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(57) ABSTRACT 
Methods, systems, and apparatus, including computer pro 
grams encoded on computer storage media, for extracting 
facts from a collection of documents. One of the methods 
includes obtaining a plurality of seed facts; generating a 
plurality of patterns from the seed facts, wherein each of the 
plurality of patterns is a dependency pattern generated from 
a dependency parse; applying the patterns to documents in 
a collection of documents to extract a plurality of candidate 
additional facts from the collection of documents; and 
selecting one or more additional facts from the plurality of 
candidate additional facts. 
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EXTRACTING FACTS FROM DOCUMENTS 

BACKGROUND 

This specification relates to information extraction from 
electronic documents. 

Information extraction systems automatically extract 
structured information from unstructured or semi-structured 
documents. For example, some information extraction sys 
tems that exist extract facts from collections of electronic 
documents, with each fact identifying a Subject entity, an 
attribute possessed by the entity, and the value of the 
attribute for the entity. 

SUMMARY 

In general, this specification describes techniques for 
extracting facts from collections of documents. 

In general, one innovative aspect of the Subject matter 
described in this specification can be embodied in methods 
that include the actions of obtaining a plurality of seed facts, 
wherein each seed fact identifies a subject entity, an attribute 
possessed by the Subject entity, and an object, and wherein 
the object is an attribute value of the attribute possessed by 
the Subject entity; generating a plurality of patterns from the 
seed facts, wherein each of the plurality of patterns is a 
dependency pattern generated from a dependency parse, 
wherein a dependency parse of a text portion corresponds to 
a directed graph of Vertices and edges, wherein each vertex 
represents a token in the text portion and each edge repre 
sents a syntactic relationship between tokens represented by 
vertices connected by the edge, wherein each vertex is 
associated with the token represented by the vertex and a 
part of speech tag, and wherein a dependency pattern 
corresponds to a Sub-graph of a dependency parse with one 
or more of the vertices in the Sub-graph having a token 
associated with the vertex replaced by a variable; applying 
the patterns to documents in a collection of documents to 
extract a plurality of candidate additional facts from the 
collection of documents; and selecting one or more addi 
tional facts from the plurality of candidate additional facts. 

Other embodiments of this aspect include corresponding 
computer systems, apparatus, and computer programs 
recorded on one or more computer storage devices, each 
configured to perform the actions of the methods. For a 
system of one or more computers to be configured to 
perform particular operations or actions means that the 
system has installed on it software, firmware, hardware, or 
a combination of them that in operation cause the system to 
perform the operations or actions. For one or more computer 
programs to be configured to perform particular operations 
or actions means that the one or more programs include 
instructions that, when executed by data processing appa 
ratus, cause the apparatus to perform the operations or 
actions. 

Particular embodiments of the subject matter described in 
this specification can be implemented so as to realize one or 
more of the following advantages. A fact extraction system 
can accurately extract facts, i.e., (Subject, attribute, object) 
triples, from a collection of electronic documents to identify 
values of attributes, i.e., “objects” in the extracted triples, 
that are not known to the fact extraction system. In particu 
lar, values of long-tail attributes that appear infrequently in 
the collection of electronic documents relative to other, more 
frequently occurring attributes can be accurately extracted 
from the collection. For example, given a set of attributes for 
which values are to be extracted from the collection, the 
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2 
attributes in the set can be ordered by the number of 
occurrences of each of the attributes in the collection and the 
fact extraction system can accurately extract attribute values 
for the long-tail attributes in the set, with the long-tail 
attributes being the attributes that are ranked below N in the 
order, where N is chosen such that the total number of 
appearances of attributes ranked N and above in the ranking 
equals the total number of appearances of attributes ranked 
below N in the ranking Additionally, the fact extraction 
system can accurately extract facts to identify values of 
nominal attributes, i.e., attributes that are expressed as 
OS. 

The details of one or more embodiments of the subject 
matter of this specification are set forth in the accompanying 
drawings and the description below. Other features, aspects, 
and advantages of the Subject matter will become apparent 
from the description, the drawings, and the claims. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 shows an example fact extraction system. 
FIG. 2 is a flow diagram of an example process for 

extracting facts from a collection of documents. 
FIG. 3 is a flow diagram of an example process for 

extracting seed facts from a collection of documents using a 
set of extraction rules. 

FIG. 4 is a flow diagram of an example process for 
generating dependency patterns from a seed fact. 

FIG. 5 is a flow diagram of an example process for 
extracting candidate additional facts using dependency pat 
terns. 

FIG. 6 is a flow diagram of an example process for scoring 
candidate additional facts. 

Like reference numbers and designations in the various 
drawings indicate like elements. 

DETAILED DESCRIPTION 

FIG. 1 shows an example fact extraction system 100. The 
fact extraction system 100 is an example of a system 
implemented as computer programs on one or more com 
puters in one or more locations, in which the systems, 
components, and techniques described below can be imple 
mented. 
The fact extraction system 100 extracts facts from a 

collection of documents 102. The collection of documents 
102 includes multiple electronic documents. For example, 
the documents in the collection of documents 102 can 
include one or more of news articles, blog posts, product 
reviews, and so on. 

Each fact extracted by the fact extraction system 100 from 
the collection of documents 102 is extracted as a (subject, 
attribute, object) triple. The subject in the triple identifies an 
entity, the attribute in the triple identifies an attribute pos 
sessed by the entity, and the object identifies a value of the 
attribute for the entity. Example entities include people, 
places, countries, landmarks, animals, historical events, 
organizations, businesses, sports teams, sporting events, 
movies, Songs, albums, games, works of art, fictional char 
acters, and so on. 
The facts extracted by the fact extraction system 100 may 

identify the subject entities, object entities, and attributes in 
various ways. For example, each triple generated by the fact 
extraction system 100 may include a recognized name of the 
Subject entity, the name of the attribute, and a recognized 
name of the object entity. For example, one of the facts 
extracted by the fact extraction system 100 from the collec 
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tion of documents 102 may be (Example Organization, 
Chief Economist, Example Economist), indicating that 
Example Economist is the Chief Economist of Example 
Organization. 
As another example, in each triple, an identifier for the 

entity or the attribute may be used in place of one or more 
of the names. In the case of the attribute, the identifier may 
be an identifier associated with the attribute in an attribute 
repository 104 or in a database that stores information about 
entities and attributes possessed by those entities, e.g., a 
database of structured data. In the case of the entities, the 
identifier may be an identifier associated with the entity in 
the entity database. 

The entity database may be, e.g., a graph database that 
includes nodes that represent entities and identifies the type 
of each entity represented by a node and links between nodes 
that represent relationships between entities, with the type of 
the link between two nodes identifying the type of relation 
ship that exists between the entities represented by the 
nodes. An example of an online database of structured data 
that exists is the Freebase database that is accessible on the 
Internet at http://www.freebase.com. 
The fact extraction system 100 extracts facts for attributes 

from the attribute repository 104. The attribute repository 
104 stores data identifying attributes possessed by entities of 
one or more entity types. Generally, for a given entity type, 
the attribute repository 104 includes attributes that appear 
frequently in the collection of documents 102 and long-tail 
attributes that appear relatively infrequently in the collection 
of documents 102. For example, for entities of the type 
“organization, the attribute “Chief Executive Officer may 
appear frequently in the collection of documents 102, while 
the attributes "chief economist' and "philanthropic arm” 
may be long tail attributes that appear relatively infrequently 
in the collection of documents 102. 
Once extracted, the fact extraction system 100 may store 

the extracted facts in a facts repository 106 or provide the 
facts for use for Some other purpose. In some cases, the 
extracted facts may be used by an Internet search engine in 
providing formatted answers in response to search queries 
that have been classified as seeking to determine the value 
of an attribute possessed by a particular entity. For example, 
a received search query “who is the chief economist of 
example organization?’ may be classified by the search 
engine as seeking to determine the value of the “Chief 
Economist' attribute for the entity “Example Organization.” 
By accessing the fact repository 106, the search engine may 
identify that the fact repository 106 includes a (Example 
Organization, Chief Economist, Example Economist) triple 
and, in response to the search query, can provide a formatted 
presentation that identifies “Example Economist’ as the 
“Chief Economist of the entity “Example Organization.” 

FIG. 2 is a flow diagram of an example process 200 for 
extracting facts from a collection of documents. For conve 
nience, the process 200 will be described as being performed 
by a system of one or more computers located in one or more 
locations. For example, a fact extraction system, e.g., the 
fact extraction system 100 of FIG. 1, appropriately pro 
grammed in accordance with this specification, can perform 
the process 200. 

The system processes a collection of documents, e.g., the 
collection of documents 102 of FIG. 1, to generate a 
processed collection of documents (step 202). In particular, 
the system processes the documents in the collection of 
documents to generate dependency parses of sentences in 
each of the documents. A dependency parse of a sentence 
corresponds to a directed graph of vertices and edges. Each 
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vertex of the graph represents a token from the sentence, 
e.g., a word, phrase, symbol, or other meaningful element in 
the sentence, and each edge in the graph represents a 
Syntactic relationship in the sentence of the tokens repre 
sented by the vertices that the edge connects. Each vertex in 
the dependency parse is associated with the token that the 
vertex represents and a part of speech tag that identifies the 
part of speech of the token in the sentence. Dependency 
parses and techniques for generating dependency parses are 
described in more detail in Marie-Catherine de Marneffe, 
Bill MacCartney, and Christopher D. Manning: Generating 
Tiped Dependency Parses from Phrase Structure Parses; In 
Proceedings of Language Resources and Evaluation, 2006. 
Once generated, the system can store the dependency parses 
in any of a variety of ways, e.g., as JavaScript Object 
Notation (JSON) objects or arrays, in Extensible Markup 
Language (XML) documents, or in protocol buffers for 
documents. 
The system also processes the documents in the collection 

of documents using a coreference resolver to identify occur 
rences of references to entities in the documents and, for 
each occurrence, to identify the entity to which the occur 
rence refers. For example, the system may process each 
document using a coreference resolver that clusters entity 
references in the document into clusters, with each cluster 
including references to the same entity. An example coref 
erence resolver is described in more detail in Aria Haghighi, 
Dan Klein; Simple Coreference Resolution with Rich Syn 
tactic and Semantic Features; In Proceedings of Empirical 
Methods in Natural Language Processing, 2009. 

Optionally, the system can also process the documents 
using an entity resolver that resolves each cluster to an 
identifier in the entity database of the entity to which the 
references in the cluster refer. An example entity resolver is 
described in Finkel et al., Incorporating Non-local Informa 
tion into Information Extraction Systems by Gibbs Sam 
pling, ACL 2005. 

In some implementations, rather than processing the 
collection of documents, the system may receive a processed 
collection of documents, with the documents in the collec 
tion already having been processed in the manner described 
above. 
The system extracts a set of seed facts from the processed 

collection of documents (step 204). Generally, the system 
extracts the set of seed facts from the processed collection of 
documents using a set of extraction rules. Extracting seed 
facts using extraction rules is described below with refer 
ence to FIG. 3. 
The system generates patterns using the set of seed facts 

(step 206). Generally, the patterns are dependency patterns 
generated from dependency parses of sentences in docu 
ments in the processed collection of documents. A depen 
dency pattern corresponds to a Sub-graph of a dependency 
parse, where, for at least one of the vertices of the graph, the 
token associated with the vertex has been replaced by a 
variable while the part of speech tag associated with the 
vertex has been retained. Generating dependency patterns 
using a set of seed facts is described below with reference to 
FIG. 4. Once generated, the system can store the dependency 
patterns in any of a variety of ways, e.g., as JSON objects or 
arrays, in XML documents, or in protocol buffers for docu 
mentS. 

The system extracts candidate additional facts from the 
collection of documents (step 208). In order to extract the 
candidate additional facts, the system applies the patterns to 
sentences from documents in the collection. Generating 



US 9,672,251 B1 
5 

candidate additional facts by applying patterns is described 
below with reference to FIG. 5. 

The system scores the candidate additional facts (step 
210). Generally, the system determines a score for a given 
candidate additional fact from scores for each pattern used 
to generate the candidate additional fact. Determining scores 
for patterns and using those scores to determine a score for 
a candidate additional fact is described below with reference 
to FIG. 6. 

The system selects additional facts from among the can 
didate additional facts based on the scores (step 212). For 
example, the system can select each candidate additional 
fact having a score above a threshold value as an additional 
fact. As another example, the system can select a predeter 
mined number of highest-scoring candidate additional facts 
as additional facts. The system can store the selected addi 
tional facts in a fact repository, e.g., the fact repository 106 
of FIG. 1, or provide the selected additional facts to an 
external system for use for Some immediate purpose. 

FIG. 3 is a flow diagram of an example process 300 for 
extracting seed facts from a collection of documents using a 
set of extraction rules. For convenience, the process 300 will 
be described as being performed by a system of one or more 
computers located in one or more locations. For example, a 
fact extraction system, e.g., the fact extraction system 100 of 
FIG. 1, appropriately programmed in accordance with this 
specification, can perform the process 300. 
The system receives a set of extraction rules (step 302). 

The extraction rules in the set of extraction rules can be 
predetermined rules for generating a (Subject, attribute, 
object) triple from text. For example, one extraction rule 
may specify that for a text fragment that is of the form “the 
A of S.O.” the (subject, attribute, object) triple that should 
be generated is (S, A, O). As another example, another 
extraction rule may specify that for a text fragment that is of 
the form “O, the A of S, the (subject, attribute, object) pair 
that should be generated is (S, A, O), where the being 
inside of brackets indicates that the inclusion of “the in the 
text fragment is optional. 

The system applies the extraction rules to extract candi 
date seed facts from the collection of documents (step 304). 
That is, the system applies each extraction rule to documents 
from the collection of documents to identify text fragments 
that satisfy the form identified in the extraction rule and 
generates a (Subject, attribute, object) triple from each text 
fragment as specified by the extraction rule. 
The system determines whether each candidate seed fact 

is valid (step 306). In particular, for each (subject, attribute, 
object) triple, the system determines whether the attribute is 
identified as an attribute in an attribute repository, e.g., the 
attribute repository 104 of FIG. 1. If the attribute does not 
appear in the attribute repository, the system determines that 
the candidate seed fact is not valid. In some implementa 
tions, if the attribute appears in the attribute repository, the 
system also determines whether the attribute and object 
corefer in the text fragment from which the candidate seed 
fact was extracted. That is, the system determines whether 
the attribute and the object were classified as referring to the 
same entity in the text fragment by the coreference service 
when the collection of documents was processed. In these 
implementations, the system determines that the candidate 
seed fact is valid only if the attribute of the candidate seed 
fact is identified as an attribute in the attribute repository and 
the attribute and object of the candidate seed fact corefer in 
the text fragment from which the candidate seed fact was 
extracted. 
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6 
The system selects the valid candidate seed facts as seed 

facts (step 308). 
FIG. 4 is a flow diagram of an example process 400 for 

generating dependency patterns from a seed fact. For con 
venience, the process 400 will be described as being per 
formed by a system of one or more computers located in one 
or more locations. For example, a fact extraction system, 
e.g., the fact extraction system 100 of FIG. 1, appropriately 
programmed in accordance with this specification, can per 
form the process 400. 
The system identifies sentences in the collection of docu 

ments that match the seed fact (step 402). The system 
determines that a sentence matches a seed fact if the sen 
tence contains the attribute in the seed fact, one or more 
tokens that have been classified as referring to the same 
entity as the Subject in the seed fact, and one or more tokens 
that have been classified as referring to the same entity as the 
object in the seed fact. 
The system identifies a minimal Sub-graph of the depen 

dency parse of each of the matching sentences (step 404). 
For a given sentence that matches a seed fact, the minimal 
Sub-graph of the dependency parse of the matching sentence 
is the Smallest portion of the dependency parse that includes 
vertices that represent the head tokens of the subject, attri 
bute, and object of the seed fact. The head token of a subject, 
attribute, or object is the syntactic root of the tokens that 
make up the subject, attribute, or object tokens. For 
example, for the “executive chairman' attribute, “chairman' 
is the head token while “executive' is the noun compound 
modifier for the head token. 
The system generates a dependency pattern from each 

minimal sub-graph (step 406). The system generates a 
dependency pattern from a minimal Sub-graph by delexical 
izing the three vertices that represent the head tokens of the 
Subject, attribute, and object. That is, the system replaces the 
token associated with each of the vertices with a variable but 
retains the part of speech tag associated with vertex. 

Optionally, the system can also modify the part of speech 
tags associated with the vertices. For example, if the part of 
speech tags specify that the Subject, attribute, or objects are 
proper nouns or common nouns, the system can generalize 
the tags to indicate that either proper nouns or common 
nouns are acceptable. 
Once the system has generated dependency patterns from 

each of the seed facts, the system stores data that associates 
each dependency pattern with the attributes for which the 
pattern can generate facts. That is, the system associates 
each pattern with the attribute from each seed fact that was 
used to generate the pattern. Optionally, the system can 
discard dependency patterns that were not generated by 
more than a threshold number of unique seed facts. 

FIG. 5 is a flow diagram of an example process 500 for 
extracting candidate additional facts using dependency pat 
terns. For convenience, the process 500 will be described as 
being performed by a system of one or more computers 
located in one or more locations. For example, a fact 
extraction system, e.g., the fact extraction system 100 of 
FIG. 1, appropriately programmed in accordance with this 
specification, can perform the process 500. 
The system applies the dependency patterns to the pro 

cessed collection of documents to identify matching sen 
tences (step 502). That is, for each dependency pattern, the 
system identifies dependency parses of sentences that match 
the dependency pattern. A dependency parse matches a 
dependency pattern if the dependency parse contains a 
portion for which each vertex and each edge matches the 
dependency pattern. 
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For vertices of the dependency pattern that are associated 
with a token and a part of speech, another vertex matches the 
vertex if the tokens associated with the vertices are the same 
and the parts of speech associated with the vertices (i) are the 
same or (ii) the part of speech associated with the other 
vertex is subsumed by the part of speech associated with the 
vertex in the dependency pattern, e.g., if the part of speech 
for the other vertex is proper noun and the part of speech for 
the dependency pattern is noun. 

For vertices of the dependency pattern that are associated 
with a variable rather than a fixed token, another vertex 
matches the vertex if the parts of speech associated with the 
vertices match or if the part of speech associated with the 
vertices (i) are the same or (ii) the part of speech associated 
with the other vertex is subsumed by the part of speech 
associated with the vertex in the dependency pattern. 

Additionally, the system determines whether the phrase in 
the dependency parse that is headed by the head token that 
matches the attribute vertex of the dependency pattern 
matches any of the attributes that are associated with the 
dependency pattern, i.e., any of the attributes for which the 
pattern can generate facts. If the phrase matches one of the 
attributes, the system determines that the dependency parse 
matches the dependency pattern. 
The system generates an extraction from each matching 

sentence (step 504). That is, the system resolves the phrases 
in the matching sentence that are headed by the token that 
matches the subject vertex of the dependency pattern and the 
token that matches the object vertex of the dependency 
pattern to respective entities in the entity database. The 
system then generates an extraction that is of the form of a 
(resolved subject, attribute, resolved object) triple. As 
described above, in some implementations, one or more of 
the elements of the triple are identifiers that identify the 
entity or attribute referred to by the element. 
The system aggregates the extractions to generate candi 

date additional facts (step 506). That is, for each extraction 
that generated the same (resolved subject, attribute, resolved 
object) triple, the system generates a single candidate addi 
tional fact. The system also associates the candidate addi 
tional fact with data identifying the patterns used to generate 
the candidate additional fact, i.e., used to generate the 
extractions that were aggregated to generate the candidate 
additional fact. 

FIG. 6 is a flow diagram of an example process 600 for 
scoring candidate additional facts. For convenience, the 
process 600 will be described as being performed by a 
system of one or more computers located in one or more 
locations. For example, a fact extraction system, e.g., the 
fact extraction system 100 of FIG. 1, appropriately pro 
grammed in accordance with this specification, can perform 
the process 600. 

The system determines a frequency score for each pattern 
(step 602). The frequency score for a given pattern is a 
function of the total number of extractions produced by 
applying the pattern, e.g., as described above with reference 
to FIG. 5. For example, in some implementations, the 
frequency score is equal to the total number of extractions. 
In some other implementations, the frequency score is a 
logarithm, e.g., a base ten or base e logarithm, of the total 
number of extractions. In some implementations, the system 
uses the total number of distinct extractions produced by 
applying the pattern, i.e., by only counting two extractions 
that are the same as a single extraction produced by applying 
the pattern. 

The system obtains data that associates each term in a 
Vocabulary of terms with a respective high-dimensional 
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8 
representation of the term (step 604), i.e., gives each term a 
location in the high-dimensional space. The associations are 
generated so that the relative locations of terms reflect 
semantic similarities between the terms. That is, the relative 
locations of terms in the high-dimensional space reflect 
semantic similarities, e.g., showing that, by virtue of their 
relative locations in the space the word "queen' is similar to 
the words “king and “prince.” Furthermore, relative loca 
tions in the space may show that the word "king is similar 
to the word "queen' in the same sense as the word “prince' 
is similar to the word “princess.” and, in addition, that the 
word “king is similar to the word “prince' as the word 
"queen' is similar to the word “princess.” 

Associations of terms to high dimensional vector repre 
sentations having these characteristics can be generated by 
training a machine learning system configured to process 
each term in the vocabulary of terms to obtain a respective 
numeric representation of each term in the Vocabulary in the 
high-dimensional space and to associate each term in the 
vocabulary with the respective numeric representation of the 
term in the high-dimensional space. Example techniques for 
training Such a system and generating the associations are 
described in Tomas Mikolov, Kai Chen, Greg S. Corrado, 
and Jeffrey Dean, Efficient estimation of word representa 
tions in vector space, International Conference on Learning 
Representations (ICLR), Scottsdale, Ariz., USA, 2013. 
The system determines a coherence score for each pattern 

using the obtained data (step 606). Generally, the coherence 
score for a given pattern measures how semantically related 
the attributes for which the pattern generates facts are. The 
coherence score for a pattern that generates facts for attri 
butes that are more semantically similar than the attributes 
for which another pattern generates facts will generally be 
higher than the coherence score for the other pattern. 

In particular, in order to determine the coherence score for 
a given pattern, the system determines a high-dimensional 
representation for each attribute associated which the pattern 
and determines a pairwise coherence score between each 
possible pair of associated attributes. The pairwise coher 
ence score between two attributes is a distance measure, e.g., 
a cosine similarity, between the high-dimensional represen 
tations for the attributes. In some implementations, the 
system uses a different distance measure than cosine simi 
larity, e.g., Hamming distance or Jaccard similarity. 
The system determines the coherence score for the pattern 

from the pairwise coherence scores between the attributes 
associated with the pattern. For example, the coherence 
score for the pattern can be an average of the pairwise 
coherence scores, e.g., a mean or a median, or a maximum 
of the pairwise coherence scores. 
The system determines a combined score for each pattern 

by combining the coherence score and the frequency score 
for the pattern (step 608). For example, the combined score 
for the pattern can be a product of the coherence score and 
the frequency score or a sum of the coherence score and the 
frequency score. 
The system determines a score for each candidate addi 

tional fact from the combined scores for the patterns (step 
610). In particular, the score for a given candidate additional 
fact is a combination of the combined scores for each pattern 
used to generate the candidate additional fact. For example, 
the score for the candidate additional fact may be product of 
the combined scores or a Sum of the combined scores. 

Embodiments of the subject matter and the functional 
operations described in this specification can be imple 
mented in digital electronic circuitry, in tangibly-embodied 
computer Software or firmware, in computer hardware, 
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including the structures disclosed in this specification and 
their structural equivalents, or in combinations of one or 
more of them. Embodiments of the subject matter described 
in this specification can be implemented as one or more 
computer programs, i.e., one or more modules of computer 
program instructions encoded on a tangible non transitory 
program carrier for execution by, or to control the operation 
of data processing apparatus. Alternatively or in addition, 
the program instructions can be encoded on an artificially 
generated propagated signal, e.g., a machine-generated elec 
trical, optical, or electromagnetic signal, that is generated to 
encode information for transmission to Suitable receiver 
apparatus for execution by a data processing apparatus. The 
computer storage medium can be a machine-readable Stor 
age device, a machine-readable storage Substrate, a random 
or serial access memory device, or a combination of one or 
more of them. 
The term “data processing apparatus' encompasses all 

kinds of apparatus, devices, and machines for processing 
data, including by way of example a programmable proces 
Sor, a computer, or multiple processors or computers. The 
apparatus can include special purpose logic circuitry, e.g., an 
FPGA (field programmable gate array) or an ASIC (appli 
cation specific integrated circuit). The apparatus can also 
include, in addition to hardware, code that creates an execu 
tion environment for the computer program in question, e.g., 
code that constitutes processor firmware, a protocol stack, a 
database management system, an operating system, or a 
combination of one or more of them. 
A computer program (which may also be referred to or 

described as a program, Software, a software application, a 
module, a software module, a script, or code) can be written 
in any form of programming language, including compiled 
or interpreted languages, or declarative or procedural lan 
guages, and it can be deployed in any form, including as a 
standalone program or as a module, component, Subroutine, 
or other unit Suitable for use in a computing environment. A 
computer program may, but need not, correspond to a file in 
a file system. A program can be stored in a portion of a file 
that holds other programs or data, e.g., one or more Scripts 
stored in a markup language document, in a single file 
dedicated to the program in question, or in multiple coor 
dinated files, e.g., files that store one or more modules, Sub 
programs, or portions of code. A computer program can be 
deployed to be executed on one computer or on multiple 
computers that are located at one site or distributed across 
multiple sites and interconnected by a communication net 
work. 

The processes and logic flows described in this specifi 
cation can be performed by one or more programmable 
computers executing one or more computer programs to 
perform functions by operating on input data and generating 
output. The processes and logic flows can also be performed 
by, and apparatus can also be implemented as, special 
purpose logic circuitry, e.g., an FPGA (field programmable 
gate array) or an ASIC (application specific integrated 
circuit). 

Computers suitable for the execution of a computer 
program include, by way of example, can be based on 
general or special purpose microprocessors or both, or any 
other kind of central processing unit. Generally, a central 
processing unit will receive instructions and data from a read 
only memory or a random access memory or both. The 
essential elements of a computer are a central processing 
unit for performing or executing instructions and one or 
more memory devices for storing instructions and data. 
Generally, a computer will also include, or be operatively 
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10 
coupled to receive data from or transfer data to, or both, one 
or more mass storage devices for storing data, e.g., mag 
netic, magneto optical disks, or optical disks. However, a 
computer need not have such devices. Moreover, a computer 
can be embedded in another device, e.g., a mobile telephone, 
a personal digital assistant (PDA), a mobile audio or video 
player, a game console, a Global Positioning System (GPS) 
receiver, or a portable storage device, e.g., a universal serial 
bus (USB) flash drive, to name just a few. 
Computer readable media Suitable for storing computer 

program instructions and data include all forms of nonvola 
tile memory, media and memory devices, including by way 
of example semiconductor memory devices, e.g., EPROM, 
EEPROM, and flash memory devices; magnetic disks, e.g., 
internal hard disks or removable disks; magneto optical 
disks; and CD ROM and DVD-ROM disks. The processor 
and the memory can be Supplemented by, or incorporated in, 
special purpose logic circuitry. 
To provide for interaction with a user, embodiments of the 

Subject matter described in this specification can be imple 
mented on a computer having a display device, e.g., a CRT 
(cathode ray tube) or LCD (liquid crystal display) monitor, 
for displaying information to the user and a keyboard and a 
pointing device, e.g., a mouse or a trackball, by which the 
user can provide input to the computer. Other kinds of 
devices can be used to provide for interaction with a user as 
well; for example, feedback provided to the user can be any 
form of sensory feedback, e.g., visual feedback, auditory 
feedback, or tactile feedback; and input from the user can be 
received in any form, including acoustic, speech, or tactile 
input. In addition, a computer can interact with a user by 
sending documents to and receiving documents from a 
device that is used by the user; for example, by sending web 
pages to a web browser on a user's client device in response 
to requests received from the web browser. 

Embodiments of the subject matter described in this 
specification can be implemented in a computing system that 
includes a back end component, e.g., as a data server, or that 
includes a middleware component, e.g., an application 
server, or that includes a front end component, e.g., a client 
computer having a graphical user interface or a Web browser 
through which a user can interact with an implementation of 
the Subject matter described in this specification, or any 
combination of one or more Such back end, middleware, or 
front end components. The components of the system can be 
interconnected by any form or medium of digital data 
communication, e.g., a communication network. Examples 
of communication networks include a local area network 
(“LAN”) and a wide area network (“WAN”), e.g., the 
Internet. 
The computing system can include clients and servers. A 

client and server are generally remote from each other and 
typically interact through a communication network. The 
relationship of client and server arises by virtue of computer 
programs running on the respective computers and having a 
client-server relationship to each other. 

While this specification contains many specific imple 
mentation details, these should not be construed as limita 
tions on the scope of any invention or of what may be 
claimed, but rather as descriptions of features that may be 
specific to particular embodiments of particular inventions. 
Certain features that are described in this specification in the 
context of separate embodiments can also be implemented in 
combination in a single embodiment. Conversely, various 
features that are described in the context of a single embodi 
ment can also be implemented in multiple embodiments 
separately or in any Suitable Subcombination. Moreover, 
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although features may be described above as acting in 
certain combinations and even initially claimed as such, one 
or more features from a claimed combination can in some 
cases be excised from the combination, and the claimed 
combination may be directed to a subcombination or varia- 5 
tion of a Subcombination. 

Similarly, while operations are depicted in the drawings in 
a particular order, this should not be understood as requiring 
that such operations be performed in the particular order 
shown or in sequential order, or that all illustrated operations 
be performed, to achieve desirable results. In certain cir 
cumstances, multitasking and parallel processing may be 
advantageous. Moreover, the separation of various system 
modules and components in the embodiments described 
above should not be understood as requiring Such separation 
in all embodiments, and it should be understood that the 
described program components and systems can generally 
be integrated together in a single software product or pack 
aged into multiple software products. 

Particular embodiments of the subject matter have been 
described. Other embodiments are within the scope of the 
following claims. For example, the actions recited in the 
claims can be performed in a different order and still achieve 
desirable results. As one example, the processes depicted in 
the accompanying figures do not necessarily require the 
particular order shown, or sequential order, to achieve 
desirable results. In certain implementations, multitasking 
and parallel processing may be advantageous. 
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What is claimed is: 
1. A method comprising: 
obtaining a plurality of seed facts, wherein each seed fact 

identifies a subject entity, an attribute possessed by the 
Subject entity, and an object, and wherein the object is 
an attribute value of the attribute possessed by the 
Subject entity; 

generating a plurality of patterns from the seed facts, 
wherein each of the plurality of patterns is a depen- 40 
dency pattern generated from a dependency parse, 
wherein a dependency parse of a text portion corre 
sponds to a directed graph of vertices and edges, 
wherein each vertex represents a token in the text 
portion and each edge represents a syntactic relation 
ship between tokens represented by vertices connected 
by the edge, wherein each vertex is associated with the 
token represented by the vertex and a part of speech 
tag, and wherein a dependency pattern corresponds to 
a Sub-graph of a dependency parse with one or more of 
the vertices in the Sub-graph having a token associated 
with the vertex replaced by a variable: 

applying the patterns to documents in a collection of 
documents to extract a plurality of candidate additional 
facts from the collection of documents, wherein apply 
ing the patterns to documents in the collection of 
documents comprises: 
applying the dependency patterns to documents from 

the collection of documents to identify matching 
Sentences; 

generating an extraction from each matching sentence; 
and 

aggregating the extractions to generate the candidate 
additional facts; and 

Selecting one or more additional facts from the plurality of 
candidate additional facts. 
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2. The method of claim 1, wherein obtaining the plurality 

of seed facts comprises: 
receiving a set of extraction rules, wherein each extraction 

rule is a predetermined rule for generating a fact from 
text; 

applying the extraction rules to documents from the 
collection of documents to extract a plurality of can 
didate seed facts; 

determining whether each of the candidate seed facts is 
valid; and 

selecting the valid candidate seed facts as seed facts. 
3. The method of claim 2, wherein determining whether 

each of the candidate seed facts is valid comprises: 
determining whether an attribute identified by the candi 

date seed fact is identified as an attribute in an attribute 
repository; 

determining whether the attribute identified by the can 
didate seed fact and the object identified by the candi 
date seed fact were classified as referring to the same 
entity in a text fragment from which the candidate seed 
fact was extracted; and 

classifying as valid each candidate seed fact that identifies 
an attribute from the attribute repository and that iden 
tifies an attribute and an object that were classified as 
referring to the same entity. 

4. The method of claim 1, wherein generating the plurality 
of patterns from the seed facts comprises, for each of the 
seed facts: 

identifying sentences in the collection of documents that 
match the seed fact; 

identifying a respective minimal Sub-graph of a depen 
dency parse of each of the matching sentences, wherein 
the minimal Sub-graph of a dependency parse is a 
Smallest portion of the dependency parse that includes 
Vertices representing head tokens of a Subject entity, 
attribute, and object identified by the seed fact; and 

generating a respective dependency pattern from each 
minimal Sub-graph by replacing the tokens associated 
with one or more of the vertices representing the head 
tokens of the subject entity, the attribute, or the object 
identified by the seed fact with a variable. 

5. The method of claim 1, wherein selecting the one or 
more additional facts from the plurality of candidate addi 
tional facts comprises: 

determining a respective score for each candidate addi 
tional fact; and 

selecting one or more of the candidate additional facts as 
additional facts based on the scores. 

6. The method of claim 5, wherein determining the 
respective score for each candidate additional fact com 
prises: 

determining a respective combined score for each pattern 
used to generate the candidate additional fact; and 

determining the score for the candidate additional fact 
from the combined scores of the patterns used to 
generate the candidate additional fact. 

7. The method of claim 6, wherein determining the 
respective combined score for each pattern used to generate 
the candidate additional fact comprises: 

determining a frequency score for the pattern from a total 
number of extractions generated by applying the pat 
tern; 

determining a coherence score for the pattern that mea 
sures how semantically related the attributes for which 
the pattern generates facts are; and 

determining the combined score for the pattern by com 
bining the frequency score and the coherence score. 
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8. The method of claim 7, where determining the coher 
ence score for the pattern comprises: 

determining a respective high-dimensional vector repre 
sentation of each attribute for which the pattern gen 
erates facts; 5 

determining, for each possible pair of attributes selected 
from the attributes for which the pattern generates facts, 
a respective pairwise coherence score from the high 
dimensional vector representations of the attributes in 
the pair, and 

determining the coherence score for the pattern from the 
pairwise coherence scores. 

9. The method of claim 8, wherein the pairwise coherence 
score for the pair is a distance measure between the high 
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15 
dimensional vector representations of the attributes in the 
pair. 

10. A system comprising one or more computers and one 
or more storage devices storing instructions that when 
executed by the one or more computers cause the one or 
more computers to perform operations comprising: 

obtaining a plurality of seed facts, wherein each seed fact 
identifies a subject entity, an attribute possessed by the 
Subject entity, and an object, and wherein the object is 
an attribute value of the attribute possessed by the 
Subject entity; 

generating a plurality of patterns from the seed facts, 
wherein each of the plurality of patterns is a depen 
dency pattern generated from a dependency parse, 
wherein a dependency parse of a text portion corre 
sponds to a directed graph of vertices and edges, 
wherein each vertex represents a token in the text 
portion and each edge represents a syntactic relation 
ship between tokens represented by vertices connected 
by the edge, wherein each vertex is associated with the 
token represented by the vertex and a part of speech 
tag, and wherein a dependency pattern corresponds to 
a Sub-graph of a dependency parse with one or more of 
the vertices in the Sub-graph having a token associated 
with the vertex replaced by a variable: 

applying the patterns to documents in a collection of 
documents to extract a plurality of candidate additional 
facts from the collection of documents, wherein apply 
ing the patterns to documents in the collection of 
documents comprises: 
applying the dependency patterns to documents from 

the collection of documents to identify matching 
Sentences; 

generating an extraction from each matching sentence; 
and 

aggregating the extractions to generate the candidate 
additional facts; and 

Selecting one or more additional facts from the plurality of 
candidate additional facts. 

11. The system of claim 10, wherein obtaining the plu 
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rality of seed facts comprises: 
receiving a set of extraction rules, wherein each extraction 

rule is a predetermined rule for generating a fact from 
text; 

applying the extraction rules to documents from the 
collection of documents to extract a plurality of can 
didate seed facts; 

determining whether each of the candidate seed facts is 
valid; and 

Selecting the valid candidate seed facts as seed facts. 
12. The system of claim 11, wherein determining whether 
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each of the candidate seed facts is valid comprises: 

14 
determining whether an attribute identified by the candi 

date seed fact is identified as an attribute in an attribute 
repository; 

determining whether the attribute identified by the can 
didate seed fact and the object identified by the candi 
date seed fact were classified as referring to the same 
entity in a text fragment from which the candidate seed 
fact was extracted; and 

classifying as valid each candidate seed fact that identifies 
an attribute from the attribute repository and that iden 
tifies an attribute and an object that were classified as 
referring to the same entity. 

13. The system of claim 10, wherein generating the 
plurality of patterns from the seed facts comprises, for each 
of the seed facts: 

identifying sentences in the collection of documents that 
match the seed fact; 

identifying a respective minimal Sub-graph of a depen 
dency parse of each of the matching sentences, wherein 
the minimal Sub-graph of a dependency parse is a 
Smallest portion of the dependency parse that includes 
Vertices representing head tokens of a Subject entity, 
attribute, and object identified by the seed fact; and 

generating a respective dependency pattern from each 
minimal Sub-graph by replacing the tokens associated 
with one or more of the vertices representing the head 
tokens of the subject entity, the attribute, or the object 
identified by the seed fact with a variable. 

14. The system of claim 10, wherein selecting the one or 
more additional facts from the plurality of candidate addi 
tional facts comprises: 

determining a respective score for each candidate addi 
tional fact; and 

selecting one or more of the candidate additional facts as 
additional facts based on the scores. 

15. The system of claim 14, wherein determining the 
respective score for each candidate additional fact com 
prises: 

determining a respective combined score for each pattern 
used to generate the candidate additional fact; and 

determining the score for the candidate additional fact 
from the combined scores of the patterns used to 
generate the candidate additional fact. 

16. The system of claim 15, wherein determining the 
respective combined score for each pattern used to generate 
the candidate additional fact comprises: 

determining a frequency score for the pattern from a total 
number of extractions generated by applying the pat 
tern; 

determining a coherence score for the pattern that mea 
sures how semantically related the attributes for which 
the pattern generates facts are; and 

determining the combined score for the pattern by com 
bining the frequency score and the coherence score. 

17. The system of claim 16, where determining the 
coherence score for the pattern comprises: 

determining a respective high-dimensional vector repre 
sentation of each attribute for which the pattern gen 
erates facts; 

determining, for each possible pair of attributes selected 
from the attributes for which the pattern generates facts, 
a respective pairwise coherence score from the high 
dimensional vector representations of the attributes in 
the pair, and 

determining the coherence score for the pattern from the 
pairwise coherence scores. 
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18. A non-transitory computer storage medium encoded 
with a computer program, the computer program comprising 
instructions that when executed by one or more computers 
cause the one or more computers to perform operations 
comprising: 5 

obtaining a plurality of seed facts, wherein each seed fact 
identifies a subject entity, an attribute possessed by the 
Subject entity, and an object, and wherein the object is 
an attribute value of the attribute possessed by the 
Subject entity; 

generating a plurality of patterns from the seed facts, 
wherein each of the plurality of patterns is a depen 
dency pattern generated from a dependency parse, 
wherein a dependency parse of a text portion corre 
sponds to a directed graph of vertices and edges, 15 
wherein each vertex represents a token in the text 
portion and each edge represents a syntactic relation 
ship between tokens represented by vertices connected 
by the edge, wherein each vertex is associated with the 
token represented by the vertex and a part of speech 
tag, and wherein a dependency pattern corresponds to 
a Sub-graph of a dependency parse with one or more of 
the vertices in the Sub-graph having a token associated 
with the vertex replaced by a variable: 

applying the patterns to documents in a collection of 
documents to extract a plurality of candidate additional 
facts from the collection of documents, wherein apply 
ing the patterns to documents in the collection of 
documents comprises: 
applying the dependency patterns to documents from 

the collection of documents to identify matching 
Sentences; 

generating an extraction from each matching sentence; 
and 

aggregating the extractions to generate the candidate 
additional facts; and 

Selecting one or more additional facts from the plurality of 
candidate additional facts. 

19. The computer storage medium of claim 18, wherein 
obtaining the plurality of seed facts comprises: 

receiving a set of extraction rules, wherein each extraction 
rule is a predetermined rule for generating a fact from 
text; 

applying the extraction rules to documents from the 
collection of documents to extract a plurality of can 
didate seed facts; 

determining whether each of the candidate seed facts is 
valid; and 

Selecting the valid candidate seed facts as seed facts. 
20. The computer storage medium of claim 19, wherein 

determining whether each of the candidate seed facts is valid 
comprises: 

determining whether an attribute identified by the candi 
date seed fact is identified as an attribute in an attribute 
repository; 

determining whether the attribute identified by the can 
didate seed fact and the object identified by the candi 
date seed fact were classified as referring to the same 
entity in a text fragment from which the candidate seed 
fact was extracted; and 

classifying as valid each candidate seed fact that identifies 
an attribute from the attribute repository and that iden 
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tifies an attribute and an object that were classified as 
referring to the same entity. 

21. The computer storage medium of claim 18, wherein 
generating the plurality of patterns from the seed facts 
comprises, for each of the seed facts: 

identifying sentences in the collection of documents that 
match the seed fact; 

identifying a respective minimal Sub-graph of a depen 
dency parse of each of the matching sentences, wherein 
the minimal Sub-graph of a dependency parse is a 
Smallest portion of the dependency parse that includes 
Vertices representing head tokens of a Subject entity, 
attribute, and object identified by the seed fact; and 

generating a respective dependency pattern from each 
minimal Sub-graph by replacing the tokens associated 
with one or more of the vertices representing the head 
tokens of the subject entity, the attribute, or the object 
identified by the seed fact with a variable. 

22. The computer storage medium of claim 18, wherein 
selecting the one or more additional facts from the plurality 
of candidate additional facts comprises: 

determining a respective score for each candidate addi 
tional fact; and 

selecting one or more of the candidate additional facts as 
additional facts based on the scores. 

23. The computer storage medium of claim 22, wherein 
determining the respective score for each candidate addi 
tional fact comprises: 

determining a respective combined score for each pattern 
used to generate the candidate additional fact; and 

determining the score for the candidate additional fact 
from the combined scores of the patterns used to 
generate the candidate additional fact. 

24. The computer storage medium of claim 23, wherein 
determining the respective combined score for each pattern 
used to generate the candidate additional fact comprises: 

determining a frequency score for the pattern from a total 
number of extractions generated by applying the pat 
tern; 

determining a coherence score for the pattern that mea 
sures how semantically related the attributes for which 
the pattern generates facts are; and 

determining the combined score for the pattern by com 
bining the frequency score and the coherence score. 

25. The computer storage medium of claim 24, where 
determining the coherence score for the pattern comprises: 

determining a respective high-dimensional vector repre 
sentation of each attribute for which the pattern gen 
erates facts; 

determining, for each possible pair of attributes selected 
from the attributes for which the pattern generates facts, 
a respective pairwise coherence score from the high 
dimensional vector representations of the attributes in 
the pair, and 

determining the coherence score for the pattern from the 
pairwise coherence scores. 
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