
(12) United States Patent
Vadapandeshwara et al.

USOO9684490B2

US 9,684,490 B2
Jun. 20, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

UNIFORMINTERFACE SPECIFICATION
FOR INTERACTING WITH AND
EXECUTING MODELS IN A VARIETY OF
RUNTIME ENVIRONMENTS

Applicant: ORACLE FINANCIAL SERVICES
SOFTWARE LIMITED, Mumbai (IN)

Inventors: Rajaram N. Vadapandeshwara,
Bangalore (IN); Suresh B. Singh,
Bangalore (IN); Renjith Ravindran,
Bangalore (IN); Rekha Patil, Bangalore
(IN); Nagesh Shetty, Bangalore (IN)

ORACLE FINANCIAL SERVICES

SOFTWARE LIMITED, Mumbai (IN)
Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/972,291

Filed: Dec. 17, 2015

Prior Publication Data

US 2017/O115964 A1 Apr. 27, 2017

Related U.S. Application Data
Provisional application No. 62/246,657, filed on Oct.
27, 2015.

Int. C.
G06F 9/44 (2006.01)
G06F 9/445 (2006.01)
G06F 7/30 (2006.01)
U.S. C.
CPC G06F 8/30 (2013.01); G06F 8/60

(2013.01); G06F 17730312 (2013.01)
Field of Classification Search
None
See application file for complete search history.

Corputeize:S
1. -Seix's 8scri: seafare:

isk & scar

Pre-script data structure
t 3.

s

ise-script data stricture
18

sists stiperated
- first Ex&tias

post-script data structure
i.

&assis is kill 138 " :

(56) References Cited

U.S. PATENT DOCUMENTS

6,873,979 B2
6,928,398 B1

3/2005 Fishman et al.
8/2005 Fang et al.
(Continued)

FOREIGN PATENT DOCUMENTS

EP
EP

11071.57 A2
1146687 A2

6, 2001
10, 2001

OTHER PUBLICATIONS

Patent Cooperation Treaty (PCT) International Search Report and
Written Opinion in co-pending PCT International Appl. No. PCT/
IB2016/000301 (International Filing Date of Jan. 28, 2016) having
a date of mailing of May 25, 2016 (12 pgs.).

(Continued)

Primary Examiner — Daxin Wu
(74) Attorney, Agent, or Firm — Cooper Legal Group,
LLC

(57) ABSTRACT

Systems, methods, and other embodiments associated with
the generation and execution of analytical models are
described. In one embodiment, a computer-implemented
method includes identifying a selected runtime environment
for executing an analytical model that includes analytical
expressions. A user-script data structure is generated and
provides mapping of the analytical expressions to executable
expressions of the runtime environment. A computerized
specification object is generated that includes a pre-script
data structure, the user-script data structure with the ana
lytical model, and a post-Script data structure. The pre-script
data structure specifies how the runtime environment is to
access input data to be operated upon by the analytical
model. The post-script data structure specifies how to output
results data, produced by the analytical model, from the
runtime environment. The computerized specification object
is transmitted over a computer network to the runtime

(Continued)

Computerized Runtine Environment 150

52
"Ratirisergius

Swissewer

: aari Asfpython...etc
-o-o-Wa-We-sis

54
xistine esgite

s exiss:

US 9,684,490 B2
Page 2

environment for execution of the analytical model in the
runtime environment.

20 Claims, 5 Drawing Sheets

(56) References Cited

U.S. PATENT DOCUMENTS

7,079,993 B2 7/2006 Stephenson et al.
7,881,535 B1 2/2011 McLaughlin et al.
8,392,153 B2 3/2013 Pednault et al.
8,417,715 B1 * 4/2013 Bruckhaus GO6F 17,30994

TO5/26.1
8,521,488 B2 8/2013 Kirby et al.
8,762,193 B2 6/2014 Maga et al.

2002/0169658 A1* 11/2002 Adler G06Q 10/06
705/728

2003/0023951 A1 1/2003 Rosenberg
2006/0106626 A1* 5/2006 Jeng G06Q 10/06

717/106
2006/019581.6 A1* 8, 2006 Grandcolas G06Q 40/02

717/101
2006/024.1923 A1 10, 2006 Xu et al.
2015,0293755 A1 * 10, 2015 Robins GO6F 8.35

T17,104
2016/001 1905 A1 1/2016 Mishra G06Q 10/06

T18, 102

OTHER PUBLICATIONS

Zubcoff J et al., “Integrating the Development of Data Mining and
Data Warehouses via Model-driven Engineering”. Actas de los
Talleres de las Jornadas de Ingenieria del Software y Bases de
Datos, Sistedes, 2008, vol. 2, No. 1, 2008, pp. 75-86.
Kosaku Kimura et al., “Runtime Composition for Extensible Big
Data Processing Platforms”, 2015 IEEE 8th International Confer
ence on Cloud Computing, Jun. 27, 2015, pp. 1053-1057.
XPO55272472, DOI: 10.1109/Cloud. 2015.151 ISBN: 978-1-4673
7287-9 figure 1 section II, “Models”.
IBM: “IBM SPSS Modeler 15 User's Guide”, 2012, XP055272523,
Retrieved from the internet: http://faculty. Smu.edu/tfomby
eco5385 eco6380, data/SPSS/SPSS962OModeler'62015%2OUsers
%20Guide.pdfretrieved on May 13, 2016), last paragraph of p. 17.
pp. 1-2, sections titled “IBM SPSS Modeler” and “IBM SPSS
Modeler Server.
Fethi A Rabhi et al., “ADAGE: a framework for supporting user
driven ad-hoc data analysis processes'. Computing: Archives for
Scientific Computing, Springer-Verlag, VI, vol. 94, No. 6, Mar. 30,
2012, pp. 489-519, XPO35066562, ISSN: 1436-5057, DOI: 10.1007/
S00607-012-0193-0 Figures 6-8 pp. 498-499.
The Mathworks, Inc., “Financial Toolbox', 2013, pp. 1-12; down
loaded from: http://in.mathworks.com/products/datasheets/pdffi
nancial-toolbox.pdf.
John Spooner, “Creating a SAS Model Factory Using In-Database
Analytics', from SAS Global Forum 2011, Data Mining and Text
Analytics; Paper 147-2011; pp. 1-8; downloaded from: https://
Support.sas.com/resources/papers/proceedings, 1 1/147-2011.pdf.

* cited by examiner

US 9,684,490 B2 Sheet 1 of 5 Jun. 20, 2017 U.S. Patent

US 9,684,490 B2 Sheet 2 of 5 Jun. 20, 2017 U.S. Patent

issueroesoeososos

s

88.88ssex&isitessssssows:

U.S. Patent Jun. 20, 2017 Sheet 4 of 5 US 9,684,490 B2

400

410 identify a selected computerized runtime environment,
retrieve runtime specification

420
2 Generate a user-script data structure including

instructions for mapping analytical expressions of an
analytical model to executable expressions of the

computerized runtime environment

430
Generate a computerized specification object including a
pre-script data structure, the user-script data structure,

and a post-Script data structure

440 Push the computerized specification object over a
computer network to the computerized runtime

environment for execution of the analytical model

450 Pull results data from the computerized runtime
environment based on the post-script data structure

FIG. 4

U.S. Patent Jun. 20, 2017 Sheet 5 of 5 US 9,684,490 B2

514

Process

502 504

Action

Computer

Logic

510 508

I/O Ports

I/O
interfaces

518

506
Disk car -

NetWork 520
Devices

FIG. 5

US 9,684,490 B2
1.

UNIFORMINTERFACE SPECIFICATION
FOR INTERACTING WITH AND

EXECUTING MODELS IN A VARIETY OF
RUNTIME ENVIRONMENTS

CROSS REFERENCE TO RELATED
APPLICATIONS

This disclosure claims the benefit of U.S. Provisional
Patent Application Ser. No. “62/246,657 filed Oct. 27,
2015, titled “Systems and Methods for Providing a Uniform
Interface Specification to Allow a Single-Definition Ana
lytical Model to be Plugged Into and Executed in a Variety
of Runtime Environments', inventors: Vadapandeshwara, et
al., and assigned to the present assignee, wherein the pro
visional patent application is hereby incorporated by refer
ence in its entirety.

BACKGROUND

Today, a business analyst working for a company may
develop a statistical model that is used to help understand
Some aspect of the business. The model includes computa
tional expressions that have to be executed by a computing
system that runs a specialized application for Such models.
In some cases, the model may be very complex and the
company may typically use an outside vendor (a quantitative
analysis provider) to execute the model. The outside vendor
provides a runtime environment in which to execute the
model by way of custom software. However, the runtime
environment is configured to execute computational expres
sions that are specific to the runtime environment. Thus any
input to the runtime environment must be in a specific
computer language/format that is recognized by the runtime
environment. For example, if the outside vendor is MAT
LAB runtime environment, then the statistical model Sub
mitted for execution must be created and formatted using
MATLAB runtime environment computational expressions
such that the model can be executed in the MATLAB
runtime environment. Likewise, if a different vendor is used
to execute a statistical model, then the statistical model must
be created and formatted using the computational expres
sions of that vendor. Otherwise, the statistical model is an
invalid input and will not execute in the runtime environ
ment of that vendor.
A business analyst may not be trained with respect to any

particular runtime environment, however. To simplify the
programming process, the business analyst may initially
create a statistical model using, for example, the English
language, pseudo-code, or flowcharts. The business analyst
may then work with a software programmer that is trained
with respect to a particular runtime environment and its
particular programming language. The Software program
mer then creates a program of the model that complies with
and uses computational expressions of the runtime environ
ment.

At a later date, if the business analyst or the company
decides that a new outside vendor should be used to execute
statistical models, then the existing statistical models of the
company will not function. That is because the new outside
vendor most likely provides a different runtime environment
(e.g., Python runtime environment) that requires a different
language and executes models that require different compu
tational expressions. Therefore, the existing statistical mod
els will have to be re-programmed to conform to the
computational expressions of the different runtime environ
ment. The business analyst may have to work with the same

10

15

25

30

35

40

45

50

55

60

65

2
Software programmer, or a different Software programmer,
to create new programs of the existing models that use
computational expressions of the new runtime environment.
A company may have many statistical models that have to

be reprogrammed upon Switching to a new outside vendor.
The process of reprogramming the existing models is time
consuming and costly. Reprogramming also consumes many
resources (business analysts, Software programmers, etc.).
Furthermore, the reprogramming process will have to be
repeated every time the company Switches to a new outside
vendor.

BRIEF DESCRIPTION OF THE DRAWINGS

The accompanying drawings, which are incorporated in
and constitute a part of the specification, illustrate various
systems, methods, and other embodiments of the disclosure.
It will be appreciated that the illustrated element boundaries
(e.g., boxes, groups of boxes, or other shapes) in the figures
represent one embodiment of the boundaries. In some
embodiments one element may be implemented as multiple
elements or that multiple elements may be implemented as
one element. In some embodiments, an element shown as an
internal component of another element may be implemented
as an external component and vice versa. Furthermore,
elements may not be drawn to Scale.

FIG. 1 illustrates one embodiment of a system having an
analytical application infrastructure (AAI) which is config
ured to allow an analytical model to be defined such that the
analytical model can be executed in any of a number of
different quantitative analysis provider runtime environ
mentS.

FIG. 2 illustrates another embodiment of a system having
an analytical application infrastructure (AAI) which is con
figured to allow an analytical model to be defined such that
the analytical model can be executed in any of a number of
different quantitative analysis provider runtime environ
mentS.

FIG. 3 illustrates one embodiment of a deployment archi
tecture which shows how the system of FIG. 1 appears from
a deployment perspective.

FIG. 4 illustrates one embodiment of a method, which can
be performed by the analytical application infrastructure
(AAI) of FIG. 1.

FIG. 5 illustrates an example computing device that is
configured and/or programmed with one or more of the
example systems and methods described herein, and/or
equivalents.

DETAILED DESCRIPTION

Computerized systems and methods are described herein
that are configured to allow a user (e.g., a business analyst)
to create statistical models (or other types of analytical
models). An interface is implemented that allows an ana
lytical model to be executed in multiple different types of
runtime environments (e.g., MATLAB runtime environ
ment, Python runtime environment, R runtime environment,
etc.) without having to re-generate or re-configure the ana
lytical model for a specific runtime environment that is
selected for executing the model.
The term “analytical model” is used herein generically

and may refer to a mathematical model, a business model, a
statistical model, an algorithmic model, or any combination
thereof that is configured to be readable by and input to a
computing system. For example, an analytical model may be

US 9,684,490 B2
3

defined using a series of statements (e.g., analytical expres
sions) in a document such as an extensible markup language
(XML) file.
The terms “computerized runtime environment”, “run

time environment”, “execution environment”, “statistical
runtime”, “quantitative analysis runtime', and “provider
runtime are used interchangeably herein and refer to a
computerized computational system (e.g., a web service
system) provided by a quantitative analysis provider.
The term "quantitative analysis provider” or “runtime

provider', as used herein, refers to the vendor that provides
the computerized runtime environment for executing an
analytical model.
The terms “specification' and “computerized specifica

tion object may be used interchangeably herein.
The terms “analytical application infrastructure' and

“analytical application logic' are used interchangeably
herein.

The term “push and its various forms, as used herein,
refers to sending (e.g., transmitting) data to another program
or computer without the other program or computer having
requested the data.
The term “pull” and its various forms, as used herein,

refers to requesting data from another program or computer
and receiving the data.

GENERAL OVERVIEW

In one embodiment, an analytical application infrastruc
ture (AAI) is provided. The AAI is also sometimes referred
to herein as analytical application logic. The AAI enables
execution of scripted models to be executed on one or more
nodes of a computerized runtime environment (e.g., a
remote server computer system). By configuring the AAI
with a run time parameter, model execution can be per
formed on any node, or the model can be distributed for
execution on multiple nodes. In accordance with one
embodiment, as part of the AAI, an interface and plugin
driver are provided to allow statistical models to be plugged
into a runtime environment, and to declaratively configure
processing nodes for the same.
The AAI provides an interface specification and plugin

module to allow for any statistical runtime environment to
be used for executing an analytical model. As an example,
an analytical model can be defined irrespective of an encod
ing format or syntax that is specific for executing the
analytical model in a particular runtime environment (e.g.,
MATLAB runtime environment, Scala runtime environ
ment, M-Lib runtime environment, etc.). Different runtime
environments require different encoding formats for the
input analytical model. Thus, if an analytical model is
defined in a format that is different from a format that is
expected by a runtime environment, then the analytical
model will not be recognized by the runtime environment
and cannot be executed (e.g., incompatible format). The AAI
allows for an analytical model, in one format, to be submit
ted and executed in any of various runtime environments
regardless of format. Additionally in one embodiment, the
AAI provides functionality to provide instructions to a
runtime environment that declaratively direct the processing
of the analytical model to particular hardware infrastructure
(e.g., local nodes, remote nodes, a Hadoop cluster) of the
runtime environment.

In one embodiment, the AAI generates an execution
model or specification that includes a “pre-script' block, a
“user-script block, and a “post-script' block. The specifi
cation is generated and maintained as a computerized object

10

15

25

30

35

40

45

50

55

60

65

4
(i.e., a computerized specification object), in accordance
with one embodiment. From one perspective, the three
components together (pre-script block, user-script block,
post-Script block) create an executable artifact that can be
declaratively associated to a designated runtime environ
ment of a particular quantitative analysis provider and
additionally can be targeted to run on local or remote nodes,
or on a Hadoop cluster. In one embodiment, the pre- and
post-Script plugins are well specified. The pre-script and the
post-Script may be implemented by the quantitative analysis
provider (runtime environment—host server side) or by a
provider of the analytical application logic (client side).

In accordance with one embodiment, the AAI includes the
following distinct parts in a computerized specification
object (specification):

an initiation block that establishes credentials for the
modeler to own, work with data, and execute the
model.

a pre-script block that binds model variables to data
handles, prepares the workspace for models, prepares
provider specific syntactic structures to query for data,
and prepares input/output data structures.

a core business logic represented at least in part by a
statistical model (model definition) of quantitative
analysis techniques in a user Script block along with
bindings to variable/static parameters and place-hold
ers. The core business logic automatically determines
the runtime environment to bind against based on
meta-information associated with the user-script block.
For example, the meta-information identifies a particu
lar runtime environment that has been selected (from a
group of runtime environments) for executing the sta
tistical model. Therefore changing the meta-informa
tion associated with the user-script block switches the
runtime environment (and thus the provider) without
change to the model definition (i.e., the analytical/
statistical model).

a post processing block (post-script block) that prepares
an output of the execution for downstream consump
tion.

a configuration block that holds information indicating
what hardware to use within a selected runtime envi
ronment to run the model (e.g., local nodes, remote
nodes, a cluster of nodes) and other environmental
parameters.

Much of the description herein is provided with respect to
referring to a statistical model. However, other types of
analytical models are possible as well. A system is config
ured that is able to access, for example, MATLAB runtime
environment and Python-based runtime environments and
have statistical models execute against both of them. The
statistical model is a single definition model. Typically
today, if an algorithm is being developed against MATLAB
runtime environment, MATLAB-specific code is written.
Similarly, if an algorithm is being developed against Python
runtime environment, Python-specific code is written. In one
embodiment, one specification (script, not code) of a statis
tical model (single definition model) is able to be defined
that can bind with and run with the underlying MATLAB
runtime environment, Python runtime environment, or other
runtime environment without the model being coded in the
specific code of the runtime environment.
The functions that a statistical model performs can be

specified in a runtime-agnostic manner (i.e., via a script).
Typically a statistical model has a set of independent vari
ables (input data) and a set of dependent variables (results
data). For example, a dependent variable may be the prob

US 9,684,490 B2
5

ability of a certain segment of the population defaulting on
their home loan. The independent variables might be gross
domestic product (GDP), unemployment rate, inflation rate,
and historical average of balances on home loans. The model
may operate on these four (4) independent variables to
calculate or determine the probability of default. The four
(4) independent variables may be subjected to various
analytical algorithms as defined by the model (e.g., maybe
a linear regression algorithm or some other statistical algo
rithm that is run in a number of steps to finally determine the
end result, which is the probability of default).

In one embodiment, a declarative specification (a com
puterized specification object) is generated that is based on
a declarative paradigm (e.g., spoken English). In the com
puterized specification object, variables are selected, the
type of computations these variables will be subjected to is
declared, and the type of output result is defined. This
declarative specification is then stored, for example, in an
XML format. The specification can then be sent to an
underlying quantitative analysis provider (e.g. MATLAB
runtime environment or Python runtime environment) Such
that three separate distinct sets of instructions from the
specification are input into the runtime environment of the
quantitative analysis provider.

In one embodiment, the first set of instructions is a
pre-script which instructs the quantitative analysis provider
runtime environment to connect to a particular database and
map certain tables and columns to the variables that are
being sent. The second set of instructions is the user-Script
which is the algorithm or statistical model which queries the
quantitative analysis provider to provide the expression(s) to
compute, for example, a linear regression or some other
mathematical function(s). Based on what the runtime envi
ronment provides, the four (4) independent variables, from
the above example, that were queried and defined in the
pre-script, are input into that expression. The third set of
instructions is a post-script where the runtime environment
is directed, after having computed the output results, to store
the output results in a placeholder that was sent as the
dependent variable place holder. The approach of having a
pre-script, a main user-Script, and a post-Script is uniform
with respect to the underlying runtime environment (quan
titative analysis engine) of a quantitative analysis provider.
That is, the same specification structure having a same
analytical model defined in a user-script (single-definition)
can be used with any underlying runtime environment
without having to re-write the analytical model or deviate
from the specification structure (pre-Script, user-Script, post
Script).

In one embodiment, the runtime environment of the
quantitative analysis provider (e.g., MATLAB runtime envi
ronment or Python runtime environment) does not have to
be programmed to recognize specifics of the analytical
application infrastructure (AAI) or any specific interface
information. The scripts guarantee that the model will work
in the runtime environment. Customers do not want to be
restricted into having to rely on one quantitative analysis
provider to execute their statistical models. The mechanisms
described herein allow the customer to move from one
runtime environment to another without having to repro
gram existing statistical models into a new language with
new expressions that are specific to a runtime environment.
With the present system and method, the statistical models
defined in the AAI environment can be inputted for execu
tion with different runtime environments.

FIG. 1 illustrates one embodiment of a computerized
system 100 having an analytical application infrastructure or

10

15

25

30

35

40

45

50

55

60

65

6
logic 110. The analytical application logic 110 is configured
to allow an analytical (e.g., statistical) model to be defined
and be deployed/submitted for execution in any of a number
of different runtime environments without having to repro
gram/rewrite the statistical model to comply with specific
requirements of a selected runtime environment. The ana
lytical application logic 110 includes a Java engine 112,
which Supports generation of a computerized specification
object 114 (specification). The computerized specification
object 114 includes a pre-script 115, a user-script 116, and a
post-script 117. The computerized specification object 114
may also include a computerized initiation object and a
computerized configuration object, as discussed later herein.
The computerized system 100 also includes a database

device 120 operably connected to analytical application
logic 110 directly and/or via a network interface to allow
access to the database device 120 via a network connection.
In accordance with one embodiment, the database device
120 is configured to store and manage computerized objects
and data structures (e.g., records of independent variable
data and output results data for a statistical model) associ
ated with analytical application logic 110 in a database
system (e.g., an analytical application database system).
The computerized system 100 also includes user interface

logic 130 operably connected to analytical application logic
110. In one embodiment, user interface logic 130 is config
ured to generate a graphical user interface (GUI) to facilitate
user interaction with analytical application logic 110. For
example, user interface logic 130 includes program code that
generates and causes the graphical user interface to be
displayed based on an implemented graphical design of the
interface. In response to user actions and selections via the
GUI, associated aspects of Scripts and model definitions may
be manipulated.
The computerized system 100 also includes a display

screen 140 operably connected to analytical application
logic 110. In accordance with one embodiment, the display
screen 140 is implemented to display views of and facilitate
user interaction with a graphical user interface (GUI) gen
erated by user interface logic 130 for viewing and updating
information associated with single definition analytical
modeling. In one embodiment, analytical application logic
110 is a centralized server-side application that is accessed
by many client devices/users. Thus the display screen 140
may represent multiple computing devices/terminals that
allow users to access and receive services from analytical
application logic 110 via networked computer communica
tions.

Furthermore, user interface logic 130 is configured with
an input parameter for selecting one runtime environment
from a list of available runtime environments, which is
selectable by a user. The input parameter identifies a runtime
environment to which a selected analytical model will be
deployed for execution. In one embodiment, the selected
runtime environment is stored as meta-information. In the
following discussion, the selected runtime environment will
be referred to as computerized runtime environment 150
(see FIG. 1) that is hosted by a quantitative analysis provider
on a remote computer system.
The user interface logic 130 is also configured to facilitate

outputting and displaying of results data via the graphical
user interface on the display screen 140. Results data is data
generated by and received from the computerized runtime
environment 150 after executing the selected analytical
model that was submitted for execution. Further discussion
of the computerized runtime environment 150 follows later

US 9,684,490 B2
7

herein. Other types of results data are possible as well, in
accordance with various other embodiments.

Other embodiments may provide different logics or com
binations of logics that provide the same or similar func
tionality as analytical application logic 110 of FIG.1. In one
embodiment, analytical application logic 110 is an execut
able application including algorithms and/or program mod
ules configured to perform the functions of the logic when
executed by a processor. The application is stored in a
non-transitory computer storage medium. In one embodi
ment, functions of analytical application logic 110 are
implemented as modules stored on a non-transitory com
puter-readable medium where the modules include instruc
tions executable by at least a processor to perform the
functions described herein. Collectively, analytical applica
tion logic 110, database device 120, user interface logic 130,
display screen 140, and the operable connections there
between are referred to herein as the analytical application
environment.

In one embodiment, FIG. 1 shows blocks that describe
components that are generated and included into a specifi
cation (a computerized specification object) by the analytical
application logic 110. The specification is generated to
include a pre-script 115, a user-Script 116, and a post-script
117 in the form of data structures. The user-script 116 is
generated to include the actual quantitative analysis block
(statistical model for execution is added to the user-script
data structure). FIG. 1 shows how the pre-script 115, user
script 116, and post-script 117 are input to a computerized
runtime environment 150 of a quantitative analysis provider.
In FIG. 1, R runtime environment is used as the quantitative
analysis engine (also shown with MATLAB runtime envi
ronment, Python runtime environment, etc. as alternative
quantitative analysis engines). The basic concept can work
with a traditional setup or can be implemented using a
clustered Hadoop architecture. The script does not have to
contain information about the underlying hardware specifi
cation or how the script will be run by the quantitative
analysis provider.
The quantitative analysis provider is the entity (e.g.,

vendor with a host server) that provides the runtime envi
ronment for executing statistical models. The analytical
application logic provider is the entity (e.g., client) that uses
the analytical application logic 110 to Submit one or more
statistical models for execution on a runtime environment.
Recall that there are multiple different runtime environments
available for selection, each of which can execute statistical
models in a particular format. The specification (pre-script,
user-Script, post-script) instructs the selected runtime envi
ronment as to what is to be implemented. For example, a
runtime environment can implement the pre-script and post
Script directly (e.g., generated and implemented on the host
server). Alternatively, the quantitative analysis provider can
publish a specification of the runtime environment that
describes syntax, format, etc., of functions of the runtime
environment (e.g., describes what functions are internally
called in order to connect to, for example, a database to
perform a query). By obtaining the specifications from
multiple different runtime environments, a database of run
time specifications may be generated in a data structure form
and organized by each identified runtime environment. A
runtime specification may be used to generate translation
instructions for the user-script 116, as will be described later.
Then the analytical application logic 110 is configured to
generate and implement the pre-script and the post-script
according to the runtime specification of a selected runtime
environment. Both approaches are feasible.

10

15

25

30

35

40

45

50

55

60

65

8
Therefore, if the quantitative analysis provider wants

clients to implement the pre-script and post-Script, the
quantitative analysis provider would have to share, with the
clients, runtime specifications and syntax including how to
connect to a database to perform a query within the runtime
environment. Then, a client that operates the analytical
application logic 110 can implement the pre-script and
post-Script, given the specifications from the quantitative
analysis provider. Alternatively, the quantitative analysis
provider can implement the pre-script and post-Script inter
nally for a runtime environment for operating with a par
ticular client, for example, if the quantitative analysis pro
vider does not want to reveal the runtime specifications to
clients.
One embodiment provides for the configuring of the

specification (pre-script, user-Script, post-script) and the
ability to input the specification to a designated runtime
environment of a quantitative analysis provider and initiate
execution. The script-based specification is a neutral
approach to specifying a model Such that the model can
work with any runtime environment. That is, the same model
is executable in different runtime environments even though
each runtime environment requires different expressions for
a model. Often times, the underlying statistical code (e.g.,
for MATLAB runtime environment, etc.) is proprietary. But
the user of the AAI does not have to be knowledgeable of or
understand the proprietary code in order to make use of the
runtime environment to execute the statistical models that
have been developed. The user statistical model is a busi
ness-level model that stays intact, no matter where the
statistical model is inputted for execution (MATLAB run
time environment, Python runtime environment, R runtime
environment, etc.). The specification (pre-script, user-Script,
post-Script) is essentially a user interface specification. In
one embodiment, the pre-script and the post-script are
reconfigured to be particular to a particular runtime envi
ronment. For example, based on how the runtime environ
ment connects to a database and queries the database, the
Scripts include commands or code according to a protocol of
the runtime environment. Thus the scripts provide the inter
face to allow the statistical model to be executable in the
runtime environment.
The pre-script is the block generated by the analytical

application logic 110 that instructs the computerized runtime
environment 150 as to how to get/read data (e.g., the input
variable data) that is used by expressions in the analytical
model. In one embodiment, the data resides in an analytical
application infrastructure database device 120. That is, how
the data gets extracted out of the database device 120 and
provided to the computerized runtime environment 150 is
defined in the pre-script block. For example, in one embodi
ment, the pre-script data structure 115 specifies how the
computerized runtime environment is to connect to the
database device 120 to access the independent variable data.
The pre-script accesses the data and organizes the data

into a format Such that the external runtime environment can
correctly read and recognize the data that is inputted as part
of the analytical model. For example, one runtime environ
ment may be configured to read data as a list of values. Thus
if the input data is not formatted as a list of values, the input
data will not be read correctly. Another runtime environment
may be configured to read the data in a table format. A third
runtime environment may read the data in a specific format
Such as, for example, an Excel format. That is, each quan
titative analysis provider may treat the data in a different
manner that suits their runtime environment. Therefore, the
pre-script is constructed or configured accordingly for the

US 9,684,490 B2

runtime environment of a particular quantitative analysis
provider. The pre-script allows connection to the data envi
ronment, allows the data be extracted out, and massages the
data in Such a way that the runtime environment can
properly observe the data.
The user-script is a main part of the specification object

114. The user-Script specifies the analytical (e.g., statistical)
model that computes, for example, a probability of default
ing on a loan for a group of customers based on four (4)
independent variables using linear regression, among other
statistical and mathematical methods. That is, the user-script
specifies the series of computational (e.g., statistical) steps
or operations (as analytical expressions) to be performed on
the independent variable data. The quantitative analysis
provider provides the actual statistical and mathematical
functions (executable expressions) that will operate on the
data and compute the result in the runtime environment 150.
The input data is made available by the pre-script. In one
embodiment, the user-Script includes instructions for map
ping the analytical expressions that make up the analytical
model to corresponding executable expressions of the com
puterized runtime environment. Thus the user-Script pro
vides a mechanism for allowing the runtime environment to
execute the analytical model that is input, even though the
analytical model itself has an unrecognizable/incompatible
format.

For example, Suppose there is one way in which a linear
regression function will input and operate on three (3)
variables. Therefore, once the input data is processed
through the pre-script methodology (accessed, massaged,
etc.), the data is bound to the underlying algorithm through
well-known mathematical principles, and the algorithms are
called in the sequence instructed in the user-script. There
fore, the runtime environment, during execution, cannot
alter the underlying mathematical basis for how an algo
rithm is instantiated and how the data is presented to the
placeholders in the algorithm.

For example, a linear regression algorithm may be con
figured to input three (3) variables separated by commas in
parentheses. Such a mathematical format cannot be changed.
Even though the data may be presented to a runtime envi
ronment as a list of values for a linear regression algorithm,
the name or expression of the algorithm also has to be
recognized and identifiable by the runtime environment. For
example, the MATLAB runtime environment may call the
algorithm “linear regression, the Python runtime environ
ment might call the algorithm “LREG', and a third quanti
tative analysis provider runtime environment may call the
algorithm “LR. The names, formats, and other rules of a
runtime environment can be regarded as a syntax of the
runtime environment that is defined by a runtime specifica
tion. As previously mentioned, a database of runtime speci
fications (in data structure form) can be generated from a
variety of available runtime environments.

Therefore, in one embodiment, in response to a selected
runtime environment, a corresponding runtime specification
is analyzed from the database and the user-Script is gener
ated to include expressions that are specific/compatible with
the syntax of the selected runtime environment. Therefore,
in one embodiment to make an analytical model developed
in the analytical application environment compatible with a
different runtime environment, the user Script includes State
ments that re-map the names of the steps in the analytical
model to the names and syntax used by the runtime envi
ronment for corresponding stepsfactions based on the run
time specifications. Thus in one embodiment, the user Script
is configured to translate the statements of the analytical

10

15

25

30

35

40

45

50

55

60

65

10
model (that has no specific format or syntax) to statements
that comply with the syntax of a selected runtime environ
ment.

In one embodiment, a runtime specification from a quan
titative analysis provider may include information or data
for how to take an output result and read the output result
back from the algorithm. Such information or data can be
used in the post-script to define the outputting of data. For
example, if the output is a probability of default for a group
of customers that will default on a home loan, the runtime
environment may return the value in a number of different
ways (e.g., numerically, as a string, as some binary value
that has to be decoded back to a numeric format). The
post-Script is configured accordingly such that results can be
written back or output back to the analytical application
environment (e.g., to the database device 120). Thus, knowl
edge of the runtime specification of how to read back the
output from the runtime environment is used to configure the
post-Script correctly. Therefore, again, the post-Script can be
tailored to a particular runtime environment. For example, in
one embodiment, the post-script data structure 117 specifies
how the computerized runtime environment is to connect to
the database device 120 to store results data.

Writing the output result back to the analytical application
environment is based on how the analytical application
environment (the client/customer system) is configured.
However in one embodiment, post-Script expressions can be
transmitted from the client system to the runtime environ
ment to be implemented within the runtime environment. In
this manner, the runtime environment can be configured to
operate with requirements of the client system for outputting
execution results.
When a customer wants to change from one quantitative

analysis provider to another, thereby changing the runtime
environment, the pre-script and the post-script blocks are
generated to be compatible with the new runtime environ
ment. The user-script is also generated to re-map the expres
sion names of the steps or call functions used in the model
to the names/syntax of the corresponding algorithm (e.g.,
linear regression, correlation, etc.) of the new runtime envi
ronment to be compatible with the new runtime environ
ment. In one embodiment, as previously stated, the runtime
specification of the new runtime environment is retrieved
from a database and used to determine appropriate transla
tion and mapping instructions. Therefore, for the user-Script,
a mapping is performed that translates statements in the
model to corresponding statements and syntax of the run
time environment. The analytical application environment
names are taken and are mapped to the runtime environment
names. Therefore, when a customer changes quantitative
analysis providers, a new mapping is performed and gener
ated for the user-script based on the syntax of the new
runtime environment. The business analyst does not see this
mapping. Therefore, to the business analyst, the statistical
model (as defined in the user-script) has not changed and
does not have to be reprogrammed by the business analyst.

In one embodiment, there is an initiation block (e.g., a
computerized initiation object), which is part of the com
puterized specification object 114, that provides a set of
steps that occur in the analytical application environment
prior to initiating the actual execution. In another embodi
ment, the initiation block may be a computerized initiation
object that is separate from the computerized specification
object.
The initiation block defines which tables, columns, etc.

Supply the actual data. Some quantitative analysis providers
write the output results back as a file. They never read and

US 9,684,490 B2
11

write to the database device 120. Therefore, if the quanti
tative analysis provider provides that file to the analytical
application environment, the analytical application environ
ment determines what data structures are to be prepared up
front Such that there are write permissions for the quantita
tive analysis provider to write back to the file.

The initiation block is, in Some sense, executed once
depending on the underlying runtime environment. Today
execution may take place on a Linux box, tomorrow execu
tion may take place on a cluster, and the next day execution
may take place in a large UNIX IBM mainframe environ
ment. Therefore, depending on the underlying deployment
environment, the initiation block gets executed once at the
start of the analytical application infrastructure process.
The configuration block (e.g., a computerized configura

tion object) is used to synchronize one or more of the system
elements to a set of parameters. The set of parameters may
include, for example, parameters related to the location of
remote files (Remote File Location), the identification of
edge nodes (Edge Node Identifier), hive sessions (Hi
ve Session Parameters), and the identification of functions
(Function ID). Also, the configuration block may define
where the model is being run (local nodes, remote nodes, on
a cluster) in the computerized runtime environment. There
fore, in one embodiment, host names are shared within the
system such that the system is instructed to and/or can
identify where functions are executing, where data gets
handed off, where results are returned, which folder to
access, etc. These parameters and/or instructions are set up
and defined in the configuration block. The computerized
configuration object may be part of the computerized speci
fication object or may be a totally separate object, in
accordance with various embodiments.

System Execution Flow
Referring again to FIG. 1, the left side of FIG. 1 shows

one embodiment of the analytical application environment
which includes the analytical application logic 110. There is
also the database device 120 which includes a meta model
database where objects defined with the analytical applica
tion logic 110 get stored. FIG. 1 shows a dotted connection
to the meta-model database 120, which is a depository that
holds all of the defined objects. Even the model definition is
an object that gets deposited into the meta-model database
120.
The application tier of the AAI is the Java Engine 112, in

accordance with one embodiment. The key framework in the
application tier is the modeling framework where the sta
tistical models are built (e.g., by human business analysts).
The core modeling framework is where a business user (a
human business analyst) declaratively defines the intent of
the model which results in a computerized specification
object 114 (specification) having at least a pre-script, a
user-Script, and a post-script.

In one embodiment, the computerized specification object
114 is represented as an XML file. The contents of the XML
file is, for example, spoken English in Some sense Such that
anyone literate in the English language can look at the XML
file and understand what the model definition means. There
fore, the specification (pre-script, user-Script, post-Script) is
a translation of a notation that was traditionally written in the
awkward and cryptic language of statistical programming,
into a notation that a business person can understand. This
is represented in FIG. 1 as the “Model Runtime Node(s)
config. in XML file 118. The XML file 118 represents the
intent plus everything else that finally goes into executing
the model (e.g., the specification, the initiation block, and

10

15

25

30

35

40

45

50

55

60

65

12
the configuration block). The XML file 118 becomes a single
reference point to understanding the model and the execut
ing dynamics of that model.

FIG. 1 also shows a representation of that same model
definition being input to a node where the computerized
runtime environment 150 performs execution of the model
by first taking the model definition and binding the model
definition to the actual implementation (e.g., R-based run
time engine 152 or MATLAB-based or Python-based run
time engine 154). Then the physical aspect of the execution
can be input to a Hadoop node (e.g., a cluster of commodity
hardware). These various executable hardware system nodes
are determined by the quantitative analysis provider for
various reasons/preferences. FIG. 1 shows an execution
environment that is configured to run in a Hadoop environ
ment. The Hadoop environment has a single main node 156
and a couple of worker slave nodes 157 and 158 where the
analytical model is actually executed, clock cycle by clock
cycle.

Referring to FIG. 2, the system 200 of FIG. 2 is similar
to the system 100 of FIG. 1, except the system 200 of FIG.
2 uses a file-based representation of data. In FIG. 1, there is
no representation of such a file. In FIG. 2, there is a block
210 labeled “hdfs file created for the Model input dataset and
variables'. An halfs file is a Hadoop Distributed File System
file. The system 200 shows that the data used for the models
execution can be shared either by allowing the quantitative
analysis provider runtime environment to connect to the AAI
data repository (database) 120, or by providing a file-based
representation (block 210) of the data such that a quantita
tive analysis provider runtime environment does not have to
connect to the AAI data repository 120. To that extent, the
quantitative analysis provider runtime environment can be
completely agnostic to the existence of the analytical appli
cation logic 110 in any form or manner. The hafs file of
block 210 becomes the conduit for getting data to the
quantitative analysis provider execution environment 150
and getting result data back.

FIG. 3 illustrates one embodiment of a deployment archi
tecture which shows how the system 100 of FIG. 1 appears
from a deployment perspective. The analytical application
environment 310 is on the right side of FIG. 3 and the
quantitative analysis provider environment 320 is on the left
side of FIG. 3. As shown in FIG. 3, the pre-script 322 and
the post-script 324 parts of the specification have been
transmitted (pushed) from the analytical application envi
ronment 310 to the quantitative analysis provider environ
ment 320 as plugins, and the statistical model has been input
to (pushed to) the quantitative analysis provider environ
ment from the analytical application environment.
The pushing process shown in FIG. 3 is how execution is

initiated, in accordance with one embodiment. Block 326 of
FIG. 3 is where the provider runtime environment 320
executes the analytical model and can be spread out over a
number of nodes depending on the complexity of the ana
lytical model and the amount of data to be processed. The
post-Script 324 is configured to write back to a disk or an
hdfs file 328. The file is read back via a receiving (pulling)
process and is posted to the AAI database device 312 which
is shown on the right in FIG. 3. The pulling process is a
network communication process that includes transmitting a
request for data to another computer and, after the computer
responds with output results, receiving the output results
from the computer. The Hive Managed section 330 on the
bottom left in FIG. 3 shows the distributed parts of the
cluster that are performing the different executable tasks.

US 9,684,490 B2
13

FIG. 4 illustrates one embodiment of a method 400, which
can be performed by the analytical application logic 110 of
FIG. 1. Method 400 describes operations of the analytical
application logic 110 and is implemented to be performed by
the analytical application logic 110 of FIG. 1, or by a
computing device configured with an algorithm of the
method 400. For example, in one embodiment, method 400
is implemented by a computing device configured to execute
a computer application. The computer application is con
figured to process data in electronic form and includes stored
executable instructions that perform the functions of method
400.
Method 400 will be described from the perspective of

FIG. 1, where the analytical application logic 110 is part of
the computerized system 100 that provides a user interface
and translation mechanism for Submitting an analytical
model to a selected runtime environment from a group of
available runtime environments. Again, an analytical model
can be described as a mathematical model, a business model,
a statistical model, an algorithmic model, or any combina
tion thereof. For example, an analytical model may be
defined using a series of statements (e.g., analytical expres
sions) in a computerized document Such as an extensible
markup language (XML) file. An analytical model is gen
erated by, for example, a business analyst using analytical
expressions that are uniform in the analytical application
environment. The method 400 allows a business analyst or
other operator to select a runtime environment from a group
of available runtime environments for executing an analyti
cal model. Thus, the method 400 provides a mechanism to
easily switch from one runtime environment to a different
runtime environment, to actually execute the analytical
model, without having to modify or reprogram the analytical
model.
Upon initiating method 400 to begin the process of

Submitting an analytical model for execution, at block 410.
an input parameter is read from the user interface that
identifies a selected runtime environment. In one embodi
ment, the identified runtime environment is stored as meta
information. In one embodiment, a list/group of available
runtime environments may be displayed to allow a user to
make a selection. A runtime specification for the selected
runtime environment is then retrieved from a database as
previously described. The runtime specification defines at
least syntax and functions/statements of the associated run
time environment and this data is used for generating
appropriate instructions for the user-script. Block 410 may
also include identifying the analytical model from a group of
existing analytical models that is to be submitted for execu
tion. The model may be identified from a user input via the
user interface, and then the method includes retrieving the
model from a database or other storage location that stores
the identified model. As previously explained, the analytical
model includes analytical expressions that are defined using
a format that is not compatible with the runtime environ
ment.

At block 420, a user-script data structure is generated. The
retrieved runtime specification is used to generate instruc
tions for mapping Statements of the analytical model to
equivalent/corresponding statements of the runtime environ
ment. For example, the user-Script data structure includes
instructions for mapping the analytical expressions of the
analytical model to executable expressions of the comput
erized runtime environment based on the meta-information.
The executable expressions may include multiple computa
tional steps to be executed in sequence by the computerized
runtime environment, in accordance with one embodiment.

10

15

25

30

35

40

45

50

55

60

65

14
In one embodiment, the user-Script data structure specifies a
sequence of analytical steps of the analytical model to be
performed by the computerized runtime environment on
input data. The instructions of the user-script data structure
are used by the runtime environment to properly read and
execute the analytical model even though the analytical
model is defined in a format unrecognized by the runtime
environment. In one embodiment, the selected analytical
model to be executed is added to/included with the user
Script data structure.
At block 430, a computerized specification object is

generated. The computerized specification object includes
the user-Script data structure and the analytical model to be
executed, a pre-script data structure, and a post-Script data
structure as previously described. The post-Script data struc
ture specifies how to output results data produced by the
analytical model from the computerized runtime environ
ment. The pre-script data structure specifies how the com
puterized runtime environment is to access input data (e.g.,
independent variable data) to be operated upon by the
analytical model.

For example, the pre-script data structure may specify
how the computerized runtime environment is to connect to
a database device to access input data to be operated upon
by the analytical model. Alternatively, the pre-script data
structure may specify how input data to be operated upon by
the analytical model is to be read by the computerized
runtime environment from a data file.
At block 440, the computerized specification object

(which includes the analytical model) is pushed over a
computer network to the selected computerized runtime
environment for execution of the analytical model by the
computerized runtime environment. Again, the term
“pushed' and its various forms, as used herein, refers to
sending (e.g., transmitting) data to another program or
computer (e.g., the computerized runtime environment) via
network communications without the other program or
computer having requested the data. Execution of the com
puterized specification object in the runtime environment
may be initiated upon being received at the runtime envi
ronment, in accordance with one embodiment.
The analytical model is caused to be executed by the

selected runtime environment in accordance with at least the
instructions for mapping contained in the user-Script data
structure. The mapping instructions allow the runtime envi
ronment to properly read and execute the analytical model
thereby making the analytical model compatible for execu
tion in the runtime environment. Thus the computerized
specification object functions as an interface that causes the
analytical model to be compatible with the selected runtime
environment even though the analytical model is defined in
a format that is incompatible with the runtime environment.
Upon executing the analytical model, the runtime environ
ment generates results data.
At block 450, the results data, generated by the comput

erized runtime environment by executing the analytical
model, are pulled from the computerized runtime environ
ment. Again, the term "pulled' and its various forms, as used
herein, refers to requesting data from another program or
computer and receiving the data via network communica
tions. In one embodiment, the results data is pulled from the
runtime environment to the analytical application environ
ment based on the post-script data structure upon completion
of the execution of the analytical model by the runtime
environment.

With the present computerized method 400, by selecting
a new runtime environment via the user interface (which

US 9,684,490 B2
15

changes the meta-information), an analytical model can be
executed by a selected runtime environment without being
reprogrammed/rewritten in a format compatible with the
selected runtime environment. The user-Script data structure
is re-generated based on the runtime specification of the 5
newly selected runtime environment to re-map the analytical
expressions of the analytical model to executable expres
sions of the newly selected runtime environment. The ana
lytical model along with the user-Script data structure is then
transmitted to the new runtime environment for execution. 10

Furthermore, in one embodiment, a computerized con
figuration object may be pushed over the computer network
to the computerized runtime environment. The computer
ized configuration object is used to synchronize with system
elements of the computerized runtime environment and to 15
specify where the analytical model is to be executed in the
computerized runtime environment.

In one embodiment, access to a configuration file by the
computerized runtime environment is provided. The con
figuration file specifies where (e.g., hardware-wise) the 20
analytical model is to be executed in the computerized
runtime environment. For example, the configuration file
may specify that the analytical model is to be executed on
local nodes, remote nodes, clustered nodes, or a combination
thereof, in the runtime environment. 25

In one embodiment, a computerized initiation object may
be pushed over the computer network to the computerized
runtime environment. The computerized initiation object
specifies multiple data structures, storing input data for the
analytical model, to be accessed by the computerized run- 30
time environment.

In this manner, a user (e.g., a business analyst) can
generate an analytical model that can be executed in any
quantitative analysis provider runtime environment. A com
puterized specification object can be generated that has a 35
standardized format. The standardized format includes at
least a pre-script data structure, a user-script data structure,
and a post-Script data structure. The user-Script data struc
ture specifies the analytical model and maps analytical
expressions of the analytical model to executable expres- 40
sions of a selected runtime environment upon execution of
the user-Script data structure.

Cloud or Enterprise Embodiments
In one embodiment, the present system is a computing/

data processing system including an executable application 45
or collection of distributed applications in an enterprise. The
present analytical application infrastructure (AAI) is an
implemented component/program module of the applica
tion. The application and computing system may be config
ured to operate with or be implemented as a cloud-based 50
networking system, a Software-as-a-service (SaaS) architec
ture, or other type of networked computing solution. In one
embodiment the present system is a centralized server-side
application that provides at least the functions disclosed
herein and that is accessed by many users via computing 55
devices/terminals communicating with the computing sys
tem (functioning as the server) over a computer network.

In one embodiment, one or more of the components
described herein (including the AAI) are configured as
program modules Stored in a non-transitory computer read- 60
able medium. The program modules are configured with
stored instructions that when executed by at least a processor
cause the computing device to perform the corresponding
function(s) as described herein.

Computing Device Embodiment 65
FIG. 5 illustrates an example computing device that is

configured and/or programmed with one or more of the

16
example systems and methods described herein, and/or
equivalents. The example computing device may be a com
puter 500 that includes a processor 502, a memory 504, and
input/output ports 510 operably connected by a bus 508. In
one example, the computer 500 includes analytical applica
tion logic 530, similar to analytical application logic 110 in
FIG. 1, configured to facilitate the functions of the AAI as
previously described. In different examples, the logic 530
may be implemented in hardware, a non-transitory com
puter-readable medium with stored instructions, firmware,
and/or combinations thereof. While the logic 530 is illus
trated as a component attached to the bus 508, it is to be
appreciated that in other embodiments, the logic 530 could
be implemented in the processor 502, stored in memory 504,
or Stored in disk 506.

In one embodiment, logic 530 or the computer is a means
(e.g., structure: hardware, non-transitory computer-readable
medium, firmware) for performing the actions described. In
Some embodiments, the computing device may be a server
operating in a cloud computing system, a server configured
in a Software as a Service (SaaS) architecture, a smart
phone, laptop, tablet computing device, and so on.
The means may also be implemented as stored computer

executable instructions that are presented to computer 500 as
data 516 that are temporarily stored in memory 504 and then
executed by processor 502.

Logic 530 may also provide means (e.g., hardware, non
transitory computer-readable medium that stores executable
instructions, firmware) for performing the functions of the
analytical application infrastructure (AAI).

Generally describing an example configuration of the
computer 500, the processor 502 may be a variety of various
processors including dual microprocessor and other multi
processor architectures. A memory 504 may include volatile
memory and/or non-volatile memory. Non-volatile memory
may include, for example, ROM, PROM, and so on. Volatile
memory may include, for example, RAM, SRAM, DRAM,
and so on.
A storage disk 506 may be operably connected to the

computer 500 via, for example, an input/output (I/O) inter
face (e.g., card, device) 518 and an input/output port 510.
The disk 506 may be, for example, a magnetic disk drive, a
solid state disk drive, a floppy disk drive, a Zip drive, a flash
memory card, a memory Stick, and so on. Furthermore, the
disk 506 may be a CD-ROM drive, a CD-R drive, a CD-RW
drive, a DVD ROM, and so on. The memory 504 can store
a process 514 and/or a data 516, for example. The disk 506
and/or the memory 504 can store an operating system that
controls and allocates resources of the computer 500.
The computer 500 may interact with input/output (I/O)

devices via the I/O interfaces 518 and the input/output ports
510. Input/output devices may be, for example, a keyboard,
a microphone, a pointing and selection device, cameras,
video cards, displays, the disk 506, the network devices 520,
and so on. The input/output ports 510 may include, for
example, serial ports, parallel ports, and USB ports.
The computer 500 can operate in a network environment

and thus may be connected to the network devices 520 via
the I/O interfaces 518, and/or the I/O ports 510. Through the
network devices 520, the computer 500 may interact with a
network. Through the network, the computer 500 may be
logically connected to remote computers. Networks with
which the computer 500 may interact include, but are not
limited to, a LAN, a WAN, and other networks.

DEFINITIONS AND OTHER EMBODIMENTS

In another embodiment, the described methods and/or
their equivalents may be implemented with computer

US 9,684,490 B2
17

executable instructions. Thus, in one embodiment, a non
transitory computer readable/storage medium is configured
with stored computer executable instructions of an algo
rithm/executable application that when executed by a
machine(s) cause the machine(s) (and/or associated compo
nents) to perform the method. Example machines include
but are not limited to a processor, a computer, a server
operating in a cloud computing system, a server configured
in a Software as a Service (SaaS) architecture, a smart
phone, and so on). In one embodiment, a computing device
is implemented with one or more executable algorithms that
are configured to perform any of the disclosed methods.

In one or more embodiments, the disclosed methods or
their equivalents are performed by either: computer hard
ware configured to perform the method; or computer soft
ware embodied in a non-transitory computer-readable
medium including an executable algorithm configured to
perform the method.

While for purposes of simplicity of explanation, the
illustrated methodologies in the figures are shown and
described as a series of blocks of an algorithm, it is to be
appreciated that the methodologies are not limited by the
order of the blocks. Some blocks can occur in different
orders and/or concurrently with other blocks from that
shown and described. Moreover, less than all the illustrated
blocks may be used to implement an example methodology.
Blocks may be combined or separated into multiple actions/
components. Furthermore, additional and/or alternative
methodologies can employ additional actions that are not
illustrated in blocks. The methods described herein are
limited to statutory subject matter under 35 U.S.CS 101.

The following includes definitions of selected terms
employed herein. The definitions include various examples
and/or forms of components that fall within the scope of a
term and that may be used for implementation. The
examples are not intended to be limiting. Both singular and
plural forms of terms may be within the definitions.

References to “one embodiment”, “an embodiment”, “one
example”, “an example, and so on, indicate that the
embodiment(s) or example(s) so described may include a
particular feature, structure, characteristic, property, ele
ment, or limitation, but that not every embodiment or
example necessarily includes that particular feature, struc
ture, characteristic, property, element or limitation. Further
more, repeated use of the phrase “in one embodiment” does
not necessarily refer to the same embodiment, though it may.

ASIC: application specific integrated circuit.
CD: compact disk.
CD-R: CD recordable.
CD-RW: CD rewriteable.
DVD: digital versatile disk and/or digital video disk.
LAN: local area network.
RAM: random access memory.
DRAM: dynamic RAM.
SRAM: synchronous RAM.
ROM: read only memory.
PROM: programmable ROM.
USB: universal serial bus.
WAN: wide area network.
An “operable connection’, or a connection by which

entities are “operably connected, is one in which signals,
physical communications, and/or logical communications
may be sent and/or received. An operable connection may
include a physical interface, an electrical interface, and/or a
data interface. An operable connection may include differing
combinations of interfaces and/or connections sufficient to
allow operable control. For example, two entities can be

10

15

25

30

35

40

45

50

55

60

65

18
operably connected to communicate signals to each other
directly or through one or more intermediate entities (e.g.,
processor, operating system, logic, non-transitory computer
readable medium). An operable connection may include one
entity generating data and storing the data in a memory, and
another entity retrieving that data from the memory via, for
example, instruction control. Logical and/or physical com
munication channels can be used to create an operable
connection.
A "data structure', as used herein, is an organization of

data in a computing system that is stored in a memory, a
storage device, or other computerized system. A data struc
ture may be any one of, for example, a data field, a data file,
a data array, a data record, a database, a data table, a graph,
a tree, a linked list, and so on. A data structure may be
formed from and contain many other data structures (e.g., a
database includes many data records). Other examples of
data structures are possible as well, in accordance with other
embodiments.

“Computer-readable medium' or “computer storage
medium', as used herein, refers to a non-transitory medium
that stores instructions and/or data configured to perform
one or more of the disclosed functions when executed. A
computer-readable medium may take forms, including, but
not limited to, non-volatile media, and volatile media. Non
Volatile media may include, for example, optical disks,
magnetic disks, and so on. Volatile media may include, for
example, semiconductor memories, dynamic memory, and
so on. Common forms of a computer-readable medium may
include, but are not limited to, a floppy disk, a flexible disk,
a hard disk, a magnetic tape, other magnetic medium, an
application specific integrated circuit (ASIC), a program
mable logic device, a compact disk (CD), other optical
medium, a random access memory (RAM), a read only
memory (ROM), a memory chip or card, a memory Stick,
solid state storage device (SSD), flash drive, and other media
from which a computer, a processor or other electronic
device can function with. Each type of media, if selected for
implementation in one embodiment, may include stored
instructions of an algorithm configured to perform one or
more of the disclosed and/or claimed functions. Computer
readable media described herein are limited to statutory
subject matter under 35 U.S.C S101.

“Logic', as used herein, represents a component that is
implemented with computer or electrical hardware, a non
transitory medium with stored instructions of an executable
application or program module, and/or combinations of
these to perform any of the functions or actions as disclosed
herein, and/or to cause a function or action from another
logic, method, and/or system to be performed as disclosed
herein. Equivalent logic may include firmware, a micropro
cessor programmed with an algorithm, a discrete logic (e.g.,
ASIC), at least one circuit, an analog circuit, a digital circuit,
a programmed logic device, a memory device containing
instructions of an algorithm, and so on, any of which may be
configured to perform one or more of the disclosed func
tions. In one embodiment, logic may include one or more
gates, combinations of gates, or other circuit components
configured to perform one or more of the disclosed func
tions. Where multiple logics are described, it may be pos
sible to incorporate the multiple logics into one logic.
Similarly, where a single logic is described, it may be
possible to distribute that single logic between multiple
logics. In one embodiment, one or more of these logics are
corresponding structure associated with performing the dis
closed and/or claimed functions. Choice of which type of
logic to implement may be based on desired system condi

US 9,684,490 B2
19

tions or specifications. For example, if greater speed is a
consideration, then hardware would be selected to imple
ment functions. If a lower cost is a consideration, then stored
instructions/executable application would be selected to
implement the functions. Logic is limited to statutory Sub
ject matter under 35 U.S.C. S 101.

“User', as used herein, includes but is not limited to one
or more persons, computers or other devices, or combina
tions of these.

While the disclosed embodiments have been illustrated
and described in considerable detail, it is not the intention to
restrict or in any way limit the scope of the appended claims
to such detail. It is, of course, not possible to describe every
conceivable combination of components or methodologies
for purposes of describing the various aspects of the Subject
matter. Therefore, the disclosure is not limited to the specific
details or the illustrative examples shown and described.
Thus, this disclosure is intended to embrace alterations,
modifications, and variations that fall within the scope of the
appended claims, which satisfy the statutory Subject matter
requirements of 35 U.S.C. S 101.

To the extent that the term “includes” or “including is
employed in the detailed description or the claims, it is
intended to be inclusive in a manner similar to the term
“comprising as that term is interpreted when employed as
a transitional word in a claim.

To the extent that the term 'or' is used in the detailed
description or claims (e.g., A or B) it is intended to mean “A
or B or both'. When the applicants intend to indicate “only
A or B but not both then the phrase “only A or B but not
both will be used. Thus, use of the term "or herein is the
inclusive, and not the exclusive use.

To the extent that the phrase “one or more of A, B, and
C is used herein, (e.g., a data store configured to store one
or more of A, B, and C) it is intended to convey the set of
possibilities A, B, C, AB, AC, BC, and/or ABC (e.g., the data
store may store only A, only B, only C, A&B, A&C, B&C,
and/or A&B&C). It is not intended to require one of A, one
of B, and one of C. When the applicants intend to indicate
“at least one of A, at least one of B, and at least one of C.
then the phrasing “at least one of A, at least one of B, and
at least one of C will be used.
What is claimed is:
1. A computer-implemented method performed by a com

puting device where the computing device includes at least
a processor for executing instructions from a memory, the
method comprising:

identifying a selected runtime environment to execute an
analytical model that includes analytical expressions;

generating a user-Script data structure, wherein the user
Script data structure includes instructions for mapping
the analytical expressions of the analytical model to
executable expressions of the selected runtime envi
ronment based on a runtime specification of the
Selected runtime environment;

generating a computerized specification object, wherein
the computerized specification object includes:
(i) a pre-script data structure specifying how the

selected runtime environment is to access input data
to be operated upon by the analytical model,

(ii) the user-script data structure and the analytical
model, and

(iii) a post-script data structure specifying how to
output results data produced by the analytical model
from the selected runtime environment;

transmitting the computerized specification object over a
computer network to the selected runtime environment

10

15

25

30

35

40

45

50

55

60

65

20
for execution of the analytical model by the selected
runtime environment, wherein access is provided to a
configuration file specifying a designation of a hard
ware execution configuration of selected nodes that are
to be instructed to execute the analytical model,
wherein the selected nodes are selected from a plurality
of available nodes of the selected runtime environment;
and

receiving results data from the selected runtime environ
ment.

2. The method of claim 1, further comprising transmitting
a computerized configuration object over the computer
network to the selected runtime environment to synchronize
with the selected runtime environment based on a set of
parameters, and to specify where the analytical model is to
be executed in the selected runtime environment.

3. The method of claim 1, further comprising initiating
execution of the computerized specification object in the
selected runtime environment.

4. The method of claim 1, wherein the executable expres
sions include a plurality of computational steps to be
executed in sequence by the selected runtime environment.

5. The method of claim 1, wherein the pre-script data
structure is generated to specify how the selected runtime
environment is to connect to a database device to access the
input data to be operated upon by the analytical model.

6. The method of claim 1, wherein the pre-script data
structure is generated to specify how the input data to be
operated upon by the analytical model is to be read by the
selected runtime environment from a data file.

7. The method of claim 1, wherein the configuration file
specifies whether the analytical model is to be executed on
local nodes, remote nodes, clustered nodes, or a combination
of the local nodes, the remote nodes, and the clustered nodes
of the selected runtime environment.

8. The method of claim 1, further comprising transmitting
a computerized initiation object over the computer network
to the selected runtime environment, wherein the comput
erized initiation object specifies a plurality of data struc
tures, storing the input data for the analytical model, to be
accessed by the selected runtime environment.

9. The method of claim 1, wherein the user-script data
structure is generated to specify a sequence of analytical
steps of the analytical model to be performed by the selected
runtime environment on the input data.

10. A computing system, comprising:
a processor connected to memory;
analytical application logic stored on a non-transitory

computer readable medium and configured with
instructions that when executed by the processor cause
the processor to:
generate a computerized specification object having:

a user-Script data structure specifying an analytical
model having analytical expressions, wherein the
user-Script data structure includes instructions for
mapping the analytical expressions to executable
expressions of a computerized runtime environ
ment,

a pre-script data structure specifying how the com
puterized runtime environment is to access inde
pendent variable data to be operated upon by the
analytical model, and

a post-Script data structure specifying how to output
results data produced by the analytical model
when executed by the computerized runtime envi
ronment; and

US 9,684,490 B2
21

provide access to a configuration file specifying a
designation of a hardware execution configuration of
selected nodes that are to be instructed to execute the
analytical model, wherein the selected nodes are
selected from a plurality of available nodes of the
computerized runtime environment; and

user interface logic stored on the non-transitory computer
readable medium and configured with instructions that
when executed by the processor cause the processor to
facilitate user interaction with the analytical application
logic for generating the computerized specification
object.

11. The computing system of claim 10, wherein the
analytical model specifies a plurality of computational steps,
as the analytical expressions, to be executed in sequence by
the computerized runtime environment.

12. The computing system of claim 10, wherein the
analytical model specifies a plurality of statistical opera
tions, as the analytical expressions, to be executed in
sequence by the computerized runtime environment.

13. The computing system of claim 10, further comprising
a database device configured to store the independent vari
able data and the results data, wherein the database device
is accessible by the computerized runtime environment.

14. The computing system of claim 13, wherein the
pre-script data structure specifies how the computerized
runtime environment is to connect to the database device to
access the independent variable data.

15. The computing system of claim 13, wherein the
post-script data structure specifies how the computerized
runtime environment is to connect to the database device to
store the results data.

16. A non-transitory computer-readable medium storing
computer-executable instructions that, when executed by a
computer, cause the computer to perform functions, wherein
the instructions comprise:

instructions for identifying a runtime environment for
executing an analytical model;

pre-script instructions for directing the runtime environ
ment, while executing the analytical model, to operably
connect to a database device of an analytical applica

10

15

25

30

35

40

22
tion infrastructure and map a plurality of data structures
to variables to be communicated between the runtime
environment and the analytical application infrastruc
ture;

user-script instructions for mapping executable runtime
environment expressions to analytical expressions of
the analytical model to be executed by the runtime
environment;

post-script instructions for directing the runtime environ
ment to store output results, resulting from execution of
the analytical model by the runtime environment, to an
output data structure of the plurality of data structures
and

configuration instructions to providing access to a con
figuration file specifying a designation of a hardware
execution configuration of selected nodes that are to be
instructed to execute the analytical model, wherein the
selected nodes are selected from a plurality of available
nodes of the runtime environment.

17. The non-transitory computer-readable medium of
claim 16, wherein the configuration file specifies whether
the analytical model is to be executed on local nodes, remote
nodes, clustered nodes, or a combination of the local nodes,
the remote nodes, and the clustered nodes of the selected
runtime environment.

18. The non-transitory computer-readable medium of
claim 16, wherein the instructions further include instruc
tions for synchronizing with the runtime environment based
on a set of parameters.

19. The non-transitory computer-readable medium of
claim 16, wherein the instructions further include instruc
tions for specifying where the analytical model is to be
executed in the runtime environment.

20. The non-transitory computer-readable medium of
claim 16, wherein the instructions further include instruc
tions for specifying independent variable data, in at least one
data structure of the plurality of data structures, to be
accessed by the runtime environment and operated upon by
the analytical model.

