESCRIPTION 

In the following description, for the purposes of expla 
nation, numerous specific details are set forth in order to 
provide a thorough understanding of the present invention. 
It will be apparent, however, that the present invention may 
be practiced without these specific details. In other 
instances, well-known structures and devices are shown in 
block diagram form in order to avoid unnecessarily obscur 
ing the present invention. 

NUMA Overview 

Non-uniform memory access (NUMA) refers to an archi 
tecture in which: 

multiple central processing units (CPUs) have access to a 
pool of Volatile memory, and 

each of the CPUs can access a respective portion of that 
volatile memory faster than the CPU can access the rest 
of the volatile memory. 

In a NUMA system, the portion of the volatile memory 
that a given CPU can access faster than the rest of the 
volatile memory is referred to at that CPU's “local 
memory’, though the entire pool of volatile memory is 
“local in the sense that it is directly accessible by the CPU. 
Within a NUMA system, a set of CPUs that have the same 
local memory are referred to as a “cluster” or “compute 
node'. Thus, each cluster or compute node, includes one or 
more CPUs and is assigned or otherwise associated with one 
or more local memory areas. A compute node and its local 
memory are collectively referred to as a “NUMA node'. A 
process executing on a particular compute node may have 
direct access to all memory areas of main memory within the 
SMP machine. However, the process generally may access 
a local memory area at much lower latencies than a memory 
area assigned to another NUMA compute node. 

Within multiprocessor machines, a NUMA architecture 
may significantly reduce memory bottleneck caused when 
multiple CPUs try and access the same memory area at the 
same time. Processes executing on different NUMA nodes 
may access their corresponding local memory areas without 
conflicts. Memory access times may, therefore, be optimized 
by having processes operate on data within the local area and 
minimizing accesses to data stored in memory areas 
assigned to other NUMA nodes. 
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Sharding Data Objects in NUMA Systems 

Database server instances frequently operate on large data 
objects. As an example, a database server instance may 
execute one or more database commands by processing 
hundreds of thousands or even millions of rows in a table. 
The database server instance may parallelize execution of 
the command on computing devices with more than one 
processor to reduce execution times by having each proces 
sor operate on a subset of the data object. In a NUMA 
multiprocessor system, the database server instance distrib 
utes the workload across different NUMA nodes. 
The database server instance may optimize parallel execu 

tion of database commands and increase manageability of 
storage space by sharding data objects across different 
NUMA nodes. In the context of a NUMA system, sharding 
a data object refers to storing different chunks of the data 
object into different areas within the volatile memory pool. 
When loaded into an area within the volatile memory pool, 
such chunks are referred to as “in-memory” chunks. 
As part of the sharding process, a database server instance 

assigns each chunk of the data object to one or more NUMA 
nodes, and causes the chunk assigned to each NUMA node 
to be loaded into the local volatile memory of that NUMA 
node. As an example, a first in-memory chunk may include 
a first set of rows or some other portion of a table, and a 
second in-memory chunk may include a second set of rows 
or a different portion of the same table. The first in-memory 
chunk may be assigned and stored in the local memory area 
of a first compute node, and the second in-memory chunk 
may be assigned and stored in the local memory area of a 
second compute node. 
When an object is to be stored in memory, the database 

server determines how to shard the object into in-memory 
chunks and allocates space for each in-memory chunk from 
at least one NUMA node. If the object has a corresponding 
on-disk counterpart (e.g. if the object is an on-disk table), the 
database server instance may map on-disk page ranges of the 
object to NUMA nodes, and for each on-disk page range, 
cause the data stored on disk in that page range to be loaded 
into the NUMA node to which that page range is mapped. As 
a result, when the in-memory chunk is refreshed or other 
Wise reloaded, memory for the in-memory chunk is allo 
cated from the same NUMA node on which the in-memory 
chunk was previously loaded. If the object is purely in 
memory with no corresponding on-disk counterpart, then the 
database server instance may allocate space in a round-robin 
fashion such that the data of the object is uniformly spread 
across different NUMA nodes. 

In order to track the location of different in-memory 
chunks, the database server instance maintains a map that 
associates each in-memory chunk with a corresponding 
NUMA node. When the database server instance receives a 
database query that requires access to the data object, the 
database server instance may use the in-memory map to 
determine which memory area in Volatile memory is storing 
each in-memory chunk that contains data from the data 
object. The database server instance parallelizes execution 
of the database query by assigning processes executing on 
different NUMA nodes to operate on the data chunk that 
resides in the memory area(s) that is/are local to that NUMA 
node. 

Mirror Format Overview 

Different data formats have different benefits. Therefore, 
techniques are described herein for maintaining data persis 
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tently in one format, but making that data available to a 
database server in more than one format. In one embodi 
ment, one of the formats in which the data is made available 
for query processing is based on the on-disk format, while 
another of the formats in which the data is made available 
for query processing is independent of the on-disk format. 
The format that corresponds to the on-disk format is 

referred to herein as the “persistent format” or “PF. Data 
that is in the persistent format is referred to herein as PF 
data. An in-memory format that is independent of the 
on-disk format is referred to as a “mirror format' or "MF'. 
Data that is in the mirror format is referred to herein as MF 
data. For example, in one embodiment, the persistent format 
is row-major disk blocks, and the mirror format is a column 
major format. 

According to one embodiment, the mirror format is com 
pletely independent of the persistent format. However, the 
MF data is initially constructed in memory based on the 
persistently stored PF data, not based on any persistent MF 
structures. Since persistent MF structures are not required, 
users of existing databases need not migrate the data or 
structures in their existing databases to another format. 
Thus, a conventional database system that uses row-major 
disk blocks may continue to use those disk blocks to 
persistently store its data without performing any data 
migration, while still obtaining the performance benefit that 
results from having a column-major representation of the 
data available in volatile memory. 

In-memory MF data is maintained transactionally consis 
tent with the PF data. The MF data is transactionally 
consistent in that any data items provided to a transaction 
from the MF data will be the same version that would have 
been provided if the data items were provided from the PF 
data. Further, that version reflects all changes that were 
committed before the Snapshot time of the transaction, and 
no changes that were committed after the Snapshot time of 
the transaction. Thus, when a transaction, that made a 
change to a data item that is mirrored in the MF data, is 
committed, the change is made visible relative to both the PF 
data and the MF data. On the other hand, if a transaction that 
made a change is aborted or rolled back, then the change is 
rolled back relative to both the PF data and the MF data. 

In one embodiment, the same transaction manager that 
ensures consistency among the reads and writes of the PF 
data is also used to ensure consistency among the reads and 
writes of the MF data. Because the MF data is kept current 
in a transactionally consistent manner, if the in-memory MF 
data includes the data required by a database operation, then 
the database operation may be satisfied either from the 
in-memory MF data, or from the PF data. 
The MF data mirrors data that already exists in the PF 

data. However, while all items in the MF data are mirror 
versions of corresponding items in the PF data (albeit 
organized in a different format), not all items in the PF data 
need be mirrored in the MF data. Thus, the MF data may be 
a subset of the PF data. 

Because not all of the PF data is necessarily mirrored in 
the MF data, in some situations queries may require data that 
can only be satisfied by the PF data. For example, if a table 
has columns A, B and C, and only column A is mirrored in 
the MF data, then a query that requires values from column 
B must obtain those values from the PF data. 

However, even in those circumstances, the MF data may 
still be used to (a) satisfy a portion of the query, and/or (b) 
speed up the retrieval of required data from the PF data. For 
example, the MF data may be used to identify the specific 
rows that must be retrieved from the PF data. 
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According to one embodiment, to reduce overhead, no 

on-disk copy of the MF data is maintained. In an alternative 
embodiment, a copy of the MF may be stored, but no attempt 
is made to keep the on-disk copy of the MF data in sync with 
updates that are being performed on the PF data. Conse 
quently, after a failure, the in-memory MF data must be 
reconstructed based on the persistent copy of the PF data. 

In some embodiments, the MF data is compressed. The 
compression can be performed at various compression lev 
els, either specified by the user or based on access patterns. 

While examples shall be given hereafter in which the 
mirror format is columnar, the mirror format may be any 
format, different from the persistent format, that is useful for 
running in-memory queries. For example, in an alternative 
embodiment, the PF format is column-major, while the MF 
format is row-major. Regardless of the particular mirror 
format used, the mirror format data is created in memory 
based on existing PF structures (e.g. tables and indexes) 
without causing a change to the format of those structures. 

General Architecture 

FIG. 1 is a block diagram of a database system according 
to one embodiment. Referring to FIG. 1, database system 
100 includes volatile memory 102 and persistent storage 
110. Volatile memory 102 generally represents the random 
access memory used by the database system, and may be 
implemented by any number of memory devices. Typically, 
data stored volatile memory 102 is lost when a failure 
OCCUS. 

Persistent storage 110 generally represents any number of 
persistent storage devices, such as magnetic disks, FLASH 
memory, and/or solid state drives. Unlike volatile memory 
102, data stored on persistent storage 110 is not lost when a 
failure occurs. Consequently, after a failure, the data on 
persistent storage 110 may be used to rebuild the data that 
was lost in volatile memory 102. 

Within volatile memory 102, a database server 120 is 
executing database commands that are Submitted to the 
database server by one or more database applications (not 
shown). The data used by those applications is illustrated as 
PF data 112. PF data 112 resides on persistent storage device 
110 in PF data structures 108. The PF structures 108 may be, 
for example, row-major disk blocks. While row-major disk 
blocks are used for the purposes of illustration, the PF 
structures may take any form, Such as column-major disk 
block, hybrid compression units where some data is 
arranged in column-major format and other data is arranged 
in row-major format, etc. 
The volatile memory 102 further includes a cache 106 of 

PF data. Within cache 106, the data is stored in a format that 
is based on the format in which the data resides within the 
PF data structures 108. For example, if the persistent format 
is row-major disk blocks, then cache 106 may contain 
cached copies of row-major disk blocks. 
On the other hand, MF data 104 is in a format that is 

unrelated to the persistent format. For example, in the case 
where the persistent format is row-major disk blocks, the 
mirror format may be column-major compression units. 
Because the mirror format differs from the persistent format, 
the MF data 104 is produced by performing transformations 
on the PF data. These transformations occur both when 
volatile memory 102 is initially populated with MF data 104 
(whether at start-up or on-demand), and when volatile 
memory 102 is re-populated with MF data 104 after a 
failure. 
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Significantly, the existence of MF data 104 may be 
transparent to the database applications that Submit database 
commands to the database server that makes use of the MF 
data 104. For example, those same applications, designed to 
interact with database systems that operate exclusively on 
PF data 112, may interact without modification with a 
database server that maintains MF data 104 in addition to the 
PF data 112. Further, transparent to those applications, that 
database server may use the MF data 104 to more efficiently 
process Some or all of those database commands. 

The Mirror Format Data 

MF data 104 may mirror all of the PF data 112, or a subset 
thereof. In one embodiment, a user may specify what portion 
of the PF data 112 is “in-memory enabled. The specifica 
tion may be made at any level of granularity. For example, 
the specification of what is in-memory enabled may be made 
at least at the following levels of granularity: 

the entire database 
specified tables 
specified columns 
specified row ranges 
specified partitions 
specified segments 
specified extents 
As shall be described hereafter, in-memory enabled data 

is converted to the mirror format and stored as MF data 104 
in Volatile memory. Thus, when in-memory enabled data is 
required by a query, the database server has the option of 
providing the data from either the PF data 112 or the MF data 
104. The conversion and loading may occur at the time the 
database is started, or in a lazy or on-demand fashion. Data 
that is not in-memory enabled is not mirrored in the MF data 
104. Consequently, when Such data is required by a query, 
the database server does not have the option of obtaining the 
data from the MF data 104. 

For the purpose of explanation, it shall be assumed that PF 
data structures 108 include the table 200 illustrated in FIG. 
2A. Table 200 includes three columns c1-c3, and six rows 
r1-ró. While the illustration of table 200 in FIG. 2A portrays 
how the data is logically organized on persistent storage 110. 
the actual format in which the data is physically stored may 
be quite different. 

Specifically, referring to FIG. 2B, it illustrates how the 
data that resides in table 200 may be physically organized on 
persistent storage 110. In the present example, the data for 
table 200 is stored in three row-major disk blocks 202, 204 
and 206. Block 202 stores the values for all columns of row 
r1, followed by the values for all columns of row r2. Block 
204 stores the values for all columns of row r3, followed by 
the values of all columns of row ra. Finally, block 206 stores 
the values of all columns of row r5, followed by the values 
of all columns of row ré. 

Copies of some of those disk blocks may be temporarily 
stored in cache 106. In the example illustrated in FIG. 2B, 
a cached copy 212 of block 204 resides in cache 106. Cache 
106 may be managed using any one of a variety of cache 
management techniques, and the embodiments described 
herein are not limited to any particular cache management 
technique. In general. Such techniques attempt to retain in 
volatile memory 102 copies of the disk blocks that are most 
likely to be requested in the near future. Consequently, when 
cache 106 runs out of space, cached copies of disk blocks 
that are less likely to be requested are replaced by copies of 
blocks that are more likely to be requested. 
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8 
In contrast to the data in cache 106, the mirror format data 

104 is not formatted in a manner that is based on the 
persistent format. In the illustrated example, mirror format 
data 104 includes two column vectors 220 and 222. Each 
column vector stores a contiguous series of values from a 
single column of table 200. In the present example, column 
vector 220 stores values from column 1 of table 200, and 
column vector 222 stores values from column 3 of table 300. 
In this example, the MF data 104 mirrors a subset of the PF 
data because MF data 104 does not include column vectors 
for column 2 of table 200. 

Organization of the MF Data 

According to one embodiment, even though the MF data 
uses a different format than the PF data, the MF data is 
organized in a manner that corresponds to the organization 
of the PF data. For example, on persistent storage 110, the 
PF data may be stored in blocks that reside in extents which, 
in turn, are organized into segments. Under these circum 
stances, within volatile memory 102, the MF data 104 may 
be organized based on the extents and/or segments to which 
the data belongs. Thus, column vector 220 may be divided 
into vector portions, each of which corresponds to a par 
ticular range of extents and/or segments. 

Within the extents, data is typically ordered by rowid. 
Similarly, in one embodiment, the MF data 104 is ordered 
based on rowid. For example, the values in column vector 
220 are ordered based on the same rowids that are used to 
order the PF data in blocks 202, 204 and 206. Specifically, 
rowid r1 immediately precedes rowid r2, so r1c1 immedi 
ately precedes r2c1 in column vector 220, and r1c1 to r1c3 
immediately precede r2c1 to r2c3 in block 202. 

In alternative embodiments, some or all of the data items 
in the MF data 104 are not ordered, within the MF data 104, 
by rowid. Storing the data items in a different order may be 
useful, for example, if the different ordering produced 
significantly better compression. As another example, the 
column vectors may initially be ordered by rowid. However, 
when new updates are “merged into the column vectors (as 
shall be discussed in greater detail hereafter), the updated 
values may appended to the end of the existing column 
vectors to avoid having to decompress and recompress the 
existing column vectors. 
When the data items within the column vectors are not in 

rowid order, an in-memory index may be built on rowid to 
quickly locate within the MF data 104 the data items 
associated with any given rowid. 
Whether or not the data items within the column row 

vectors are ordered based on rowid, a rowid-to-item map 
ping may be established by maintaining a vector of rowids 
in conjunction with the column vectors. For example, FIG. 
3 illustrates a rowid vector 330 that is maintained in addition 
to the column vectors 220 and 222. The first value (R1) in 
the vector of rowids is the rowid of the first data item in each 
of the column vectors. Similarly, the second value in the 
vector of rowids (R2) is the rowid of the second data item 
in each of the column vectors. 

In embodiments where the organization of the MF data 
corresponds to the organization of the PF data, it is easier for 
the database server to split database operations between the 
MF data and the PF data. For example, the database server 
may determine that the MF data is to be used to satisfy a 
query relative to one range of extents (e.g. extent 1 to extent 
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10), while PF data is to be used to satisfy the query relative 
to another range of extents (e.g. extent 11 to extent 20). 

Using the MF Data to Satisfy Queries 

A conventional database system may operate normally by 
responding to every query by first searching for the 
requested data in cache 106. If the data is in cache 106, the 
data is accessed from cache 106. Otherwise, the needed data 
is loaded from PF data structures 108 into cache 106, and 
then accessed from cache 106. However, because the data in 
both cache 106 and PF data structures 108 is in the persistent 
format, performing operations based exclusively on the PF 
data does not always provide the best performance. 

Therefore, according to one embodiment, the database 
server uses the MF data 104 to supply data items required by 
at least some requested database operations. For example, if 
a database query requests the values from column 1 of all 
rows, the database server may obtain those values from the 
column vector 220 without accessing persistent storage 110. 
In the absence of MF data 104, the database would only be 
able to obtain R3C1 and R4C1 without accessing persistent 
storage 110 (because currently only block 204 is in cache 
106). To obtain R1C1 and R2C1, block 202 must be loaded 
into cache 106, and to obtain R5C1 and R6C1, block 206 
must be loaded into cache 106. The time it would take to 
load blocks 202 and 206 into cache would be significantly 
more than the time required to obtain the values directly 
from column vector 220. 

Using the MF Data to Evaluate Predicates 

Even in situations where the data required by a database 
operation is not included in the mirror format data 104, the 
mirror format data 104 may be used to evaluate predicates, 
and thereby speed up the database operations in the same 
manner as conventional indexes. For example, assume that 
table 200 has thousands of rows, and in only three of those 
rows does column c1 have the value joe'. Under these 
circumstances, a database server may receive a database 
command that requests the values, from column c2, of all 
rows where c1 =joe'. 

In this example, the data that needs to be returned by the 
database command is from column c2, which is not in the 
MF data 104. However, the column vector 220 for column 
1 may be used to quickly identify the three rows where 
c1=joe'. This operation can be performed efficiently 
because the data items required to evaluate the predicate 
(values from c1) are stored contiguously in Volatile memory. 
Once those rows have been identified using column vector 
220, the database server may retrieve from disk only those 
blocks needed to obtain the data from those three rows. 

Without using the MF data, a conventional index built on 
column c1 may be used to evaluate the predicate “where 
c1joe'. However, some disk I/O may be necessary to use 
of the conventional index to perform this evaluation, 
whereas no disk I/O is needed to evaluate the predicate using 
column vector 220. Further, maintaining Such an index can 
incur significant overhead. 

Without using mirror format data 104 or a conventional 
index, the database server would have to load from persis 
tent storage 110 every disk block that (a) is not already in 
cache 106, and (b) stores data for table 200. These blocks 
would have to be loaded merely to compare the values of 
column c1 against “joe' to identify the three rows for which 
c2 is required by the database command. 
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10 
Because MF data 104 may be used for the same function 

as conventional indexes (i.e. to efficiently identify which 
rows satisfy criteria specified in a database command), a 
database system that uses MF data 104 need not have as 
many conventional indexes as would otherwise be necessary 
for efficient predicate evaluation. For example, if the MF 
data 104 includes a column vector for c1 and a column 
vector for c3, then the database server need not maintain 
conventional indexes for columns c1 or c3. By reducing the 
number of conventional indexes that need to be maintained 
by a database server, the overhead associated with making 
updates may be significantly reduced. 

In-Memory Indexes 

As explained above, when a predicate references a col 
umn, the column vector for that column may be used to 
evaluate the predicate. In this way, column vectors may be 
used instead of conventional indexes. To provide even faster 
predicate evaluation, in-memory indexes may be used. An 
in-memory index is an index stored entirely within volatile 
memory. The nature of the in-memory index may vary based 
on the characteristics of the data being indexed. For 
example, if low-cardinality keys are being indexed, the 
in-memory index may be a binary index. If high-cardinality 
keys are being indexed, then the in-memory index may be a 
B-tree. Regardless of the nature of the in-memory index, the 
entries in the index point to in-memory location of the data 
items in question, rather than on-disk locations. 

Compression 

As mentioned above, the MF data may be compressed. 
However, according to one embodiment, not all MF data 
need be compressed in the same way, or to the same degree. 
For example, if it is determined that the data from column 
c1 of table 200 is used frequently, and the data from column 
c3 is used infrequently, then the data in column vector 220 
may be lightly compressed, or uncompressed, whereas the 
data in column vector 222 is highly compressed. 
The compression algorithm, and the level of compression 

used by the algorithm, that is used to compress each portion 
of the MF data may be specified by a user, or may be 
determined automatically by a database server based on 
various factors. Possible compression algorithms include, 
but are not limited to, dictionary-based compression, run 
length encoding (RLE), OZip compression, etc. 
The factors used by the database server to determine how 

each portion of MF data is compressed may include, for 
example, the frequency with which each portion is accessed, 
and how much data is in the portion, and how much volatile 
memory is available. In general, the more frequently a 
portion of the MF data is accessed, the less compressed the 
data. As another general rule, the less volatile memory that 
is available to store the MF data and/or the larger the size of 
the portion of the MF data, the higher the compression. 

Even though data items may be compressed within the 
MF data, it may not be necessary to decompress the MF data 
to use it. For example, vector processing operations may be 
performed directly on compressed values, as described in 
U.S. patent application Ser. No. 13/708,054, filed Dec. 7, 
2012, the entire contents of which are incorporated herein by 
reference. As also described in that application, it is also 
possible for the decompression to be performed on-chip 
after the compressed column vector values have been trans 
ferred to the CPU. 
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In-Memory Compression Units (IMCUs) 

In an embodiment in which the MF data is compressed, 
the MF data may be organized, within volatile memory 102. 
into “in-memory compression units” (IMCUs). Each IMCU 
stores a different set of MF data. For example, as illustrated 
in FIG. 4, IMCU 402 stores half of column vectors 220 and 
222, and IMCU 404 stores the other half of column vectors 
220 and 222. Specifically, IMCU 402 includes a vector 
portion 420 that stores half the values from column c1, and 
a vector portion 422 that stores half the values from column 
c3. Similarly, IMCU 404 includes a vector portion 424 that 
stores the other half of the values from column c1, and a 
vector portion 426 that stores the other half the values from 
column c3. 

In this example, the IMCUs divide the MF databased on 
the rows to which the data belongs, where IMCU 402 
corresponds to rows r1 to r3 of table 200, and IMCU 404 
corresponds to rows ra-ró of table 200. However, this is only 
one of many different ways that the MF data may be spread 
among IMCUs. For example, different IMCUs may store 
MF data for different tables, different partitions of a table, 
different columns of a table, different segments, different 
eXtents, etc. 

Metadata for the MF Data 

To determine whether the MF data has the data required 
to process a query, and if so, to find the MF data required to 
process the query, the database server needs to know which 
PF data is mirrored in the MF data, and specifically which 
specific PF data is mirrored by each IMCU. Therefore, 
according to one embodiment, metadata 430 for the MF data 
is maintained in volatile memory 102, as illustrated in FIG. 
4. 

In one embodiment, metadata 430 includes a data-to 
IMCU mapping. The data-to-IMCU mapping indicates 
which data is contained in each IMCU. This indication may 
be made in a variety of ways, including storing data that 
indicates, for each IMCU, one or more of the following: 

the table(s) whose data is stored in the IMCU 
the column(s) whose data is stored in the IMCU 
the range of rows stored in the IMCU 
the range of the disk blocks whose data is stored in the 

IMICU 
the segments whose data is stored in the IMCU 
the table partitions whose data is stored in the IMCU 
the extents whose data is stored in the IMCU 
the manner in which the data, within the IMCU, has been 

compressed 
the dictionary for decompressing the data stored in the 
IMCU (when a dictionary-type encoding has been used 
to compress the PF data) 

In the situation illustrated in FIG. 4, the data-to-IMCU 
mapping may indicate, for example, that rows r1-r3 of 
columns c1 and c3 of table 200 are stored in IMCU 402, and 
that rows ra-ré of columns c1 and c3 of table 200 are stored 
in IMCU 404. 

Multi-Instance Environments 

In some environments, the same PF data is accessed by 
multiple database server instances. Such environments are 
referred to herein as multi-instance environments. In a 
multi-instance environment, each database server instance 
may have access to Volatile memory that the other database 
server instances cannot access directly. In Such situations, 
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12 
one may populate the volatile memory of each of the 
database server instances with the same MF data, or may 
cause different portions of the MF data to be stored in the 
volatile memories of different database server instances. In 
the case where different portions of the MF data is stored in 
the volatile memories of different database server instances, 
metadata 430 may also include an IMCU-to-instance map 
ping. 

For example, referring to FIG.5a, it illustrates an embodi 
ment in which IMCU 402 is stored in the volatile memory 
502 of one database server instance (instance 1), and IMCU 
404 is stored in the volatile memory 504 of another database 
server instance (instance 2). For the database servers to 
know where specific portions of the MF data reside, each 
maintains metadata (530 and 532) to indicate both (a) where 
IMCUs 402 and 404 reside, and (b) what data they contain. 

In FIG. 5a, MF data from the same two columns (c1 and 
c3) is distributed between two database instances. However, 
it is also possible to distribute the MF data among database 
servers on other basis. For example, different instances may 
have the MF data for different tables, different columns, 
different partitions, different segments, different extents, etc. 

FIG. 5b is a block diagram of a scenario in which the MF 
data is distributed among the database instances based on 
column. Specifically, in FIG.5b, the IMCU 402 stored in the 
volatile memory 502 of instance 1 includes the entire 
column vector 220 for column c1, while the IMCU 404 
stored in the volatile memory 504 of instance 2 includes the 
entire column vector 222 for column c3. 

Because it is more efficient to access local data than to 
obtain data from a remote instance, the location of the MF 
data may be a factor in determining whether to obtain a 
particular data item from the MF data or the PF data. For 
example, in the scenario illustrated in FIG.5b, if a query that 
is being executed by the database server of instance 1 
requires data from column c1, the database server may 
decide to obtain the data from column vector 220, rather 
than from the PF data. On the other hand, if the same query 
being executed by the same database server requires data 
from column c3, then the database server may decide to 
obtain the data from the PF data. 
When a database server determines that it is more efficient 

to perform an operation using MF data that resides in a 
remote instance that to use the PF data, the database server 
requests the remote instance to perform the operation. For 
example, in the scenario illustrated in FIG. 5b, if the 
database server of instance 1 is executing a query with the 
predicate “where c3=X', the database server of instance 1 
would request the database server of instance 2 to evaluate 
“where c3=X” using column vector 222. In response to 
evaluating the predicate, the database server of instance 2 
would return to the database server of instance 1 data that 
indicates which rows satisfy the predicate. 

Keeping the Mirror Format Data in Sync 

The MF data 104 is only useful if the MF data 104 is kept 
up to date with all changes being made to the PF data. For 
example, if a query calls for the current values from column 
c1, then column vector 220 can only be used if its values are 
current. Similarly, if a query calls for current values of c2 
from rows where c1 =joe', then column vector 220 can only 
be used to identify the rows where c1 =joe' if the values in 
the column vector 220 are current. 

Consequently, a mechanism is provided for keeping the 
mirror format data 104 in sync with the PF data as updates, 
inserts and deletes are performed on the PF data. Specifi 
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cally, in one embodiment, the transaction manager of a 
relational database server, which is conventionally designed 
to transactionally update the PF data, is modified to concur 
rently transactionally update the MF data. For example, 
when the transaction manager updates a particular item in 
the PF data as part of a transaction, the transaction manager 
also updates the particular item in the MF data (if the 
particular item is in the MF data) as part of the same 
transaction. 
By maintaining MF data 104 and the PF data transaction 

ally synchronized, the result set of a query will be the same 
regardless of whether the query was processed using data 
items obtained exclusively from the MF data 104, or data 
items obtained exclusively from the PF data. 
The result set will also be the same if the query is 

processed using some data items from MF data 104, and 
other data items from the PF data. 

In-Place Updates to MF Data 

For the MF data to remain transactionally consistent with 
the PF data, changes are made permanent to the MF data at 
the same time the changes are made permanent to the PF 
data. For example, when a transaction that changed r1c1 
from X to Y commits, r1c1 must be changed from X to Y in 
both the PF data and the MF data. 

In some situations, it is possible to directly update the MF 
data to reflect a change made by a transaction when the 
transaction commits. For example, if column vector 220 is 
either uncompressed, or compressed in a manner that pro 
duces fixed-width values, it is possible to directly change the 
value of r1c1 from X to Y in the column vector 220 when 
the transaction commits, without otherwise affecting the 
column vector 220 or incurrent significant overhead. 

However, in other situations, it may be necessary to 
update the MF data implicitly. When updated implicitly, the 
MF data itself does not necessarily change, but metadata is 
stored to indicate that the values contained therein have been 
updated. As shall be described in greater detail hereafter, the 
metadata used to record implicit updates to the MF data may 
include journals and changed-row bitmaps. 

Journals 

In some embodiments, keeping the MF data in sync with 
updates to the PF data is complicated by the fact that the MF 
data may be in a compressed format. For example, if column 
vector 220 is compressed, then directly updating a value 
within the column vector 220 may require the entire column 
vector to be decompressed, the update performed, and then 
the entire column vector to be compressed again. It would 
not be efficient to perform such operations in response to 
every update performed on the PF data. 

To reduce the amount of decompression and decompres 
sion operations required to keep the MF data in Sync, one 
embodiment makes use of journals to make implicit updates 
to the MF data. In general, journals store information about 
updates (a) made to the PF data, and (b) not yet made 
directly to the MF data. 

Referring to FIG. 3, it illustrates an embodiment in which 
journals 304 are maintained in conjunction with column 
vectors 220 and 222. In the embodiment illustrated in FIG. 
3, column vectors 220 and 222 store compressed MF data 
302. Because the data within the column vectors 220 and 
222 is compressed, a significant amount of overhead would 
be required to directly update the data within the column 
vectors 220 and 222. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
While journals 304 are also in volatile memory 102, 

journals 304 generally contain uncompressed data 302 that 
indicates changes made to the PF data that is not yet 
reflected in column vectors 220 and 222. For example, if the 
value of R3C1 of table 200 is updated from X to Y, rather 
than change the value of R3C1 in column vector 220, an 
entry is stored in one of journals 304 to indicate that R3C1 
has been changed, and to record the new value for R3C1. 

Journals 310 include a global journal 310 and numerous 
private journals. In general, global journal 310 records only 
those changes that have been made by committed transac 
tions. Before transactions commit, the changes made by the 
transactions are stored in the private journals, as explained 
in greater detail hereafter. 

Journals 310 may include entries for rows that do not exist 
in the MF data. For example, assume that the MF data for 
table 200 is created at time T1, and at time T2 a new row is 
inserted into table 200. Under these circumstances, an entry 
for the new row will initially be added to private journal of 
the transaction that inserted the row, and the entry for the 
new row will be moved to the global journal for table 200 
when that transaction commits. 

According to one embodiment, all journals support full 
transactional Semantics (e.g. queries, DMLS, rollback to 
savepoint, rollback/abort, parallel queries/DMLs, and dis 
tributed transactions). In addition, journals can interoperate 
with the on-disk database system. For example, when the 
data is purged from an in-memory journal, required changes 
can be obtained from the PF data on disk, if a query needs 
them. 

Private Journals 

As mentioned above, journals 304 are used to store data 
that indicates (a) changes made to the PF data that (b) are not 
yet reflected in the MF data stored in IMCUs. Such changes 
are typically made by database servers as part of transac 
tions. According to one embodiment, in addition to having 
a single “global' journal, such as journal 310, for all such 
changes, a separate “private journal is maintained for each 
transaction. 

For example, FIG. 3 illustrates the situation in which three 
transactions TX1, TX2 and TX3 are making changes to PF 
data that is mirrored in the compressed MF data 302. In 
addition to making the changes to the PF data, the transac 
tions make the same changes to the MF data by storing, in 
their respective private journals, data that indicates what the 
changes are. 

Similar to the changes made to the PF data, those changes 
reflected in the private journal of a transaction are not 
considered permanent until the transaction commits. Con 
sequently, the changes reflected in the private journal of any 
given transaction will not be visible to other transactions 
until the given transaction commits. In the example shown 
in FIG. 3, the contents of journal 312 will be ignored by 
transactions TX2 and TX3. The contents of journal 314 will 
be ignored by transactions TX1 and TX3. The contents of 
journal 316 will be ignored by transactions TX1 and TX2. 

Moving Journal Entries. Upon Commit 

The global journal is visible system-wide, since all 
changes reflected therein have been committed. Thus, in 
response to transaction TX1 committing, the changes 
reflected in the private journal 312 of TX1 are moved to the 
global journal 130. Similarly, in response to transaction TX2 
committing, the changes reflected in the private journal 314 
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of TX2 are moved to the global journal 130. Likewise, in 
response to transaction TX3 committing, the changes 
reflected in the private journal 316 of TX6 are moved to the 
global journal 130. 
As mentioned above, when a transaction commits, the 

contents of that transaction’s private journal are moved to 
the appropriate global journals. In embodiments where the 
global journals are maintained on a per-IMCU basis and the 
private journals are maintained on a per-transaction basis, 
moving the private journal entries of a committed transac 
tion may involve moving some of the entries to the global 
journal of one IMCU, and some entries to the global journal 
of another IMCU. 

For example, assume that a transaction modifies a first set 
of data that maps to a first IMCU, and modifies a second set 
of data that maps to a second IMCU. Prior to commit, entries 
for both sets of modifications are stored in the private journal 
of the transaction. However, when the transaction commits, 
the entries for modifications to the first set of data are moved 
to the global journal for the first IMCU, and entries for 
modifications to the second set of data are moved to the 
global journal for the second IMCU. 

After a transaction's changes are persistently committed 
to the PF data, the transaction is assigned a commit time. In 
response to being assigned a commit time, the journal entries 
of the transaction are updated to reflect the commit time. 
Once a transaction’s journal entries are moved to the appro 
priate global journals and updated with the commit time of 
the transaction, the changes reflected in those entries become 
visible to other transactions. 
As mentioned above, data within an IMCU need not be 

arranged in rowid order. When not in rowid order, the 
column vector of rowids (e.g. vector 330) may be used to 
locate data within an IMCU based on rowid. Specifically, the 
position of a rowid within vector 330 is the position of the 
values for the corresponding row within the other vectors 
220 and 222. According to one embodiment, even when the 
data within an IMCU is not arranged in rowid order, the 
entries in the corresponding private and global journals are 
organized based on rowid. Thus, when data in an IMCU is 
invalidated due to an update made to the corresponding PF 
data, the rowid of the invalidated data is recorded, rather 
than the position of that data within the IMCU. 

Journal Entry Contents 

In general, each journal entry contains all information 
required to determine (a) what data items are in the entry, 
and (b) what version of those data items does the entry 
reflect. In one embodiment, each journal entry includes: 

the rowid of the row associated with the entry 
a timestamp that indicates when the data contained in the 

row was “current 
values for one or more columns of the corresponding row 
With respect to the column values, in one embodiment, 

each journal entry includes full row images that result from 
all Data Manipulation Language (DML) operations. In Such 
an embodiment, the journals are initially row-major data 
stores. However, under certain circumstances (such as when 
the journals grow too large), the contents of the journal may 
be converted to a column-major row store. The column 
major information in the journals would only need to include 
values for those columns that are mirrored in the MF data. 

In on embodiment, a threshold is established for how 
many rows a journal may have in row-major format. Once 
that threshold is exceeded, a conversion operation is trig 
gered for converting some or all of the journal's row-major 
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data to a column-major format. The threshold may be, for 
example, that a journal may have no more than 1000 rows 
of row-major data. 

5 Journal Indexes 

According to one embodiment, an index, maintained in 
volatile memory 102, is built on the rowid column of each 
private journal. In addition to the rowid column, indexes 
may be built on any other column of the private journals that 
will improve overall query processing efficiency. These 
journal indexes may be used, for example, during query 
processing to perform look-ups, or range-based scans of the 
journals. 

10 
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Journal Structure 

According to an embodiment, journals are organized, 
within volatile memory 102, as a series of temporally 
ordered extents. For example, assume that the version time 
for MF data 104 is T1, and that the current system time is 
time T10. Under these circumstances, journal 310 may be 
organized into three extents, the first of which includes 
journal entries for changes made between time T1 and time 
T3, the second of which includes journal entries for changes 
made between time T3 and time T6, and the third of which 
includes journal entries for changes made between time T6 
and the current system time. 
When structured in this manner, extent pruning may be 

used to reduce the number of extents that are processed 
during a table scan. For example, for a table scan performed 
for a transaction with a snapshot time of T2, only the first 
extent of journal 310 would need to be scanned. The other 
journals contain only changes that the transaction is not 
allowed to see. 
On the other hand, for a table scan performed for a 

transaction with a snapshot time of T7, all three extents of 
journal 310 would have to be scanned, because all three 

40 could contain journal entries for changes that must be seen 
by the transaction. 

25 

30 

35 

Merging Global Journals into the MF Data 

45 AS mentioned above, journals are used because it is 
inefficient to update the MF data directly every time a 
database operation makes a change to the corresponding PF 
data. This is particularly true when the MF data is com 
pressed. However, it is also inefficient to allow the journals 

50 to grow indefinitely, both because eventually the journals 
will require too much volatile memory, and because the 
larger the journals grow, the less efficient it becomes to use 
the MF data to satisfy queries. 

Consequently, according to one embodiment, the content 
of the global journals is periodically merged into the MF 
data. When the MF data is compressed, this merger opera 
tion typically involves decompressing the MF data, updating 
the MF data to reflect the most current committed versions 
of the items contained therein, and then compressing the MF 

60 data. 
After data has been merged into the MF data contained in 

a particular IMCU, the metadata associated with the IMCU 
is updated to indicate a new version timestamp for the 
IMCU. For example, if the MF data in an IMCU reflected all 
changes made as of time T1, then prior to the merger the 
version timestamp for the IMCU would be T1. If the update 
involves merging into the MF data of the IMCU all changes 

55 
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that were made up to time T3, then after the merger the 
version timestamp for the IMCU would be updated to T3. 

Post-Merger Retention of Global Journal Entries 

As shall be described in greater detail hereafter, in some 
embodiments, changed-row bitmaps may be used to indicate 
which data items in the MF data have become stale. A data 
item in the MF data becomes stale when a change (not 
reflected in the MF data) is committed to the data item. Once 
the contents of a global journal have been merged into the 
corresponding MF data, the old entries in the journals may 
be purged and the changed-row bitmap is updated to reset all 
bits (thereby indicating that no data items in the newly 
merged MF data are stale). However, in some embodiments, 
rather than purge all old journal entries in response to 
merging changes into the MF data, some of the old data may 
be retained in order to continue to use the MF data for 
transactions whose Snapshot-times are before the merger 
time. 

For example, if the post-merger version timestamp for the 
IMCU is T3, then a transaction with a snapshot time of T2 
cannot use the MF data in the IMCU, because that data 
contains changes that the transaction is not allowed to see. 
However, if all the journal entries as of time T1 have been 
retained, it is possible to use those journal entries, in 
conjunction with the IMCU, to obtain some data items as of 
time T2. Specifically, for a data item whose journal entries 
have been retained, a transaction with a Snapshot time of T2 
would use the version of the data item from the most recent 
journal entry that precedes T2, the snapshot time of the 
transaction. 

For example, assume that the journal only has a single 
entry, and the entry indicates that rSc1 was changed at time 
T3 from X to Y. Consequently, the post-merger IMCU will 
have value Y for rSc1. However, to provide the correct value 
to the transaction, the database server inspects the journal to 
see that the row of rSc1 was changed between the snapshot 
time T2 and the version time T3 of the IMCU. Based on this 
information, the database server knows that the value Y for 
rSc1 is too recent for the transaction to see, and that the 
transaction must instead see value X for rSc1. Consequently, 
in the data obtained for the transaction, the database server 
changes the value of rSc1 Y to X. 

Unfortunately, it is not feasible to retain old journal 
entries indefinitely. Therefore, according to one embodi 
ment, a configuration parameter is provided for specifying 
the retention policies associated with IMCUs or the database 
objects to which they correspond. For example, a retention 
policy may be that, for table 200, journal entries are retained 
for at least one hour. Thus, for IMCUs that contain data for 
table 200, when purging journal entries after a merger, only 
those journal entries that are associated with Snapshot times 
that are less than an hour old are retained. Retaining already 
merged journal entries in this manner ensures that transac 
tions that have Snapshot times less than an hour old will 
always be able to obtain the correct version of data items 
from the MF data. 

According to one embodiment, old journal entries are 
retained until the database server determines that no cur 
rently executing queries will need the old journal entries. For 
example, if changes are merged into an IMCU at time T10. 
then journal entries, in the global journal of that IMCU, that 
are associated with changes made before time T10 may 
automatically be purged by the database server when there 
are no more currently-running transactions that have Snap 
shot times before T10. 
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In some embodiments, the journal entries may store only 

an indication of which row was changed, and when, without 
storing the actual values involved. In Such an embodiment, 
the pre-merger journal entries are still useful for indicating 
which values from the post-merger IMCU cannot be used by 
a transaction. In the example given above, the version of 
r5c1 that is in the post-merger IMCU cannot be used for a 
transaction with a snapshot time of T2, because the journal 
would indicate that r5c1 was changed between the snapshot 
time T2 and the version time T3 of the post-merger IMCU. 
Under these circumstances, if the journal does not have the 
actual pre-update value of rSc1 (i.e. X), the database server 
may obtain that value from the PF data, and the rest of the 
values that it needs from the MF data. 

Global Journals and Memory Constraints 

As explained above, both global and private journals are 
maintained in volatile memory. Private journals are used to 
record changes made by transactions that have not yet 
committed. Global journals, on the other hand, generally 
record changes made by transactions that have committed. 
The more entries that a global journal has, the more 

Volatile memory is consumed. Under some circumstances, 
there may simply not be enough Volatile memory to store 
excessively large global journals. One way of handling these 
situations is to purge older extents of the journals. 

For example, assume that the global journal of an IMCU 
has three extents E1, E2 and E3. Assume further that E1 
contains entries for transactions that committed between 
time T1 and time T5, E2 contains entries for transactions that 
committed between time T5 and time T9, and E3 has journal 
entries for transactions that committed between time T9 and 
the current system time. 
Assume further that the version time of the IMCU is T5. 

Under these circumstances, the entries in E1 may be used to 
“roll back the values in the IMCU for transactions that have 
snapshot times between T1 and T5. On the other hand, the 
entries in E2 and E3 may be used to “roll forward the values 
in the IMCU for transactions that have snapshot times after 
TS. 
When faced with memory constraints, the database server 

may purge extents E1 only, E1 and E3, or E1, E2 and E3, 
depending on how much memory is needed. Purging an 
extent has an effect on performance of certain transactions. 
For example, assume that E1 is purged. After E1 is purged, 
a transaction with a Snapshot time of T3 may require data 
items that maps to the IMCU. The transaction may obtain 
data items that did not change between T3 and T5 from the 
IMCU. Data items that did change between T3 and T5 are 
obtained from the PF data, because those items were 
recorded in E1 which has been purged. 

Even after the purging of its journals, an IMCU may be 
used to supply data that did not change between (a) the 
version time of the IMCU and (b) the snapshot time of the 
transaction requesting the data. For example, if the IMCU 
version time is T1, a transaction with a snapshot time of T5 
may obtain data items from the IMCU that were not changed 
between T1 and T5. As shall be described in greater detail 
hereafter, those changed data items may be identified using 
a delete vector generated for the transaction. 

Snapshot Metadata Units 

As mentioned above, metadata is maintained for each 
IMCU. In one embodiment, a Snapshot Metadata Unit 
(SMU) is responsible for maintaining at least some of that 
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metadata. Referring to FIG. 6, an IMCU 600 is illustrated 
with its corresponding SMU 604. In the illustrated embodi 
ment, SMU 604 stores the IMCU version time and a 
changed-row bitmap 606. The IMCU version time is the 
time at which the values in the IMCU 600 were current. 
Changed-row bitmaps shall be described in greater detail 
hereafter. 
Among other things, the SMU for an IMCU captures all 

updates that affect the MF data contained in the IMCU. 
Consequently, the SMU for an IMCU may indicate, for 
example, whether the corresponding IMCU has valid values 
for a given rowid/snapshot-time combination. As another 
example, the SMU may generate a list of rowids of all rows 
for which the corresponding IMCU has invalid values, 
relative to a given Snapshot-time. This list may then be used 
in conjunction with the rowid column vector to identify the 
rows for which values must be obtained from other sources 
(e.g. from journals or from the PF data). 

Changed-Row Bitmaps 

In one embodiment, the updates captured by an SMU are 
indicated by a “changed-row bitmap' maintained within the 
SMU. Referring again to FIG. 6, the changed row bitmap 
606 for IMCU 600 is maintained in SMU 604. A changed 
row bitmap is a bitmap that indicates the rows (a) for which 
the corresponding IMCU has values, and (b) that have been 
changed by transactions that committed since the version 
timestamp of the IMCU. 

For example, when a transaction performs an update to 
rows r1, r3 and r5 of table 200, the SMU 604 for IMCU 600 
updates the changed-row bitmap of IMCU 600 by setting the 
bits that correspond to rows r1, r3, and r5 because those are 
the updated rows that fall within the MF data of IMCU 600. 

According to one embodiment, when a change is made to 
data that is mirrored in IMCU 600, the SMU 604 stores a 
record of which bits of the changed-row bitmap 606 were 
set, and when. These records are collectively represented in 
FIG. 6 as record of bit changes 608. For example, if an 
update made at time T1 modifies row r1, then the bit for row 
r1 would be set, and a record is stored to indicate that the bit 
for r1 was set at time T1. 

According to one embodiment, the changed-row bitmap is 
created on an as-needed basis. For example, if the changed 
row bitmap is to reflect whether a change has occurred to a 
million rows, a one million bit data structure is not pro 
actively initialized. Instead, data is only stored for row 
ranges that have at least one bit set. For any range for which 
no data is stored, all bits are deemed to be “0”. 

Referring to FIG. 8, it illustrates a hierarchical structure 
800 for representing a changed-row bitmap, according to 
one embodiment. In the illustrated embodiment, the hierar 
chical structure 800 has levels that correspond to extents, 
blocks, and rows. The extent-level information 802 includes 
a record for each extent in which there is any set bit. 
Extent-level records link to other extent-level records (not 
shown), thereby forming a linked list of records for the 
extents that have one or more set bits. 

In addition, the extent records include a pointer to a linked 
list of block level information 804 for the blocks that reside 
in the extent. In the illustrated example, the record for extent 
E1 points to the record for blocks B1, B2, B3 and B4. The 
block-level record can be the first record in a linked list of 
block-level records for the blocks that belong to extent E1. 
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The block-level records, in turn, point to row-level infor 

mation 806 stored in the form of bitmap pieces. Specifically, 
in the illustrated embodiment, the record for block B1 points 
to bitmap piece 850. 

Each position in the bitmap piece 850 corresponds to a 
row whose data items are stored in block B1. In the 
illustrated embodiment, bitmap piece 850 has six bit posi 
tions, which correspond to six rows are stored in B1. For 
each bit position, bitmap piece 850 includes two bits, one of 
which is a row-changed bit 820 and the other of which is an 
in journal bit 830. For any given row, the row-changed bit 
indicates that the row changed since data items for the row 
were stored in the IMCU. The in journal bit for a row 
indicates whether the updated values for the row are stored 
in the IMCU's journal. 

Based on the information in data structure 800, the 
database server may determine whether the current version 
of a data item resides in the IMCU, in the journals of the 
IMCU, or in neither. Specifically, if the structure 800 has no 
information for a given row, then the IMCU has the current 
version of the data items from the row. The IMCU also has 
the current version of the data items from the row if the 
structure 800 has information for the row, and the row 
changed bit for the row is “0”. If structure 800 has infor 
mation for the row, the row-changed bit is set and the in 
journal bit is set, then the IMCU does not have the current 
version of the item, but the journal for the IMCU does have 
the current version of the item. Finally, if structure 800 has 
information for the row, the row-changed bit is set, and the 
in journal bit is not set, then neither the IMCU nor the 
journals have the current version of the data item, and the 
current version must be retrieved from the PF data. 
The records of structure 800 are created on an as-needed 

basis. Thus, if the IMCU is current for all data items in a 
particular extent, then structure 800 may not have any 
records for the extent. Similarly, if the IMCU is current for 
all data items in a particular block, then structure 800 may 
not have any block level information 804 for that block. By 
only storing changed-row information for extents/blocks 
that have been changed or added since the version time of 
the IMCU, structure 800 may be significantly small than it 
would otherwise be if bits were pre-allocated for every row. 

Using the Record of Bit Changes 

For a transaction that requires the most recent version of 
data items, a set bit in the changed-row bitmap 606 indicates 
that the MF data has stale data for that row, and therefore the 
IMCU 600 cannot be used to supply data from that row. 
However, not all transactions require the most recent version 
of data items. 

For example, in many database systems, transactions are 
assigned a Snapshot time, and return data that reflects the 
state of the database as of that snapshot time. Specifically, if 
a transaction is assigned a Snapshot time of T3, then the 
transaction must be provided versions of data items that 
include all changes that were committed before T3, and no 
changes that were not committed as of T3 (except for 
changes that the transaction makes itself). For Such trans 
actions, a set bit in the changed-row bitmap 606 does not 
necessarily indicate that the IMCU 600 cannot be used to be 
the source for items for the corresponding row. Specifically, 
such transactions may still use the IMCU 600 to obtain data 
for a particular row, even though the bit for that row is set 
in changed-row bitmap 606, if the bit was first set after the 
Snapshot time of the transaction. 
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For example, assume that the column vectors 220 and 222 
contain data as it existed at time T1, as indicated by the 
IMCU version time stored in SMU 604. At a later time T5, 
an update operation changes row r1. Specifically, the update 
changes the value of r1c1 for X to Y. In response to this 
update, the changed-row bitmap 606 of IMCU 600 would 
change from 000000 to 100000, setting the bit that corre 
sponds to row r1 to “1”. In addition, a record is stored within 
SMU 604 indicating the bit for r1 was changed at T5. 
At yet a later time T9, another update operation changes 

row r3. Specifically, the second update changes the value of 
r2c3 from A to B. In response to this update, the changed 
row bitmap 606 of IMCU 600 would change from 100000 
to 101000, setting the bit that corresponds to row r3 to “1”. 
In addition, a record is stored within SMU 604 indicating 
that the bit for row r3 was set at time T9. 

After these updates have occurred, the database server 
may execute a transaction that reads the values of columns 
c1 and c3. If the snapshot time of the transaction is earlier 
than T5, then the transaction may read all the values from 
column vector 220 and 222. The database may determine 
this by comparing the Snapshot time of the transaction to the 
times indicated in the record of bit changes 608. If the 
snapshot time of the transaction is after the IMCU version 
time, but before any times in the record of bit changes 608, 
than all values in the IMCU 600 are valid relative to that 
transaction. 

If the snapshot time of the transaction is after T5 but 
before T9, then the transaction may read all values from 
column vectors 220 and 222 except the values from row r1, 
which must be obtained elsewhere (e.g. from a journal or 
from the PF data). If the snapshot time of the transaction is 
after T9, then the transaction may read all values from 
column vectors 220 and 222 except the values from rows r1 
and r3, which must be obtained elsewhere. 

Delete Vectors 

In one embodiment, to account for the Snapshot time of 
transactions that read values that are mirrored in IMCU 600, 
the changed-row bitmap 606 is used in conjunction of the 
record of bit changes 608 to create a delete vector for each 
transaction that seeks to read data from IMCU 600. A delete 
vector is Snapshot-time specific, because bits in the delete 
vector are only set for rows that were updated before the 
Snapshot-time associated with the transaction for which the 
delete vector is constructed. Stated another way, each delete 
vector reflects the version of the changed-row bitmap that 
was current as of the snapshot-time. Thus, the older the 
snapshot-time associated with a delete vector, the older the 
version of the changed-row bitmap the delete vector reflects, 
and thus fewer the number of bits that will be set in the 
delete vector. 

For a transaction with a snapshot time after the version 
time of the IMCU, a delete vector is made for the transaction 
by “rolling back changes that occurred to the changed-row 
bitmap 606 after the snapshot-time of the transaction. For 
example, if a transaction has a Snapshot time of T5, the 
database server searches the record of bit changes 608 to 
identify changes that occurred after time T5. A copy of the 
changed-row bitmap 606 is made, and within that copy the 
bits that correspond to the changes that occurred after time 
T5 are reset to “0”. For transactions with snapshot times 
before the version time of the IMCU, the delete vector may 
be generated by making a copy of the changed-row bitmap 
606, and within that copy setting to “1” the bits of rows that 
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were changed between the Snapshot time of the query and 
the version time of the IMCU. 

Because delete vectors are transaction-specific, at any 
given time, five distinct transactions may be performing 
scans of the rows that map to a particular IMCU. Each of the 
five transactions may have been assigned a different Snap 
shot-time. Consequently, each of the five transactions will 
have a different delete vector, though all five delete vectors 
are generated based on the same changed-row bitmap of the 
SMU that corresponds to the IMCU. 

Post-Merge Retention of Pre-Merge Changed-Row 
Bitmaps 

As mentioned above, when changes are merged into an 
IMCU, all values in the changed-row bitmap of the IMCU 
are reset to “0” to indicate that no rows have been changed 
since the new version time of the IMCU (which will be the 
time at which the IMCU is refreshed/merged). However, 
rather than simply discard or overwrite the existing changed 
row bitmap, a copy of pre-merge changed-row bitmap may 
be saved. A saved copy of a pre-merge changed-row bitmap 
is referred to herein as a “retained bitmap’. As shall be 
described in greater detail hereafter, such retained bitmaps 
allow a post-merge IMCU to be used to provide data items 
to transactions that have Snapshot times before the merge. 

For example, assume that an IMCU is constructed at time 
T1. From time T1 to time T10, the changes made to the data 
items in the IMCU are recorded in its global journal, rather 
than being made directly to the data items themselves within 
the IMCU. While those changes are being recorded within 
the journal, the changes are also causing corresponding bits 
to be set in the changed-row bitmap of the IMCU. At time 
T10, the changes are merged into the IMCU, causing the 
version time of the IMCU to change from T1 to T10. 

Under these circumstances, the state of the changed-row 
bitmap immediately before the merger reflects which rows, 
within the IMCU had changed between time T1 and time 
T10. By indicating which rows had changed between time 
T1 and time T10, the changed-row bitmap likewise indicates 
which rows had not changed between time T1 and time T10. 
Within the post-merger IMCU, those rows that had not 
changed between time T1 and time T10 can be provided to 
transactions that have snapshot times between T1 and T10. 

Specifically, a copy of the pre-merge version of the 
changed-row bitmap is retained after the merger. Along with 
the retained bitmap, the version timestamp of the pre-merge 
IMCU is also stored. In the example given above, the 
retained bitmap would be associated with the version time 
stamp of T1. 
When a transaction (a) requires data items that map to an 

IMCU, and (b) has a snapshot time that falls between the 
retrained bitmap time and the current IMCU time, the 
retained bitmap is used to identify the rows that were not 
changed between the retained bitmap time and the current 
IMCU time. Values for the identified rows may be provided 
to the transaction from the current IMCU. Values for the 
remaining rows are obtained elsewhere. Specifically, values 
for the remaining rows may be obtained from the global 

60 journal of the IMCU if the relevant journal entries have not 

65 

yet been purged, or from the PF data. 

IMICU Refresh Undo 

Rather than store a single retained bitmap in response to 
the most recent merge, a separate retained bitmap may be 
stored in response to each merge. The retained bitmaps for 
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a given IMCU may be linked in chronological order. The 
linked set of retained bitmaps for an IMCU constitutes an 
“IMCU refresh undo' for the IMCU. 

For example, assume that an IMCU was created at time 
T1, and then refreshed/merged at times T10, T15 and T30. 
Under these circumstances, the IMCU refresh undo for the 
IMCU would contain three retained bitmaps RB1, RB2 and 
RB3. These three retrained bitmaps would be associated 
with times T1, T10 and T15, respectively. 

In the present example, the “0” bits of RB1 indicate the 
rows that were not changed between times T1 and T10. The 
“0” bits of RB2 indicate the rows that were not changed 
between the times T10 and T15. The “O'” bits of RB3 indicate 
the rows that were not changed between the times T15 and 
T30. 

Given any snapshot time, the IMCU refresh undo may be 
used to identify which rows, within the current IMCU can be 
provided to a transaction with that snapshot time. For 
example, for a transaction with the snapshot time T18, the 
“0” bits in RB3 would indicate which rows can be provided 
to the transaction from the current IMCU. As another 
example, for a transaction with the Snapshot time of T12, 
RB2 and RB3 can be combined using a logical OR operation 
to produce a bitmap that indicates which rows can be 
provided to the transaction from the current IMCU. As yet 
another example, for a transaction with the Snapshot time of 
T5, RB1, RB2 and RB3 can be combined using a logical OR 
operation to produce a bitmap that indicates which rows can 
be provided to the transaction from the current IMCU. 

Thus, given a transaction with the Snapshot time of TX, 
the retained bitmap with the highest timestamp that is below 
TX is combined, using a logical OR operation, with all more 
recent retained bitmaps of the same IMCU. The logical 
“OR” operation produces a bitmap where the “O’s corre 
spond to rows that have not changed since TX and the 
version time of the current IMCU. Consequently, data items 
for those rows may be provided by the IMCU. 

Transaction Downgrade Based on Memory 
Constraints 

As mentioned above, changes made to items in an IMCU 
are recorded in journals rather than made directly to the 
items in the IMCU. The journals are maintained in volatile 
memory. Unfortunately, long-running transactions that make 
changes to large numbers of items may cause so many 
journal entries to be generated that there is insufficient room 
to store the entries in volatile memory. 

Under these circumstances, the journal entries may be 
flushed to persistent storage to free up space in volatile 
memory. However, flushing the journal entries to persistent 
storage, and reading the entries from persistent storage 
thereafter, incurs a significant performance penalty. There 
fore, according to one embodiment, transactions that are 
generating journal entries in Sufficient quantity to cause 
memory issues are “downgraded'. 

According to one embodiment, such transactions are 
downgraded by pushing their existing private journal entries 
to the global journal of the IMCU, and ceasing to generate 
further private journal entries. Although in the global journal 
of the IMCU, such journal entries are not visible to other 
transactions because the journal entries are for an uncom 
mitted transaction, and therefore initially associated with an 
“indeterminate timestamp. When the downgraded transac 
tion commits, the timestamps of the transaction’s entries in 
the global journal are changed from indeterminate to the 
commit time of the transaction. 
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Rather than cease the generation of journal entries when 

in downgraded mode, transactions may continue to generate 
journal entries until the size of their private journal once 
again reaches the specified threshold. At that point, the 
private journal entries may once again be moved to the 
global journal, where the entries will not be visible to other 
transaction due to their indeterminate timestamp. This pro 
cess of filling the private journal to a threshold, and then 
moving the entries to the global journal, may be repeated 
any number of times until the transaction either commits or 
is rolled back. 

Regardless of whether a transaction that is operating in 
the downgraded mode continues to generate further private 
journal entries to record its changes, the changes are still 
recorded in the record of bit changes associated with the 
IMCU. Once the transaction commits, those bit changes are 
made to the changed-row bitmap. 
By using the changed-row bitmap to record the fact that 

a change occurred, future transactions will avoid reading 
stale data items from the IMCU. When the changed-row 
bitmap indicates that data items associated with a particular 
row are invalid, transactions that require data items from that 
row must obtain the data items for a source other than the 
IMCU. In the case that the changes were made by a 
downgraded transaction that ceased generating journal 
entries, the changes will not appear in the global journal, so 
the data items are retrieved from the PF data. 

In one embodiment, not all transactions that are using an 
IMCU are downgraded at once. Rather, the downgrades are 
performed on a per-transaction basis, where transactions are 
only downgraded if they satisfy certain criteria. The criteria 
may be, for example, that the amount of journal entries that 
they have generated exceeds a particular threshold. 

In general, transactions must see the uncommitted 
changes that they have made themselves. Consequently, a 
downgraded transaction that has ceased generating journal 
entries may have to obtain the values of some data items that 
the transaction previously changed from the PF data, since 
no journal entry exists for those changes. 

Maintaining Sync without Journals 

In the sections above, it is explained that the MF data may 
be kept in sync with the PF data by recording changes in 
journals, while leaving the compressed MF data intact until 
the journals are merged into the compressed MF data. 
However, in an alternative embodiment, for one or more of 
the IMCUs, the MF data may be maintained in sync merely 
by invalidating the data in response to changes made to the 
corresponding PF data without using journals to record the 
changes. 

In Such an embodiment, delete vectors may be generated 
for a transaction, as described above. For those bits that are 
not set, the data may be obtained from the appropriate 
IMCU. For those bits that are set, the data must be retrieved 
from the PF data, since obtaining data from in-memory 
journals is not an option when no such journals are main 
tained. 
The benefit of invalidating the MF data without recording 

the changes in journals is that the processing overhead and 
memory consumption of maintaining the journals is 
avoided. However, when data items in the IMCU are too 
stale to be used to process a transaction, accessing the 
appropriate version of the data items from the PF data will 
generally incur more overhead than would be required to 
obtain the data items from journals. In addition, refreshing 
the IMCUs in the absence of in-memory journals will also 
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typically incur more overhead, because the changes that 
need to be merged into the IMCUs must be obtained from 
the PF data rather than from in-memory journals. 

In some embodiments, journals may be maintained for 
some IMCUs, but not others. In addition, it is possible for 
the journal of an IMCU to be dropped, and yet continue to 
use the IMCU for data that has not been invalidated due to 
changes between the IMCU version time and the snapshot 
time of the transactions that require the data. 

Determining from where to Obtain Data 

Because MF data 104 is merely a mirror of some of the 
PF data (albeit in a different format), all data items contained 
in MF data 104 are also in the PF data. Therefore, for any 
query that requires access to data items that are mirrored in 
the MF data, the database server has the choice of obtaining 
that data from MF data 104, from the PF data, or partially 
from the MF data 104 and partially from the PF data. 

In general, when the requested data is a row of a table, the 
location from which to most efficiently retrieve the data is 
cache 106 (assuming that the persistent format is row 
major). If the requested row does not currently reside in 
cache 106, but the MF data 104 has all columns of the row, 
then MF data 104 is the location from which to most 
efficiently retrieve the row. Assuming that MF data 104 is 
column-major, MF data 104 is less efficient than cache 106 
for retrieving a row because, in column-major format, the 
values for the row must be pieced together from various 
places within the MF data 104. 

If not all of the data for the requested row is in the MF 
data 104, then at least some of the row must be retrieved 
from persistent storage 110. Typically, persistent storage 110 
is the least efficient location from which to retrieve data, 
because disk accesses are significantly slower than opera 
tions on data stored in volatile memory. 

According to one embodiment, the decision of where to 
the data may be made at any of numerous levels of granu 
larity. For example, the decision of from where to obtain the 
data may be made on a per-table basis, a per-column basis, 
a per extent basis, a per segment basis, a per-table-partition 
basis, etc. Thus, even though all data from column c1 is in 
column vector 220, the database server may decide to 
execute a scan by obtaining some of the values of column c1 
from column vector 220, and by obtaining the rest of the 
values of column c1 from the PF data on persistent storage 
110. 

According to one embodiment, database objects, such as 
tables, can be “in-memory enabled'. A table that has been 
in-memory enabled has at least a portion of its data mirrored 
in the MF data. For example, table 200 is in-memory 
enabled because data from two of its columns (c1 and c3) are 
mirrored in mirror format data 104. Specifically, data from 
column c1 of table 200 is mirrored in column vector 220, 
and data from column c3 of table 200 is mirrored in column 
vector 222. 
When a table is not mirror-enabled, a scan of the table is 

performed by reading PF data from cache 106 and/or from 
persistent storage 110. On the other hand, when a table is 
mirror-enabled, it may be also possible to get some or all of 
the table's data from MF data 104. More specifically, it may 
be possible to obtain data of a mirror-enabled table from any 
of the following locations: 

the persistently-stored PF data 
the locally cached PF data 
the PF data in the cache of another instance 
the locally stored MF data 
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the MF data stored in the volatile memory of another 

instance 
the locally stored MF data updated with information from 

journals 
entirely from the journals 
MF data stored in the volatile memory of another instance 

updated with information from journals 
any combination of the above. 
Further, the data can be obtained without the use of any 

indexes, with the use of conventional indexes on the PF data, 
and/or with the use of in-memory indexes. Further, indexes 
need not be used in conjunction only with the format based 
upon which the indexes were built. Thus, conventional 
indexes built on the PF data may be used to identify rows 
that must be retrieved, and then data for those rows may be 
retrieved from the MF data. Similarly, an in-memory index 
may be used to identify rows that must be retrieved, and 
some or all of those rows may be retrieved from the PF data. 

According to one embodiment, a cost-based optimizer is 
used to determine, for any given database operation, which 
of the sources (or which combination of these sources) will 
be used to Supply the data needed by the database operation. 
Additional factors used by the cost-based optimizer include 
whether conventional and/or in-memory indexes exist for 
quickly locating the desired data. 

Scanning Operations 

According to one embodiment, when it is determined that 
a table scan operation is to obtain at least Some of the 
requested data from MF data 104, a determination is made 
as to whether the timestamp associated with the MF data 104 
is earlier than the Snapshot timestamp being used by the 
scan. In embodiments where the MF data 104 is contained 
in an IMCU, the determination is made by comparing the 
IMCU version time, stored in the SMU of the IMCU, to the 
Snapshot time of the transaction associated with the table 
SCall. 

If the MF data timestamp is earlier than the snapshot 
timestamp being used by the scan, then is possible that some 
of the data in the IMCU is stale relative to that snapshot 
time. Under these circumstances, it is possible that the 
required versions of data items that are stale in the IMCU 
reside in the global journal of the IMCU or the private 
journal of the transaction. In this case, the journals associ 
ated with the IMCU may also be scanned to obtain the 
correct version of the data that is stale in the IMCU. 

Referring to FIG. 6, assume that column vector 220 has 
the current version of all values from column c1 of table 200 
as of time T1. However, at time T3, R3C1 was changed from 
X to Y. For R3C1, column vector 220 has the old value X, 
while journal 602 has the new value Y. Thus, when a table 
scan with a snapshot time of T5 uses IMCU 600 as a source 
for any of its data, both the compressed MF data in IMCU 
600 and the global journal 602 of IMCU 600 are scanned. 

In addition to Scanning the global journal 602, the private 
journal of the transaction that is performing the scan is also 
scanned. For example, if the transaction performing the scan 
is TX1, then private journal 662 is also scanned. 

Thus, any given table scan may involve scanning the 
compressed MF data in IMCU 600, scanning global and 
private journals (e.g. journals 602 and 662), and scanning 
the PF data (some of which may be in cache 106). Each of 
these scans can be performed independently and in parallel. 
Thus, in response to a query that requests values from 
columns c1 and c2 of table 200, the database server may, in 
parallel, (a) scan column vector 220 for values from c1, (b) 
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scan journal 602 for updated values from c1 (c) scan journal 
662 for updated values of c1, and (d) scan the PF data 
Structures 108 to obtain the values for c2 of table 200. 

Scanning Operation Example 

Referring to FIG. 7, it is a block diagram of the steps 
performed by a database server in response to a request to 
scan a table. The table that is being scanned is split into 
segments, where each segment includes a set of extents, and 
each extent includes a set of blocks. In this context, database 
server determines which blocks contain data that needs to be 
scanned, and whether to scan the blocks from the PF data, 
or to obtain the data from the MF data. 

Specifically, at step 700, the database server determines 
where the scan operation is “memory-enabled'. An opera 
tion is “memory-enabled' if the operation is permitted to 
obtain some or all of the data it requires from the MF data. 
The scan operation may automatically be treated as 
memory-enabled, for example, if the table that is being 
scanned (the “target table') is designated as memory-en 
abled. A table is “memory-enabled if data from the table is 
to be mirrored in the MF data. As described elsewhere, data 
items from a memory-enabled table maybe proactively 
loaded into IMCUs, or may be loaded into IMCUs on an 
on-demand basis. Even if the target table is designated as 
memory-enabled, a Switch may be provided to designate the 
scan operation as either memory-enabled or not-memory 
enabled. A scan operation may be designated as not 
memory-enabled to force the scan to be executed against 
only the PF data. 

According to one embodiment, the memory-enabled des 
ignation may be made at any of a number of levels of 
granularity. For example, the designation may be made on a 
per-table basis, a per-partition basis, a per-segment basis, or 
a per-extent basis. For the purpose of illustration, it shall be 
assumed that the memory-enabled designation is made at the 
per-extent basis. 

Referring again to FIG. 7, if the scan is not memory 
enabled, then control passes to step 780 and the scan is 
performed only against the PF data. After the PF data has 
been used to perform the scan, the scan operation is done 
(step 782). 
On the other hand, if the scan operation is memory 

enabled, then control proceeds to step 702. At step 702, the 
database server determines the range of blocks that contain 
data required by the scan. Once the range has been deter 
mined, control passes to step 704. For the purpose of 
illustration, it shall be assumed that blocks B1 to B500 
contain the data required by the scan operation. 

Step 704 is the beginning of a loop that iterates through 
each block in the range identified in step 704. If at step 704 
it is determined that there are no more blocks to scan, then 
control passes to step 782 and the scan operation is done. If 
Some blocks have not yet been scanned, than control passes 
from step 704 to step 706. 

At step 706, the database server determines the next 
block, from the range identified in step 702, to scan. At step 
708, it is determined whether the address of the block 
selected in step 706 maps to an IMCU. If the address maps 
to an IMCU, then the IMCU stores MF versions of at least 
some data items from the segment. If the IMCU stores MF 
versions of data items from the segment, then control passes 
to step 710. Otherwise, control passes to step 712, where the 
segment that includes the block is obtained from the PF data. 

In one embodiment, upon obtaining the PF version of a 
segment that is mapped to an IMCU, the database server 
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converts the segment into the in-memory format, and stores 
the MF data thus produced in the IMCU. Such an embodi 
ment employs on-demand loading, which is described in 
greater detail hereafter. The conversion and loading of the 
data into the IMCU may take some time. Therefore, at step 
714, the database server determines whether to wait for the 
data from the segment to be converted and loaded. If the 
database determines to wait, then the database server waits, 
and control passes to step 708 when the data from the 
segment has been converted and loaded into the IMCU. If 
the database server determines not to wait, the data items are 
obtained from the PF data (step 720), and control returns to 
step 704. 
As mentioned above, control passes to step 710 when it is 

determined that the address of the block maps to an IMCU. 
When the address of the block maps to an IMCU, the IMCU 
contains an MF version of at least some of the data items in 
the block. However, the versions of the data items that are 
contained in the IMCU are not necessarily valid relative to 
the snapshot time of the scan. Therefore, at step 710, it is 
determined whether the version of those data items in the 
IMCU is valid for the transaction that is executing the scan. 
In one embodiment, determining whether the data in the 
IMCU is valid involves generating a delete vector for the 
scan operation based on the Snapshot time associated with 
the scan operation, the changed-row bitmap of the IMCU, 
and the record of bit changes for the IMCU. As described 
above, the delete vector is a snapshot-specific bitmap where 
each set bit indicates that the row corresponding to the bit is 
invalid relative to the snapshot time. 

If, at step 710, it is determined that no data items for the 
current block are valid in the IMCU, control passes to step 
716 where data items are obtained from the PF data until the 
end of the current extent. Then control passes back to step 
704. 

If the IMCU has valid versions for at least some of the 
items, then control passes to step 722. At step 722, the data 
items for which the IMCU has valid versions are fetched 
from the IMCU. The data items for which the IMCU does 
not have valid versions are fetched either from entries in the 
global journal of the IMCU, or from the PF data. As 
explained elsewhere, various factors may affect the selection 
of the source from which to obtain data items. Such factors 
may include, for example, whether the PF disk block that 
stores the correct version of the data items currently resides 
in cache. It is possible that only a Subset of the data in a 
segment is mapped to an IMCU. For example, it may be that 
only a subset of a table's columns are mapped to an IMCU. 
Under these circumstances, any data items in the segment 
that are required by the scan but not mapped to the IMCU 
must be obtained from the PF data. 

If the private journal of the transaction performing the 
scan has updated versions of any of the data obtained from 
the IMCU or the global journal, those updated versions are 
provided in place of any version otherwise obtained. This 
ensures that the Scanning transaction sees its own changes, 
even though those changes have not been committed. 

Even when the delete vector indicates that the IMCU has 
valid data for all rows, the global journal is checked to 
identify rows that were inserted after the IMCU was created. 
If the journal does not contain the actual data items for those 
rows, then the rows are retrieved from the PF data. Similarly, 
the private journal of the transaction is checked for rows 
newly inserted by the transaction, and for data items that 
have been changed by the transaction. 

After fetching all necessary data items, control passes 
from step 722 back to step 704. At step 704, the loop is 



US 9,684,.682 B2 
29 

repeated until data items required by the scan have been 
obtained, either from an IMCU, from journal entries, or from 
the PF data. 

When to Create the MF Data 

Before MF data may be used to satisfy a query, or to 
improve performance of a query whose results are ultimately 
obtained from the PF data, the MF data must be present in 
volatile memory. Unlike cache 106, mirror format data is not 
simply a copy of the data that is stored on persistent storage 
110. Rather, because the mirror format is not based on the 
persistent format, volatile memory 102 is initially populated 
by (a) reading the PF data from persistent storage 110 and 
(b) converting the PF data thus obtained to the MF format. 
The amount of overhead that is required to perform the 

PF-to-MF conversion will vary from situation to situation, 
based on how different the mirror format is from the 
persistent format. For example, if the persistent format is 
row-major disk blocks that have been compressed one way, 
and the mirror format is column vectors that are compressed 
another way, the amount of overhead required to perform the 
conversion may be extensive. 
The decision about when to create the MF data may be 

based on a variety of factors. For example, if sufficient time 
is available at system start-up, all of the PF data that has 
been selected for mirroring may be pre-loaded into volatile 
memory 102 on start up. As mentioned above, loading the 
MF data involves reading the corresponding PF data from 
persistent storage 110 and then converting that PF data into 
the mirror format. 

Pre-Loading the MF Data 

In one embodiment, the MF data is pre-loaded into 
Volatile memory at database system startup. The pre-loading 
may be performed, for example, by background processes 
before any database operation is executed against the 
memory-enabled data structures that contain the data items 
that will be mirrored by the MF data. 

The MF data may be created one-IMCU at a time. In 
multi-instance environment, durably stored metadata may be 
used to determine which MF data is pre-loaded into which 
database instance. Such metadata may include, for example, 
a MF-data-to-IMCU mapping and an IMCU-to-instance 
mapping. 

In a simple example, the MF-data-to-IMCU mapping may 
indicate that IMCU 402 is to store the column vector 220 for 
c1, and that IMCU 404 is to store the column vector 222 of 
column c3. The IMCU-to-instance mapping may indicate 
that IMCU 402 is to be loaded into the volatile memory 502 
of instance 1, while IMCU 404 is to be loaded into the 
volatile memory 504 of instance 2. Based on these map 
pings, the MF data would be pre-loaded into volatile 
memory in the manner illustrated in FIG. 5b. 

On-Demand Loading of MF Data 

Rather than simply pre-load the MF data, some or all of 
the MF data may be generated at the time that the corre 
sponding PF data is accessed by a database operation. For 
example, assume that database instance 1 is assigned to host 
the column vectors for columns c1 and c3 of table 200. 
Rather than construct and load those column vectors on 
start-up, database instance 1 may initially generate no MF 
data. Instead, the database instance 1 may wait until a 
database command requires a scan of table 200. Because no 
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MF data has been created yet, the scan is performed based 
entirely on the PF data. During that scan, the values needed 
to construct the column vectors for c1 and c2 will be 
accessed. Therefore, the column vectors for c1 and c2 may 
be built at that time without incurring any additional disk 
CCCSSCS. 

On-demand loading of MF data may be used in conjunc 
tion with pre-loading. For example, some of the MF data that 
is to be hosted on instance 1 may be created at the time 
instance 1 is started. Other portions of the MF data may be 
constructed at the time the data is accessed by queries. 

In one embodiment, users may set configuration options 
to indicate which MF data to pre-load, and which MF data 
to load on-demand. In an alternative embodiment, the data 
base server automatically determines which portions of the 
MF data are pre-loaded and which are loaded on-demand. In 
general, the more frequently a data item is used, the more 
likely the database server will automatically pre-load the 
data item into MF data so that even the first database 
operation that requires the data item has the option of 
obtaining the data from the MF data. 

Persistent Storage of IMCU Images 

As mentioned above, the MF data may be created on 
start-up, on-demand, or any combination thereof. In one 
embodiment, images of IMCUs may be periodically stored 
to disk. Such persistently-stored images may be used to 
re-populate volatile memory 102 with MF data after a crash. 
The image of any given IMCU will be current as of a 
“checkpoint time', which may be when the IMCU image 
was persistently stored. However, that checkpoint time may 
be before the time that the crash occurred. Consequently, 
between the checkpoint time ofan IMCU image and the time 
of the crash, additional changes may have been made to the 
IMCU. Since those changes are not reflected in the stored 
image, the IMCU image may be stale. 
To use an otherwise stale IMCU image, the IMCU image 

may first be loaded into volatile memory. The IMCU data 
thus loaded may be usable, in conjunction with durably 
stored undo information, for database commands that have 
Snapshot times before the checkpoint time associated with 
the IMCU image. To be usable with database commands that 
have Snapshot times after the checkpoint time, redo infor 
mation that was durably stored for the associated PF data 
prior to the crash may be used to populate the stale journals 
of the IMCU image with journal entries for the changes that 
occurred after the checkpoint time of the IMCU. 

Depending on how many changes were made after the 
checkpoint time and before the crash, reconstructing an 
IMCU using a stale persistently stored image of the IMCU 
may consume significantly less overhead than completely 
re-generating the IMCU data from the PF data. 

Selecting which PF Data to Mirror 

The decision of which PF data to mirror, and when to load 
it, may be based on a variety of factors. For example, if a 
system has an enormous about of Volatile memory 102, and 
a relatively small database, it may be desirable to mirror the 
entire database. Thus, all PF data would also be mirrored in 
the MF data. On the other hand, if there is a relatively small 
amount of volatile memory 102 relative to the size of the 
database, then it may be optimal to only mirror a very Small 
fraction of the database. 

Typically, when not all of the database is to be mirrored, 
the portion that is selected to be mirrored is based on which 
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portion will most improve overall performance of the sys 
tem. Typically, mirroring data that is used frequently will 
provide more benefit than mirroring data that is used less 
frequently. Thus, if one table, one column of a table, or one 
partition of a table is access more frequently than other data 
in the database, that table, column or partition may be 
selected to be mirrored in volatile memory 102. The selec 
tion of which portions of a database to mirror may be made 
at any level of granularity. For example, the selection may 
be made on a per-table basis, a per-column basis, a per extent 
basis, a per segment basis, a per-table-partition basis, etc. 

Self-Verification 

In systems that maintain MF data in addition to the PF 
data, multiple sources of the same data are available to 
process some queries. In the foregoing sections, it has been 
explained that when multiple sources of the same data are 
available, a database server may select from among the 
possible sources based on which source will result in the 
most efficient processing of the requested database opera 
tion. 

However, rather than select one of the possible sources, a 
database server may alternatively execute the database 
operation, in parallel, against each of the two or more 
Sources. For example, a query that selects data from column 
c1 of table 200 may be answered with MF data from column 
vector 220, or with PF data from PF data structures 108. 
Rather than select one or the other, the database server can 
execute the operation, separately and independently, against 
both sources. Once finished, the results produced by the 
various sources may be compared against each other. If the 
result sets do not match, then an error occurred during the 
processing of at least one of the operations. 
The database server may take any number of possible 

actions when Such an error is detected. For example, in one 
embodiment, an alert is generated to indicate the occurrence 
of the error. The alert may indicate what the discrepancy is 
between the two results sets. Instead of or in addition to 
generating an alert, the database server may perform addi 
tional debugging operations, including but not limited to 
re-executing the operation turning off or on different data 
base features to determine the feature whose use produces 
the error. 
When the results sets match, the user may have a greater 

degree of confidence that the results of the operation are 
accurate. Thus, parallel execution, by the same database 
instance, of the same operation against multiple sources of 
the same data (the MF data and the PF data) provides an 
on-the-fly "double check” to verify the result set of the 
operation. 

Typically, the execution of the database operations against 
the two sources may be done in parallel, so that performing 
self-verification has little performance impact on the opera 
tion relative to performing the operation only on the PF data. 
According to one embodiment, self-verification may be 
enabled at a highly granular level. For example, self-veri 
fication may be enabled on a per-session basis. Thus, the 
additional overhead incurred by self-verification may be 
incurred in only those sessions a user wishes to “test” for 
accuracy. 

Self-verification operations may also be initiated by the 
system itself. For example, rather than receive a request 
from an application to execute a database command, the 
database system may be configured to identify and select 
“critical database commands from those that have already 
been executed by the database system. During periods of 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

32 
low use, the database server may execute one or more of 
those selected database commands in the background. The 
selected database commands are executed in self-verifica 
tion mode to concurrently produce multiple copies of the 
result set, one based on the MF data and one based on the 
PF data. The result sets are compared to ensure that the result 
sets are identical. If not identical, an error message may be 
sent to a user and/or recorded in a log. If identical, data may 
be stored to indicate that the selected database command 
passed a self-verification test. After passing a threshold 
number of tests (where the threshold may be 1), the database 
server may be configured to cease to select the database 
command for automated background self-verification. 

In one embodiment, rather than simply generate an alert 
when a self-verification test fails, the database command is 
repeatedly retested under different conditions. To ensure that 
the repeats of the operation are as similar as possible to the 
original operation that produced the self-verification error, 
the same database operation may be executed with the same 
Snapshot time as was used during the session that encoun 
tered the error. 

In many database systems, numerous advanced query 
processing features may have virtual “on-off Switches, 
where the default state is “on”. During the repeats of a 
previously-failed self-verification test, those features may be 
selectively turned on and off. If the self-verification passes 
when a particular feature is turned off, and fails when the 
same particular is turned on, then there is a likelihood that 
the error is related to that feature. 

Having determined that use of a particular feature causes 
a self-verification problem with a particular database opera 
tion, a quarantine may be enforced. The scope of the 
quarantine may vary. For example, the database server may 
automatically turn off the particular feature for all future 
database commands, for all future database commands that 
target the same data as the database operation that encoun 
tered the error, or for only future executions of the specific 
database command that encountered the error. 

Hardware Overview 

According to one embodiment, the techniques described 
herein are implemented by one or more special-purpose 
computing devices. The special-purpose computing devices 
may be hard-wired to perform the techniques, or may 
include digital electronic devices such as one or more 
application-specific integrated circuits (ASICs) or field pro 
grammable gate arrays (FPGAs) that are persistently pro 
grammed to perform the techniques, or may include one or 
more general purpose hardware processors programmed to 
perform the techniques pursuant to program instructions in 
firmware, memory, other storage, or a combination. Such 
special-purpose computing devices may also combine cus 
tom hard-wired logic, ASICs, or FPGAs with custom pro 
gramming to accomplish the techniques. The special-pur 
pose computing devices may be desktop computer systems, 
portable computer systems, handheld devices, networking 
devices or any other device that incorporates hard-wired 
and/or program logic to implement the techniques. 

For example, FIG. 9 is a block diagram that illustrates a 
computer system 900 upon which an embodiment of the 
invention may be implemented. Computer system 900 
includes a bus 902 or other communication mechanism for 
communicating information, and a hardware processor 904 
coupled with bus 902 for processing information. Hardware 
processor 904 may be, for example, a general purpose 
microprocessor. 
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Computer system 900 also includes a main memory 906, 
Such as a random access memory (RAM) or other dynamic 
storage device, coupled to bus 902 for storing information 
and instructions to be executed by processor 904. Main 
memory 906 also may be used for storing temporary vari 
ables or other intermediate information during execution of 
instructions to be executed by processor 904. Such instruc 
tions, when stored in non-transitory storage media acces 
sible to processor 904, render computer system 900 into a 
special-purpose machine that is customized to perform the 
operations specified in the instructions. 

Computer system 900 further includes a read only 
memory (ROM) 908 or other static storage device coupled 
to bus 902 for storing static information and instructions for 
processor 904. A storage device 910, such as a magnetic 
disk, optical disk, or Solid-state drive is provided and 
coupled to bus 902 for storing information and instructions. 

Computer system 900 may be coupled via bus 902 to a 
display 912, such as a cathode ray tube (CRT), for displaying 
information to a computer user. An input device 914, includ 
ing alphanumeric and other keys, is coupled to bus 902 for 
communicating information and command selections to 
processor 904. Another type of user input device is cursor 
control 916, such as a mouse, a trackball, or cursor direction 
keys for communicating direction information and com 
mand selections to processor 904 and for controlling cursor 
movement on display 912. This input device typically has 
two degrees of freedom in two axes, a first axis (e.g., X) and 
a second axis (e.g., y), that allows the device to specify 
positions in a plane. 

Computer system 900 may implement the techniques 
described herein using customized hard-wired logic, one or 
more ASICs or FPGAs, firmware and/or program logic 
which in combination with the computer system causes or 
programs computer system 900 to be a special-purpose 
machine. According to one embodiment, the techniques 
herein are performed by computer system 900 in response to 
processor 904 executing one or more sequences of one or 
more instructions contained in main memory 906. Such 
instructions may be read into main memory 906 from 
another storage medium, Such as storage device 910. Execu 
tion of the sequences of instructions contained in main 
memory 906 causes processor 904 to perform the process 
steps described herein. In alternative embodiments, hard 
wired circuitry may be used in place of or in combination 
with software instructions. 

The term “storage media” as used herein refers to any 
non-transitory media that store data and/or instructions that 
cause a machine to operate in a specific fashion. Such 
storage media may comprise non-volatile media and/or 
volatile media. Non-volatile media includes, for example, 
optical disks, magnetic disks, or solid-state drives, such as 
storage device 910. Volatile media includes dynamic 
memory, such as main memory 906. Common forms of 
storage media include, for example, a floppy disk, a flexible 
disk, hard disk, Solid-state drive, magnetic tape, or any other 
magnetic data storage medium, a CD-ROM, any other 
optical data storage medium, any physical medium with 
patterns of holes, a RAM, a PROM, and EPROM, a FLASH 
EPROM, NVRAM, any other memory chip or cartridge. 

Storage media is distinct from but may be used in con 
junction with transmission media. Transmission media par 
ticipates in transferring information between storage media. 
For example, transmission media includes coaxial cables, 
copper wire and fiber optics, including the wires that com 
prise bus 902. Transmission media can also take the form of 
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acoustic or light waves, such as those generated during 
radio-wave and infra-red data communications. 

Various forms of media may be involved in carrying one 
or more sequences of one or more instructions to processor 
904 for execution. For example, the instructions may ini 
tially be carried on a magnetic disk or Solid-state drive of a 
remote computer. The remote computer can load the instruc 
tions into its dynamic memory and send the instructions over 
a telephone line using a modem. A modem local to computer 
system 900 can receive the data on the telephone line and 
use an infra-red transmitter to convert the data to an infra-red 
signal. An infra-red detector can receive the data carried in 
the infra-red signal and appropriate circuitry can place the 
data on bus 902. Bus 902 carries the data to main memory 
906, from which processor 904 retrieves and executes the 
instructions. The instructions received by main memory 906 
may optionally be stored on storage device 910 either before 
or after execution by processor 904. 
Computer system 900 also includes a communication 

interface 918 coupled to bus 902. Communication interface 
918 provides a two-way data communication coupling to a 
network link 920 that is connected to a local network 922. 
For example, communication interface 918 may be an 
integrated services digital network (ISDN) card, cable 
modem, satellite modem, or a modem to provide a data 
communication connection to a corresponding type of tele 
phone line. As another example, communication interface 
918 may be a local area network (LAN) card to provide a 
data communication connection to a compatible LAN. Wire 
less links may also be implemented. In any such implemen 
tation, communication interface 918 sends and receives 
electrical, electromagnetic or optical signals that carry digi 
tal data streams representing various types of information. 

Network link 920 typically provides data communication 
through one or more networks to other data devices. For 
example, network link 920 may provide a connection 
through local network 922 to a host computer 924 or to data 
equipment operated by an Internet Service Provider (ISP) 
926. ISP 926 in turn provides data communication services 
through the worldwide packet data communication network 
now commonly referred to as the “Internet 928. Local 
network 922 and Internet 928 both use electrical, electro 
magnetic or optical signals that carry digital data streams. 
The signals through the various networks and the signals on 
network link 920 and through communication interface 918, 
which carry the digital data to and from computer system 
900, are example forms of transmission media. 
Computer system 900 can send messages and receive 

data, including program code, through the network(s), net 
work link 920 and communication interface 918. In the 
Internet example, a server 930 might transmit a requested 
code for an application program through Internet 928, ISP 
926, local network 922 and communication interface 918. 
The received code may be executed by processor 904 as 

it is received, and/or stored in storage device 910, or other 
non-volatile storage for later execution. 

In the foregoing specification, embodiments of the inven 
tion have been described with reference to numerous spe 
cific details that may vary from implementation to imple 
mentation. The specification and drawings are, accordingly, 
to be regarded in an illustrative rather than a restrictive 
sense. The sole and exclusive indicator of the scope of the 
invention, and what is intended by the applicants to be the 
Scope of the invention, is the literal and equivalent scope of 
the set of claims that issue from this application, in the 
specific form in which Such claims issue, including any 
Subsequent correction. 
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In-Memory Space and Object Management 
Overview 

In a conventional relational database management system 
(RDMS), a space management layer is primarily responsible 
for defining and maintaining persistent database object con 
tainers such as tablespaces and segments. According to 
techniques described herein, a space management layer of an 
RDBMS, in addition to or as an alternative to defining and 
managing persistent database object containers, is used to 
define and maintain in-memory object containers. The space 
management layer described herein may support a variety of 
tasks for defining and maintain in-memory objects includ 
ing: 

creating, extending, truncating, and dropping in-memory 
object containers or areas: 

de-allocating unused space within in-memory object con 
tainers; 

creating in-memory segments corresponding to persistent 
database segments ("on-disk segments') for tables, 
table partitions, and table subpartitions; 

loading data from on-disk segments to in-memory seg 
ment counterparts; 

Supporting serial/parallel query full table scans, ad-hoc 
queries, and single row lookups of in-memory objects; 

allowing different processes to concurrently perform 
operations on several in-memory objects; and/or 

tracking and monitoring free space using in-memory 
space metadata structures. 

An “in-memory object container as used herein refers to 
a logical or physical unit of space allocation within memory 
that may be used to store data for an in-memory object. The 
example in-memory object containers described herein may 
be used to form highly-scalable data structures, allowing for 
concurrent operations on several in-memory objects. The 
in-memory object containers may further be used to Support 
Structured Query Language (SQL) queries in both online 
transaction processing (OLTP) and data warehouse (DW) 
environments. Example in-memory object containers may 
include: 

in-memory segments; 
in-memory extents; 
stripes; and/or 
stripe lists. 
An “in-memory object’ as used herein refers to a data 

object that resides in memory. For example, the in-memory 
object may correspond to a table, cluster, index, or some 
other database object. In order to store data, the in-memory 
object comprises a collection of one or more in-memory 
segments. The in-memory objects may transparently inherit 
features that are applicable to persistent database objects 
such as SQL queriability, parallel query, DMLS, and DDLs. 
By inheriting such features, existing database applications 
that are designed to interact with a traditional RDBMS may 
access the in-memory objects with little to no re-architec 
ture. 

An “in-memory segment as used herein refers to a 
collection of in-memory extents used to store data for a 
particular in-memory object. In one embodiment, an in 
memory segment corresponds to and stores data for a 
non-partitioned table, a table partition, or a table subparti 
tion. An in-memory segment can coexist with and reference 
an existing or new on-disk segment or can be purely 
in-memory with no corresponding on-disk segment. When 
referenced with a corresponding on-disk segment, the in 
memory segment stores a group of pages from the corre 
sponding on-disk segment, albeit, the in-memory segment 
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stores data for the database object in a mirror format whereas 
the on-disk segment stores data for the database object in a 
persistent format. 
An “in-memory extent as used herein refers to a con 

tiguous chunk of memory and corresponds to a specific 
number of bytes of physical storage space within memory. 
In-memory extents may come from different memory pools 
that handle allocations in units of different sizes as described 
in further detail herein. Space within an in-memory area is 
allocated to in-memory objects in units of in-memory 
eXtentS. 

A “stripe' as used herein refers to a continuous chunk of 
in-memory extents. Depending on available memory, the 
size of a stripe may vary from a single in-memory extent to 
a system-set upper bound. In-memory extents in a stripe are 
managed using a bitmap, where each bit represents the State 
of a respective in-memory extent in the stripe and indicates 
whether the in-memory extent is allocated for a specific 
segment or is free (unallocated). An individual in-memory 
segment includes in-memory extents from one or more 
stripes. 
A “stripe list as used herein refers to a collection of 

stripes. Depending on available memory, a stripe list may 
vary from a single stripe to a system-set upper bound. 
According to one embodiment, the Stripe list is the unit of 
affinity during space search operations. Processes searching 
for in-memory extents are affined to individual stripe-lists to 
identify free space within an in-memory area. 

General Space and Object Management 
Architecture 

FIG. 10 is a block diagram illustrating a system for 
managing space and objects within an in-memory area, 
according to an embodiment. System 1000 generally com 
prises space management clients 1010a to 1010n, space 
management layer 1020, and in-memory area 1030. 

Space management clients 1010a to 1010n represent one 
or more system components that interact with space man 
agement layer 1020. For example, space management clients 
1010a to 1010n may include a set of server processes that 
are responsible for creating and managing IMCUs such as 
described above. When a space management client would 
like to store an IMCU within in-memory area 1030, the 
space management client Submits a space request to space 
management layer 1020 that identifies the amount of space 
needed to store the IMCU. Space management layer 1020 
responds by allocating space for the IMCU as described in 
further detail below. 

Space management layer 1020 includes a set of one or 
more background processes that provide space management 
clients 1010a to 1010n with services for managing space and 
objects within in-memory area 1030. Space management 
layer 1020 generally includes in-memory area space man 
agement services 1022 and in-memory segment space man 
agement services 1024. The services provided by space 
management layer 1020 may be exposed to space manage 
ment clients 1010a to 1010n as an application programming 
interface (API) or through another provided interface that is 
accessible to other layers within system 1000. 

In-memory area space management services 1022 provide 
a variety of services for managing an in-memory area. These 
services are herein referred to as “in-memory area opera 
tions' or 'area operations’. Example area operations 
include: 

creating an in-memory area; 
extending an in-memory area; 
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searching for space within an in-memory area; 
freeing space from the in-memory area; and/or 
dropping an in-memory area. 
In-memory segment space management services 1024 

provide a variety of services for managing in-memory 5 
segments within an in-memory area. These services are 
herein referred to as “in-memory segment operations' or 
“segment operations'. Example segment operations include: 

creating an in-memory segment; 
allocating in-memory extents for an in-memory segment: 10 
de-allocating in-memory extents for an in-memory seg 

ment; 
dropping/truncating an in-memory segment; 
loading an in-memory segment; 
Scanning an in-memory segment; and/or 15 
refreshing an in-memory segment. 
In-memory area 1030 is a section of volatile memory 102 

that is accessible to one or more processes that belong to a 
database server 120. In one embodiment, in-memory area 
1030 is managed as a set of stripe lists and stripes repre- 20 
sented through stripe control blocks 1032. Space manage 
ment layer 1020 uses stripe control blocks 1032 to search the 
set of stripes for free in-memory extents and allocates the 
in-memory extents for in-memory segments 1034 in 
response to space requests received from space management 25 
clients 1010a to 1010n. In-memory segments 1034 store 
data in an in-memory format, such as MF data 104, for one 
or more in-memory objects. 

In-Memory Stripe Layout 30 

As noted above, in-memory area 1030 comprises a set of 
stripe lists, where each individual stripe list is a collection of 
stripes and each stripe is a contiguous set of in-memory 
extents. FIG. 11 depicts an example layout of stripes within 35 
an in-memory area, according to an embodiment. 
In-memory area layout 1100 generally includes one or more 
stripe lists represented by stripe list control blocks 1102a to 
1102i and one or more stripes represented by stripe control 
blocks 1104a to 1104i. 1106a to 1106k, and 1108a to 1108b. 40 

Each respective stripe list control block includes pointers 
that map to a set of one or more Stripe control blocks. A 
stripe “belongs” to a particular stripe list (the “parent’) when 
the stripe list control block representing the particular stripe 
list includes a pointer that maps to the stripe control block 45 
representing the stripe. Thus, Stripes represented by Stripe 
control blocks 1104a to 1104i belong to the stripe list 
represented by stripe list control block 1102a, and stripes 
represented by stripe control blocks 1106a to 1106k and 
1108a, 1108b, etc. belong to the stripe list represented by 50 
stripe list control block 1102i. 
A stripe list control block may point to a stripe control 

block either directly or indirectly. For example, stripe list 
control block 1104i directly points to stripe control blocks 
1106a to 1106k and 1108a, but does not directly point to 55 
stripe control block 1108b and subsequent control blocks. 
Rather, stripe control block 1108a is the first block in a 
linked list of stripe control blocks, with each stripe control 
block in the linked list including a pointer to the next and 
previous stripe control block in the linked list. Thus, stripe 60 
list control block 1104i includes a direct pointer to the first 
stripe control block in the linked list (stripe control block 
1108a) and indirectly points to other stripe control blocks in 
the linked list (stripe control block 1108b, etc.). 

Each respective stripe list control block may include one 65 
or more fields that are used to manage and define charac 
teristics of the stripe list represented by the respective stripe 

38 
list control block. For example, the stripe list control block 
may include one or more of the following header control 
fields: 

an index of the stripe list control block within an array of 
stripe list control blocks for the in-memory area; 

the number of stripe control blocks directly mapped by 
the stripe list control block; 

the total space being mapped by the stripe list control 
block; and/or 

a data block address for a corresponding on-disk image. 
A stripe list control block further includes fields that 

define characteristics of the stripes that belong to the stripe 
list. For example, the stripe list control block may include 
fields that indicate the current status of a stripe, the amount 
of free space within the stripe, and where the stripe resides 
in memory. According to an embodiment, to define the 
characteristics of the corresponding stripes, the stripe list 
control block includes an array of stripe control blocks that 
includes one or more of the following fields for each stripe 
control block in the array: 

a flag variable indicating a status of the stripe represented 
by the stripe control block (e.g., the flag may indicate 
whether the stripe control block has been formatted for 
use with the stripe list control block, whether the stripe 
control block is being freed or has been freed back to 
memory for other uses, whether the stripe is allocated 
or unallocated, etc.); 

a memory address of the stripe control block; 
the amount of free space in the stripe control block; and/or 
a latch and latch recovery area to serialize allocation and 

de-allocation of in-memory extents from the stripe 
control block (the latch may be used to prevent multiple 
processes from allocating or de-allocating in-memory 
extents from the same stripe at the same time). 

Each individual stripe control block from stripe control 
blocks 1104a to 1104i, 1106a to 1106k, and 1108a, 1108b, 
etc. maps a number of contiguous in-memory extents allo 
cated when the in-memory area is created or extended. The 
number of extents mapped by an individual Stripe control 
block may vary between stripe control blocks or may be 
fixed, depending on the particular implementation. In one 
embodiment, each stripe control block maps to the maxi 
mum possible contiguous physical memory guaranteed by 
an operating system that manages Volatile memory. For 
example, if the maximum possible contiguous physical 
memory that the operating system may guarantee for a stripe 
is 100 megabytes, and in-memory extents are allocated in 
one megabyte chunks, then the stripe is mapped to 100 
contiguous in-memory extents. 

Each stripe control block includes a plurality of fields for 
defining and managing the respective stripe. For example, 
the stripe control block may include a set of header control 
fields. The header control field may include a set of param 
eter values such as: 

an index of the stripe within an array of stripe control 
blocks within a parent stripe list control block; 

a back pointer to the parent stripe list block; 
a starting memory address of the first extent in the Stripe 
the length of the stripe; 
the number of extents in the stripe; 
the first free bit within the stripe from which space for an 

in-memory segment may be allocated; 
the number of free bits in the stripe; and/or 
a link to the next and/or previous stripe control block in 

a linked list of stripe control blocks. 
Each stripe control block further includes a bitmap for 

identifying free in-memory extents within the stripe. Each 
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bit in the bit-vector maps to a different in-memory extent 
within the stripe. A first bit value is used to indicate that the 
in-memory extent is currently allocated to a segment, and 
the second bit value is used to indicate that the in-memory 
extent is unallocated and free for allocation. For example, 
for a stripe with five in-memory extents, the stripe control 
block may store the bit-vector “11010 to indicate that the 
first, second, and fourth in-memory extents within the stripe 
are allocated to in-memory segments while the third and 
fifth in-memory extents are free for reuse. 
When a process is accessing an individual stripe, the 

process may acquire a latch from the stripe control block to 
prevent other processes from concurrently accessing the 
corresponding stripe. Once the process has finished access 
ing the stripe, the process releases the latch to allow other 
processes to subsequently access the stripe. While the latch 
serializes access to the corresponding stripe, other processes 
may concurrently access other stripes within a stripe list or 
in different stripe lists. For example, while a first process is 
performing an area operation on a first stripe, one or more 
other processes may concurrently perform area operations 
on different stripes without waiting for the first process to 
release the latch on the first stripe. Thus, control blocks may 
be used to spread access hotness during concurrent work 
loads. 

In-Memory Segment Layout 

An in-memory segment includes a collection of 
in-memory extents. Because in-memory extents are allo 
cated in an on-demand/as-needed basis, the in-memory 
extents for an in-memory segment may not be contiguous 
within volatile memory. In addition, the in-memory extents 
for a particular in-memory segment may come from a single 
stripe or may span multiple stripes within a particular stripe 
list. For example, an individual in-memory segment may 
have in-memory extents allocated from both stripe control 
blocks 1104a and 1104i. 

Each in-memory segment generally comprises segment 
metadata for managing and defining the in-memory seg 
ment. Referring to FIG. 12, for example, it is a block 
diagram depicting an example in-memory segment layout, 
according to an embodiment. Segment layout 1200 includes 
segment header 1202, extent map block 1204, extent entries 
1206a and 1206b, and in-memory extents 1208a and 1208b. 
Segment header 1202 includes a plurality of parameter 

values that define characteristics of the corresponding in 
memory segment. For example, the segment header may 
identify the number of in-memory extent map blocks allo 
cated for the in-memory segment, the in-memory object to 
which the in-memory segment belongs, an address of the last 
in-memory extent map block, and/or a parameter value (e.g., 
a high water mark) to indicate a boundary between used and 
unused in-memory extents within the in-memory segment. 
When the in-memory segment has an on-disk counterpart, 

segment header 1202 includes mapping data that maps the 
in-memory segment to the on-disk segment as described in 
further detail below. If there is no on-disk counterpart, then 
mapping data to a corresponding on-disk segment is not 
maintained within segment header 1202. 

Extent map block 1204 includes an array of extent entries, 
where each entry includes a pointer that maps to a different 
in-memory extent allocated to the segment. For example, 
extent entry 1206a maps to in-memory extent 1208a, extent 
entry 1206b maps to in-memory extent 1208b, etc. Accord 
ing to an embodiment, each extent entry may include: 

a start address of the corresponding in-memory extent; 
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a length of the corresponding in-memory extent; 
a freeness State of the corresponding in-memory extent 

(e.g., what percent is used to store data and what 
percent is free to store data); 

an identifier of the stripe list control block to which the 
corresponding in-memory extent belongs; 

an identifier of the stripe control block to which the 
corresponding in-memory extent belongs; and/or 

mapping data that maps the in-memory extent to corre 
sponding on disk counterpart as described in further 
detail below. 

In one embodiment, the in-memory segment metadata is 
maintained in a set of one or more hash tables within volatile 
memory. Different hash tables may be used for different 
classes of in-memory segment. For example, a first hash 
table may be used to store segment metadata for a data 
segment of a table, a second hash table may be used to store 
segment metadata for Sorted projections, and a third hash 
table may be used to store data for undo segments. One or 
more values within the segment header may be used as a 
hash key to identify a particular segment within a hash table. 
For instance, the tablespace identifier, data object identifier, 
and/or relative data bock address of an associated on-disk 
segment may be used as a hash key. A hash function is 
applied to map the hash key to the location of the segment 
within the hash table. In another embodiment, the in 
memory segment metadata is maintained in a linked list of 
in-memory segments. AS in-memory segments are added or 
dropped, the linked list is updated to maintain a current list 
of in-memory segments that reside within in-memory area 
1030. 

Auxiliary in-Memory Maps and Query Rewrite 

As previously mentioned, data stored within the 
in-memory object containers may also be stored in corre 
sponding persistent object containers in a persistent format. 
For example, an individual in-memory extent may contain 
data corresponding to contiguous data blocks on disk. As 
another example, an in-memory segment may contain data 
corresponding to an on-disk segment. In Such scenarios, the 
in-memory object containers store data for the same data 
base object as the persistent object containers; however, the 
in-memory object containers store the data in a mirror 
format, whereas the persistent database object containers 
store the data in a persistent format. Thus, the organization 
of the data and the metadata is different between the in 
memory object containers and the persistent object contain 
CS. 

To track which database objects have both PF data and 
MF data, Space management layer 1020 maintains an in 
memory map that stores an association between in-memory 
object container and their corresponding on-disk object 
container. For example, the in-memory map may maintain 
an association between a page range of an on-disk segment 
and a corresponding in-memory extent. As another example, 
the in-memory map may maintain associations that indicate 
which in-memory segments are associated with which on 
disk segments and vice versa. 

According to one embodiment, mapping data is main 
tained within the metadata of the in-memory data object 
containers. For example, the segment header for an in 
memory segment may include one or more of the following: 

a tablespace identifier for the corresponding on-disk seg 
ment; 

a data object identifier for the corresponding on-disk 
Segment, 
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a data block address for the corresponding on-disk seg 
ment; 

the number of on disk ranges being mapped by the 
in-memory segment; and/or 

the number of on-disk blocks being mapped by the 
in-memory segment. 
As another example, each extent entry within the array of 

extent entries may include one or more of the following: 
a starting data block address of the on-disk block range 
mapped by the in-memory extent; 

an ending data block address of the on-disk block range 
mapped by the in-memory extent; and/or 

an extent offset for the corresponding on-disk range. 
According to one embodiment, space layer 1020 main 

tains the associations in a set of auxiliary tablespace extent 
maps that are separate from the in-memory object contain 
ers. The auxiliary tablespace extent maps are maintained on 
a per tablespace basis, with each auxiliary tablespace extent 
map mapping portions of the respective on-disk tablespace 
to corresponding in-memory extents where the data is 
located. For example, the mapping may maintain a row data 
block address to in-memory extent mapping that indicates, 
for each respective in-memory extent that maps a portion of 
the on-disk tablespace, the on-disk range of data blocks that 
are contained by the respective in-memory extent and a 
memory address for the in-memory extent. Thus, given a 
relative data block address and tablespace identifier, space 
management layer 1020 may search the auxiliary tablespace 
extent map to determine whether a particular on-disk range 
is mirrored in the MF data and to retrieve the corresponding 
in-memory extents that contain the MF data. 

In-Memory Extent Pools 

As indicated above, in-memory extents within an in 
memory area may come from different memory pools that 
handle allocations in units of different sizes. According to 
one embodiment, the in-memory area is divided into two 
pools: a first pool that handles allocations according to a first 
allocation size, and a second pool that handles allocations 
according to a second allocation size. In other embodiments, 
additional pools beyond the first and second pool may be 
used that handle allocations in different sizes. 

Each pool may handle allocations for different in-memory 
objects. According to an embodiment, a first pool handles 
allocations of in-memory extents for IMCUs that are hosted 
in the in-memory area, and a second pool handles allocations 
for in-memory extents that store segment metadata, SMUs, 
private journal segments, and shared journal segments. 

Generally, the allocation size for in-memory extents that 
store IMCU data will be much larger than the allocation size 
for in-memory extents storing metadata. For instance, the 
first pool may handle allocations in units of one megabyte 
while the second pool may handle allocations in units of 64 
kilobytes. However, the allocation sizes of the various pools 
may vary from implementation to implementation. 

According to one embodiment, the in-memory area is not 
divided evenly between the two pools. Rather, a greater 
percentage of the in-memory area is reserved for one pool 
than another pool. For example, a greater percentage of the 
in-memory area may be reserved for IMCU extents, as the 
IMCUs will likely require more memory than segment 
metadata, SMU extents and journal segment extents. The 
amount of memory that is reserved for each pool may vary 
from implementation to implementation. 

In-Memory Area Creation and Extension 

According to an embodiment, the area operations Sup 
ported by in-memory area space management services 1022 
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include operations for creating the in-memory area. Creation 
of the in-memory area may be initiated at database system 
startup or on-demand. To create the in-memory area, space 
management layer 1020 allocates memory from volatile 
memory 102 for the stripe list control blocks. An array of 
stripe list control block addresses is then populated with the 
address of each stripe list control block within the in 
memory area. For each stripe list control block, space 
management layer 1020 allocates memory from volatile 
memory 102 for a set of stripes and updates the stripe list 
control block with pointers to the set of stripes and with the 
total space mapped by the corresponding stripe list. For each 
stripe within a stripe list, space management layer 1020 
reserves space at the beginning of memory allocated for the 
stripe and adds a stripe control block. Space management 
layer 1020 then formats the stripe control block by popu 
lating the fields of the stripe control block with the appro 
priate values. For example, space management layer 1020 
may add a back pointer to the parent Stripe list control block, 
the starting address of the first in-memory extent in the 
stripe, the length of the stripe, the first free bit in the stripe, 
the number of free bits in the stripe, etc. The in-memory area 
is created once the stripe list control blocks and stripes 
control blocks have been Successfully generated and for 
matted. 

In some cases, it may be beneficial to extend an existing 
in-memory area. For example, if space management layer 
1020 is unable to locate a free in-memory extent for allo 
cation, then the in-memory area may be extended to add 
more in-memory extents and stripes. According to an 
embodiment, space management services 1022 Supports an 
extend in-memory area operation for adding stripes and 
in-memory extents and increasing the size of the in-memory 
area. To add a new stripe, space management layer 1020 
allocates additional memory from volatile memory 102 for 
the stripe. A stripe control block is added to the beginning of 
the allocated memory and formatted such as described above 
for the create in-memory area operation. The parent stripe 
list control block is updated by adding a pointer to the new 
stripe. Accordingly, the new stripe, including the new set of 
in-memory extents to which it is mapped, is added to the 
stripe list. 

Space Search and Reclamation 

According to an embodiment, in-memory area space 
management services 1022 Supports space search and rec 
lamation operations. In an area space search operation, space 
management layer 1020 searches a set of one or more stripe 
lists in the in-memory area for a free in-memory extent. A 
“free' in-memory extent in this context refers to one that is 
available for allocation to an in-memory segment. An in 
memory extent is free if it is not currently allocated to an 
in-memory segment and has not been freed (or in the process 
of being freed) back to volatile memory 102. If space is not 
found within the set of Stripe lists, then space management 
layer 1020 may perform an in-memory extension operation 
to add more in-memory extents. 
To search a stripe list for an unallocated in-memory 

extent, space management layer 1020 searches the array of 
stripe control blocks to identify an available stripe with free 
space. Once the available stripe is identified, space manage 
ment layer 1020 then searches the bitmap in the stripe 
control block of the available stripe to identify an available 
in-memory extent. Space management layer 1020 updates 
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the bit corresponding to the in-memory extent within the 
bitmap to indicate that the in-memory extent has been 
allocated. 

Space reclamation operations allow space allocated for 
the in-memory area to be de-allocated and reclaimed by 
volatile memory 102 for other uses. For a drop area opera 
tion, space management layer 1020 de-allocates memory for 
the entire in-memory area, including for all stripe lists, 
stripes, and in-memory extents. For a free space operation, 
space management layer 1020 de-allocates memory for a set 
of one or more stripes within the in-memory area rather than 
de-allocating memory for all stripes. During the free space 
operation, space management layer 1020 updates the stripe 
control block status to indicate that the stripe is being 
reclaimed. This prevents in-memory services from searching 
for free space in Such stripes during a space search opera 
tion. 

In-Memory Segment Creation and Extent 
Allocation 

According to an embodiment, in-memory segment space 
management services 1024 Support segment creation and 
extent allocation operations. When a database object is 
in-memory enabled, space management layer 1020 performs 
a segment creation operation to create a set of one or more 
in-memory segments for the database object. To create an 
in-memory segment, space management layer 1020 per 
forms a space search operation as described above to locate 
a free in-memory extent. Once located, space management 
layer 1020 reserves at least a portion of the in-memory 
extent for the segment header. Space management layer 
1020 then formats the segment header by adding the appro 
priate segment metadata. For example, space management 
layer 1020 may add segment identification data to the 
segment header that defines the in-memory segment and 
identifies the in-memory object to which the in-memory 
segment belongs. Space management layer 1020 may fur 
ther add data that identifies a corresponding on-disk segment 
Such as a tablespace identifier, data object identifier, and data 
block address for the corresponding on-disk segment. 

After an in-memory segment has been created, 
in-memory extents may be allocated and registered with the 
in-memory segment. An extent allocation operation takes 
place when an in-memory segment is loaded or refreshed. To 
allocate an in-memory extent for an in-memory segment, 
space management layer 1020 performs a space search 
operation as described above to locate a free in-memory 
extent. Once located, space management layer 1020 regis 
ters the in-memory extent with extent map block for the 
in-memory segment. This process may be repeated to allo 
cate as many in-memory extents needed to meet the amount 
of space requested by a space management client. 

“Registering the in-memory extent, as used herein, 
includes adding extent identification data to an in-memory 
segment. For example, the following information may be 
added to the extent map block of an in-memory segment 
during registration: 

the start address of the in-memory extent; 
the length of the in-memory extent; 
an identifier of the stripe list control block for the stripe 

list to which the in-memory extent belongs; 
an index of the stripe control block for the stripe to which 

the in-memory extent belongs; and/or 
mapping information that indicates an on-disk range that 

is mapped by the in-memory extent. 
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Once registered, the in-memory extent “belongs” to the 

in-memory segment and cannot be used by another in 
memory segment until it is de-allocated. 

In-Memory Segment Drop and Extent 
De-Allocation 

According to an embodiment, in-memory segment space 
management services 1024 Support segment drops and 
extent de-allocations. In-memory segment drops occur when 
a DDL drop or truncate statement (e.g., DROP TABLE or 
TRUNCATE TABLE) is received for the database object to 
which the in-memory segment corresponds. To drop the 
in-memory segment, space management layer 1020 per 
forms an extent de-allocation operation for each in-memory 
extent that is registered to the in-memory segment. Thus, 
dropping the in-memory segment frees the previously allo 
cated in-memory extents within in-memory area 1030 such 
that these in-memory extents may be reused by a different 
in-memory segment. 

During an extent de-allocation operation, space manage 
ment layer 1020 updates the bitmap in the stripe control 
block for the stripe to which the in-memory extent belongs 
to indicate that the in-memory extent is no longer allocated 
and is free for reuse by a different in-memory segment. To 
update the bitmap, the bit value corresponding to the in 
memory extent is changed from a first value indicating the 
in-memory extent is allocated to a second bit value indicat 
ing that the in-memory extent is unallocated. Space man 
agement layer 1020 then updates the extent map block by 
deleting the extent entry for the in-memory extent. 

In-Memory Segment Loads 

According to an embodiment, a background loader inter 
acts with space management layer 1020 to load an on-disk 
segment into an in-memory segment. During a load opera 
tion, the background loader divides the entire on-disk seg 
ment into chunks. For example, each chunk may correspond 
to a different on-disk range of data blocks within the on-disk 
segment where each on-disk range stores a different set of 
rows for a table in a persistent format. For each on-disk 
chunk, the background loader reads data from the on-disk 
chunk, converts the data from a persistent format to a mirror 
format, and requests variable sized in-memory chunks from 
space management layer 1020 that are bounded by the 
corresponding on-disk chunk range. 
By dividing the on-disk segment into different chunks, 

different background processes may load the data into the 
in-memory segment in parallel. For example, a first back 
ground process may perform a first scan operation to read PF 
data from a first on-disk chunk while a second background 
process concurrently performs a second scan operation to 
read PF data from a second on-disk chunk. Similarly, the 
conversion of PF data to MF data and the memory loads may 
be performed by different background processes in parallel 
for the different on-disk chunks. 
To convert the data from the persistent format to the 

mirror format during a load operation, the background 
loader creates an IMCU to store the data as described above. 
For example, the background loader may convert the data 
from a compressed row-major format to a compressed 
column-major format. Once the IMCU is created, the back 
ground loader requests n bytes of space from space man 
agement layer 1020 to store the IMCU within in-memory 
area 1030, where n bytes corresponds to the size of the 
IMICU. 
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During the load operation, space management layer 1020 
creates an in-memory segment representing the entire on 
disk segment. When space management layer 1020 receives 
a request to load data for an on-disk chunk, space manage 
ment layer 1020 performs an in-memory extent allocation 
operation as described above to allocate a set of one or more 
in-memory extents for each on-disk chunk and register the 
set of in-memory extents within the in-memory segment. 
The background loader then loads the MF data into the set 
of one or more in-memory extents. 

During the load operation, space management layer 1020 
adds/updates the mapping data that maintains associations 
between the in-memory object containers and their corre 
sponding on-disk counterparts. In one embodiment, space 
management layer 1020 adds, to the extent map block of the 
in-memory segment, the start data blockaddress and the end 
data block address for the on-disk range that is mapped by 
the in-memory extent. In another embodiment, space man 
agement layer 1020 adds an on-disk range to in-memory 
extent mapping to the auxiliary tablespace map. Thus, given 
the location of PF data within persistent storage, the in 
memory extent(s) that store the corresponding MF data may 
be located and retrieved. 

In-Memory Segment Scans 

As previously mentioned, a database server may deter 
mine which blocks contain data that needs to be scanned and 
whether to scan the blocks from the PF data or to obtain the 
data from the MF data. According to one embodiment, the 
database server uses the auxiliary tablespace extent map for 
queries trying to Scan a given on-disk range to locate and the 
MF data from the appropriate in-memory object containers. 
For a query performing a lookup of a single row, for 
example, the database server determines the on-disk range of 
data blocks that contain data for the row. The database server 
then searches the auxiliary tablespace extent map to deter 
mine whether the on-disk range maps to one or more 
in-memory extents. If the on-disk range is mapped to the 
in-memory extents, then MF data for the row exists, and the 
memory address of the in-memory extents is determined 
from the auxiliary tablespace extent map. The database 
server then retrieves MF data from the in-memory extents 
without the need to scan the PF data from disk blocks in 
persistent storage. 

In-Memory Segment Refresh 

As previously mentioned, MF data becomes stales when 
the corresponding PF data is changed in a manner that is not 
reflected in the MF data. For example, a transaction may 
write a row update to an on-disk segment without writing the 
update to a corresponding in-memory segment. Thus, the 
data is not consistent between the on-disk segment and the 
in-memory segment after the update. 

In order to maintain data consistency and integrity 
between an on-disk segment and the corresponding in 
memory segment, a background processes refreshes the 
in-memory segment in a copy-on-write fashion, according to 
an embodiment. When the on-disk segment is changed, 
space management layer 1020 performs a segment refresh 
operation on the corresponding in-memory segment to load 
the new/changed MF data into the in-memory segment and 
discard the outdated MF data. For example, the refresh 
operation may be triggered by a row update, insertion, or 
other DML operation that alters the PF data. 
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To perform a refresh operation, space management layer 

1020 determines which on-disk segment has been updated. 
Space management layer 1020 then performs a drop opera 
tion Such as described above to drop the corresponding 
in-memory segment from in-memory area 1030. Once the 
stale in-memory segment is dropped, space management 
layer 1020 performs a segment create and load operation to 
re-allocate space from in-memory area 1030 for a new 
in-memory segment corresponding to the updated on-disk 
segment and load the new in-memory segment with the 
current data from the updated on-disk segment. Once 
refreshed, the database server may access MF data from the 
new segment during a scan operation while maintaining data 
consistency and integrity. 

Parallel Query and Non-Uniform Memory Access 
Overview 

Some RDBMSs support parallel query processing with 
respect to on-disk database objects such that query opera 
tions on the on-disk database objects are distributed across 
multiple processes in a multi-processor system. For 
example, a parallel query may divide a full table scan 
operation across different processes, with each process 
transferring a different set of rows within the table from disk 
to memory. The processes operate on the on-disk database 
object in parallel, which may significantly reduce overall 
query execution time. 

According to techniques described herein, parallel query 
processing is extended to the in-memory objects described 
above. A parallel query on an in-memory object determines 
the in-memory chunks that belong to the in-memory object. 
The parallel query then assigns a set of processes and divides 
the query workload among these processes. The processes 
operate on the in-memory chunks in parallel to generate a 
series of result sets. An “in-memory chunk” in this context 
is a portion of the in-memory object that may be operated on 
and stored independently from other portions (e.g., chunks) 
of the in-memory object. For example, the in-memory chunk 
may correspond to an IMCU that is stored across a set of one 
or more in-memory extents such as described above. After 
generating the series of result sets for the individual in 
memory chunks, the parallel query combines the result sets 
to obtain a final result set for the query operation. 

In order to further optimize query execution, the in 
memory chunks for an in-memory object are distributed 
across different nodes in a NUMA multiprocessor system, 
according to an embodiment. NUMA multiprocessor Sys 
tems allow clustering of CPUs into groups where each group 
is assigned a local memory. A process running on a particu 
lar NUMA node can access the local memory at a much 
lower latency than accessing memory assigned to another 
NUMA node. By distributing the in-memory chunks across 
different NUMA nodes, memory access bottlenecks may be 
alleviated while the processes operate on the in-memory 
chunks in parallel. 

In an embodiment, the database server maintains NUMA 
affinity information for the in-memory objects. Without the 
NUMA affinity information, the parallel query would be 
unaware of the NUMA location of individual in-memory 
chunks. As a result, the query workload would be distributed 
randomly across NUMA nodes, which could result in pro 
cesses running on a particular NUMA node operating on 
in-memory chunks from remote memory of other NUMA 
nodes. With the NUMA affinity information the parallel 
query distributes query operations across NUMA nodes Such 
that processes affined to an individual node operate on 
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in-memory chunks in the local memory of the NUMA node 
and not in-memory chunks in remote memories belonging to 
other NUMA nodes. Thus, the processes may take full 
advantage of fast local memory accesses while operating on 
the in-memory chunks in parallel. 

General NUMA Architecture 

FIG. 13 is a block diagram illustrating a multiprocessor 
system that allows NUMA afinitized parallel queries on 
in-memory objects, according to an embodiment. Multipro 
cessor system 1300 represents a single database compute 
node where a database instance is run. For example, multi 
processor System 1300 may be a single-instance symmetric 
processing (SMP) compute node equipped with hundreds of 
processors. Multiprocessor system 1300 generally includes 
server processes 1302 and NUMA nodes 1304a to 1304i. 

Server processes 1302 comprise processes that are asso 
ciated with the database server instance, including processes 
for distributing in-memory objects across NUMA nodes 
1304a to 1304i and processes for performing parallel query 
processing. For example, server processes 1302 may include 
processes that are associated with the background loader, 
space management layer, and/or other components of an 
RDBMS. Processes for performing parallel query process 
ing are herein referred to as “parallel server processes” and 
are described in further detail below. Server processes 1302 
may be executed on one or more of NUMA nodes 1304a to 
1304i, on a separate node, or some combination thereof 

Each NUMA node in multiprocessor system 1300 com 
prises a cluster of processors that are assigned or otherwise 
associated with a memory. NUMA node 1304a includes 
CPUs 1306a to 1306i and memory 1310a, and NUMA node 
1304i includes CPUs 1308a to 1308k and memory 1310l. A 
memory that is associated with a particular NUMA node is 
referred to as “local with respect to the particular NUMA 
node and processes running on the particular NUMA node 
and “remote' with respect to other NUMA nodes and 
processes running on other NUMA nodes. For example, 
memory 1310a is a local memory for NUMA node 1304a 
and a remote memory for NUMA node 1304i, and memory 
131.0l is local to NUMA node 1304i and remote to NUMA 
node 1304a. 

Processors within multiprocessor system 1300 have dif 
ferent access priorities based on their NUMA node location. 
Processors have higher access priority to local memory (i.e., 
memory at the same NUMA node location) than to remote 
memory. For example, CPUs 1306a to 1306i have higher 
access priority to memory 1310a than to memory 1310l. and 
CPUs 1308a to 1308k have higher access priority to memory 
1310 than memory 1310a. Such location-based access 
priority typically results in inter-node memory accesses 
having higher latencies than intra-node memory accesses. 

The processor clusters for each NUMA node may be 
Software or hardware based, depending on the particular 
implementation. In a software-based implementation, Soft 
ware is responsible for grouping processors and assigning 
each group to a local memory. In a hardware-based imple 
mentation, multiprocessor system 1300 includes physically 
different system buses at each NUMA node location. Pro 
cessors that belong to the same NUMA node share the same 
memory bus, which connects to a memory controller for 
accessing local memory. The memory bus at one NUMA 
node location is not shared with processors that do not 
belong to the NUMA node. Rather, the memory controller 
for the local memory is connected to memory controllers for 
remote memories in other NUMA nodes via a separate 
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high-speed interconnect. When a processor accesses data 
that resides in a remote memory, the data is transferred over 
the high-speed interconnect and not the system bus in the 
remote NUMA node. This arrangement reduces bottlenecks 
caused when several processors attempt to access memory 
via the same bus. 

In some embodiments, each processor within multipro 
cessor system 1300 may have direct access to all input/ 
output devices (I/O devices) and all memory areas within the 
multiprocessor system 1300. In addition or alternatively, 
each multiprocessor System may be controlled by a single 
operating system instance. In addition or alternatively, each 
processor may execute processes or threads that belong to or 
are otherwise associated with a single database server 
instance. 

Stripe Allocation Across NUMA Nodes 

As indicated above, in-memory area 1030 serves as a 
container for the in-memory objects on a database compute 
instance and includes a collection of Stripes. According to an 
embodiment, in-memory area 1030, including the collection 
of stripes that form in-memory area 1030, is distributed and 
maintained across a plurality of NUMA nodes within mul 
tiprocessor system 1300. When space management layer 
1020 performs an in-memory area creation or extension 
operation, for example, a set of one or more stripes is carved 
out of each of memories 1310a to 1310l to create or extend 
in-memory area 1030 across the plurality of NUMA nodes. 
Thus, each of NUMA nodes 1304a to 1304i maintains a 
different set of respective stripes that belong to in-memory 
area 1030. 

According to one embodiment, space management layer 
1020 evenly distributes the stripes of in-memory area 1030 
across NUMA nodes 1304a to 1304i Such that each NUMA 
node is represented by approximately the same number of 
stripes. For example, the stripes may be allocated in a round 
robin fashion starting with NUMA node 1304a. and ending 
with NUMA node 1304i and repeating until all the stripes 
have been allocated. Thus, the first stripe is allocated from 
memory 1310a, and the next set of stripes are allocated from 
any intervening nodes between NUMA node 1304a and 
NUMA node 1304i until NUMA node 1304i is reached. 
Once a stripe is allocated from memory 13101 for NUMA 
node 1304i, the stripe allocation cycles back to NUMA node 
1304a, and the process repeats until there are no stripes left 
to distribute. 

Maintaining Different in-Memory Extent Pools on 
NUMA NOdes 

As indicated above, in-memory area 1030 may be divided 
into a plurality of pools, with each pool handling allocations 
in different allocation size units. For example, in-memory 
area 1030 may be divided into two pools, with memory 
managed as a set of stripes, including a first pool that handles 
allocations of in-memory extents according to a first allo 
cation size (e.g., 1 MB), and a second pool that handles 
allocations of in-memory extents according to a second 
allocation size (e.g., 64 KB). 

According to an embodiment, the plurality of memory 
pools are distributed across NUMA nodes 1304a to 1304i. 
with each NUMA node maintaining a set of stripes for each 
pool. With two pools, for example, in-memory extents from 
both the first pool and second pool are carved out of memory 
1310a. Similarly, in-memory extents from both the first pool 
and second pool are carved out of the local memories of 



US 9,684,.682 B2 
49 

other NUMA nodes, including memory 1310l. Thus, each 
NUMA node may handle memory allocation in units of 
varying allocation sizes. 

NUMA-Aware in-Memory Chunk Allocation 

According to an embodiment, the in-memory chunks that 
belong to an in-memory object are distributed across a 
plurality of NUMA nodes. Referring to FIG. 14, it depicts a 
block diagram of a set of NUMA nodes that maintain 
different in-memory chunks for an in-memory object. In 
memory object 1402 is sharded across a set of NUMA 
nodes, including NUMA node 1404, NUMA node 1406, and 
NUMA node 1408. Each of these NUMA nodes maintains 
multiple in-memory chunks that belong to in-memory object 
1402. NUMA node 1404 maintains in-memory chunks 
1410, 1416, and 1422, NUMA node 1406 maintains in 
memory chunks 1412, 1418, and 1424, and NUMA node 
1408 maintains in-memory chunks 1414 and 1420. 
The manner in which the in-memory chunks are distrib 

uted across the plurality of NUMA nodes may vary from 
implementation to implementation and may depend on 
whether the in-memory object is associated with a corre 
sponding on-disk object or whether the in-memory object is 
purely in-memory without any corresponding on-disk 
object. A database server instance may select the policy to 
apply based on whether an in-memory object has a corre 
sponding on-disk counterpart or is purely in-memory. As an 
example, if a database table that resides on-disk is in 
memory enabled, the database server instance may employ 
a policy that selects NUMA node locations based on page 
range, such as described in further detail below. By selecting 
the NUMA node location based on page range, refreshes and 
reloads of the in-memory chunk result in allocations from 
the same NUMA node. If the database server instance 
determines that the in-memory object does not have a 
corresponding on-disk counterpart, such as may be the case 
with views or other objects that are not materialized, the 
database server may employ a policy that evenly distributes 
the in-memory chunks across the NUMA nodes such that 
each NUMA node has substantially the same number of 
in-memory chunks. 

In one embodiment, a database server instance allocates 
in-memory extents in a round-robin fashion Such that the 
load is uniformly balanced across NUMA nodes. For 
example assume that in-memory object 1402 corresponds to 
an in-memory segment that is purely in memory, and each 
of in-memory chunks 1410 to 1424 corresponds to a differ 
ent in-memory extent. When loading the in-memory object, 
an in-memory extent is allocated from local memory on 
NUMA node 1404 for in-memory chunk 1410. Next, an 
in-memory extent is allocated from local memory on 
NUMA node 1406 for in-memory chunk 1412, followed by 
an in-memory extent from local memory on NUMA node 
1408 for in-memory chunk 1414. This process repeats in a 
round robin fashion until all in-memory chunks for in 
memory object 1402 have been distributed. Thus, 
in-memory extents for in-memory chunks 1410 to 1424 are 
allocated in sequential order. A round-robin distribution 
allows a purely in-memory segment to be effectively load 
balanced across the plurality of NUMA nodes. 
When an in-memory object references an on-disk data 

base object, NUMA nodes are assigned to an in-memory 
chunk based, at least in part, on the on-disk page range that 
maps to the in-memory chunk. According to an embodiment, 
a hash function is applied to the page addresses of each 
on-disk chunk to compute a NUMA node location for a 
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corresponding in-memory chunk. For example, assume that 
each of in-memory chunks 1410 to 1424 corresponds to an 
on-disk chunk. Applying the hash function to the on-disk 
page addresses corresponding to in-memory chunks 1410. 
1416, and 1422 maps these chunks to NUMA node 1404. 
Similarly applying the hash function maps in-memory 
chunks 1412, 1418, and 1424 to NUMA node 1406 and 
in-memory chunks 1414 and 1420 to NUMA node 1408 
based on the page addresses for the corresponding on-disk 
objects. 

According to an embodiment, the background loader is 
responsible for determining how to distribute in-memory 
chunks across the plurality of NUMA nodes. As discussed 
above, if an on-disk segment is enabled to be in-memory, the 
background loader creates a corresponding in-memory seg 
ment. Depending on the on-disk data to be loaded in 
memory, the background loader divides the entire on-disk 
segment into chunks and then, for each chunk, requests 
variable sized in-memory chunks from in-memory area 1030 
to host data in IMCUs bounded by the on-disk chunk range. 
If NUMA is enabled, then, before the background loader 
requests space from space management layer 1020, the 
background loader maps the on-disk chunk to an individual 
NUMA node. For example, the background loader may 
apply a hash function to the page addresses of each on-disk 
chunk to map the on-disk chunk to a particular NUMA node 
location. The background loader passes this NUMA affinity 
information to space management layer 1020 when making 
space requests for the on-disk chunks during the loading 
process. Space management layer 1020 allocates in-memory 
extents to store the MF data from the appropriate NUMA 
node location and registers the in-memory extents within the 
in-memory segment. 

In the case where a hash function is used to assign NUMA 
nodes to in-memory chunks, a policy-based approach may 
be applied to guarantee that a certain range of on-disk data 
is mapped to the same NUMA node. For example, the hash 
function may be chosen such that contiguous range (e.g., 8 
MB) of page addresses from an on-disk segment map to the 
same NUMA node (herein referred to as the “target” NUMA 
node). Once the on-disk chunk range is mapped to the target 
NUMA node, the background loader sends a space request 
for the corresponding chunk to space management layer 
1020, which meets the space request with stripes belonging 
to the target NUMA node. In the end of the load, the entire 
segment is distributed across NUMA nodes in chunk size 
units determined by the policy (e.g., 8 MB). By using such 
a policy, parallel queries may take advantage of page 
coalescing, merging adjacent stripes mapped to the on-disk 
chunk range, for faster throughputs during query processing. 

NUMA Afinity Mappings 

As previously mentioned, the RDBMS maintains auxil 
iary mapping data to track which database objects have both 
PF data and MF data, according to an embodiment. When 
NUMA is enabled, the auxiliary mapping data maintains 
NUMA affinity information in addition to the association 
between the on-disk range and the corresponding in-memory 
chunk. Thus, for any given on-disk range, the database 
server may determine whether there is a corresponding 
in-memory chunk and, if so, the NUMA node location where 
the in-memory chunk resides. 

Referring to FIG. 15, it is a table illustrating an auxiliary 
map that includes NUMA affinity information, according to 
an embodiment. Table 1500 includes on-disk range column 
1502, in-memory chunk identification column 1504, and 
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NUMA affinity column 1506. On-disk range column 1502 
identifies an on-disk page range that maps to the correspond 
ing in-memory chunk identified by in-memory chunk iden 
tification column 1504. NUMA afinity column 1506 iden 
tifies the NUMA node location where the in-memory chunk S 
resides. For example, on-disk blocks 1 to 100 map to 
in-memory chunk 1410, which resides in local memory on 
NUMA node 1404. Similarly, on-disk blocks 101 to 200 
map to in-memory chunk 1412 and NUMA node 1406, on 
disk blocks 201 to 300 map to in-memory chunk 1414 and 
NUMA node 1408, etc. 

In addition or as an alternative to maintaining NUMA 
affinity information in the auxiliary maps, the NUMA affin 
ity information may be maintained within the in-memory 
segment. According to one embodiment, for each 
in-memory extent in the in-memory segment, extent map 
block 1204 includes a field that identifies the NUMA affinity 
of the corresponding in-memory extent. For example, 
assume that in-memory object 1402 is an in-memory seg- 20 
ment and that each of in-memory chunks 1410 to 1424 
corresponds to a different in-memory extent for in-memory 
object 1402. Upon allocation, each of in-memory chunks 
1410 to 1424 is registered with in-memory object 1402, 
adding a corresponding entry to the extent map block. When 25 
registering the in-memory extent, the NUMA affinity infor 
mation is added that identifies the NUMA node from which 
the in-memory extent was allocated. Thus, the extent entries 
for in-memory chunks 1410, 1416, and 1422 map to NUMA 
node 1404, the extent entries for in-memory chunks 1412, 30 
1418, and 1424 map to NUMA node 1406, and the extent 
entries for in-memory chunks 1414 and 1420 map to NUMA 
node 1408. 
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NUMA-Aware Parallel Query Processing of 35 
in-Memory Chunks 

A parallel query includes a plurality of processes that 
divide the workload of a query. For example, the parallel 
query processes may include a coordinator process for 40 
coordinating execution of a query operation and a set of 
execution processes for operating on the underlying data 
base data. According to one embodiment, the coordinator 
process uses NUMA affinity information to divide and 
distribute the query workload amongst execution processes 45 
that are assigned to different NUMA nodes. Specifically, the 
coordinator process assigns execution processes on a par 
ticular NUMA node to in-memory chunks that belong to the 
same NUMA node. Each execution process operates on the 
database data per the coordinators assignment to generate 50 
and output a respective result set. The coordinator collates or 
otherwise combines the result sets to generate a final result 
for the requested operation. 

According to an embodiment, the coordinator process 
uses the auxiliary maps to determine how to divide and 55 
distribute the query workload during query execution. When 
a parallel query is imitated on an in-memory enabled data 
base object, the coordinator process searches the auxiliary 
map to determine the NUMA node location for each in 
memory chunk that belongs to the in-memory object and 60 
that is required to process the query. Based on this search, 
the coordinator process determines which in-memory 
chunks belong to the same cluster. A “cluster” in this context 
is a group of in-memory chunks that belong to the same 
in-memory object and reside on the same NUMA node. For 65 
example, in-memory chunks 1410, 1416, and 1422 belong to 
a first cluster, in-memory chunks 1412, 1418, and 1424 

52 
belong to a second cluster, and in-memory chunks 1414 and 
1420 belong to a third cluster. 
Once the clusters are determined, the coordinator process 

assigns a set of one or more execution processes running on 
a particular NUMA node to the cluster corresponding to the 
particular NUMA node. Continuing with the preceding 
example, the coordinator process distributes the three clus 
ters to processes according to NUMA node location. Thus, 
the coordinator assigns a first set of execution processes 
running on NUMA node 1404 to operate on in-memory 
chunks 1410, 1416, and 1422, a second set of execution 
processes running on NUMA node 1406 to operate on 
in-memory chunks 1412, 1418, and 1424, and a third set of 
execution processes running on NUMA node 1408 to in 
memory chunks 1414 and 1420. 

Based on the coordinator assignments, each of the sets of 
execution processes accesses and returns row Subsets (or 
other results) from the corresponding NUMA nodes local 
memory. In one embodiment, execution processes only 
operate on in-memory chunks that reside in the local 
memory of the NUMA node and do not operate on in 
memory chunks that reside in remote memory. For example, 
an execution process running on NUMA node 1404 may 
process in-memory chunk 1412 to generate a first result. 
Once complete, the execution process may operate on in 
memory chunk 1418 to generate a second result since 
in-memory chunk 1418 also resides in local memory. How 
ever, the process does not operate on in-memory chunks 
1414, 1418, 1420, and 1424 since these in-memory chunks 
reside in remote memory with respect to NUMA node 1404. 

According to one embodiment, execution processes run 
ning both across different NUMA nodes and within the same 
NUMA node operate in parallel. For example, a first execu 
tion process running on CPU 1306a may operate on a first 
in-memory chunk in memory 1310a. While the first execu 
tion process is operating on the first in-memory chunk, a 
second execution process running on CPU 1306i may oper 
ate on a second in-memory chunk in memory 1310a and/or 
a set of one or more processes running on CPUs 1308a to 
1308k may operate on one or more in-memory chunks 
residing in memory 1310l. Thus, parallel execution may 
happen on both an intra-node and inter-node basis to 
improve query processing times. 

In some instances, parallel query processing may be 
distributed across both in-memory chunks and on-disk 
chunks. For example, some portions of a database object 
may reside in memory in a mirror format, while other 
portions may reside only on disk in a persistent format. 
When a parallel query is initiated on an in-memory enabled 
database object, according to one embodiment, the coordi 
nator process first reads a table of on-disk pages that 
constitute the database object. For each on-disk page range, 
the coordinator uses the auxiliary map to check which 
portions of the database object are in memory and which 
portions are not in memory. For the portions that are in 
memory, parallel processing is performed as described 
above Such that all execution processes operate only on data 
from their local memory without operating on in-memory 
chunks in remote memory. For the portions that are on-disk, 
the coordinator assigns a set of execution processes to Scan 
the data from disk. 
The query operations that are performed by the parallel 

query processes may vary from implementation to imple 
mentation and based on the query. Example query operations 
that may be performed may include, without limitation, 
scanning, filtering, sort, and/or aggregation operations. For 
instance, each execution process may scan for rows that 
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satisfy a particular predicate, sort rows based on a key value, 
or aggregate column values for a particular table. The 
coordinator process receives one or more result sets from 
each NUMA node and combines the result sets into a final 
result. The manner in which the coordinator process com 
bines the result sets depends on the particular query opera 
tion. With a scan or filter operation, for example, combining 
the result sets may involve collating the returned rows into 
a final table. With a sort operation, the coordinator may 
perform a final sort of the result sets. As indicated above, 
these operations may be distributed across NUMA nodes 
such that processes affined to an individual NUMA node 
only operate on data in the local memory of the NUMA 
node. 
What is claimed is: 
1. A method comprising: 
storing, by a database server instance that is executing on 

a particular machine, a plurality of in-memory chunks 
that contain data from an object; 

wherein the plurality of in-memory chunks include a first 
in-memory chunk and a second in-memory chunk; 

wherein the first in-memory chunk includes a first portion 
of the object; 

wherein the second in-memory chunk includes a second 
portion of the object; 

wherein the first portion of the object is different than the 
second portion of the object; 

wherein each in-memory chunk of the plurality of in 
memory chunks is stored in a corresponding memory 
area within volatile memory of the particular machine; 

wherein the particular machine includes a plurality of 
compute nodes: 

wherein the plurality of computer nodes includes a first 
compute node and a second computer node; 

wherein each compute node of the plurality of compute 
nodes has direct access to all memory areas within the 
Volatile memory of the particular machine; 

wherein each compute node, of the plurality of compute 
nodes, has a local memory area, within the Volatile 
memory of the particular machine, that the compute 
node is able to access more efficiently than other areas 
of the volatile memory of the particular machine; 

wherein storing the plurality of in-memory chunks 
includes: 
assigning, by the database server instance, each in 
memory chunk of the plurality of in-memory chunks 
to one or more compute nodes of the plurality of 
compute nodes; and 

causing each in-memory chunk of the plurality of 
in-memory chunks to be loaded into one or more 
local memory areas of the one or more compute 
nodes to which the in-memory chunk is assigned; 

wherein the step of assigning each in-memory chunk 
includes: 
assigning the first in-memory chunk to the first com 

pute node; and 
assigning the second in-memory chunk to the second 
compute node; 

storing, by the database server instance, an in-memory 
map that indicates the one or more compute nodes to 
which each of the plurality of chunks is assigned. 

2. The method of claim 1, 
wherein the object corresponds to an on-disk object; 
wherein the first in-memory chunk stores data from a first 

on-disk chunk of the on-disk object; and 
wherein the second in-memory chunk stores data from a 

second on-disk chunk of the on-disk object. 
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3. The method of claim 2, wherein the step of assigning 

each memory chunk comprises: 
selecting, to store the first in-memory chunk in Volatile 
memory, the first compute node from a plurality of 
compute nodes by applying a hash function to a first 
page address of the first on-disk chunk; 

selecting, to store the second in-memory chunk in Volatile 
memory, the second compute node from a plurality of 
compute nodes by applying the hash function to a 
second page address of the second on-disk chunk. 

4. The method of claim 2, wherein the in-memory map 
indicates that the first in-memory chunk corresponds to the 
first on-disk chunk and that the second in-memory chunk 
corresponds to the second on-disk chunk. 

5. The method of claim 2, wherein the first in-memory 
chunk stores data from the first on-disk chunk in a mirror 
format and the second in-memory chunk stores data from the 
second on-disk chunk in the mirror format. 

6. The method of claim 1, wherein the step of assigning 
each memory chunk comprises selecting the first compute 
node from a plurality of compute nodes and the second 
compute node from the plurality of compute nodes using a 
round-robin distribution wherein the plurality of in-memory 
chunks are evenly distributed across the plurality of compute 
nodes. 

7. The method of claim 1, further comprising: 
allocating a plurality of Stripes from Volatile memory; 
wherein the step of allocating the plurality of stripes from 

Volatile memory includes: 
allocating, from a first memory area that is local to the 

first compute node, a first set of stripes; 
allocating, from a second memory area that is local to 

the second compute node, a second set of Stripes; 
wherein each stripe in the first set of stripes includes a 

contiguous chunk of memory of the first memory area; 
wherein each Stripe in the second set of Stripes includes a 

contiguous chunk of memory of the second memory 
aca. 

8. The method of claim 7, wherein the plurality of stripes 
are allocated across a plurality of compute nodes in a 
round-robin distribution such that each compute node of the 
plurality of compute nodes has approximately the same 
number of stripes. 

9. The method of claim 7, further comprising: 
sending, by the database server instance to the first 

compute node, a first request to allocate space for the 
first in-memory chunk; 

sending, by the database server instance to the second 
compute node, a second request to allocate space for 
the second in-memory chunk; 

wherein the first compute node satisfies the first request 
using at least one stripe from the first set of stripes; 

wherein the second compute node satisfies the second 
request using at least one stripe from the second set of 
stripes. 

10. The method of claim 1 wherein the first compute node 
and the second compute node are non-uniform memory 
access (NUMA) nodes; wherein a first memory controller 
that controls access to a first memory area of the first 
compute node is connected to a second memory controller 
that controls access to a second memory area of the second 
compute node. 

11. One or more non-transitory computer-readable media 
storing instructions, wherein the instructions include: 

instructions which, when executed by one or more hard 
ware processors, cause storing, by a database server 
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instance that is executing on a particular machine, a 
plurality of in-memory chunks that contain data from 
an object; 

wherein the plurality of in-memory chunks include a first 
in-memory chunk and a second in-memory chunk; 5 

wherein the first in-memory chunk includes a first portion 
of the object; 

wherein the second in-memory chunk includes a second 
portion of the object; 

wherein the first portion of the object is different than the 
second portion of the object; 

wherein each in-memory chunk of the plurality of in 
memory chunks is stored in a corresponding memory 
area within volatile memory of the particular machine; 

wherein the particular machine includes a plurality of 
compute nodes; 

wherein the plurality of computer nodes includes a first 
compute node and a second computer node; 

wherein each compute node of the plurality of compute 20 
nodes has direct access to all memory areas within the 
Volatile memory of the particular machine; 

wherein each compute node, of the plurality of compute 
nodes, has a local memory area, within the Volatile 
memory of the particular machine, that the compute 25 
node is able to access more efficiently than other areas 
of the volatile memory of the particular machine; 

wherein instruction for storing the plurality of in-memory 
chunks include: 
instructions which, when executed by one or more 30 

hardware processors, cause assigning, by the data 
base server instance, each in-memory chunk of the 
plurality of in-memory chunks to one or more com 
pute nodes of the plurality of compute nodes; and 

instructions which, when executed by one or more 35 
hardware processors, cause loading each in-memory 
chunk of the plurality of in-memory chunks into one 
or more local memory areas of the one or more 
compute nodes to which the in-memory chunk is 
assigned; 40 

wherein the step of assigning each in-memory chunk 
includes: 
assigning the first in-memory chunk to the first com 

pute node; and 
assigning the second in-memory chunk to the second 45 
compute node; 

storing, by the database server instance, an in-memory 
map that indicates the one or more compute nodes to 
which each of the plurality of chunks is assigned. 

12. The one or more non-transitory computer-readable 50 
media of claim 11, 

wherein the object corresponds to an on-disk object; 
wherein the first in-memory chunk stores data from a first 

on-disk chunk of the on-disk object; and 
wherein the second in-memory chunk stores data from a 55 

second on-disk chunk of the on-disk object. 
13. The one or more non-transitory computer-readable 

media of claim 12, wherein the instructions for assigning 
each memory chunk include instructions for: 

Selecting, to store the first in-memory chunk in Volatile 60 
memory, the first compute node from a plurality of 
compute nodes by applying a hash function to a first 
page address of the first on-disk chunk, 

Selecting, to store the second in-memory chunk in Volatile 
memory, the second compute node from a plurality of 65 
compute nodes by applying the hash function to a 
second page address of the second on-disk chunk. 
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14. The one or more non-transitory computer-readable 

media of claim 12, wherein the in-memory map indicates 
that the first in-memory chunk corresponds to the first 
on-disk chunk and that the second in-memory chunk corre 
sponds to the second on-disk chunk. 

15. The one or more non-transitory computer-readable 
media of claim 12, wherein the first in-memory chunk stores 
data from the first on-disk chunk in a mirror format and the 
second in-memory chunk stores data from the second on 
disk chunk in the mirror format. 

16. The one or more non-transitory computer-readable 
media of claim 1, wherein instructions for assigning each 
memory chunk comprise instructions for selecting the first 
compute node from a plurality of compute nodes and the 
second compute node from the plurality of compute nodes 
using a round-robin distribution wherein the plurality of 
in-memory chunks are evenly distributed across the plurality 
of compute nodes. 

17. The one or more non-transitory computer-readable 
media of claim 11, wherein non-transitory computer-read 
able media further stores instructions including: 

instructions which, when executed by one or more hard 
ware processors, cause allocating a plurality of stripes 
from volatile memory; 

wherein the step of allocating the plurality of stripes from 
Volatile memory includes: 

instructions which, when executed by one or more hard 
ware processors, cause allocating, from a first memory 
area that is local to the first compute node, a first set of 
stripes; 

instructions which, when executed by one or more hard 
ware processors, cause allocating, from a second 
memory area that is local to the second compute node, 
a second set of stripes; 

wherein each stripe in the first set of stripes includes a 
contiguous chunk of memory of the first memory area; 

wherein each Stripe in the second set of Stripes includes a 
contiguous chunk of memory of the second memory 
aca. 

18. The one or more non-transitory computer-readable 
media of claim 17, wherein the plurality of stripes are 
allocated across a plurality of compute nodes in a round 
robin distribution such that each compute node of the 
plurality of compute nodes has approximately the same 
number of stripes. 

19. The one or more non-transitory computer-readable 
media of claim 17, wherein non-transitory computer-read 
able media further stores instructions including: 

instructions which, when executed by one or more hard 
ware processors, cause sending, by the database server 
instance to the first compute node, a first request to 
allocate space for the first in-memory chunk, 

instructions which, when executed by one or more hard 
ware processors, cause sending, by the database server 
instance to the second compute node, a second request 
to allocate space for the second in-memory chunk; 

wherein the first compute node satisfies the first request 
using at least one stripe from the first set of stripes; 

wherein the second compute node satisfies the second 
request using at least one stripe from the second set of 
stripes. 

20. The one or more non-transitory computer-readable 
media of claim 11 wherein the first compute node and the 
second compute node are non-uniform memory access 
(NUMA) nodes; wherein a first memory controller that 
controls access to a first memory area of the first compute 
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node is connected to a second memory controller that 
controls access to a second memory area of the second 
compute node. 
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