
(12) United States Patent
Whang et al.

US009672251B1

US 9,672.251 B1
Jun. 6, 2017

(10) Patent No.:
(45) Date of Patent:

(54) EXTRACTING FACTS FROM DOCUMENTS

(71) Applicant: Google Inc., Mounatin View, CA (US)

(72) Inventors: Steven Euijong Whang, Mountain
View, CA (US); Rahul Gupta,
Mountain View, CA (US); Alon
Yitzchak Halevy, Los Altos, CA (US);
Mohamed Yahya, Saarbruecken (DE)

(73) Assignee: Google Inc., Mountain View, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 295 days.

(21) Appl. No.: 14/499,615

(22) Filed: Sep. 29, 2014

(51) Int. Cl.
G06F 7/30 (2006.01)

(52) U.S. Cl.
CPC G06F 17/30528 (2013.01)

(58) Field of Classification Search
CPC G06F 17/30; G06F 17/30424; G06F

17/30011; G06F 17/30707; G06F
17/30528

USPC .. 707/600 899
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

2006, O293879 A1* 12, 2006 Zhao et al. G06F 17,30864
TO4/9

OTHER PUBLICATIONS

Finkel et al., “Incorporating Non-local Information into Information
Extraction Systems by Gibbs Sampling.” In Proceedings of the 43rd

800 '.
Petermine a frequency score for each pattern

Annual Meeting of the ACL, Ann Arbor, Michigan, USA, Jun. 2005,
pp. 363-370.
Gupta et al. "Biperpedia: An Ontology for Search Applications.” In
Proceedings of the VLDB Endowment, 2014, pp. 505-516.
Haghighi and Klein, "Simple Coreference Resolution with Rich
Syntactic and Semantic Features, ” In Proceedings of Empirical
Methods in Natural Language Processing. Singapore, Aug. 6-7,
2009, pp. 1152-1161.
Madnani and Dorr, "Generating Phrasal and Sentential Paraphrases:
A Survey of Data-Driven Methods.” In Computational Linguistics,
2010, 36(3):341-387.
de Marneffe et al., “Generating Typed Dependency Parses from
Phrase Structure Parses.” In Proceedings of Language Resources
and Evaluation, 2006, pp. 449-454.
Mausam et al., “Open Language Learning for Information Extrac
tion.” In Proceedings of Empirical Methods in Natural Language
Processing, 2012, 12 pages.
Mikolov et al., “Efficient Estimation of Word Representations in
Vector Space.” International Conference on Learning Representa
tions (ICLR), Scottsdale, Arizona, USA, 2013, 12 pages.
Mintz et al., “Distant Supervision for Relation Extraction Without
Labeled Data.” In Proceedings of the Association for Computational
Linguistics, 2009, 9 pages.

* cited by examiner

Primary Examiner — Isaac M. Woo
(74) Attorney, Agent, or Firm — Fish & Richardson P.C.

(57) ABSTRACT
Methods, systems, and apparatus, including computer pro
grams encoded on computer storage media, for extracting
facts from a collection of documents. One of the methods
includes obtaining a plurality of seed facts; generating a
plurality of patterns from the seed facts, wherein each of the
plurality of patterns is a dependency pattern generated from
a dependency parse; applying the patterns to documents in
a collection of documents to extract a plurality of candidate
additional facts from the collection of documents; and
selecting one or more additional facts from the plurality of
candidate additional facts.

25 Claims, 6 Drawing Sheets

692

Obtain data that associates each term in a vocabulary
with a high-dimensional representation

64

l
Determine a coherence score for each pattern

66

Determine a combined score for each pattern
68

Determine a score of each candidate additiona fact
based on the combined scores

f

U.S. Patent Jun. 6, 2017 Sheet 1 of 6 US 9,672.251 B1

Fact
Repository

106

Attribute
Repository

104
Fact Extraction System 100

Document
Collection

102

FIG. 1

U.S. Patent Jun. 6, 2017 Sheet 2 of 6 US 9,672.251 B1

Process Collection of documents to generate a
processed Collection of documents 202

io, Extract a set of seed facts from the processed collegin

Generate patterns using the set of seed facts
206

Extract candidate additional facts from the processed
Collection 208

Score the candidate additional facts 210

Select additional facts 212

FG. 2

U.S. Patent Jun. 6, 2017 Sheet 3 of 6 US 9,672.251 B1

Receive a Set of extraction rules

300 .

Apply the extraction rules to generate candidate seed
facts

304

Determine whether each candidate Seed fact is valid

306

Selects the valid Candidate Seed facts as the Seed facts

308

FIG. 3

U.S. Patent Jun. 6, 2017 Sheet 4 of 6 US 9,672.251 B1

identify sentences in the collection of documents that
match the seed fact

o, 402

identify a minimal subgraph of a dependency parse of
each matching sentence

404

Generate a dependency pattern from each minimal
Subgraph

406

FIG. 4

U.S. Patent Jun. 6, 2017 Sheet S of 6 US 9,672.251 B1

Apply patterns to processed collection to identify
matching sentences

so, 502

Generate extractions from matching sentences
504

Aggregate extractions to generate candidate additional
facts

506

FIG. 5

U.S. Patent Jun. 6, 2017 Sheet 6 of 6 US 9,672.251 B1

Determine a frequency score for each pattern

o, 602

Obtain data that associates each term in a vocabulary
with a high-dimensional representation

604

Determine a coherence score for each pattern
606

Determine a combined score for each pattern
608

Determine a score for each candidate additional fact
based On the Combined SCOres

10

FIG. 6

US 9,672,251 B1
1.

EXTRACTING FACTS FROM DOCUMENTS

BACKGROUND

This specification relates to information extraction from
electronic documents.

Information extraction systems automatically extract
structured information from unstructured or semi-structured
documents. For example, some information extraction sys
tems that exist extract facts from collections of electronic
documents, with each fact identifying a Subject entity, an
attribute possessed by the entity, and the value of the
attribute for the entity.

SUMMARY

In general, this specification describes techniques for
extracting facts from collections of documents.

In general, one innovative aspect of the Subject matter
described in this specification can be embodied in methods
that include the actions of obtaining a plurality of seed facts,
wherein each seed fact identifies a subject entity, an attribute
possessed by the Subject entity, and an object, and wherein
the object is an attribute value of the attribute possessed by
the Subject entity; generating a plurality of patterns from the
seed facts, wherein each of the plurality of patterns is a
dependency pattern generated from a dependency parse,
wherein a dependency parse of a text portion corresponds to
a directed graph of Vertices and edges, wherein each vertex
represents a token in the text portion and each edge repre
sents a syntactic relationship between tokens represented by
vertices connected by the edge, wherein each vertex is
associated with the token represented by the vertex and a
part of speech tag, and wherein a dependency pattern
corresponds to a Sub-graph of a dependency parse with one
or more of the vertices in the Sub-graph having a token
associated with the vertex replaced by a variable; applying
the patterns to documents in a collection of documents to
extract a plurality of candidate additional facts from the
collection of documents; and selecting one or more addi
tional facts from the plurality of candidate additional facts.

Other embodiments of this aspect include corresponding
computer systems, apparatus, and computer programs
recorded on one or more computer storage devices, each
configured to perform the actions of the methods. For a
system of one or more computers to be configured to
perform particular operations or actions means that the
system has installed on it software, firmware, hardware, or
a combination of them that in operation cause the system to
perform the operations or actions. For one or more computer
programs to be configured to perform particular operations
or actions means that the one or more programs include
instructions that, when executed by data processing appa
ratus, cause the apparatus to perform the operations or
actions.

Particular embodiments of the subject matter described in
this specification can be implemented so as to realize one or
more of the following advantages. A fact extraction system
can accurately extract facts, i.e., (Subject, attribute, object)
triples, from a collection of electronic documents to identify
values of attributes, i.e., “objects” in the extracted triples,
that are not known to the fact extraction system. In particu
lar, values of long-tail attributes that appear infrequently in
the collection of electronic documents relative to other, more
frequently occurring attributes can be accurately extracted
from the collection. For example, given a set of attributes for
which values are to be extracted from the collection, the

10

15

25

30

35

40

45

50

55

60

65

2
attributes in the set can be ordered by the number of
occurrences of each of the attributes in the collection and the
fact extraction system can accurately extract attribute values
for the long-tail attributes in the set, with the long-tail
attributes being the attributes that are ranked below N in the
order, where N is chosen such that the total number of
appearances of attributes ranked N and above in the ranking
equals the total number of appearances of attributes ranked
below N in the ranking Additionally, the fact extraction
system can accurately extract facts to identify values of
nominal attributes, i.e., attributes that are expressed as
OS.

The details of one or more embodiments of the subject
matter of this specification are set forth in the accompanying
drawings and the description below. Other features, aspects,
and advantages of the Subject matter will become apparent
from the description, the drawings, and the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows an example fact extraction system.
FIG. 2 is a flow diagram of an example process for

extracting facts from a collection of documents.
FIG. 3 is a flow diagram of an example process for

extracting seed facts from a collection of documents using a
set of extraction rules.

FIG. 4 is a flow diagram of an example process for
generating dependency patterns from a seed fact.

FIG. 5 is a flow diagram of an example process for
extracting candidate additional facts using dependency pat
terns.

FIG. 6 is a flow diagram of an example process for scoring
candidate additional facts.

Like reference numbers and designations in the various
drawings indicate like elements.

DETAILED DESCRIPTION

FIG. 1 shows an example fact extraction system 100. The
fact extraction system 100 is an example of a system
implemented as computer programs on one or more com
puters in one or more locations, in which the systems,
components, and techniques described below can be imple
mented.
The fact extraction system 100 extracts facts from a

collection of documents 102. The collection of documents
102 includes multiple electronic documents. For example,
the documents in the collection of documents 102 can
include one or more of news articles, blog posts, product
reviews, and so on.

Each fact extracted by the fact extraction system 100 from
the collection of documents 102 is extracted as a (subject,
attribute, object) triple. The subject in the triple identifies an
entity, the attribute in the triple identifies an attribute pos
sessed by the entity, and the object identifies a value of the
attribute for the entity. Example entities include people,
places, countries, landmarks, animals, historical events,
organizations, businesses, sports teams, sporting events,
movies, Songs, albums, games, works of art, fictional char
acters, and so on.
The facts extracted by the fact extraction system 100 may

identify the subject entities, object entities, and attributes in
various ways. For example, each triple generated by the fact
extraction system 100 may include a recognized name of the
Subject entity, the name of the attribute, and a recognized
name of the object entity. For example, one of the facts
extracted by the fact extraction system 100 from the collec

US 9,672,251 B1
3

tion of documents 102 may be (Example Organization,
Chief Economist, Example Economist), indicating that
Example Economist is the Chief Economist of Example
Organization.
As another example, in each triple, an identifier for the

entity or the attribute may be used in place of one or more
of the names. In the case of the attribute, the identifier may
be an identifier associated with the attribute in an attribute
repository 104 or in a database that stores information about
entities and attributes possessed by those entities, e.g., a
database of structured data. In the case of the entities, the
identifier may be an identifier associated with the entity in
the entity database.

The entity database may be, e.g., a graph database that
includes nodes that represent entities and identifies the type
of each entity represented by a node and links between nodes
that represent relationships between entities, with the type of
the link between two nodes identifying the type of relation
ship that exists between the entities represented by the
nodes. An example of an online database of structured data
that exists is the Freebase database that is accessible on the
Internet at http://www.freebase.com.
The fact extraction system 100 extracts facts for attributes

from the attribute repository 104. The attribute repository
104 stores data identifying attributes possessed by entities of
one or more entity types. Generally, for a given entity type,
the attribute repository 104 includes attributes that appear
frequently in the collection of documents 102 and long-tail
attributes that appear relatively infrequently in the collection
of documents 102. For example, for entities of the type
“organization, the attribute “Chief Executive Officer may
appear frequently in the collection of documents 102, while
the attributes "chief economist' and "philanthropic arm”
may be long tail attributes that appear relatively infrequently
in the collection of documents 102.
Once extracted, the fact extraction system 100 may store

the extracted facts in a facts repository 106 or provide the
facts for use for Some other purpose. In some cases, the
extracted facts may be used by an Internet search engine in
providing formatted answers in response to search queries
that have been classified as seeking to determine the value
of an attribute possessed by a particular entity. For example,
a received search query “who is the chief economist of
example organization?’ may be classified by the search
engine as seeking to determine the value of the “Chief
Economist' attribute for the entity “Example Organization.”
By accessing the fact repository 106, the search engine may
identify that the fact repository 106 includes a (Example
Organization, Chief Economist, Example Economist) triple
and, in response to the search query, can provide a formatted
presentation that identifies “Example Economist’ as the
“Chief Economist of the entity “Example Organization.”

FIG. 2 is a flow diagram of an example process 200 for
extracting facts from a collection of documents. For conve
nience, the process 200 will be described as being performed
by a system of one or more computers located in one or more
locations. For example, a fact extraction system, e.g., the
fact extraction system 100 of FIG. 1, appropriately pro
grammed in accordance with this specification, can perform
the process 200.

The system processes a collection of documents, e.g., the
collection of documents 102 of FIG. 1, to generate a
processed collection of documents (step 202). In particular,
the system processes the documents in the collection of
documents to generate dependency parses of sentences in
each of the documents. A dependency parse of a sentence
corresponds to a directed graph of vertices and edges. Each

10

15

25

30

35

40

45

50

55

60

65

4
vertex of the graph represents a token from the sentence,
e.g., a word, phrase, symbol, or other meaningful element in
the sentence, and each edge in the graph represents a
Syntactic relationship in the sentence of the tokens repre
sented by the vertices that the edge connects. Each vertex in
the dependency parse is associated with the token that the
vertex represents and a part of speech tag that identifies the
part of speech of the token in the sentence. Dependency
parses and techniques for generating dependency parses are
described in more detail in Marie-Catherine de Marneffe,
Bill MacCartney, and Christopher D. Manning: Generating
Tiped Dependency Parses from Phrase Structure Parses; In
Proceedings of Language Resources and Evaluation, 2006.
Once generated, the system can store the dependency parses
in any of a variety of ways, e.g., as JavaScript Object
Notation (JSON) objects or arrays, in Extensible Markup
Language (XML) documents, or in protocol buffers for
documents.
The system also processes the documents in the collection

of documents using a coreference resolver to identify occur
rences of references to entities in the documents and, for
each occurrence, to identify the entity to which the occur
rence refers. For example, the system may process each
document using a coreference resolver that clusters entity
references in the document into clusters, with each cluster
including references to the same entity. An example coref
erence resolver is described in more detail in Aria Haghighi,
Dan Klein; Simple Coreference Resolution with Rich Syn
tactic and Semantic Features; In Proceedings of Empirical
Methods in Natural Language Processing, 2009.

Optionally, the system can also process the documents
using an entity resolver that resolves each cluster to an
identifier in the entity database of the entity to which the
references in the cluster refer. An example entity resolver is
described in Finkel et al., Incorporating Non-local Informa
tion into Information Extraction Systems by Gibbs Sam
pling, ACL 2005.

In some implementations, rather than processing the
collection of documents, the system may receive a processed
collection of documents, with the documents in the collec
tion already having been processed in the manner described
above.
The system extracts a set of seed facts from the processed

collection of documents (step 204). Generally, the system
extracts the set of seed facts from the processed collection of
documents using a set of extraction rules. Extracting seed
facts using extraction rules is described below with refer
ence to FIG. 3.
The system generates patterns using the set of seed facts

(step 206). Generally, the patterns are dependency patterns
generated from dependency parses of sentences in docu
ments in the processed collection of documents. A depen
dency pattern corresponds to a Sub-graph of a dependency
parse, where, for at least one of the vertices of the graph, the
token associated with the vertex has been replaced by a
variable while the part of speech tag associated with the
vertex has been retained. Generating dependency patterns
using a set of seed facts is described below with reference to
FIG. 4. Once generated, the system can store the dependency
patterns in any of a variety of ways, e.g., as JSON objects or
arrays, in XML documents, or in protocol buffers for docu
mentS.

The system extracts candidate additional facts from the
collection of documents (step 208). In order to extract the
candidate additional facts, the system applies the patterns to
sentences from documents in the collection. Generating

US 9,672,251 B1
5

candidate additional facts by applying patterns is described
below with reference to FIG. 5.

The system scores the candidate additional facts (step
210). Generally, the system determines a score for a given
candidate additional fact from scores for each pattern used
to generate the candidate additional fact. Determining scores
for patterns and using those scores to determine a score for
a candidate additional fact is described below with reference
to FIG. 6.

The system selects additional facts from among the can
didate additional facts based on the scores (step 212). For
example, the system can select each candidate additional
fact having a score above a threshold value as an additional
fact. As another example, the system can select a predeter
mined number of highest-scoring candidate additional facts
as additional facts. The system can store the selected addi
tional facts in a fact repository, e.g., the fact repository 106
of FIG. 1, or provide the selected additional facts to an
external system for use for Some immediate purpose.

FIG. 3 is a flow diagram of an example process 300 for
extracting seed facts from a collection of documents using a
set of extraction rules. For convenience, the process 300 will
be described as being performed by a system of one or more
computers located in one or more locations. For example, a
fact extraction system, e.g., the fact extraction system 100 of
FIG. 1, appropriately programmed in accordance with this
specification, can perform the process 300.
The system receives a set of extraction rules (step 302).

The extraction rules in the set of extraction rules can be
predetermined rules for generating a (Subject, attribute,
object) triple from text. For example, one extraction rule
may specify that for a text fragment that is of the form “the
A of S.O.” the (subject, attribute, object) triple that should
be generated is (S, A, O). As another example, another
extraction rule may specify that for a text fragment that is of
the form “O, the A of S, the (subject, attribute, object) pair
that should be generated is (S, A, O), where the being
inside of brackets indicates that the inclusion of “the in the
text fragment is optional.

The system applies the extraction rules to extract candi
date seed facts from the collection of documents (step 304).
That is, the system applies each extraction rule to documents
from the collection of documents to identify text fragments
that satisfy the form identified in the extraction rule and
generates a (Subject, attribute, object) triple from each text
fragment as specified by the extraction rule.
The system determines whether each candidate seed fact

is valid (step 306). In particular, for each (subject, attribute,
object) triple, the system determines whether the attribute is
identified as an attribute in an attribute repository, e.g., the
attribute repository 104 of FIG. 1. If the attribute does not
appear in the attribute repository, the system determines that
the candidate seed fact is not valid. In some implementa
tions, if the attribute appears in the attribute repository, the
system also determines whether the attribute and object
corefer in the text fragment from which the candidate seed
fact was extracted. That is, the system determines whether
the attribute and the object were classified as referring to the
same entity in the text fragment by the coreference service
when the collection of documents was processed. In these
implementations, the system determines that the candidate
seed fact is valid only if the attribute of the candidate seed
fact is identified as an attribute in the attribute repository and
the attribute and object of the candidate seed fact corefer in
the text fragment from which the candidate seed fact was
extracted.

5

10

15

25

30

35

40

45

50

55

60

65

6
The system selects the valid candidate seed facts as seed

facts (step 308).
FIG. 4 is a flow diagram of an example process 400 for

generating dependency patterns from a seed fact. For con
venience, the process 400 will be described as being per
formed by a system of one or more computers located in one
or more locations. For example, a fact extraction system,
e.g., the fact extraction system 100 of FIG. 1, appropriately
programmed in accordance with this specification, can per
form the process 400.
The system identifies sentences in the collection of docu

ments that match the seed fact (step 402). The system
determines that a sentence matches a seed fact if the sen
tence contains the attribute in the seed fact, one or more
tokens that have been classified as referring to the same
entity as the Subject in the seed fact, and one or more tokens
that have been classified as referring to the same entity as the
object in the seed fact.
The system identifies a minimal Sub-graph of the depen

dency parse of each of the matching sentences (step 404).
For a given sentence that matches a seed fact, the minimal
Sub-graph of the dependency parse of the matching sentence
is the Smallest portion of the dependency parse that includes
vertices that represent the head tokens of the subject, attri
bute, and object of the seed fact. The head token of a subject,
attribute, or object is the syntactic root of the tokens that
make up the subject, attribute, or object tokens. For
example, for the “executive chairman' attribute, “chairman'
is the head token while “executive' is the noun compound
modifier for the head token.
The system generates a dependency pattern from each

minimal sub-graph (step 406). The system generates a
dependency pattern from a minimal Sub-graph by delexical
izing the three vertices that represent the head tokens of the
Subject, attribute, and object. That is, the system replaces the
token associated with each of the vertices with a variable but
retains the part of speech tag associated with vertex.

Optionally, the system can also modify the part of speech
tags associated with the vertices. For example, if the part of
speech tags specify that the Subject, attribute, or objects are
proper nouns or common nouns, the system can generalize
the tags to indicate that either proper nouns or common
nouns are acceptable.
Once the system has generated dependency patterns from

each of the seed facts, the system stores data that associates
each dependency pattern with the attributes for which the
pattern can generate facts. That is, the system associates
each pattern with the attribute from each seed fact that was
used to generate the pattern. Optionally, the system can
discard dependency patterns that were not generated by
more than a threshold number of unique seed facts.

FIG. 5 is a flow diagram of an example process 500 for
extracting candidate additional facts using dependency pat
terns. For convenience, the process 500 will be described as
being performed by a system of one or more computers
located in one or more locations. For example, a fact
extraction system, e.g., the fact extraction system 100 of
FIG. 1, appropriately programmed in accordance with this
specification, can perform the process 500.
The system applies the dependency patterns to the pro

cessed collection of documents to identify matching sen
tences (step 502). That is, for each dependency pattern, the
system identifies dependency parses of sentences that match
the dependency pattern. A dependency parse matches a
dependency pattern if the dependency parse contains a
portion for which each vertex and each edge matches the
dependency pattern.

US 9,672,251 B1
7

For vertices of the dependency pattern that are associated
with a token and a part of speech, another vertex matches the
vertex if the tokens associated with the vertices are the same
and the parts of speech associated with the vertices (i) are the
same or (ii) the part of speech associated with the other
vertex is subsumed by the part of speech associated with the
vertex in the dependency pattern, e.g., if the part of speech
for the other vertex is proper noun and the part of speech for
the dependency pattern is noun.

For vertices of the dependency pattern that are associated
with a variable rather than a fixed token, another vertex
matches the vertex if the parts of speech associated with the
vertices match or if the part of speech associated with the
vertices (i) are the same or (ii) the part of speech associated
with the other vertex is subsumed by the part of speech
associated with the vertex in the dependency pattern.

Additionally, the system determines whether the phrase in
the dependency parse that is headed by the head token that
matches the attribute vertex of the dependency pattern
matches any of the attributes that are associated with the
dependency pattern, i.e., any of the attributes for which the
pattern can generate facts. If the phrase matches one of the
attributes, the system determines that the dependency parse
matches the dependency pattern.
The system generates an extraction from each matching

sentence (step 504). That is, the system resolves the phrases
in the matching sentence that are headed by the token that
matches the subject vertex of the dependency pattern and the
token that matches the object vertex of the dependency
pattern to respective entities in the entity database. The
system then generates an extraction that is of the form of a
(resolved subject, attribute, resolved object) triple. As
described above, in some implementations, one or more of
the elements of the triple are identifiers that identify the
entity or attribute referred to by the element.
The system aggregates the extractions to generate candi

date additional facts (step 506). That is, for each extraction
that generated the same (resolved subject, attribute, resolved
object) triple, the system generates a single candidate addi
tional fact. The system also associates the candidate addi
tional fact with data identifying the patterns used to generate
the candidate additional fact, i.e., used to generate the
extractions that were aggregated to generate the candidate
additional fact.

FIG. 6 is a flow diagram of an example process 600 for
scoring candidate additional facts. For convenience, the
process 600 will be described as being performed by a
system of one or more computers located in one or more
locations. For example, a fact extraction system, e.g., the
fact extraction system 100 of FIG. 1, appropriately pro
grammed in accordance with this specification, can perform
the process 600.

The system determines a frequency score for each pattern
(step 602). The frequency score for a given pattern is a
function of the total number of extractions produced by
applying the pattern, e.g., as described above with reference
to FIG. 5. For example, in some implementations, the
frequency score is equal to the total number of extractions.
In some other implementations, the frequency score is a
logarithm, e.g., a base ten or base e logarithm, of the total
number of extractions. In some implementations, the system
uses the total number of distinct extractions produced by
applying the pattern, i.e., by only counting two extractions
that are the same as a single extraction produced by applying
the pattern.

The system obtains data that associates each term in a
Vocabulary of terms with a respective high-dimensional

10

15

25

30

35

40

45

50

55

60

65

8
representation of the term (step 604), i.e., gives each term a
location in the high-dimensional space. The associations are
generated so that the relative locations of terms reflect
semantic similarities between the terms. That is, the relative
locations of terms in the high-dimensional space reflect
semantic similarities, e.g., showing that, by virtue of their
relative locations in the space the word "queen' is similar to
the words “king and “prince.” Furthermore, relative loca
tions in the space may show that the word "king is similar
to the word "queen' in the same sense as the word “prince'
is similar to the word “princess.” and, in addition, that the
word “king is similar to the word “prince' as the word
"queen' is similar to the word “princess.”

Associations of terms to high dimensional vector repre
sentations having these characteristics can be generated by
training a machine learning system configured to process
each term in the vocabulary of terms to obtain a respective
numeric representation of each term in the Vocabulary in the
high-dimensional space and to associate each term in the
vocabulary with the respective numeric representation of the
term in the high-dimensional space. Example techniques for
training Such a system and generating the associations are
described in Tomas Mikolov, Kai Chen, Greg S. Corrado,
and Jeffrey Dean, Efficient estimation of word representa
tions in vector space, International Conference on Learning
Representations (ICLR), Scottsdale, Ariz., USA, 2013.
The system determines a coherence score for each pattern

using the obtained data (step 606). Generally, the coherence
score for a given pattern measures how semantically related
the attributes for which the pattern generates facts are. The
coherence score for a pattern that generates facts for attri
butes that are more semantically similar than the attributes
for which another pattern generates facts will generally be
higher than the coherence score for the other pattern.

In particular, in order to determine the coherence score for
a given pattern, the system determines a high-dimensional
representation for each attribute associated which the pattern
and determines a pairwise coherence score between each
possible pair of associated attributes. The pairwise coher
ence score between two attributes is a distance measure, e.g.,
a cosine similarity, between the high-dimensional represen
tations for the attributes. In some implementations, the
system uses a different distance measure than cosine simi
larity, e.g., Hamming distance or Jaccard similarity.
The system determines the coherence score for the pattern

from the pairwise coherence scores between the attributes
associated with the pattern. For example, the coherence
score for the pattern can be an average of the pairwise
coherence scores, e.g., a mean or a median, or a maximum
of the pairwise coherence scores.
The system determines a combined score for each pattern

by combining the coherence score and the frequency score
for the pattern (step 608). For example, the combined score
for the pattern can be a product of the coherence score and
the frequency score or a sum of the coherence score and the
frequency score.
The system determines a score for each candidate addi

tional fact from the combined scores for the patterns (step
610). In particular, the score for a given candidate additional
fact is a combination of the combined scores for each pattern
used to generate the candidate additional fact. For example,
the score for the candidate additional fact may be product of
the combined scores or a Sum of the combined scores.

Embodiments of the subject matter and the functional
operations described in this specification can be imple
mented in digital electronic circuitry, in tangibly-embodied
computer Software or firmware, in computer hardware,

US 9,672,251 B1
9

including the structures disclosed in this specification and
their structural equivalents, or in combinations of one or
more of them. Embodiments of the subject matter described
in this specification can be implemented as one or more
computer programs, i.e., one or more modules of computer
program instructions encoded on a tangible non transitory
program carrier for execution by, or to control the operation
of data processing apparatus. Alternatively or in addition,
the program instructions can be encoded on an artificially
generated propagated signal, e.g., a machine-generated elec
trical, optical, or electromagnetic signal, that is generated to
encode information for transmission to Suitable receiver
apparatus for execution by a data processing apparatus. The
computer storage medium can be a machine-readable Stor
age device, a machine-readable storage Substrate, a random
or serial access memory device, or a combination of one or
more of them.
The term “data processing apparatus' encompasses all

kinds of apparatus, devices, and machines for processing
data, including by way of example a programmable proces
Sor, a computer, or multiple processors or computers. The
apparatus can include special purpose logic circuitry, e.g., an
FPGA (field programmable gate array) or an ASIC (appli
cation specific integrated circuit). The apparatus can also
include, in addition to hardware, code that creates an execu
tion environment for the computer program in question, e.g.,
code that constitutes processor firmware, a protocol stack, a
database management system, an operating system, or a
combination of one or more of them.
A computer program (which may also be referred to or

described as a program, Software, a software application, a
module, a software module, a script, or code) can be written
in any form of programming language, including compiled
or interpreted languages, or declarative or procedural lan
guages, and it can be deployed in any form, including as a
standalone program or as a module, component, Subroutine,
or other unit Suitable for use in a computing environment. A
computer program may, but need not, correspond to a file in
a file system. A program can be stored in a portion of a file
that holds other programs or data, e.g., one or more Scripts
stored in a markup language document, in a single file
dedicated to the program in question, or in multiple coor
dinated files, e.g., files that store one or more modules, Sub
programs, or portions of code. A computer program can be
deployed to be executed on one computer or on multiple
computers that are located at one site or distributed across
multiple sites and interconnected by a communication net
work.

The processes and logic flows described in this specifi
cation can be performed by one or more programmable
computers executing one or more computer programs to
perform functions by operating on input data and generating
output. The processes and logic flows can also be performed
by, and apparatus can also be implemented as, special
purpose logic circuitry, e.g., an FPGA (field programmable
gate array) or an ASIC (application specific integrated
circuit).

Computers suitable for the execution of a computer
program include, by way of example, can be based on
general or special purpose microprocessors or both, or any
other kind of central processing unit. Generally, a central
processing unit will receive instructions and data from a read
only memory or a random access memory or both. The
essential elements of a computer are a central processing
unit for performing or executing instructions and one or
more memory devices for storing instructions and data.
Generally, a computer will also include, or be operatively

5

10

15

25

30

35

40

45

50

55

60

65

10
coupled to receive data from or transfer data to, or both, one
or more mass storage devices for storing data, e.g., mag
netic, magneto optical disks, or optical disks. However, a
computer need not have such devices. Moreover, a computer
can be embedded in another device, e.g., a mobile telephone,
a personal digital assistant (PDA), a mobile audio or video
player, a game console, a Global Positioning System (GPS)
receiver, or a portable storage device, e.g., a universal serial
bus (USB) flash drive, to name just a few.
Computer readable media Suitable for storing computer

program instructions and data include all forms of nonvola
tile memory, media and memory devices, including by way
of example semiconductor memory devices, e.g., EPROM,
EEPROM, and flash memory devices; magnetic disks, e.g.,
internal hard disks or removable disks; magneto optical
disks; and CD ROM and DVD-ROM disks. The processor
and the memory can be Supplemented by, or incorporated in,
special purpose logic circuitry.
To provide for interaction with a user, embodiments of the

Subject matter described in this specification can be imple
mented on a computer having a display device, e.g., a CRT
(cathode ray tube) or LCD (liquid crystal display) monitor,
for displaying information to the user and a keyboard and a
pointing device, e.g., a mouse or a trackball, by which the
user can provide input to the computer. Other kinds of
devices can be used to provide for interaction with a user as
well; for example, feedback provided to the user can be any
form of sensory feedback, e.g., visual feedback, auditory
feedback, or tactile feedback; and input from the user can be
received in any form, including acoustic, speech, or tactile
input. In addition, a computer can interact with a user by
sending documents to and receiving documents from a
device that is used by the user; for example, by sending web
pages to a web browser on a user's client device in response
to requests received from the web browser.

Embodiments of the subject matter described in this
specification can be implemented in a computing system that
includes a back end component, e.g., as a data server, or that
includes a middleware component, e.g., an application
server, or that includes a front end component, e.g., a client
computer having a graphical user interface or a Web browser
through which a user can interact with an implementation of
the Subject matter described in this specification, or any
combination of one or more Such back end, middleware, or
front end components. The components of the system can be
interconnected by any form or medium of digital data
communication, e.g., a communication network. Examples
of communication networks include a local area network
(“LAN”) and a wide area network (“WAN”), e.g., the
Internet.
The computing system can include clients and servers. A

client and server are generally remote from each other and
typically interact through a communication network. The
relationship of client and server arises by virtue of computer
programs running on the respective computers and having a
client-server relationship to each other.

While this specification contains many specific imple
mentation details, these should not be construed as limita
tions on the scope of any invention or of what may be
claimed, but rather as descriptions of features that may be
specific to particular embodiments of particular inventions.
Certain features that are described in this specification in the
context of separate embodiments can also be implemented in
combination in a single embodiment. Conversely, various
features that are described in the context of a single embodi
ment can also be implemented in multiple embodiments
separately or in any Suitable Subcombination. Moreover,

US 9,672,251 B1
11

although features may be described above as acting in
certain combinations and even initially claimed as such, one
or more features from a claimed combination can in some
cases be excised from the combination, and the claimed
combination may be directed to a subcombination or varia- 5
tion of a Subcombination.

Similarly, while operations are depicted in the drawings in
a particular order, this should not be understood as requiring
that such operations be performed in the particular order
shown or in sequential order, or that all illustrated operations
be performed, to achieve desirable results. In certain cir
cumstances, multitasking and parallel processing may be
advantageous. Moreover, the separation of various system
modules and components in the embodiments described
above should not be understood as requiring Such separation
in all embodiments, and it should be understood that the
described program components and systems can generally
be integrated together in a single software product or pack
aged into multiple software products.

Particular embodiments of the subject matter have been
described. Other embodiments are within the scope of the
following claims. For example, the actions recited in the
claims can be performed in a different order and still achieve
desirable results. As one example, the processes depicted in
the accompanying figures do not necessarily require the
particular order shown, or sequential order, to achieve
desirable results. In certain implementations, multitasking
and parallel processing may be advantageous.

10

15

25

30

What is claimed is:
1. A method comprising:
obtaining a plurality of seed facts, wherein each seed fact

identifies a subject entity, an attribute possessed by the
Subject entity, and an object, and wherein the object is
an attribute value of the attribute possessed by the
Subject entity;

generating a plurality of patterns from the seed facts,
wherein each of the plurality of patterns is a depen- 40
dency pattern generated from a dependency parse,
wherein a dependency parse of a text portion corre
sponds to a directed graph of vertices and edges,
wherein each vertex represents a token in the text
portion and each edge represents a syntactic relation
ship between tokens represented by vertices connected
by the edge, wherein each vertex is associated with the
token represented by the vertex and a part of speech
tag, and wherein a dependency pattern corresponds to
a Sub-graph of a dependency parse with one or more of
the vertices in the Sub-graph having a token associated
with the vertex replaced by a variable:

applying the patterns to documents in a collection of
documents to extract a plurality of candidate additional
facts from the collection of documents, wherein apply
ing the patterns to documents in the collection of
documents comprises:
applying the dependency patterns to documents from

the collection of documents to identify matching
Sentences;

generating an extraction from each matching sentence;
and

aggregating the extractions to generate the candidate
additional facts; and

Selecting one or more additional facts from the plurality of
candidate additional facts.

35

55

60

65

12
2. The method of claim 1, wherein obtaining the plurality

of seed facts comprises:
receiving a set of extraction rules, wherein each extraction

rule is a predetermined rule for generating a fact from
text;

applying the extraction rules to documents from the
collection of documents to extract a plurality of can
didate seed facts;

determining whether each of the candidate seed facts is
valid; and

selecting the valid candidate seed facts as seed facts.
3. The method of claim 2, wherein determining whether

each of the candidate seed facts is valid comprises:
determining whether an attribute identified by the candi

date seed fact is identified as an attribute in an attribute
repository;

determining whether the attribute identified by the can
didate seed fact and the object identified by the candi
date seed fact were classified as referring to the same
entity in a text fragment from which the candidate seed
fact was extracted; and

classifying as valid each candidate seed fact that identifies
an attribute from the attribute repository and that iden
tifies an attribute and an object that were classified as
referring to the same entity.

4. The method of claim 1, wherein generating the plurality
of patterns from the seed facts comprises, for each of the
seed facts:

identifying sentences in the collection of documents that
match the seed fact;

identifying a respective minimal Sub-graph of a depen
dency parse of each of the matching sentences, wherein
the minimal Sub-graph of a dependency parse is a
Smallest portion of the dependency parse that includes
Vertices representing head tokens of a Subject entity,
attribute, and object identified by the seed fact; and

generating a respective dependency pattern from each
minimal Sub-graph by replacing the tokens associated
with one or more of the vertices representing the head
tokens of the subject entity, the attribute, or the object
identified by the seed fact with a variable.

5. The method of claim 1, wherein selecting the one or
more additional facts from the plurality of candidate addi
tional facts comprises:

determining a respective score for each candidate addi
tional fact; and

selecting one or more of the candidate additional facts as
additional facts based on the scores.

6. The method of claim 5, wherein determining the
respective score for each candidate additional fact com
prises:

determining a respective combined score for each pattern
used to generate the candidate additional fact; and

determining the score for the candidate additional fact
from the combined scores of the patterns used to
generate the candidate additional fact.

7. The method of claim 6, wherein determining the
respective combined score for each pattern used to generate
the candidate additional fact comprises:

determining a frequency score for the pattern from a total
number of extractions generated by applying the pat
tern;

determining a coherence score for the pattern that mea
sures how semantically related the attributes for which
the pattern generates facts are; and

determining the combined score for the pattern by com
bining the frequency score and the coherence score.

US 9,672,251 B1
13

8. The method of claim 7, where determining the coher
ence score for the pattern comprises:

determining a respective high-dimensional vector repre
sentation of each attribute for which the pattern gen
erates facts; 5

determining, for each possible pair of attributes selected
from the attributes for which the pattern generates facts,
a respective pairwise coherence score from the high
dimensional vector representations of the attributes in
the pair, and

determining the coherence score for the pattern from the
pairwise coherence scores.

9. The method of claim 8, wherein the pairwise coherence
score for the pair is a distance measure between the high

10

15
dimensional vector representations of the attributes in the
pair.

10. A system comprising one or more computers and one
or more storage devices storing instructions that when
executed by the one or more computers cause the one or
more computers to perform operations comprising:

obtaining a plurality of seed facts, wherein each seed fact
identifies a subject entity, an attribute possessed by the
Subject entity, and an object, and wherein the object is
an attribute value of the attribute possessed by the
Subject entity;

generating a plurality of patterns from the seed facts,
wherein each of the plurality of patterns is a depen
dency pattern generated from a dependency parse,
wherein a dependency parse of a text portion corre
sponds to a directed graph of vertices and edges,
wherein each vertex represents a token in the text
portion and each edge represents a syntactic relation
ship between tokens represented by vertices connected
by the edge, wherein each vertex is associated with the
token represented by the vertex and a part of speech
tag, and wherein a dependency pattern corresponds to
a Sub-graph of a dependency parse with one or more of
the vertices in the Sub-graph having a token associated
with the vertex replaced by a variable:

applying the patterns to documents in a collection of
documents to extract a plurality of candidate additional
facts from the collection of documents, wherein apply
ing the patterns to documents in the collection of
documents comprises:
applying the dependency patterns to documents from

the collection of documents to identify matching
Sentences;

generating an extraction from each matching sentence;
and

aggregating the extractions to generate the candidate
additional facts; and

Selecting one or more additional facts from the plurality of
candidate additional facts.

11. The system of claim 10, wherein obtaining the plu

25

30

35

40

45

50

55

rality of seed facts comprises:
receiving a set of extraction rules, wherein each extraction

rule is a predetermined rule for generating a fact from
text;

applying the extraction rules to documents from the
collection of documents to extract a plurality of can
didate seed facts;

determining whether each of the candidate seed facts is
valid; and

Selecting the valid candidate seed facts as seed facts.
12. The system of claim 11, wherein determining whether

60

65

each of the candidate seed facts is valid comprises:

14
determining whether an attribute identified by the candi

date seed fact is identified as an attribute in an attribute
repository;

determining whether the attribute identified by the can
didate seed fact and the object identified by the candi
date seed fact were classified as referring to the same
entity in a text fragment from which the candidate seed
fact was extracted; and

classifying as valid each candidate seed fact that identifies
an attribute from the attribute repository and that iden
tifies an attribute and an object that were classified as
referring to the same entity.

13. The system of claim 10, wherein generating the
plurality of patterns from the seed facts comprises, for each
of the seed facts:

identifying sentences in the collection of documents that
match the seed fact;

identifying a respective minimal Sub-graph of a depen
dency parse of each of the matching sentences, wherein
the minimal Sub-graph of a dependency parse is a
Smallest portion of the dependency parse that includes
Vertices representing head tokens of a Subject entity,
attribute, and object identified by the seed fact; and

generating a respective dependency pattern from each
minimal Sub-graph by replacing the tokens associated
with one or more of the vertices representing the head
tokens of the subject entity, the attribute, or the object
identified by the seed fact with a variable.

14. The system of claim 10, wherein selecting the one or
more additional facts from the plurality of candidate addi
tional facts comprises:

determining a respective score for each candidate addi
tional fact; and

selecting one or more of the candidate additional facts as
additional facts based on the scores.

15. The system of claim 14, wherein determining the
respective score for each candidate additional fact com
prises:

determining a respective combined score for each pattern
used to generate the candidate additional fact; and

determining the score for the candidate additional fact
from the combined scores of the patterns used to
generate the candidate additional fact.

16. The system of claim 15, wherein determining the
respective combined score for each pattern used to generate
the candidate additional fact comprises:

determining a frequency score for the pattern from a total
number of extractions generated by applying the pat
tern;

determining a coherence score for the pattern that mea
sures how semantically related the attributes for which
the pattern generates facts are; and

determining the combined score for the pattern by com
bining the frequency score and the coherence score.

17. The system of claim 16, where determining the
coherence score for the pattern comprises:

determining a respective high-dimensional vector repre
sentation of each attribute for which the pattern gen
erates facts;

determining, for each possible pair of attributes selected
from the attributes for which the pattern generates facts,
a respective pairwise coherence score from the high
dimensional vector representations of the attributes in
the pair, and

determining the coherence score for the pattern from the
pairwise coherence scores.

US 9,672,251 B1
15

18. A non-transitory computer storage medium encoded
with a computer program, the computer program comprising
instructions that when executed by one or more computers
cause the one or more computers to perform operations
comprising: 5

obtaining a plurality of seed facts, wherein each seed fact
identifies a subject entity, an attribute possessed by the
Subject entity, and an object, and wherein the object is
an attribute value of the attribute possessed by the
Subject entity;

generating a plurality of patterns from the seed facts,
wherein each of the plurality of patterns is a depen
dency pattern generated from a dependency parse,
wherein a dependency parse of a text portion corre
sponds to a directed graph of vertices and edges, 15
wherein each vertex represents a token in the text
portion and each edge represents a syntactic relation
ship between tokens represented by vertices connected
by the edge, wherein each vertex is associated with the
token represented by the vertex and a part of speech
tag, and wherein a dependency pattern corresponds to
a Sub-graph of a dependency parse with one or more of
the vertices in the Sub-graph having a token associated
with the vertex replaced by a variable:

applying the patterns to documents in a collection of
documents to extract a plurality of candidate additional
facts from the collection of documents, wherein apply
ing the patterns to documents in the collection of
documents comprises:
applying the dependency patterns to documents from

the collection of documents to identify matching
Sentences;

generating an extraction from each matching sentence;
and

aggregating the extractions to generate the candidate
additional facts; and

Selecting one or more additional facts from the plurality of
candidate additional facts.

19. The computer storage medium of claim 18, wherein
obtaining the plurality of seed facts comprises:

receiving a set of extraction rules, wherein each extraction
rule is a predetermined rule for generating a fact from
text;

applying the extraction rules to documents from the
collection of documents to extract a plurality of can
didate seed facts;

determining whether each of the candidate seed facts is
valid; and

Selecting the valid candidate seed facts as seed facts.
20. The computer storage medium of claim 19, wherein

determining whether each of the candidate seed facts is valid
comprises:

determining whether an attribute identified by the candi
date seed fact is identified as an attribute in an attribute
repository;

determining whether the attribute identified by the can
didate seed fact and the object identified by the candi
date seed fact were classified as referring to the same
entity in a text fragment from which the candidate seed
fact was extracted; and

classifying as valid each candidate seed fact that identifies
an attribute from the attribute repository and that iden

10

25

30

35

40

45

50

55

60

16
tifies an attribute and an object that were classified as
referring to the same entity.

21. The computer storage medium of claim 18, wherein
generating the plurality of patterns from the seed facts
comprises, for each of the seed facts:

identifying sentences in the collection of documents that
match the seed fact;

identifying a respective minimal Sub-graph of a depen
dency parse of each of the matching sentences, wherein
the minimal Sub-graph of a dependency parse is a
Smallest portion of the dependency parse that includes
Vertices representing head tokens of a Subject entity,
attribute, and object identified by the seed fact; and

generating a respective dependency pattern from each
minimal Sub-graph by replacing the tokens associated
with one or more of the vertices representing the head
tokens of the subject entity, the attribute, or the object
identified by the seed fact with a variable.

22. The computer storage medium of claim 18, wherein
selecting the one or more additional facts from the plurality
of candidate additional facts comprises:

determining a respective score for each candidate addi
tional fact; and

selecting one or more of the candidate additional facts as
additional facts based on the scores.

23. The computer storage medium of claim 22, wherein
determining the respective score for each candidate addi
tional fact comprises:

determining a respective combined score for each pattern
used to generate the candidate additional fact; and

determining the score for the candidate additional fact
from the combined scores of the patterns used to
generate the candidate additional fact.

24. The computer storage medium of claim 23, wherein
determining the respective combined score for each pattern
used to generate the candidate additional fact comprises:

determining a frequency score for the pattern from a total
number of extractions generated by applying the pat
tern;

determining a coherence score for the pattern that mea
sures how semantically related the attributes for which
the pattern generates facts are; and

determining the combined score for the pattern by com
bining the frequency score and the coherence score.

25. The computer storage medium of claim 24, where
determining the coherence score for the pattern comprises:

determining a respective high-dimensional vector repre
sentation of each attribute for which the pattern gen
erates facts;

determining, for each possible pair of attributes selected
from the attributes for which the pattern generates facts,
a respective pairwise coherence score from the high
dimensional vector representations of the attributes in
the pair, and

determining the coherence score for the pattern from the
pairwise coherence scores.

k k k k k

