
USOO9680746B2

(12) United States Patent
DeCusatis et al.

US 9,680,746 B2
Jun. 13, 2017

(10) Patent No.:
(45) Date of Patent:

(54) SOURCE ROUTING WITH FABRIC (58) Field of Classification Search
SWITCHES IN AN ETHERNET FABRIC CPC ... HO4L 12/56
NETWORK (Continued)

(71) Applicant: International Business Machines (56) References Cited
Corporation, Armonk, NY (US)

U.S. PATENT DOCUMENTS

(72) Inventors: Casimer M. DeCusatis, Poughkeepsie, 8,111,618 B2 2/2012 Li et all
NY (US); Mircea Gusat, Langnau 8,3429 B2 12/2012 Twitchell, Jr.
(CH); Keshav G. Kamble, Fremont, (Continued)
CA (US); Cyriel J. Minkenberg,
Gutenswil (CH); Vijoy A. Pandey, San
Jose, CA (US); Renato J. Recio, FOREIGN PATENT DOCUMENTS
Austin, TX (US) CN 101471841. A 7, 2009

WO 2012137646 A1 10, 2012
(73) Assignee: International Business Machines

Corporation, Armonk, NY (US) OTHER PUBLICATIONS

(*) Notice: Subject to any disclaimer, the term of this Decusatis et al., U.S Appl. No. 13/781,561, filed Feb. 28, 2013.
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days.

Primary Examiner — Shripal Khajuria
(21) Appl. No.: 14/987,719 (74) Attorney, Agent, or Firm — Zilka-Kotab, P.C.

(22) Filed: Jan. 4, 2016 (57) ABSTRACT

(65) Prior Publication Data In one embodiment, a computer program product includes a
computer readable storage medium having program instruc

US 2016/O119236A1 Apr. 28, 2016 tions embodied therewith. The embodied program instruc
tions are readable/executable by a processor to receive, by
the processor, a packet via a network fabric, the network

Related U.S. Application Data fabric having a plurality of interconnected fabric switches.
(63) Continuation of application No. 13/781,561, filed on The embodied program instructions are also readable?ex

Feb. 28, 2013. ecutable by the processor to determine, by the processor, a
s path through the network fabric by consulting a source

(51) Int. Cl. routing table. Moreover, the embodied program instructions
H04L 2/66 (2006.01) a readable executable by the processor to store, by the
H04L 2/74 (2013.01) processor, Source-routing information to a packet header for

the packet, the source-routing information including the
(Continued) path. In addition, the embodied program instructions are

(52) U.S. Cl. readable/executable by the processor to send, by the pro
CPC H04L 45/745 (2013.01); H04L 45/34 cessor, the packet according to an indication in the source

(2013.01); H04L 45/54 (2013.01); H04L 45/72 routing information.
(2013.01);

(Continued) 17 Claims, 7 Drawing Sheets

US 9,680,746 B2
Page 2

(51) Int. Cl. 2009/0034419 A1 2/2009 Flammer, III et al.
2011/0273980 A1 11/2011 Ashwood Smith

H04L 2/947 (2013.01) 2011/0317559 A1 12, 2011 Kern et al.
H04L 2/93 (2013.01) 2012/0099591 A1 4/2012 Kotha et al.
H04L 2/72 (2013.01) 2012/0207165 A1 8, 2012 Davis
H04L 12/80 (2013.01) 2012fO250682 A1 10, 2012 Vincent et al.

52) U.S. C 2014/0022894 A1 1/2014 Oikawa et al.
(52) U.S. Cl. 2014/024.1345 A1 8/2014 DeCusatis et al.

CPC H04L 47/12 (2013.01); H04L 49/25

USPC .. 370/355

(2013.01); H04L 49/351 (2013.01)
(58) Field of Classification Search

See application file for complete search history. Feb. 4, 2015.

(56)
U.S. PATENT DOCUMENTS

9,270,618 B2
2003, OO33427 A1
2005/0129.022 A1

References Cited

2, 2016 DeCusatis et al.
2/2003 Brahmaroutu
6/2005 Mugica et al.

Non-Final Office Action from U.S Appl. No. 13/781,561, datedMar.
26, 2015.
Final Office Action from U.S. Appl. No. 13/781,561, dated Jul. 20,
2015.
Notice of Allowance from U.S. Appl. No. 13/781,561, dated Sep.
29, 2015.
International Search Report from PCT Application No. PCT/

OTHER PUBLICATIONS

Restriction Requirement from U.S. Appl. No. 13/781,561, dated

IB2014/058659, dated Jun. 5, 2014.

U.S. Patent Jun. 13, 2017 Sheet 1 of 7 US 9,680,746 B2

100\,
116

111

106

102 r 101
y &: 108

Gateway

FIG. 1

U.S. Patent Jun. 13, 2017 Sheet 2 of 7 US 9,680,746 B2

235
220

NETWORK
ed

210 216 214 S 218 234

|O COMMUNCATON

212

222 236 238

224
USER

NERFACE Efe,
ADAPTER

O
232 24. 228

FIG. 2

US 9,680,746 B2 Sheet 3 of 7 Jun. 13, 2017 U.S. Patent

Z09

U.S. Patent Jun. 13, 2017 Sheet 4 of 7 US 9,680,746 B2

"S
312

Addr1

314 308

SWitch
Controller

302

US 9,680,746 B2 U.S. Patent

009

ZOG

U.S. Patent Jun. 13, 2017 Sheet 6 of 7 US 9,680,746 B2

600

Receive or Create a packet using a network interface
card (NC) of a host connected to a network fabric

comprising a plurality of fabric switches 6O2
interConnected therein

Determine a path through the network fabric by
consulting a source-routing table stored to the host 604

Store source-routing information to a packet header
for the packet, the source-routing information 606 comprising the path

Send the packet to a first device or hop indicated by
the path in the source-routing information 608

FIG. 6

U.S. Patent Jun. 13, 2017 Sheet 7 Of 7 US 9,680,746 B2

700

Receive a packet
702

Receive source-routing information with a fabric
Switch interConnected to other fabric Switches in a
network fabric, the source-routing information being 704

sent from a Switch Controller

Store the source-routing information to a source
routing table that indicates a sequence of devices or
hops between the fabric switch and each known 7O6

destination address in the network fabric

Determine a next device or hop in a path through
the network fabric by consulting the source-routing

table 708

Store a portion of the source-routing information to a
packet header for the packet, the portion of the
Source-routing information comprising at least a 710

portion of the path

Send the packet to the next device or hop indicated
by the at least the portion of the path in the portion 712

of the source-routing information

FIG. 7

US 9,680,746 B2
1.

SOURCE ROUTING WITH FABRIC
SWITCHES IN AN ETHERNET FABRIC

NETWORK

BACKGROUND

The present invention relates to data center infrastructure,
and more particularly, this invention relates to reducing the
overhead associated with using look-up tables in fabric
Switches to reduce latency.
A Switching processor, Such as a Switching application

specific integrated circuit (ASIC), may be used to choose a
port to send received network packets. Typically, a look-up
table is utilized to choose which port to send a received
packet based on a destination address designated in a header
of the received packet. However, as fabric networks grow
larger, these look-up tables may encompass vast amounts of
data, which causes latency in using the look-up table to
determine an egress port to forward packets to. Accordingly,
it would be beneficial to have a method to reduce the
overhead associated with using look-up tables in fabric
switches in order to reduce fabric latency.

SUMMARY

In one embodiment, a system includes a processor and
logic integrated with and/or executable by the processor. The
logic is configured to receive a packet via a network fabric,
the network fabric having a plurality of interconnected
fabric Switches. The logic is also configured to determine a
path through the network fabric by consulting a source
routing table. Moreover, logic is configured to store source
routing information to a packet header for the packet, the
Source-routing information including the path. Also, logic is
configured to send the packet according to an indication in
the source-routing information.

According to another embodiment, a computer program
product includes a computer readable storage medium hav
ing program instructions embodied therewith. The embodied
program instructions are readable/executable by a processor
to receive, by the processor, a packet via a network fabric,
the network fabric having a plurality of interconnected
fabric Switches. The embodied program instructions are also
readable/executable by the processor to determine, by the
processor, a path through the network fabric by consulting a
Source-routing table. Moreover, the embodied program
instructions are readable/executable by the processor to
store, by the processor, source-routing information to a
packet header for the packet, the source-routing information
including the path. In addition, the embodied program
instructions are readable/executable by the processor to
send, by the processor, the packet according to an indication
in the Source-routing information.

Other aspects and embodiments of the present invention
will become apparent from the following detailed descrip
tion, which, when taken in conjunction with the drawings,
illustrate by way of example the principles of the invention.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a network architecture, in accordance
with one embodiment.

FIG. 2 shows a representative hardware environment that
may be associated with the servers and/or clients of FIG. 1,
in accordance with one embodiment.

FIG. 3 shows a system, according to one embodiment.

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 4 shows an exemplary path through a network fabric,

according to one embodiment.
FIG. 5A shows a frame format for an exemplary packet,

according to one embodiment.
FIG. 5B is an exemplary tag protocol identifier, according

to one embodiment.
FIG. 6 is a flowchart of a method for source routing

packets, according to one embodiment.
FIG. 7 is a flowchart of a method for source routing

packets, according to one embodiment.

DETAILED DESCRIPTION

The following description is made for the purpose of
illustrating the general principles of the present invention
and is not meant to limit the inventive concepts claimed
herein. Further, particular features described herein can be
used in combination with other described features in each of
the various possible combinations and permutations.

Unless otherwise specifically defined herein, all terms are
to be given their broadest possible interpretation including
meanings implied from the specification as well as meanings
understood by those skilled in the art and/or as defined in
dictionaries, treatises, etc.

It must also be noted that, as used in the specification and
the appended claims, the singular forms “a,” “an,” and “the
include plural referents unless otherwise specified.

In one general embodiment, a system for source routing
packets includes a network fabric having a plurality of fabric
switches interconnected in the network fabric and a switch
controller having logic adapted to configure the network
fabric, determine one or more paths through the network
fabric between any two hosts connected thereto, and create
a source-routing table to store the one or more paths through
the network fabric between any two hosts connected thereto.

According to another general embodiment, a computer
program product for source routing packets includes a
computer readable storage medium having program code
embodied therewith, the program code readable/executable
by a Switch controller to: configure a network fabric having
a plurality of fabric switches interconnected in the network
fabric, determine one or more paths through the network
fabric between any two hosts connected thereto, and create
a source-routing table to store the one or more paths through
the network fabric between any two hosts connected thereto.

In another general embodiment, a method for source
routing packets includes receiving or creating a packet using
a network interface card (NIC) of a host connected to a
network fabric having a plurality of fabric switches inter
connected therein, determining a path through the network
fabric by consulting a source-routing table stored to the host,
storing source-routing information to a packet header for the
packet, the Source-routing information including the path,
and sending the packet to a first device or hop indicated by
the path in the Source-routing information.

In yet another general embodiment, a method for source
routing packets includes receiving a packet, receiving
Source-routing information with a fabric Switch intercon
nected to other fabric switches in a network fabric, the
Source-routing information being sent from a Switch con
troller, storing the source-routing information to a source
routing table that indicates a sequence of devices or hops
between the fabric Switch and each known destination
address in the network fabric, determining a next device or
hop in a path through the network fabric by consulting the
Source-routing table, storing a portion of the source-routing
information to a packet header for the packet, the portion of

US 9,680,746 B2
3

the Source-routing information including at least a portion of
the path, and sending the packet to the next device or hop
indicated by the at least the portion of the path in the portion
of the Source-routing information.
By using a Switch controller, Such as a controller operat

ing OpenFlow software (an OpenFlow Controller) or a
Switch controller that operates according to Software-defined
network (SDN) standards, a plurality of switches in a
network fabric which are capable of communicating with the
switch controller may be instructed of desirable paths with
which to forward received packets in order to best utilize the
network fabric. To accomplish this, intelligence or function
ality may be built into the switch controller to determine
paths through the network fabric and to deliver these desired
paths to individual switches in the network fabric that are
compliant with whatever software the switch controller
utilizes. In addition, in one approach, when the Switch
controller operates according to OpenFlow and/or SDN
standards, the switches may be OpenFlow and/or SDN
compliant in order to utilize the Source routing techniques
described herein.
As will be appreciated by one skilled in the art, aspects of

the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as “logic,” a “circuit,” “mod
ule,” or “system.” Furthermore, aspects of the present inven
tion may take the form of a computer program product
embodied in one or more computer readable medium(s)
having computer readable program code embodied thereon.
Any combination of one or more computer readable

medium(s) may be utilized. The computer readable medium
may be a computer readable signal medium or a non
transitory computer readable storage medium. A non-tran
sitory computer readable storage medium may be, for
example, but not limited to, a system, apparatus, device, or
any suitable combination of the foregoing which may rely
on any suitable technology types, such as electronic, mag
netic, optical, electromagnetic, infrared, semiconductor, etc.
More specific examples (a non-exhaustive list) of the non
transitory computer readable storage medium include the
following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a portable compact disc read
only memory (CD-ROM), a Blu-ray disc read-only memory
(BD-ROM), an optical storage device, a magnetic storage
device, or any Suitable combination of the foregoing. In the
context of this document, a non-transitory computer read
able storage medium may be any tangible medium that is
capable of containing, or storing a program or application
for use by or in connection with an instruction execution
system, apparatus, or device.
A computer readable signal medium may include a propa

gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro
magnetic, optical, or any Suitable combination thereof. A
computer readable signal medium may be any computer
readable medium that is not a non-transitory computer
readable storage medium and that can communicate, propa
gate, or transport a program for use by or in connection with

10

15

25

30

35

40

45

50

55

60

65

4
an instruction execution system, apparatus, or device. Such
as an electrical connection having one or more wires, an
optical fibre, etc.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, includ
ing but not limited to wireless, wireline, optical fibre cable,
RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for

aspects of the present invention may be written in any
combination of one or more programming languages,
including an object oriented programming language Such as
Java, Smalltalk, C++, or the like, and conventional proce
dural programming languages, such as the “C” program
ming language or similar programming languages. The
program code may execute entirely on a user's computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer or server
may be connected to the user's computer through any type
of network, including a local area network (LAN), storage
area network (SAN), and/or a wide area network (WAN), or
the connection may be made to an external computer, for
example through the Internet using an Internet Service
Provider (ISP).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatuses (systems), and computer program
products according to various embodiments of the invention.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
may be implemented by computer program instructions.
These computer program instructions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program
mable data processing apparatus, create means for imple
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored
in a computer readable medium that may direct a computer,
other programmable data processing apparatus, or other
devices to function in a particular manner, Such that the
instructions stored in the computer readable medium pro
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.
The computer program instructions may also be loaded

onto a computer, other programmable data processing appa
ratus, or other devices to cause a series of operational steps
to be performed on the computer, other programmable
apparatus or other devices to produce a computer imple
mented process such that the instructions which execute on
the computer or other programmable apparatus provide
processes for implementing the functions/acts specified in
the flowchart and/or block diagram block or blocks.

FIG. 1 illustrates a network architecture 100, in accor
dance with one embodiment. As shown in FIG. 1, a plurality
of remote networks 102 are provided including a first remote
network 104 and a second remote network 106. A gateway
101 may be coupled between the remote networks 102 and
a proximate network 108. In the context of the present
network architecture 100, the networks 104, 106 may each
take any form including, but not limited to a LAN, a WAN

US 9,680,746 B2
5

such as the Internet, public switched telephone network
(PSTN), internal telephone network, etc.

In use, the gateway 101 serves as an entrance point from
the remote networks 102 to the proximate network 108. As
Such, the gateway 101 may function as a router, which is 5
capable of directing a given packet of data that arrives at the
gateway 101, and a switch, which furnishes the actual path
in and out of the gateway 101 for a given packet.

Further included is at least one data server 114 coupled to
the proximate network 108, and which is accessible from the 10
remote networks 102 via the gateway 101. It should be noted
that the data server(s) 114 may include any type of com
puting device/groupware. Coupled to each data server 114 is
a plurality of user devices 116. Such user devices 116 may
include a desktop computer, laptop computer, handheld 15
computer, printer, and/or any other type of logic-containing
device. It should be noted that a user device 111 may also be
directly coupled to any of the networks, in Some embodi
mentS.

A peripheral 120 or series of peripherals 120, e.g., fac- 20
simile machines, printers, Scanners, hard disk drives, net
worked and/or local storage units or systems, etc., may be
coupled to one or more of the networks 104, 106, 108. It
should be noted that databases and/or additional components
may be utilized with, or integrated into, any type of network 25
element coupled to the networks 104, 106, 108. In the
context of the present description, a network element may
refer to any component of a network.

According to Some approaches, methods and systems
described herein may be implemented with and/or on virtual 30
systems and/or systems which emulate one or more other
systems, such as a UNIX system which emulates an IBM
Z/OS environment, a UNIX system which virtually hosts a
MICROSOFT WINDOWS environment, a MICROSOFT
WINDOWS system which emulates an IBM z/OS environ- 35
ment, etc. This virtualization and/or emulation may be
enhanced through the use of VMWARE software, in some
embodiments.

In more approaches, one or more networks 104,106, 108,
may represent a cluster of systems commonly referred to as 40
a "cloud.” In cloud computing, shared resources, such as
processing power, peripherals, software, data, servers, etc.,
are provided to any system in the cloud in an on-demand
relationship, thereby allowing access and distribution of
services across many computing systems. Cloud computing 45
typically involves an Internet connection between the sys
tems operating in the cloud, but other techniques of con
necting the systems may also be used, as known in the art.

FIG. 2 shows a representative hardware environment
associated with a user device 116 and/or server 114 of FIG. 50
1, in accordance with one embodiment. FIG. 2 illustrates a
typical hardware configuration of a workstation having a
central processing unit (CPU) 210. Such as a microprocessor,
and a number of other units interconnected via one or more
buses 212 which may be of different types, such as a local 55
bus, a parallel bus, a serial bus, etc., according to several
embodiments.
The workstation shown in FIG. 2 includes a Random

Access Memory (RAM) 214, Read Only Memory (ROM)
216, an I/O adapter 218 for connecting peripheral devices 60
Such as disk storage units 220 to the one or more buses 212,
a user interface adapter 222 for connecting a keyboard 224,
a mouse 226, a speaker 228, a microphone 232, and/or other
user interface devices such as a touch screen, a digital
camera (not shown), etc., to the one or more buses 212, 65
communication adapter 234 for connecting the workstation
to a communication network 235 (e.g., a data processing

6
network) and a display adapter 236 for connecting the one
or more buses 212 to a display device 238.
The workstation may have resident thereon an operating

system such as the MICROSOFT WINDOWS Operating
System (OS), a MAC OS, a UNIX OS, etc. It will be
appreciated that a preferred embodiment may also be imple
mented on platforms and operating systems other than those
mentioned. A preferred embodiment may be written using
JAVA, XML, C, and/or C++ language, or other program
ming languages, along with an object oriented programming
methodology. Object oriented programming (OOP), which
has become increasingly used to develop complex applica
tions, may be used.
Now referring to FIG. 3, a system 300 is shown according

to one embodiment, which has a plurality of fabric switches
304 interconnected in a network fabric 302, each of the
fabric switches 304 being connected to one another via
connections 306. Each fabric switch 304 is connected,
directly or indirectly to a switch controller 308 (as denoted
by dashed line connection 310 between the switch controller
308 and the network fabric 302). The switch controller 308
is capable of receiving information from each of the fabric
switches 304 and is capable of sending information and/or
commands to the fabric switches 304.

According to one embodiment, the switch controller 308
may operate according to OpenFlowTM and/or SDN stan
dards, and each fabric switch 304 may be OpenFlow and/or
SDN compliant. In other embodiments, the switch controller
308 may utilize a different application capable of controlling
the fabric switches 304 as would be known by one of skill
in the art, such as Beacon, Jaxon, NOX, PDX, MaestroTM,
etc.

In addition, the network fabric 302 may be a physical
and/or virtual network fabric (a network fabric which ulti
lizes only physical devices, a network fabric which only
utilizes virtual devices, and/or a network fabric which uti
lizes a combination of physical and virtual devices). In
addition, each of the fabric switches 304 may be a physical
switch, a virtual switch, or a combination thereof.
The system 300 may further comprise one or more hosts

312 connected to the network fabric 302 via one or more
fabric switches 304 via connections 314. Any of the hosts
312 may be a physical host, a virtual host, or a combination
thereof. The hosts may be any type of device capable of
communicating with the network fabric 302, such as another
network, a server, a controller, a workstation, an end Station,
etc. Each host 312 may include an interface for communi
cating with the network fabric 302 and one or more fabric
switches 304 therein. Each of the hosts 312 are unaware of
the physical components of the network fabric 302 and
instead view the network fabric 302 as a single entity to
which a connection may be made, in one approach. Of
course, each host 312 is actually connected to at least one
physical fabric switch 304 within the network fabric 302.
The host 312 may be connected to multiple fabric switches
304 in the case of a Link Aggregation (LAG) connection.
The switch controller 308 may comprise logic adapted to

analyze and configure the network fabric 302 such that there
is one or more non-looping paths through the network fabric
302 between any two hosts 312 or other end stations
connected to the network fabric 302. Ideally, the logic may
be able to determine multiple paths through the network
fabric 302, in order to provide redundancy, increased
throughput, and decreased latency, among other advantages.

There are many factors to consider in determining paths
through the network fabric 302. Some factors include the
number of layers in the fabric, L, the number of nodes per

US 9,680,746 B2
7

layer, N, the Switch controllers topology and connectivity
graph (and whether the switch controller 308 is capable of
globalizing the routing decisions), etc.

Furthermore, in order for multipathing to take place in the
network fabric 302, the multipathing may take place in
order via Equal Cost Multi-Pathing (ECMP) and/or LAG
hashing (and what type of hash used may be a consideration,
Such as an industry standard, a legacy system, etc.). In
addition, the multipathing may support high performance
operation via adaptive routing.

Converged Enhanced Ethernet (CEE) may also be sup
ported by the network fabric 302, such as by using Priority
Flow Control (PFC) and/or Enhanced Transmission Selec
tion (ETS) along the complete path through the network
fabric 302 in addition to Quantized Congestion Notification
(QCN). Additionally, link congestion may trigger Saturation
tree with QCN.

In one embodiment, interface-based path representation,
where a single interface to a network may be used to gain
perspective on the network from a point of view of that
interface. This interface-based path representation may then
be used to span the network fabric 302, as shown in FIG. 3.
For example, Host 1 is shown connected directly to fabric
switch S1. In this example, the interface for Host 1 to the
network fabric 302 may be a single physical port, a virtual
port, a static LAG, a dynamic LAG, or any other Suitable
interface between Host 1 and fabric switch S1. Also, in this
example, a global forwarding table may be created, man
aged, updated, and utilized by the switch controller 308 to
make routing decisions, for example, once a packet is
received by fabric switch S1 from Host 1 all the way until
the packet is received by host 2 via S3.

In one embodiment, the switch controller 308 may be
consulted anytime a routing decision is to be made for a
packet received by any of the fabric switches 304 in the
network fabric 302.

In another embodiment, each fabric switch 304 may have
resident therein a source-routing table. In this case, the
fabric switch 304 inserts the route information into each
incoming packet that does not yet have source-routing
information stored therein. One disadvantage of this
approach is that a lot of redundancy in terms of routing
information in the network is introduced, which makes
routing updates cumbersome, since they must be done for
each fabric Switch 304 in the network fabric 302. One
advantage of this approach is that legacy (i.e., non-source
routing capable) devices and components (e.g., network
interface cards (NICs), legacy switches, etc.) may be
attached to the network fabric 302.
Now referring to FIG. 4, a portion 400 of the network

fabric 302 is shown, with one exemplary path through the
network fabric 302 shown in more detail. This path is
between two hosts 312, specifically Host 1 to Host 2, and
includes three fabric switches 304-S1, S2, and S3. For the
sake of this description, Host 1 may be assumed to have an
address of Addr1 and Host 2 an address of Addr2, while it
may be assumed that fabric switch S1 is connected to Host
1 via port 4 (denoted as P4), and to fabric switch S2 via a
LAG (denoted as L2). Likewise, fabric switch S2 is con
nected to fabric switch S1 via LAG L2. Furthermore, it may
be assumed that fabric switch S2 is connected to fabric
switch S3 via port 3 (denoted as P3), while fabric switch S3
is connected to fabric switch S2 via port 6 (denoted as P6)
and to Host 2 via port 2 (denoted as P2), as shown in FIG.
4.
The path between Host 1 and Host 2 may be represented

in each fabric switch 304 in a forwarding table, according to

10

15

25

30

35

40

45

50

55

60

65

8
one embodiment, which may be stored locally to each fabric
switch 304, or globally by the switch controller 308 in
another embodiment.

In this example, the path would be represented as follows
in the forwarding table for each fabric switch, where the
destination port set is identified as device/port. Further
more, each destination port may be a physical port, a virtual
port, or a combination thereof.

Forwarding Table Sl

Destination Address Destination Port Set

Host Addr1
Host Addr2

Forwarding Table S2

Destination Address Destination Port Set

Host Addr1
Host Addr2

Forwarding Table S3

Destination Address Destination Port Set

Host Addr1
Host Addr2

Therefore, when a packet is received by fabric switch S1
from Host 1, and the packet is to be forwarded to Host 2,
fabric switch S1 will follow a path from S1/L2/P5 to S2/P3
to S3/P2. This is because the LAG L2 is chosen and follows
port 5 out of fabric switch 1 to fabric switch 2. Likewise, in
the reverse direction, fabric switch 2 chooses port 4 in the
LAG L2. Furthermore, this forwarding logic may take into
account a hashing algorithm information exchange protocol,
and in one approach, only the edge Switches (Switches S1
and S3 in this example) may maintain forwarding tables, and
intermediate switches (switch S2 in this example) may
simply follow the source route in the packet.

In another embodiment, referring again to FIG. 3, the
switch controller 308 may have certain physical topology
available to construct the paths through the network fabric
302. In that topology, the fabric switches 304 and physical
connectivity therebetween are shown. In using the topology
information, the switch controller 308 is adapted to deter
mine the ARP entries associated with either its local ARP
connectivity or general subnet distribution in the network
fabric 302. So combining this information, the switch con
troller 308 creates these source-routing tables and may
offload them to any devices capable of Source routing in the
network fabric 302 or connected thereto.
The switch controller 308 may offload the forwarding

table information to just the fabric switches 304, or to the
fabric switches 304 and the end hosts 312. In this embodi
ment, each end host 312 may have a forwarding table that
includes source-routing information for packets being sent
to other end hosts connected to the network fabric 302.

In this approach, a network interface card (NIC) of the
host 312 or some other component or device may produce
the source routing for each forwarded packet. In this
approach, each NIC has a source-routing table that indicates

US 9,680,746 B2
9

the sequence of turns or hops to each known destination, and
inserts the route into a frame of the packet upon injection
into the fabric network 302. Still, hardware support from the
fabric switches 304 is beneficial in order for this approach to
function properly, because when each fabric switch 304 has
the capability to inspect the frame for the presence of a
source route the various fabric switches 304 in the path may
then take its respective routing decision based on that
source-routed information. Otherwise, when a fabric switch
304 which lacks source-routing capability encounters a
packet, it will only be able to send the packet along
according to some other information, without the benefit of
the Source-routing information which indicates a chosen
route through the network. In addition, each fabric switch
304 may still have a traditional routing table to handle
non-source-routed frames, regardless of whether the fabric
switch 304 has the capability to handle source-routed
frames.

In the case where a switch lacks the ability to handle
source-routed frames, the fabric switch 304 may simply rely
on a traditional routing table with which to determine a next
hop and egress port. In this case, one or more devices within
the path may lack the ability to handle the source-routed
frames, but the packet may still be forwarded without
problems until it reaches another fabric switch 304 or device
in the path which is capable of handling a source-routed
frame, where it will once again be handled according to the
source routing. Each device in the network fabric may be a
virtual device, a physical device, or a combination thereof.
Furthermore, each egress port may be a physical port, a
virtual port, or a combination thereof.

In any embodiment described herein, each device in the
network fabric 302 and connected thereto capable of source
routing may know each of the other devices to which it is
connected which are source-routing capable. Accordingly,
each source routing capable device is able to determine
when it is forwarding a packet to a device which is not
capable of source routing. In this case, the source-routing
information may be stripped from the packet, and may
appear as a standard packet to the receiving device.

Referring again to FIG. 4, the exemplary path through the
network fabric 302 is again referenced. This path is between
two hosts 312, specifically Host 1 to Host 2, and includes
three fabric switches 304 S1, S2, and S3. In this approach,
however, Host 1 and Host 2 have the forwarding tables, and
the Switches are instructed to forward packets according to
the source-routed information included therein.

In this approach, the path would be represented as follows
in the forwarding table for each host 312, where the desti
nation port set is identified as device/port.

Forwarding Table Host 1

Destination Address Destination Port Set

Host Addr1
Host Addr2

Internal
S1/L2/P5, S2/P3, S1/P2

Forwarding Table Host 2

Destination Address Destination Port Set

Host Addr1
Host Addr2

S3/P6, S2/L2/P4, S1/P4
Internal

10

15

25

30

35

40

45

50

55

60

65

10
The Source-routing information may be encapsulated in

the packets in various different ways, and may depend on
any protocols and/or network types that the packet adheres
to. In one embodiment, the source-routing information may
be included in a header of a packet. One example of this is
shown in FIG. 5A.

Referring to FIG. 5A, a frame format 500 for an exem
plary packet is shown according to one embodiment. The
frame format 500 includes a destination media access con
trol address (DMAC) 502, a source MAC address (SMAC)
504, a source routing tag (SR-Tag) 506 that includes the
Source-routing information, a service tag (S-Tag) 508, a
customer tag (C-Tag) 510, an ethertype descriptor 512, a
payload 514 for the packet, and an optional frame check
sequence (FCS) 516.

In one approach, the DMAC 502, SMAC 504, S-Tag 508,
C-Tag 510, payload 514 and FCS 516 may behave and be
utilized in the same manner as typical for any packet
adhering to any of various IEEE standards; however, the
ether type descriptor 512 may take into account the length of
the SR-Tag 506.

Regarding the SR-Tag 506, when a switch is not source
routing capable, then the SR-Tag 506 may be omitted from
the packet in order for the switch to understand the infor
mation in the header of the packet. This may be performed
by any device which forwards the packet to a non-source
routing compliant device. Such as a legacy Switch. Then
when the packet is received from this legacy device by
another source routing compliant device, the SR-Tag 506
may be reinserted into the header and the source-routing
information may be restored from this hop forward to the
destination in one embodiment, or the entire source-routing
information may be added to the SR-Tag 506 from the
Source to the destination, in an alternate embodiment.
The SR-Tag 506, in some embodiments, may include

Source-routing information, enforcement options, and hop
count information.
A Tag Protocol Identifier (TPID), such as the TPID 520

shown in FIG. 5B according to one embodiment, may be
used to denote the SR-Tag 506. The TPID 520 to denote a
SR-Tag may have the code 0xD2D2, but is not so con
strained, as any available string may be used to denote an
SR-Tag. The SR-Tag 506 may be formatted to include a
series of strings, each string having a predetermined length.
In this example, the strings are 16 bits long, but any length
may be used, such as 8 bits, 24 bits, 32 bits, etc. The first
string may be designated for Enforcement Options 522 and
the Hop Count 524, with each string including half the string
length (8 bits each) or some other division.
The Enforcement Options 522 may be used to indicate

any enforcement criteria for a particular packet. For
example, if the switch has a forwarding table which is
inconsistent with a next hop stipulated in the source-routing
information, then the switch may be directed to overwrite its
own forwarding table with the source-routing information or
the source-routing information may be rewritten based on
the switch's local forwarding table. This decision may be
indicated in the Enforcement Options 522. These Enforce
ment Options 522 also may dictate whether the source
routing information is strictly followed or if it may be
bypassed. Then, other traffic management options may be
present, such as which of various available ports to choose
to egress the packet (Such as in a LAG or some other Suitable
arrangement). This is possible because it is a logical inter
face. A logical interface might come up with more than one
physical port to choose from. The Enforcement Options 522
may indicate that a port with lowest latency should be

US 9,680,746 B2
11

chosen, or a port with the highest latency but more reliabil
ity, or some other traffic management decision that is under
stood by intermediate switches. Most of the instructions that
may be stored in the Enforcement Options 522 may be
related to reliability and/or traffic management. Some of
these options may even allow filtering or not filtering based
on the SR-Tags because the SR-Tags are a necessary com
ponent in order to filter, and basically the options might
indicate that the SR-Tag is to be retained no matter what. In
another approach, the switch may use the SR-Tag if it
understands it, or it may discard the SR-Tag if it does not.

The Hop Count 524 is used to denote which hop the
packet is currently at. After the initial string having the
Enforcement Options 522 and the Hop Count 524, a series
of Bridge IDs 526 related to Logical Port IDs 528 and
Options 530 thereof may be listed, one for each hop, shown
as hop 0, hop 1, hop 2, . . . , hop N. The number of Bridge
IDs 526 and Logical Port IDs 528 and Options 530 may
depend on the number of hops in the designated path, e.g.,
N. The Hop Count 524 indicates the current hop in the path
where the packet is Supposed to be, e.g., a number between
0 and N, either beginning at N or 0. If the packet is not at
the indicated hop, then corrective action may be taken by the
switch to correct any issues with the Hop Count 524 and/or
designated path.

Each set of Bridge ID 526 and Logical Port ID 528 and
Options 530 thereof may be 16 bits in length, with the
Bridge IDs 526 being 16 bits, the Logical Port ID 528 being
12 bits, and the Options 530 being 4 bits. Of course, any
other length may be used for these fields, as would be
understood by one of skill in the art.
Now referring to FIG. 6, a flowchart of a method 600 for

Source routing packets is shown, according to one embodi
ment. The method 600 may be performed in accordance with
the present invention in any of the environments depicted in
FIGS. 1-5B, among others, in various embodiments. Of
course, more or less operations than those specifically
described in FIG. 6 may be included in method 600, as
would be understood by one of skill in the art upon reading
the present descriptions.

Each of the steps of the method 600 may be performed by
any suitable component of the operating environment. For
example, in one embodiment, the method 600 may be
partially or entirely performed by a fabric switch, an end
station, a processor (such as an ASIC, a Switching ASIC, a
CPU, etc.) embodied in a computer, a switch controller, a
host connected to a network fabric having a plurality of
fabric switches interconnected therein, etc.
As shown in FIG. 6, method 600 may initiate with

operation 602, where a packet is received or created using a
network interface card (NIC) of a host connected to a
network fabric. The NIC in this method is source routing
capable. The network fabric includes a plurality of fabric
switches interconnected therein, each fabric switch possibly
being Source routing capable.

According to one embodiment, the Switch controller may
be adapted to operate according to OpenFlow standards, and
the NIC or host may be OpenFlow compliant. In this
approach, source-routing table details and rules may be
received from the OpenFlow Controller, as a way of pro
gramming which information and how the information is
stored in the Source-routing table.

In operation 604, a path through the network fabric is
determined by consulting a source-routing table stored to the
host. The path may be chosen from many different available
paths between the host and the detonation address of the
packet. In one embodiment, traffic may be load balanced

5

10

15

25

30

35

40

45

50

55

60

65

12
between the destination address and the host by changing
which path is selected for each new packet, stream of
packets, flow, etc.

In a further embodiment, source-routing information may
be received from a Switch controller, and the source-routing
information may be stored to the Source-routing table,
thereby allowing the host to send packets to any known
destination in the network fabric without the use of a
traditional look-up table.

In operation 606, Source-routing information is stored to
a packet header for the packet, the source-routing informa
tion comprising the path.

In a further embodiment, the source-routing information
may be stored in a SR-Tag in the packet header. The SR-Tag
may comprise, as described in more detail previously, an
enforcement options field, a hop count indicator field for
indicating a current device or hop in the path, and the
Source-routing information for the path, comprising a bridge
indicator associated with a logical port indicator and options
thereof for each device or hop in the path.

In operation 608, the packet is sent to a first device or hop
indicated by the path in the source-routing information. This
operation may be performed without the use of a look-up
table. The first device or hop may be part of the path stored
in the packet header which indicates the path through the
network fabric.

In more embodiments, referring again to FIG. 6, any or all
operations of method 600 may be implemented in a system,
a fabric Switch, a device, a network, a host, a processor,
and/or a computer program product.
Now referring to FIG. 7, another flowchart of method 700

for source routing packets is shown, according to one
embodiment. The method 700 may be performed in accor
dance with the present invention in any of the environments
depicted in FIGS. 1-5B, among others, in various embodi
ments. Of course, more or less operations than those spe
cifically described in FIG.7 may be included in method 700,
as would be understood by one of skill in the art upon
reading the present descriptions.

Each of the steps of the method 700 may be performed by
any suitable component of the operating environment. For
example, in one embodiment, the method 700 may be
partially or entirely performed by a fabric switch, an end
station, a processor (Such as an ASIC, a Switching ASIC, a
CPU, etc.) embodied in a computer, a switch controller, a
host connected to a network fabric having a plurality of
fabric switches interconnected therein, etc.
As shown in FIG. 7, method 700 may initiate with

operation 702, where a packet is received, such as by a fabric
Switch in a network fabric comprising a plurality of inter
connected fabric Switches. In addition, one or more hosts
may be connected to the network fabric. The fabric switch
may be connected, directly or indirectly, to a Switch con
troller for controlling certain functions thereof.

According to one embodiment, the Switch controller may
be adapted to operate according to OpenFlow standards, and
the fabric switch may be OpenFlow compliant.

In operation 704, Source-routing information may be
received with a fabric switch, the source-routing information
being sent from the switch controller.

In operation 706, the source-routing information is stored
to a source-routing table that indicates a sequence of devices
or hops between the fabric switch and each known destina
tion address in the network fabric.

In operation 708, a next device or hop in a path through
the network fabric is determined by consulting the source

US 9,680,746 B2
13

routing table. This operation may be performed without the
use of a look-up table, in one approach.

In operation 710, a portion of the source-routing infor
mation is stored to a packet header for the packet, the portion
of the Source-routing information comprising at least a
portion of the path.

In one embodiment, the portion of the source-routing
information may be stored in a SR-Tag, the SR-Tag com
prising an enforcement options field, a hop count indicator
field for indicating a current device or hop in the path, and
the portion of the Source-routing information for the at least
the portion of the path. The portion of the source-routing
information comprises a bridge indicator associated with a
logical port indicator and options thereof for each device or
hop in the path.

In operation 712, the packet is sent to the next device or
hop indicated by the at least the portion of the path in the
portion of the source-routing information.

In more embodiments, referring again to FIG. 7, any or all
operations of method 700 may be implemented in a system,
a fabric Switch, a device, a network, a host, a processor,
and/or a computer program product.

While various embodiments have been described above,
it should be understood that they have been presented by
way of example only, and not limitation. Thus, the breadth
and scope of an embodiment of the present invention should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

What is claimed is:
1. A system, comprising:
a processor and logic integrated with and/or executable by

the processor, the logic being configured to:
receive a packet via a network fabric, the network

fabric comprising a plurality of interconnected fabric
Switches;

determine a path through the network fabric by con
Sulting a source-routing table that has at least one
path stored therein, the at least one path comprising:
a destination address corresponding to a first host

connected to the network fabric;
a destination address corresponding to a second host

connected to the network fabric; and
a destination port set representing each device or hop

between the first host and the second host along
the at least one path, each destination port com
prising a device identifier and an egress port
identifier for the device or hop in the at least one
path;

store source-routing information from the source-rout
ing table to a packet header for the packet, the
Source-routing information comprising the path; and

send the packet according to an indication in the
Source-routing information.

2. The system as recited in claim 1, wherein the logic is
further configured to:

receive source-routing information from a Switch control
ler that is specific to a location of the system in the
network fabric; and

store the source-routing information to the source-routing
table.

3. The system as recited in claim 2, wherein the processor
is configured to operate according to OpenFlow standards.

4. The system as recited in claim 3, wherein the logic is
further configured to receive rules from the switch controller
via OpenFlow, the rules dictating which information is

10

15

25

30

35

40

45

50

55

60

65

14
stored in the source-routing table and how the information is
stored in the Source-routing table.

5. The system as recited in claim 1, wherein the logic
configured to store the Source-routing information to the
packet header is further configured to store the source
routing information in a source routing tag (SR-Tag), the
SR-Tag comprising:

an enforcement options field, the enforcement options
field indicating whether the source-routing information
is strictly followed or bypassed;

a hop count indicator field that indicates a current device
or hop in the path; and

the source-routing information for the path, comprising a
bridge indicator associated with a logical port indicator
and options thereof for each device or hop in the path.

6. The system as recited in claim 1, wherein destination
ports included in each destination port set are ordered
successively from the first host to the second host, or vice
WSa.

7. The system as recited in claim 1, wherein the indication
indicates a first device or a hop along the at least one path.

8. A computer program product, the computer program
product comprising a computer readable storage medium
having program instructions embodied therewith, the
embodied program instructions readable/executable by a
processor to cause the processor to:

receive, by the processor, a packet via a network fabric,
the network fabric comprising a plurality of intercon
nected fabric switches;

determine, by the processor, a path through the network
fabric by consulting a source-routing table that has at
least one path stored therein, the at least one path
comprising:
a destination address corresponding to a first host

connected to the network fabric;
a destination address corresponding to a second host

connected to the network fabric; and
a destination port set representing each device or hop

between the first host and the second host along the
at least one path, each destination port comprising a
device identifier and an egress port identifier for the
device or hop in the at least one path;

store, by the processor, source-routing information from
the Source-routing table to a packet header for the
packet, the source-routing information comprising the
path; and

send, by the processor, the packet according to an indi
cation in the source-routing information.

9. The computer program product as recited in claim 8.
wherein the embodied program instructions are further read
able/executable by the processor to:

receive, by the processor, source-routing information
from a switch controller that is specific to a location of
the processor in the network fabric; and

store, by the processor, the Source-routing information to
the source-routing table.

10. The computer program product as recited in claim 9.
wherein the processor is configured to operate according to
OpenFlow standards.

11. The computer program product as recited in claim 10,
wherein the embodied program instructions are further read
able/executable by the processor to receive, by the proces
sor, rules from the switch controller via OpenFlow, the rules
dictating which information is stored in the source-routing
table and how the information is stored in the source-routing
table.

US 9,680,746 B2
15

12. The computer program product as recited in claim 8.
wherein the embodied program instructions readable/ex
ecutable to store, by the processor, the Source-routing infor
mation to the packet header are further readable/executable
by the processor to store the Source-routing information in a
Source routing tag (SR-Tag), the SR-Tag comprising:

an enforcement options field, the enforcement options
field indicating whether the source-routing information
is strictly followed or bypassed;

a hop count indicator field that indicates a current device
or hop in the path; and

the Source-routing information for the path, comprising a
bridge indicator associated with a logical port indicator
and options thereof for each device or hop in the path.

13. The computer program product as recited in claim 8.
wherein destination ports included in each destination port
set are ordered successively from the first host to the second
host, or vice versa.

10

15

16
14. The computer program product as recited in claim 8.

wherein the indication indicates a first device or a hop along
the at least one path.

15. The system as recited in claim 1, further comprising
a network interface card (NIC) that includes the processor
that executes the logic.

16. The system as recited in claim 2, wherein the logic is
further configured to:

receive modified source-routing information from the
Switch controller; and

edit the source-routing table with the modified source
routing information.

17. The computer program product as recited in claim 9.
wherein the embodied program instructions are further read
able/executable by the processor to:

receive, by the processor, modified source-routing infor
mation from the Switch controller; and

edit, by the processor, the source-routing table with the
modified source-routing information.

k k k k k

