
United States Patent

US009672216B2

(12) (10) Patent No.: US 9,672.216 B2
BrOSch (45) Date of Patent: Jun. 6, 2017

(54) MANAGING DEDUPLICATION IN A DATA 2. E: 3.38: E. et al ashyam et al. STORAGE SYSTEM USING A BLOOMER 7.961,960 B2 6/2011 Bashyam et al.
FILTER DATA DCTIONARY 7.970,216 B2 6/2011 Bashyam et al.

7.974.478 B2 7/2011 Bashyam et al.
(71) Applicant: Compellent Technologies, Eden Prairie, 8,200,641 B2 6/2012 Jayaraman

MN (US) 8,219,534 B2 7/2012 Rao et al.
8,224,831 B2 7/2012 Rao et al.

(72) Inventor: Ryan W. Brosch, Arden Hills, MN 8,386,443 B2 2.2013 Brueggemann et al.
(US) (Continued)

(73) Assignee: Dell International L.L.C., Round OTHER PUBLICATIONS
Rock, TX (US)

Vikraman, Rashmi, and S. Abirami. “A study on various data
(*) Notice: Subject to any disclaimer, the term of this de-duplication systems.” International Journal of Computer Appli

patent is extended or adjusted under 35 cations 94.4 (2014).*
U.S.C. 154(b) by 358 days. (Continued)

(21) Appl. No.: 14/564,947 Primary Examiner — William Spieler
(74) Attorney, Agent, or Firm — Winthrop & Weinstine,

(22) Filed: Dec. 9, 2014 P.A.

(65) Prior Publication Data (57) ABSTRACT

US 2016/O162508 A1 Jun. 9, 2016 A method including maintaining a library having a plurality
of storage tablets, each storage tablet storing a plurality of

(51) Int. Cl. hash-to-storage mappings, each mapping a hash value to a
G06F 7/30 (2006.01) storage location at which a block of data is stored, the block

(52) U.S. Cl. of data translating to the hash value pursuant to a hashing
CPC. G06F 17/30156 (2013.01); G06F 17/30097 algorithm. The method also including upon receipt and/or

(2013.01) determination of a new hash for incoming data pursuant to
(58) Field of Classification Search the hashing algorithm: a) querying a tablet cache for a

None hash-to-storage mapping having the new hash, the tablet
See application file for complete search history. cache comprising a Subset of storage tablets copied from the

library; and/or b) querying a secondary index for a hash-to
(56) References Cited storage tablet mapping having the new hash, the secondary

U.S. PATENT DOCUMENTS

7,613,945 B2 11/2009 Soran et al.
7,864,083 B2 1/2011 Mahoney
7,881.544 B2 2/2011 Bashyam et al.
7,885,988 B2 2/2011 Bashyam et al.

index including a plurality of filters, each filter mapping
each of a plurality of key hashes to a storage tablet of the
library storing that particular key hash in a hash-to-storage
mapping.

20 Claims, 2 Drawing Sheets

US 9,672.216 B2
Page 2

(56)

8,396,843
8,396,899
8.423,520
8.468,292
8,510,275
8,516,002
8,521,705
8,543,555
8,612,401
8,655,898
8,671,116
8,694.466
8,762,349
8,825,985
8,849,773
8,849,774
8,862.559
8,892.528
8,965,852
9,020,909

2012fOO84270
2012fOO84527
2012/O124285
2012/O166725
2013,0080404
2013,0080405
2013/O1386O7
2013/0238,570
2013,0246372
2013/0254458
2013/0297.572
2014.0025644
2014/O195748
2014/0214760
2014/0222769
2014/025O281
2014/0258237
2014/0258244
2014/0310251
2015.OO 12698
2015. OO19515

References Cited

U.S. PATENT DOCUMENTS

B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
B2
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1
A1

3/2013
3/2013
4, 2013
6, 2013
8, 2013
8, 2013
8, 2013
9, 2013

12, 2013
2, 2014
3, 2014
4, 2014
6, 2014
9, 2014
9, 2014
9, 2014

10, 2014
11/2014
2, 2015
4, 2015
4, 2012
4, 2012
5, 2012
6, 2012
3/2013
3/2013
5, 2013
9, 2013
9, 2013
9, 2013
11 2013

1, 2014
T/2014
T/2014
8, 2014
9, 2014
9, 2014
9, 2014

10, 2014
1/2015
1/2015

Jayaraman et al.
Jayaraman
Rao et al.
ASZmann et al.
Wilson et al.
Rao et al.
Jayaraman et al.
Jayaraman
Dinkar et al.
Rao et al.
Jayaraman
Rao et al.
Jayaraman et al.
Jayaraman et al.
Dinkar et al.
Dinkar et al.
Jayaraman
Rao et al.
Jayaraman
Jayaraman et al.
Jayaraman et al.
Jayaraman et al.
Soran et al.
Soran et al.
Smith et al.
Smith et al.
Bashyam et al.
Rao et al.
Rao et al.
Pittelko
Wilson et al.
Taylor et al.
Bashyam et al.
Bashyam et al.
Rao et al.
Rao et al.
Dinkar et al.
Rao et al.
Jayaraman et al.
Bolla et al.
Dinkar et al.

2015, 0026139 A1
2015,0032978 A1
2015.OO39571 A1

1/2015 Jayaraman et al.
1/2015 Bashyam et al.
2/2015 Rao et al.

OTHER PUBLICATIONS

U.S. Appl. No. 14/453,121, filed Aug. 6, 2014, Tripathy et al.
U.S. Appl. No. 14/453,150, filed Aug. 6, 2014, Tripathy et al.
U.S. Appl. No. 14/453,158, filed Aug. 6, 2014, Tripathy et al.
U.S. Appl. No. 14/453,165, filed Aug. 6, 2014, Tripathy et al.
U.S. Appl. No. 14/453,173, filed Aug. 6, 2014, Tripathy et al.
Albireo SANbloxTM: Microsoft(R) WindowSR Server Solution Pro
file, 2015, downloaded from URL:<http://permabit.com/products
overview albireo-sanblox/> on Nov. 11, 2015 (21 pages).
Albireo SANbloxTM. Vmware(R) Solution Profile, 2015, downloaded
from URL:<http://permabitcom/products-overview/albireo
Sanblox/> on Nov. 11, 2015 (26 pages).
Chazelle, Bernard et al. “The Bloomier Filter: An Efficient Data
Structure for Static Support Lookup Tables'. SODA '04 Proceed
ings of the Fifteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, Jan. 11, 2004 (pp. 30-39).
Garrett, Brian. “Lab Validation Report: Permabit Albireo, Aug.
2011, Enterprise Strategy Group (22 pages).
Permabit Albireo SANbloxTM Data Sheet, 2015, downloaded from
URL:<http://permabit.com/products-overview/albireo-sanblox/>
on Nov. 11, 2015 (2 pages).
Permabit Albireo SANbloxTM FAQ, downloaded from URL:<http://
permabit.com/products-overview/albireo-sanblox/> on Nov. 11,
2015 (5 pages).
Permabit Albireo SDK Data Sheet, 2015, downloaded from
URL:<http://permabit.com/products-overview/albireo-software-de
velopment-kit-sdk/> on Nov. 11, 2015 (2 pages).
Permabit Albireo SDK Real-World Results Data Sheet, 2015, down
loaded from URL:<http://permabit.com/products-overview albireo
software-development-kit-sdk/> on Nov. 11, 2015 (2 pages).
Permabit Albireo VDO Data Sheet, 2015, downloaded from
URL:<http://permabit.com/products-overview/albireo-virtual-data
optimizer-vdo/> on Nov. 11, 2015 (2 pages).
Permabit HIOPS CompressionTM Data Sheet, 2015, downloaded
from URL:<http://permabit.com/products-overview/albireo-vir
tual-data-oPtirnizer-vdo/> on Nov. 11, 2015 (2 pages).
Peters, Mark et al. “Permabit Albireo: Primary Data Deduplication
That's Primarily About Massive Business Value'. Aug. 2011, Enter
prise Strategy Group (13 pages).

* cited by examiner

U.S. Patent Jun. 6, 2017 Sheet 1 of 2 US 9,672.216 B2

y

SE

US 9,672.216 B2 Sheet 2 of 2 Jun. 6, 2017 U.S. Patent

US 9,672,216 B2
1.

MANAGING DEDUPLICATION IN ADATA
STORAGE SYSTEM USING A BLOOMER

FILTER DATA DCTIONARY

FIELD OF THE INVENTION

The present disclosure relates generally to data dedupli
cation in a data storage system. Particularly, the present
disclosure relates to improved data deduplication utilizing a
data dictionary with "dense' storage tablets, comprising
hashes and corresponding mapped data address locations,
and a secondary index. The secondary index may include a
plurality of Bloomier filters.

BACKGROUND OF THE INVENTION

The background description provided herein is for the
purpose of generally presenting the context of the disclo
sure. Work of the presently named inventors, to the extent it
is described in this background section, as well as aspects of
the description that may not otherwise qualify as prior art at
the time offiling, are neither expressly nor impliedly admit
ted as prior art against the present disclosure.
As the value and use of information continues to increase,

individuals and businesses seek additional ways to process
and store information. One option available to users is
information handling systems. An information handling
system generally processes, compiles, stores, and/or com
municates information or data for business, personal, or
other purposes thereby allowing users to take advantage of
the value of the information. Because technology and infor
mation handling needs and requirements vary between dif
ferent users or applications, information handling systems
may also vary regarding what information is handled, how
the information is handled, how much information is pro
cessed, stored, or communicated, and how quickly and
efficiently the information may be processed, stored, or
communicated. The variations in information handling sys
tems allow for information handling systems to be general or
configured for a specific user or specific use Such as financial
transaction processing, airline reservations, enterprise data
storage, or global communications. In addition, information
handling systems may include a variety of hardware and
Software components that may be configured to process,
store, and communicate information and may include one or
more computer systems, data storage systems, and network
ing Systems.

Present information handling systems often take advan
tage of various data storage technologies, such as a redun
dant array of independent disks (RAID), which is a storage
technology combining multiple disk or other drives into a
logical storage unit. The use of RAID technology can
improve data redundancy and performance. Data may be
distributed across the drives in several ways, referred to as
RAID levels. The RAID level utilized may depend on the
specific level of redundancy and performance required. Each
level provides a different balance between reliability, avail
ability, performance, and capacity of the information han
dling system.
An increasing problem with Such information handling

systems, and particularly those employing more complex
storage technologies, is the wasted Storage space taken up by
duplicate data. Accordingly, procedures for data deduplica
tion (also referred to herein simply as "deduplication') have
become increasingly desirable and/or important. Data dedu
plication is a technique where files, or other units of stored
data, with identical contents are first identified, and then

10

15

25

30

35

40

45

50

55

60

65

2
only one copy of the identical contents, the single-instance
copy, is kept in the physical storage while the storage space
for the remaining identical content can be reclaimed and
reused. Thus, deduplication achieves what is called single
instance storage, where only the single-instance copy is
stored in the physical storage, along with one or more
references to the unique single-instance copy, resulting in
more efficient use of the physical storage space.
As may be appreciated, therefore, deduplication may

reduce the required storage capacity since less duplicate data
is stored. Moreover, deduplication can lead to a “domino
effect of efficiency, reducing for example capital, admin
istrative, and facility costs, as well as, for example, reducing
energy use, cooling needs, and overall carbon footprint of
the system. Also, less hardware may need to be purchased,
recycled, and/or replaced, further lowering costs.
On the other hand, however, deduplication is convention

ally a random access memory (RAM) limited feature and
requires CPU time that could otherwise be utilized for other
processing tasks, such as input/output operations. Thus,
inefficient deduplication procedures could, for example,
decrease the input/output operations per second (IOPS).
Thus, there remains a need for further improvement, and
incorporation of additional efficiencies, to deduplication
procedures for an information handling system.

BRIEF SUMMARY OF THE INVENTION

The following presents a simplified Summary of one or
more embodiments of the present disclosure in order to
provide a basic understanding of Such embodiments. This
summary is not an extensive overview of all contemplated
embodiments, and is intended to neither identify key or
critical elements of all embodiments, nor delineate the scope
of any or all embodiments.
The present disclosure, in one embodiment, relates to a

method for facilitating data deduplication in a data storage
system. The method may include maintaining an electronic
data library having a plurality of storage tablets, each storage
tablet electronically storing a plurality of hash-to-storage
mappings, each mapping a hash value to a storage address
location in a data storage Subsystem at which a block of data
is stored, the block of data translating to the hash value
pursuant to a hashing algorithm. The method may also
include maintaining a secondary index having a plurality of
filters, each filter electronically mapping each of a plurality
of hashes to a storage tablet of the data library storing that
particular hash in a hash-to-storage mapping. In some
embodiments, the data library may be maintained in non
volatile memory. In further embodiments, the plurality of
storage tablets in the data library may be maintained as
read-only. In additional or alternative embodiments, the
filters of the secondary index may be maintained in RAM.
In certain embodiments, each of the filters in the secondary
index may be a Bloomier filter.
The present disclosure, in another embodiment, relates to

an information handling system. The information handling
system may include an electronic data library having a
plurality of storage tablets, each storage tablet electronically
storing a plurality of hash-to-storage mappings, each map
ping a hash value to a storage address location in the
information handling system at which a block of data is
stored, the block of data translating to the hash value
pursuant to a hashing algorithm. The information handling
system may additionally include a secondary index com
prising a plurality of filters, each filter electronically map
ping each of a plurality of hashes to a storage tablet of the

US 9,672,216 B2
3

data library storing that particular hash in a hash-to-storage
mapping. In some embodiments, the data library may be
stored in non-volatile memory, and in additional or alterna
tive embodiments, the plurality of filters of the secondary
index may be stored in RAM. For some embodiments, the
hash-to-storage mappings for each storage tablet may be
Sorted by hash value. In some embodiments, the hashing
algorithm used may be a collision-resistant hash function,
while in other embodiments, the hashing algorithm may be
a non-collision free hash function. For Some embodiments,
each of the plurality of filters of the secondary index may be
a Bloomier filter, and in further embodiments, the plurality
of filters may be categorized into layers, with a plurality of
filters in each layer. In still further embodiments, the layers
form a cascade of filter layers with, for each layer above a
bottom layer, a filter from that layer is formed from a
combination of the filters from a lower layer. In certain
embodiments, the data library may be a fixed size, circular
log of storage tablets, such that when it is at capacity, the
oldest storage tablet is overwritten. Still further, one or more
of the storage tablets of the data library may be write stream
specific, storing only hash-to-storage mappings correspond
ing to blocks of data from the same write stream. In some
embodiments, the information handling system may addi
tionally comprise a tablet cache stored in RAM, the tablet
cache storing a Subset of storage tablets copied from the data
library. The tablet cache may comprise a storage tablet
copied from the data library that has been most recently
accessed for a hash-to-storage mapping. In some embodi
ments, the plurality of hashes mapped by the filters of the
secondary index may be a pre-defined Subset of hashes
stored in the storage tablets of the data library.
The present disclosure, in yet another embodiment, relates

to a method for data deduplication in a data storage system.
The method may include maintaining an electronic data
library having a plurality of storage tablets, each storage
tablet electronically storing a plurality of hash-to-storage
mappings, each mapping a hash value to a storage address
location in the data storage system at which a block of data
is stored, the block of data translating to the hash value
pursuant to a hashing algorithm. The method may also
include upon receipt and/or determination of a new hash for
incoming data pursuant to the hashing algorithm: a) query
ing a tablet cache for a hash-to-storage mapping having the
new hash, the tablet cache comprising a Subset of storage
tablets copied from the data library; and/or b) querying a
secondary index for a hash-to-storage tablet mapping having
the new hash, the secondary index including a plurality of
filters, each filter electronically mapping each of a plurality
of key hashes to a storage tablet of the data library storing
that particular key hash in a hash-to-storage mapping.

While multiple embodiments are disclosed, still other
embodiments of the present disclosure will become apparent
to those skilled in the art from the following detailed
description, which shows and describes illustrative embodi
ments of the invention. As will be realized, the various
embodiments of the present disclosure are capable of modi
fications in various obvious aspects, all without departing
from the spirit and scope of the present disclosure. Accord
ingly, the drawings and detailed description are to be
regarded as illustrative in nature and not restrictive.

BRIEF DESCRIPTION OF THE DRAWINGS

While the specification concludes with claims particularly
pointing out and distinctly claiming the Subject matter that
is regarded as forming the various embodiments of the

10

15

25

30

35

40

45

50

55

60

65

4
present disclosure, it is believed that the invention will be
better understood from the following description taken in
conjunction with the accompanying Figures, in which:

FIG. 1 is a schematic of an information handling system,
in the form of a data storage system, Suitable for the various
embodiments of I/O handling of the present disclosure.

FIG. 2 is a schematic diagram of a data dictionary in an
information handling system according to an embodiment of
the present disclosure.

DETAILED DESCRIPTION

The present disclosure relates generally to novel and
advantageous data deduplication in a data storage system or
other information handling system. Particularly, the present
disclosure relates to novel and advantageous data dedupli
cation utilizing a data dictionary with "dense' storage tab
lets, comprising hashes and corresponding mapped data
address locations, and a secondary index. The secondary
index may include a plurality of Bloomier filters.

For purposes of this disclosure, any system or information
handling system described herein may include any instru
mentality or aggregate of instrumentalities operable to com
pute, calculate, determine, classify, process, transmit,
receive, retrieve, originate, Switch, store, display, commu
nicate, manifest, detect, record, reproduce, handle, or utilize
any form of information, intelligence, or data for business,
Scientific, control, or other purposes. For example, a system
or any portion thereof may be a minicomputer, mainframe
computer, personal computer (e.g., desktop or laptop), tablet
computer, mobile device (e.g., personal digital assistant
(PDA) or smart phone) or other hand-held computing
device, server (e.g., blade server or rack server), a network
storage device, or any other Suitable device or combination
of devices, and may vary in size, shape, performance,
functionality, and price. A system may include volatile
memory (e.g., RAM), one or more processing resources
Such as a central processing unit (CPU) or hardware or
software control logic, ROM, and/or other types of nonvola
tile memory (e.g., EPROM, EEPROM, etc.). A basic input/
output system (BIOS) can be stored in the non-volatile
memory (e.g., ROM), and may include basic routines facili
tating communication of data and signals between compo
nents within the system. The volatile memory may addi
tionally include a high-speed RAM, such as static RAM for
caching data.

Additional components of a system may include one or
more disk drives or one or more mass storage devices, one
or more network ports for communicating with external
devices as well as various input and output (I/O) devices,
Such as a keyboard, a mouse, touchscreen, and/or a video
display. Mass storage devices may include, but are not
limited to, a hard disk drive, floppy disk drive, CD-ROM
drive, Smart drive, flash drive, or other types of non-volatile
data storage, a plurality of storage devices, a storage Sub
system, or any combination of storage devices. A storage
interface may be provided for interfacing with mass storage
devices, for example, a storage Subsystem. The storage
interface may include any suitable interface technology,
such as EIDE, ATA, SATA, Fibre Channel, and IEEE 1394.
A system may include what is referred to as a user interface
for interacting with the system, which may generally include
a display, mouse or other cursor control device, keyboard,
button, touchpad, touch screen, Stylus, remote control (Such
as an infrared remote control), microphone, camera, video
recorder, gesture systems (e.g., eye movement, head move
ment, etc.), speaker, LED, light, joystick, game pad, Switch,

US 9,672,216 B2
5

buzzer, bell, and/or other user input/output device for com
municating with one or more users or for entering informa
tion into the system. These and other devices for interacting
with the system may be connected to the system through one
or more I/O device interfaces via a system bus, but can be
connected by other interfaces such as a parallel port, IEEE
1394 serial port, a game port, a USB port, an IR interface,
etc. Output devices may include any type of device for
presenting information to a user, including but not limited to,
a computer monitor, flat-screen display, or other visual
display, a printer, and/or speakers or any other device for
providing information in audio form, Such as a telephone, a
plurality of output devices, or any combination of output
devices.
A system may also include one or more buses operable to

transmit communications between the various hardware
components. A system bus may be any of several types of
bus structure that can further interconnect, for example, to a
memory bus (with or without a memory controller) and/or a
peripheral bus (e.g., PCI, PCIe, AGP, LPC, etc.) using any
of a variety of commercially available bus architectures.

While the various embodiments are not limited to any
particular type of information handling system, the systems
and methods of the present disclosure may be particularly
useful in the context of a storage center comprising mass
storage devices. Such as but not limited to disk drive and
Solid state drive systems, or virtual disk drive systems. Such
as that described in U.S. Pat. No. 7,613,945, titled “Virtual
Disk Drive System and Method,” issued Nov. 3, 2009, U.S.
Pat. No. 8,468,292, titled “Solid State Drive Data Storage
System and Method,” issued Jun. 18, 2013, U.S. Publ. No.
2012/0124285, titled “Virtual Disk Drive System and
Method with Cloud-Based Storage Media, filed Aug. 12,
2011, U.S. Publ. No. 2012/0166725, titled “Virtual Disk
Drive System and Method with Deduplication, filed Aug.
12, 2011, and U.S. Publ. No. 2013/0254458, titled “Single
Level Cell and Multi-Level Cell Hybrid Solid State Drive.”
filed Mar. 26, 2012, each of which is incorporated by
reference herein in its entirety. Such data storage systems
may allow the efficient storage of data by, for example,
dynamically allocating user data across a page pool of
storage, or a matrix of drive storage blocks, and a plurality
of drives based on, for example, RAID-to-disk mapping. In
general, dynamic allocation presents a virtual disk or storage
device or volume to user servers. To the server, the volume
acts the same as conventional storage, such as a disk drive,
yet provides a storage abstraction of multiple storage
devices, such as RAID devices, to create a dynamically
sizeable storage device. Data progression may be utilized in
Such disk drive systems to move data gradually to storage
space of appropriate overall cost for the data, depending on,
for example but not limited to, the data type or access
patterns for the data. In general, data progression may
determine the cost of storage in the drive system consider
ing, for example, the monetary cost of the physical storage
devices, the efficiency of the physical storage devices,
and/or the RAID level of logical storage devices. Based on
these determinations, data progression may move data
accordingly such that data is stored on the most appropriate
cost storage available. In addition, Such drive systems may
protect data from, for example, system failures or virus
attacks by automatically generating and storing Snapshots or
point-in-time copies of the system or matrix of drive storage
blocks at, for example, predetermined time intervals, user
configured dynamic time stamps, such as, every few minutes
or hours, etc., or at times directed by the server. These
time-stamped Snapshots permit the recovery of data from a

10

15

25

30

35

40

45

50

55

60

65

6
previous point in time prior to the system failure, thereby
restoring the system as it existed at that time. These Snap
shots or point-in-time copies may also be used by the system
or system users for other purposes, such as but not limited
to, testing, while the main storage can remain operational.
Generally, using Snapshot capabilities, a user may view the
state of a storage system as it existed in a prior point in time.

FIG. 1 illustrates one embodiment of a disk drive or data
storage system 100 in an information handling system
environment 102, such as that disclosed in U.S. Pat. Nos.
7,613,945, 8,468,292, U.S. Publ. No. 2012/0124285, U.S.
Publ. No. 2012/0166725, and U.S. Publ. No. 2013/0254458,
and suitable with the various embodiments of the present
disclosure. As shown in FIG. 1, the disk drive system 100
may include a data storage Subsystem 104, which may
include, but is not limited to, a RAID or JBOD subsystem,
as will be appreciated by those skilled in the art, and a disk
or drive manager 106 having at least one disk storage system
controller. The data storage subsystem 104 and disk/drive
manager 106 can dynamically allocate data across drive
space of a plurality of disk drives or other suitable storage
devices 108, such as but not limited to optical drives, solid
state drives, tape drives, etc., based on, for example, RAID
to-disk mapping or other storage mapping technique. The
data storage Subsystem 104 may include data storage
devices distributed across one or more data sites at one or
more physical locations, which may be network connected.
Any of the data sites may include original and/or replicated
data (e.g., data replicated from any of the other data sites)
and data may be exchanged between the data sites as
desired.

In the various embodiments of the present disclosure, one
or more programs or applications, such as a web browser
and/or other executable applications, may be stored in one or
more of the system data storage devices. Generally, pro
grams may include routines, methods, data structures, other
Software components, etc., that perform particular tasks or
implement particular abstract data types. Programs or appli
cations may be loaded in part or in whole into a main
memory or processor during execution by the processor.
One or more processors may execute applications or pro
grams to run systems or methods of the present disclosure,
or portions thereof, stored as executable programs or pro
gram code in the memory, or received from the Internet or
other network. Any commercial or freeware web browser or
other application capable of retrieving content from a net
work and displaying pages or screens may be used. In some
embodiments, a customized application may be used to
access, display, and update information. A user may interact
with the system, programs, and data stored thereon or
accessible thereto using any one or more of the input and
output devices described above.
A system of the present disclosure can operate in a

networked environment using logical connections via a
wired and/or wireless communications Subsystem to one or
more networks and/or other computers. Other computers can
include, but are not limited to, workstations, servers, routers,
personal computers, microprocessor-based entertainment
appliances, peer devices, or other common network nodes,
and may generally include many or all of the elements
described above. Logical connections may include wired
and/or wireless connectivity to a local area network (LAN),
a wide area network (WAN), a hotspot, a global communi
cations network, Such as the Internet, and so on. The system
may be operable to communicate with wired and/or wireless
devices or other processing entities using, for example, radio
technologies, such as the IEEE 802.xx family of standards,

US 9,672,216 B2
7

and includes at least Wi-Fi (wireless fidelity), WiMax, and
Bluetooth wireless technologies. Communications can be
made via a predefined structure as with a conventional
network or via an ad hoc communication between at least
two devices.

Hardware and Software components of the present dis
closure, as discussed herein, may be integral portions of a
single computer or server or may be connected parts of a
computer network. The hardware and Software components
may be located within a single location or, in other embodi
ments, portions of the hardware and Software components
may be divided among a plurality of locations and connected
directly or through a global computer information network,
Such as the Internet. Accordingly, aspects of the various
embodiments of the present disclosure can be practiced in
distributed computing environments where certain tasks are
performed by remote processing devices that are linked
through a communications network. In Such a distributed
computing environment, program modules may be located
in local and/or remote storage and/or memory systems.
As will be appreciated by one of skill in the art, the

various embodiments of the present disclosure may be
embodied as a method (including, for example, a computer
implemented process, a business process, and/or any other
process), apparatus (including, for example, a system,
machine, device, computer program product, and/or the
like), or a combination of the foregoing. Accordingly,
embodiments of the present disclosure may take the form of
an entirely hardware embodiment, an entirely software
embodiment (including firmware, middleware, microcode,
hardware description languages, etc.), or an embodiment
combining software and hardware aspects. Furthermore,
embodiments of the present disclosure may take the form of
a computer program product on a computer-readable
medium or computer-readable storage medium, having com
puter-executable program code embodied in the medium,
that define processes or methods described herein. A pro
cessor or processors may perform the necessary tasks
defined by the computer-executable program code. Com
puter-executable program code for carrying out operations
of embodiments of the present disclosure may be written in
an object oriented, Scripted, or unscripted programming
language such as Java, Perl, PHP, Visual Basic, Smalltalk,
C++, or the like. However, the computer program code for
carrying out operations of embodiments of the present
disclosure may also be written in conventional procedural
programming languages, such as the C programming lan
guage or similar programming languages. A code segment
may represent a procedure, a function, a Subprogram, a
program, a routine, a Subroutine, a module, an object, a
Software package, a class, or any combination of instruc
tions, data structures, or program statements. A code seg
ment may be coupled to another code segment or a hardware
circuit by passing and/or receiving information, data, argu
ments, parameters, or memory contents. Information, argu
ments, parameters, data, etc. may be passed, forwarded, or
transmitted via any Suitable means including memory shar
ing, message passing, token passing, network transmission,
etc.

In the context of this document, a computer readable
medium may be any medium that can contain, store, com
municate, or transport the program for use by or in connec
tion with the systems disclosed herein. The computer
executable program code may be transmitted using any
appropriate medium, including but not limited to the Inter
net, optical fiber cable, radio frequency (RF) signals or other
wireless signals, or other mediums. The computer readable

10

15

25

30

35

40

45

50

55

60

65

8
medium may be, for example but is not limited to, an
electronic, magnetic, optical, electromagnetic, infrared, or
semiconductor system, apparatus, or device. More specific
examples of Suitable computer readable medium include,
but are not limited to, an electrical connection having one or
more wires or a tangible storage medium Such as a portable
computer diskette, a hard disk, RAM, read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a compact disc read-only
memory (CD-ROM), or other optical or magnetic storage
device. Computer-readable media includes, but is not to be
confused with, computer-readable storage medium, which is
intended to cover all physical, non-transitory, or similar
embodiments of computer-readable media.

Various embodiments of the present disclosure may be
described herein with reference to flowchart illustrations
and/or block diagrams of methods, apparatus (systems), and
computer program products. It is understood that each block
of the flowchart illustrations and/or block diagrams, and/or
combinations of blocks in the flowchart illustrations and/or
block diagrams, can be implemented by hardware and/or
computer-executable program code portions. Computer-ex
ecutable program code portions may be provided to a
processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a particular machine. Such that the code portions,
which execute via the processor of the computer or other
programmable data processing apparatus, create mecha
nisms for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks. Alterna
tively, computer program implemented steps or acts may be
combined with operator or human implemented steps or acts
in order to carry out an embodiment of the invention.

Additionally, although a flowchart or block diagram may
illustrate a method as comprising sequential steps or a
process as having a particular order of operations, many of
the steps or operations in the flowchart(s) or block diagram
(s) illustrated herein can be performed in parallel or con
currently, and the flowchart(s) or block diagram(s) should be
read in the context of the various embodiments of the present
disclosure. In addition, the order of the method steps or
process operations illustrated in a flowchart or block dia
gram may be rearranged for Some embodiments. Similarly,
a method or process illustrated in a flow chart or block
diagram could have additional steps or operations not
included therein or fewer steps or operations than those
shown. Moreover, a method step may correspond to a
method, a function, a procedure, a Subroutine, a Subprogram,
etc.
As used herein, the terms “substantially” or “generally'

refer to the complete or nearly complete extent or degree of
an action, characteristic, property, state, structure, item, or
result. For example, an object that is “substantially’ or
“generally enclosed would mean that the object is either
completely enclosed or nearly completely enclosed. The
exact allowable degree of deviation from absolute complete
ness may in some cases depend on the specific context.
However, generally speaking, the nearness of completion
will be so as to have generally the same overall result as if
absolute and total completion were obtained. The use of
“substantially' or “generally is equally applicable when
used in a negative connotation to refer to the complete or
near complete lack of an action, characteristic, property,
state, structure, item, or result. For example, an element,
combination, embodiment, or composition that is 'substan

US 9,672,216 B2

tially free of or “generally free of an element may still
actually contain such element as long as there is generally no
significant effect thereof.
As stated above, an increasing problem with information

handling systems, and particularly those employing more
complex storage technologies, is the wasted storage space
taken up by duplicate data. Accordingly, procedures for data
deduplication have become increasingly desirable and/or
important.

In some conventional systems, deduplication may gener
ally operate by translating, through use of a hashing algo
rithm, relatively large sections of data, Such as but not
limited to four (4) kilobytes or larger sections, into smaller
corresponding representations of the data, such as but not
limited to thirty-two (32) or sixty-four (64) bytes, often
referred to as hashes. The hashes may be maintained in an
indexing structure, referred to herein as a “data dictionary”
or simply "dictionary, stored in RAM and which may map
each hash to a location where the corresponding larger
section of data is stored. When new user data is received by
the system, it is translated into a hash utilizing the hashing
algorithm, which is then looked up in, or otherwise com
pared to the hashes maintained in, the dictionary. In some
embodiments, if the hash already exists in the dictionary, it
serves as an indicator that the new user data is duplicative of
already stored data. More reliably, however, in other
embodiments, if the hash already exists in the dictionary and
(a) the hash function is a Suitably collision-resistant cryp
tographic hash function (or is otherwise very reliable) and/or
(b) a read/compare of the data at the mapped address
corresponding to the hash against the incoming new user
data reveals they are identical, then it serves as a good
indicator that the new user data is duplicative of the data at
the mapped address, and the new user data does not need to
be stored. Instead a second reference to the already existing
data at the mapped address corresponding to the hash can
simply be created. Creating a second reference to the already
existing data permits the system to avoid writing duplicates
and effectively store more data in the same space.

However, as will be appreciated from the foregoing,
deduplication is typically limited by available RAM for the
dictionary and can require CPU time that could otherwise be
utilized for other processing tasks, such as input/output
operations. Thus, there remains a need for further improve
ment, and incorporation of additional efficiencies, to dedu
plication procedures for an information handling system.

Accordingly, the present disclosure improves on conven
tional deduplication procedures and systems for use with a
data storage system or other information handling system,
Such as but not limited to the type of data storage systems
described in U.S. Pat. Nos. 7,613,945, 8,468,292, and U.S.
patent application Ser. No. 13/429,511 by, among other
things, abstractly increasing the density of information
stored in the RAM for deduplication purposes through use of
"dense' storage tablets and a secondary index. The present
disclosure additionally improves on conventional dedupli
cation procedures by permitting less collision-resistant hash
ing algorithms, achieving relatively fast detection of unique
hash values, while nonetheless retaining quality identifica
tion of duplicative data.
More specifically, with respect to FIG. 2, a system accord

ing to the various embodiments of the present disclosure
may generally comprise a data dictionary 200 having a
plurality of “dense' storage tablets 202 and a secondary
index 204 for indexing the storage tablets. As will be
described in further detail below, each storage tablet 202
may contain a plurality of hashes and corresponding mapped

5

10

15

25

30

35

40

45

50

55

60

65

10
data storage address locations (“hash-to-storage map
pings'), identifying for each hash the data storage location
storing the user data that hashed down to that particular hash
value. As will also be described in further detail below, the
secondary index 204 may comprise two or more layers 206,
208, 210 of Bloomier filters.

Dense Storage Tablets
As described above, when new user data is received by

the system, it is translated into a hash utilizing a hashing
algorithm. In embodiments of the present disclosure, hash
ing and hash indexing may be hash function agnostic. That
is, the hashing method utilized in the various embodiments
of the present disclosure may be a cryptographic, collision
resistant hash function, such as but not limited to, SHA-256,
or a relatively faster non-collision free hash function, such
as but not limited to, Murmur. More generally, any suitable
known or later-developed, hashing algorithm can be used in
the various embodiments of the present disclosure without
limitation.
At any rate, these new hashes may be received (or in come

embodiments translated or determined) by the dictionary
200, and through a dense storage tablet creation module 212,
which may be executed in system RAM, they may be placed
into a “dense' storage tablet 202, which in some embodi
ments, is also temporarily maintained in system RAM. As
described above, each storage tablet 202 may contain a
plurality of hashes and corresponding mapped data storage
address locations, identifying for each hash the data storage
location storing the user data that hashed down to that
particular hash value. The hashes of each storage tablet 202
may be sorted by hash value. Such as by increasing or
decreasing hash values. In one embodiment, each storage
tablet 202 can be a fixed size, i.e., storing a fixed number of
hash-to-storage mappings. Of course, in other embodiments,
storage tablets 202 need not be of fixed size, and instead any
given storage tablet could be created of any Suitable size, as
desired or needed.

In one embodiment, when a storage tablet 202 in the
dense storage tablet creation module 212 has been filled, the
tablet may be written to a non-volatile storage tablet library
214, such as but not limited to a hard disk drive, flash drive
or other solid state device, a plurality of storage devices, a
data storage subsystem, such as a JBOD or RAID subsystem
or the like, or any combination of Such storage devices. In
this regard, the storage tablet 202 can be moved off of
relatively more expensive volatile memory resources. How
ever, in other embodiments, a storage tablet 202 may be
moved from system RAM to non-volatile storage at any
other Suitable time, including prior to being completely
filled. In still other embodiments, the storage tablet 202 need
not be moved to non-volatile storage, and instead may
remain in a tablet library on system RAM or moved to other
Volatile storage. In Such embodiments, though, advantages
of maintaining the tablet library on relatively less expensive
non-volatile storage may be minimized or lost. In one
embodiment, once a storage tablet 202 is full and moved to
non-volatile storage, or otherwise moved from system RAM
or the dense storage tablet creation module 212, the storage
tablet may be protected as read-only, so that it is not
modifiable. In other embodiments, however, the storage
tablets 202 may remain modifiable, if so desired.

In one embodiment, the tablet library 214 may be offixed
size, holding a predetermined number of storage tablets 202.
Of course, in other embodiments, the tablet library 214 may
be dynamically expanded or reduced in size, as desired or
needed. The size of the tablet library 214 shown in FIG. 2
is for illustration purposes only, and is not intended to be

US 9,672,216 B2
11

limiting on the number of storage tablets 202 maintained by
the tablet library. In one embodiment, the tablet library 214
may be a circular log of storage tablets 202 in that storage
tablets may be written to the tablet library in a log fashion,
such that, when the tablet library is full, the oldest storage
tablet is automatically overwritten by the newest storage
tablet, incoming from the dense storage tablet creation
module 212. In this regard, in some embodiments, storage
tablets 202 may each contain write time-stamp information,
identifying when the storage tablet was written to the tablet
library 214 or other suitable moment in time by which
storage tablets may be compared for relative length of
existence.

In some embodiments, hashes may be associated with a
write stream indicator, indicating from which write stream,
Such as which user or host device, the new user data
corresponding to those hashes was received. This may be
referred to herein as write stream categorization; although
the name is not intended to be limiting. Associating the
hashes with a write stream indicator allows the dictionary
200 to correlate specific hashes with a specific write stream.
In one embodiment, the dictionary 200, or more particularly,
the dense storage tablet creation module 212, may store
hashes from each write stream into stream-specific storage
tablets 202.

In some embodiments, a dense storage tablet cache 216,
typically in Volatile storage. Such as System RAM, may be
provided for maintaining a subset of storage tablets 202
from the tablet library 214. In one embodiment, the tablet
cache 216 may comprise one or more of the most recently
accessed or otherwise utilized storage tablets 202, which can
include, for example, storage tablets that were most recently
created by the dense storage tablet creation module 212 due
to new hash additions as well as storage tablets accessed and
brought into RAM memory by hits through the secondary
index 204. In one embodiment, the tablet cache 216 may be
of fixed size, caching a predetermined number of Storage
tablets 202. Of course, in other embodiments, the tablet
cache 216 may be dynamically expanded or reduced in size,
as desired or needed. The size of the tablet cache 216 shown
in FIG. 2 is for illustration purposes only, and is not intended
to be limiting on the number of storage tablets 202 main
tained by the tablet cache. Similar to the tablet library 214,
when the tablet cache 216 is full, the oldest storage tablet
202 in the tablet cache may be automatically overwritten by
the most recent incoming cached storage tablet (if not
already also in the tablet cache).

Secondary Index
As indicated above, the secondary index 204 may com

prise two or more layers 206, 208, 210 of filters 218. In one
embodiment, the filter layers 206, 208, 210 may comprise
Bloomier filters. However, other filters now known or later
developed could be used in place of Bloomier filters. A
Bloomier filter is a probabilistic data structure which relates
an input key to a value in the range R, with some false
positive rate. The construction of and query process for
Bloomier filters, as well as false positive rate calculations,
are available in the academic paper Bernard Chazelle et al.,
The Bloomier Filter. An Efficient Data Structure for Static
Support Lookup Tables, in SODA 04 PROCEEDINGS OF THE
FIFTEENTH ANNUAL ACM-SIAMSYMPOSIUM ON DISCRETE ALGO
RITHMS, 30-39, Jan. 11, 2004, the contents of which are
hereby incorporated herein by reference in their entirety.
While illustrated in FIG. 2 as having three layers offilters for
ease of illustration, the secondary index 204 is not so
limited, and instead may have any Suitable number of layers
of filters 218 as desired, which may often be limited by the

10

15

25

30

35

40

45

50

55

60

65

12
storage capacity, processing power, and/or other specifica
tions (mechanical or administrative) of the system.

In the context of the present application, a "key' hash may
be the input key to the filters 218 and the range RI to which
the input key is mapped may be an index to a storage tablet
202 maintained in the tablet library 214. That is, each filter
218 may map an input hash to an index to a storage tablet
202 maintained in the tablet library 214 (“key hash-to-tablet
index mapping). In one embodiment, key hashes may be a
pre-determined or pre-designated Subset of the new hashes
received by the dictionary 200. For example, in one embodi
ment, key hashes may be identified as every n' new hash
received by the dictionary 200, where “n” is an integer. For
example, a key hash could be every 2" hash received by the
dictionary 200, such as but not limited to, every 4", 8", or
16" hash received by the dictionary. In some embodiments,
a key hash may be a hash value where some fixed number
of top or bottom bits of the hash are zero.

For ease of explanation only, we may identify three types
of layers: bottom, middle, and top. Where layers 0 to N (N
being an integer) are used, we may denote layer 0 as a
bottom layer, layers 1 to N-1 as middle layers, and layer N
as the top layer. Of course, any other designation of the
layers could be used, and the nomenclature used herein is
not intended to be limiting. In FIG. 2, again for ease of
explanation, layer 206 may be designated a bottom layer,
layer 208 may be designated a middle layer, and layer 210
may be designated a top layer. In one embodiment, as
illustrated in FIG. 2, each of the filters 218 of the filter layers
206, 208, 210 may be designated to index to a specified
number of storage tablets 202 in the tablet library 214; this
specified number of storage tablets 202 may be based on or
relate to how often a key hash is identified according to the
pre-determined or pre-designated algorithm discussed
above. In one embodiment, the filters in a bottom layer, such
as the filters 218 of bottom layer 206, may be designated to
index a fixed number, X, of storage tablets 202 in the tablet
library 214. The filters in a first middle layer, such as the
filters 218 of middle layer 208, may be designated to index
a larger fixed number, Y. (i.e., Y-X) of storage tablets in the
tablet library 214. As such, the filters 218 of middle layer
208 may be larger in capacity than those of bottom layer 206
in order to hold more key hash-to-tablet index mappings.
The filters of each subsequent middle layer may likewise
increase in size, with the size of the filters in each Subsequent
middle layer of filters being larger in capacity than those of
the previous middle layer. The filters in a top layer, such as
the filters 218 of top layer 210, may be designated to index
an even larger fixed number, Z, of storage tablets in the
tablet library 214. As such, the filters 218 of top layer 210
may be larger in capacity than any of those of the bottom and
middle layers in order to hold more key hash-to-tablet index
mappings. Because the filters increase, from the bottom to
the top layers, in the number of storage tablets 202 to which
they index, a larger filter (e.g., a filter from a middle layer
or top layer) may represent a longer period of time over
which user data was received and hashed than a smaller filter
(e.g., a filter from the bottom layer).

In one embodiment, in general, the filter layers may form
a cascade of filters, with a first filter of a subsequent filter
layer being formed from a combination of the filters from the
previous layer. Using FIG. 2 as an example, over time, a first
filter 220 of middle layer 208 may be formed from a
combination of all the filters 218 of the bottom layer 206,
and thus index all the storage tablets previously indexed by
the filters of the bottom layer. Likewise, over time, a first
filter 222 of top layer 210 may be formed from a combina

US 9,672,216 B2
13

tion of all the filters 218 of the middle layer 208, and thus
index all the storage tablets previously indexed by the filters
of the middle layer. In this manner, the filter layers are filled
in a waterfall or cascading manner. Accordingly, in Such an
embodiment, the filter size of filters in the middle layer 208
may be about M times larger than filters in the bottom layer
206, where M is the number of filters in the bottom layer,
and the filter size of filters in the top layer 210 may be about
Ptimes larger than filters in the middle layer, where P is the
number of filters in the middle layer.

This can be further understood with more specific detail
regarding how the filters and various filter layers may be
created. Starting with the relatively simpler schematic of
FIG. 2, in one embodiment, as noted above, when new user
data is received by the system, it is translated into a hash
utilizing a hashing algorithm. These new hashes, which
include key hashes, are placed into a storage tablet 202. With
regard to key hashes, as they are identified, they are addi
tionally sent to the secondary index 204 for inclusion
therein. Initially, as the key hashes are received, a bottom
layer 206 filter may be created (or reused/recycled if an
available bottom layer filter already exists), and the key
hash-to-tablet index mappings are stored in the bottom layer
filter. Specific construction details of a Bloomier filter (such
as for creation of the filters in the bottom, middle, and top
layers of the various embodiments of the present disclosure)
are described in Bernard Chazelle et al., The Bloomier
Filter. An Efficient Data Structure for Static Support Lookup
Tables, in SODA '04 PROCEEDINGS OF THE FIFTEENTH ANNUAL
ACM-SIAMSYMPOSIUM ON DISCRETE ALGORITHMS, 30-39, Jan.
11, 2004, which was previously incorporated by reference
herein. When a bottom layer 206 filter is filled up, another
bottom layer filter may be created (or reused/recycled if an
available bottom layer filter already exists), and the incom
ing key hash-to-tablet index mappings are stored in the most
recently created/reused bottom layer filter. In larger scale
versions, this may continue for several more bottom layer
filters. In the relatively simpler schematic of FIG. 2, the
bottom layer 206 comprises only two filters. When these two
filters are filled, or all the filters in the bottom layer 206 are
otherwise filled, a middle layer 208 filter may be created (or
reused/recycled if an available middle layer filter already
exists), and the key hash-to-tablet index mappings of the
filters in the bottom layer are stored in the middle layer filter.
The existing filters of the bottom layer 206 may be emptied
and/or reused for further incoming key hashes. As will be
appreciated, the process may repeat again to fill another
middle layer 208 filter. Again, in larger scale versions, this
may continue for several more middle layer filters. In the
relatively simpler schematic of FIG. 2, the middle layer 208
comprises only two filters. When these two filters are filled,
or all the filters in the middle layer 208 are otherwise filled,
a top layer 210 filter may be created (or reused/recycled if
an available top layer filter already exists), and the key
hash-to-tablet index mappings of the filters in the middle
layer are stored in the top layer filter. The existing filters of
the middle layer 208 may be emptied and/or reused for
further key hash-to-tablet index mappings from the bottom
layer. As will be appreciated, the process may repeat again
to fill another top layer 210 filter. Again, in larger scale
versions, this may continue for several more top layer filters.
In the relatively simpler schematic of FIG. 2, the top layer
210 comprises only two filters. In additional repetitions, in
a manner similar to that of the circular log of the tablet
library 214, when the top layer 210 is full, the oldest top
layer filter is automatically overwritten by the newest
incoming key hash-to-tablet index mappings from the

10

15

25

30

35

40

45

50

55

60

65

14
middle layer. In this regard, the bottom layer 206 filters
generally index the most recent storage tablets 202 in the
tablet library 214, while the top layer 210 filters generally
index the oldest storage tablets in the tablet library.
Of course, as alluded to in the foregoing, the embodi

ments of the present disclosure are not limited by the
relatively simple schematic of FIG. 2, which is provided
only for ease of explanation. In fact, any suitable number of
storage tablets 202 could be used for the tablet library 214
and any suitable number of layers and filters 218 per layer
may be used for the secondary index 204, as will be
appreciated. As an example only, an embodiment could
utilize three layers, with the filters in the bottom layer may
each index sixty-four (64) storage tablets, the filters in the
middle layer may each be filled by the thirty-two (32)
bottom layer filters, and thus index 2048 storage tablets, and
the filters in the top layer may each be filled by the eight (8)
middle layer filters, and thus index 16,384 storage tablets. As
Such, just as a more practical example, two-hundred fifty-six
(256) top layer filters could effectively index 4,194,304
storage tablets. Accordingly, creation may be more generally
described as when a layer A of type bottom or middle has
been filled, a new layer A+1 filter may be created using the
data previously existing in layer A, and the existing layer A
filters may be emptied/reused. In the above provided
example, for instance, filling of the 32" bottom layer filter
triggers the creation (or reuse) of a middle layer filter and the
emptying of all bottom layer filters. Likewise, filling of the
8" middle layer filter triggers the creation (or reuse) of a top
layer filter and the emptying of all middle layer filters. When
a new top layer filter is needed, the oldest of the two-hundred
fifty-six (256) top layer filters may be emptied/reused. Those
skilled in the art will recognize the adaptation of the embodi
ments of the present disclosure to dictionaries having any
suitable number of storage tablets 202 in the tablet library
214 and any suitable number of layers and filters 218 per
layer in the secondary index 204.

In one embodiment, a filter construction array 224 may be
used to help in the construction of the filters 218 and layers
206, 208, 210 of the secondary index 204. That is, in
constructing the filters 218 and layers 206, 208, 210 of the
secondary index 204, it may be desirable to have a data
structure which contains some or all of the input values for
Bloomier filter creation (e.g. f. m, neighbors {1,..., k, tau,
next, previous) (see Bernard Chazelle et al., The Bloomier
Filter. An Efficient Data Structure for Static Support Lookup
Tables, in SODA '04 PROCEEDINGS OF THE FIFTEENTH ANNUAL
ACM-SIAMSYMPOSIUM ON DISCRETE ALGORITHMS, 30-39, Jan.
11, 2004) for enough key hashes to fill a single top layer
filter. That is, the filter construction array 224, in one
embodiment, may be sized so as to maintain and hold
enough key hashes and associated data for creation of a top
layer filter, which also inherently results in the filter con
struction array being sized to maintain and hold enough key
hashes and associated data for creation of the bottom and
middle layer filters. In one embodiment, the filter construc
tion array 224 may be a bit-compacted array; of course, any
other suitable data structure may be utilized. In some
embodiments, the filter construction array 224 may be stored
in volatile storage, such as system RAM; however, the filter
construction array could be maintained in any suitable type
of storage. In one embodiment, the filter construction array
224 may begin empty and may be filled “from the bottom
up.' In this regard, the filter construction array 224 may
supply the construction information for all layers of filters.
More specifically, in one embodiment utilizing a filter

construction array 224, as key hashes are identified and sent

US 9,672,216 B2
15

to the secondary index 204, as described above, the key
hashes and associated data may be inserted into the filter
construction array starting at index 1. Eventually, enough
key hashes will be inserted into or acquired by the filter
construction array 224 to create a bottom layer filter, which
may be represented, for example, in index entries 1 to
LastBL(1) of the filter construction array, where LastBL(x)
represents the last entry for bottom layer filter “x. Likewise,
eventually, enough key hashes will be inserted into or
acquired by the filter construction array 224 to create a
second bottom layer filter, which may be represented in
index entries LastBL(1)+1 to LastEL(2) of the filter con
struction array. Again, this process repeats for potentially
several bottom layer filters until, eventually, enough key
hashes are inserted into or acquired by the filter construction
array 224 to create a middle layer filter, which may be
represented, for example, in index entries 1 to LastBL(y),
where “y” is the number of bottom layer filters. As more
hashes are identified and sent to the secondary index 204, the
next bottom layer filter may be represented in index entries
LastBL(y)+1 to LastBL(y+1), and so on until enough addi
tional bottom layer filters are filled to represent another
middle layer filter in the index entries of the filter construc
tion array 224. Eventually, as this process repeats, there will
be enough middle layer filters to represent a top layer filter.
The top layer filter may be represented, for example, in
index entries 1 to LastBL(Z), where “Z” is the number of
bottom layer filters times the number of middle layer filters.
In some embodiments, this fills the entire filter construction
array 224. After the top layer filter is constructed and the
corresponding key hash-to-tablet index mappings are stored
therein, the index entries of the filter construction array 224
may be emptied and begin to fill from the bottom up once
again. In one embodiment, a single filter construction array
224 may be used, but would block and/or hold further key
hash insertions until the new top layer filter was constructed.
In other embodiments, two (or more) filter construction
arrays could be utilized, for example, in a ping/pong fashion,
so that new key hashes can continue to be inserted into one
of the filter construction arrays, while the other of the filter
construction arrays is in use for creation of the top layer
filter.
As a part of Bloomier filter construction, a data structure

may be used to track which slots in the filter are only
referenced by a single key. Slots in a filter that are only
referenced by a single key may be denoted “singleton slots.”
How this is utilized for Bloomier filter construction is
described in Bernard Chazelle et al., The Bloomier Filter. An
Efficient Data Structure for Static Support Lookup Tables, in
SODA’04 PROCEEDINGS OF THE FIFTEENTH ANNUAL ACM-SIAM
SYMPOSIUM ON DISCRETE ALGORITHMS, 30-39, Jan. 11, 2004,
which was previously incorporated by reference herein. To
manage these, in one embodiment, a singleton tracker array
226 may be provided that comprises a 2-bit field for each
slot in the filter. In some embodiments, the singleton tracker
array 226 may be stored in Volatile storage, such as system
RAM; however, the singleton tracker array could be main
tained in any suitable type of storage. At any rate, the 2-bit
field of the singleton tracker array 226 for all slots in a filter
may start at the value "0." As neighbor {1, ..., k} values
are calculated for each input key hash, the singleton tracker
array 226 field may be incremented for the corresponding
slot. Once the field for a slot has been incremented to two
(2), in some embodiments, it is not incremented further. The
singleton tracker array 226 may thus be utilized in filter
construction by indexing all neighbor {1, ...,k} values to
determine which slots hold the value 1, representing a

10

15

25

30

35

40

45

50

55

60

65

16
singleton slot. Entries in the filter construction array 224
may be arranged into singleton and non-singleton lists
utilizing the “next/previous’ values of that array. For the
singleton list, a t may be assigned for the entry based on
which neighbor {1, k was the singleton value. The
singleton tracker array 226 may be Zeroed, and the process
may be repeated for the non-singleton list. This may repeat
until the non-singleton list is empty. If an iteration occurs
where no change occurs in the non-singleton list, some
Subset of the non-singleton list may be removed and the
process repeated. The section that is removed could be
added to a secondary in-memory structure or discarded.

Hash Querying and Deduplication
Having described the structure of the data dictionary 200,

a method for data deduplication, utilizing the data dictionary
will now be described. As described above, when new user
data is received by the system, it may be translated into a
hash utilizing the hashing algorithm. In one embodiment,
prior to storing the new user data to the system and sending
the corresponding hash to the data dictionary 200 for storage
in a storage tablet 202, the system may first query the tablet
cache 216 to check if a matching hash is already maintained
in one of the cached storage tablets. As indicated above, in
one embodiment, the tablet cache 216 may comprise one or
more of the most recently accessed or otherwise utilized
storage tablets 202, which can include, for example, storage
tablets that were most recently created by the dense storage
tablet creation module 212 due to new hash additions as well
as storage tablets accessed and brought into RAM memory
by hits through the secondary index 204. Of course, other
methods for determining which storage tablets 202 are
stored in the tablet cache 216 may be utilized. If a hash
matching the new hash is found in one of the storage tablets
202 in the tablet cache 216, then in some embodiments, the
new user data does not need to be stored and a second
reference to the already existing data at the mapped address
corresponding to the hash can simply be created. However,
for more reliability, if a hash matching the new hash is found
in one of the storage tablets 202 in the tablet cache 216, then
in other embodiments, if (a) the hash function is a suitably
collision-resistant cryptographic hash function (or is other
wise very reliable) and/or (b) a read/compare of the data at
the mapped address corresponding to the matching hash
against the incoming new user data reveals they are identi
cal, then the new user data does not need to be stored and a
second reference to the already existing data at the mapped
address corresponding to the hash can simply be created.

If, however, a hash matching the new hash is not found in
one of the storage tablets 202 in the tablet cache 216, then
in some embodiments, the system may determine if the new
hash is identifiable as a key hash. If not, then in some
embodiments, the deduplication process may end here, and
the new user data may be stored and the new hash may be
sent to the dense storage tablet creation module 212, or the
data dictionary in general 200, for processing as described
above.

If the system determines that the new hash is identifiable
as a key hash, then the system may query the secondary
index 204 to determine if a hash matching the new hash is
represented in one of the filters 218 of the secondary index.
Querying the secondary index 204 may be performed by
querying the filters 218 of the filter layers 206, 208, 210.
Querying of the filters 218 may be performed serially or in
parallel, as desired. In some embodiments, the filters may be
stored in memory interleaved for enhanced cache perfor
mance for efficient querying. If a matching hash value is
found represented in more than one filter 218, in one

US 9,672,216 B2
17

embodiment, the youngest (from the bottom layer to the top
layer) and/or most recent filter may be utilized to complete
the query. If a hash matching the new hash is found
represented in at least one of the filters 218, then in some
embodiments, the new user data does not need to be stored 5
and a second reference to the already existing data at the
mapped address corresponding to the hash can simply be
created. However, for more reliability, if a hash matching the
new hash is found represented in at least one of the filters
218, the secondary index 204 may return a storage tablet 10
index for a storage tablet 202 maintained in the tablet library
214. The storage tablet 202 corresponding to the returned
tablet index may then be queried for the hash-to-storage
mapping data. If (a) the hash function is a Suitably collision
resistant cryptographic hash function (or is otherwise very 15
reliable) and/or (b) a read/compare of the data at the mapped
address corresponding to the matching hash against the
incoming new user data reveals they are identical, then the
new user data does not need to be stored and a second
reference to the already existing data at the mapped address 20
corresponding to the hash can simply be created. In some
embodiments, as indicated above, the storage tablet 202
corresponding to the returned storage tablet index may also
be loaded into the tablet cache 216.

In further embodiments, the system may provide multi- 25
controller hash sharing. More specifically, in a multi-con
troller system, each controller may maintain its own tablets
202, tablet library 214, tablet cache 216, and secondary
index 204. Upon receipt by the local data dictionary 200 of
a new hash, the local controller may query its own data 30
dictionary and/or one or more of the other controllers for a
matching hash. If a matching hash is found on multiple of
the controllers, then in some embodiments, the newest
version of the hash-to-storage mapping may be used. In one
embodiment, this may be determined by examining the 35
time-stamp information stored with each tablet 202. If the
most recent version of the matching hash is found to be
located at a remote controller's secondary index 204, in
Some embodiments, the local controller may load into its
own tablet cache 216, from the remote controller, the storage 40
tablet 202 corresponding to the matching hash. It may
complete this via inter-process communication (IPC) or by
accessing the storage tablet 202 directly from the storage
device. If new hash matches are found in the storage tablet
now cached at the local controller's tablet cache 216, the 45
local controller may insert the new hash-to-storage map
pings into its own newest tablet in the dense storage tablet
creation module 212. In this manner, hashes can be effec
tively migrated between controllers based on who has most
recently written the data. During a controller failure, own- 50
ership of its hashes may automatically migrate, in this
manner, to other controllers. During a controller remove, the
removed controller's secondary index 204 can be distributed
to the remaining controllers by dividing up its storage tablets
202 and filters 218 using a round-robin or other suitable 55
scheme. During a controller add, a Subset of each remote
controller's secondary index 204 can be inserted into the
newly added controller's secondary index.
The various embodiments of the present disclosure are

advantageous for a variety of reasons. For example, as noted 60
above, conventional deduplication procedures are often
RAM limited. That is, the larger the number of hash-to
storage mappings, the more RAM that must be devoted to
the dictionary. However, RAM is relatively very expensive.
In contrast, because of the structure of the data dictionary, 65
with dense storage tablets being stored in non-volatile
memory, and through use of a secondary index maintained

18
in RAM, the various embodiments of the present disclosure
provide a Substantial increase over conventional deduplica
tion procedures in terms of the number of hashes that can be
stored per byte of RAM. Increasing the density of informa
tion stored in RAM, via the secondary index, provides a
competitive advantage by permitting greater deduplication
capability within the same RAM footprint as conventional
deduplication procedures, or alternatively providing the
capability to utilize saved RAM space for other purposes.

For another example, most deduplication procedures uti
lize translation of the user data into a significantly smaller
piece of information—the hash. The strength or collision
resistance of the hash required has a direct bearing on CPU
usage—if a collision-resistant hash is required, more pro
cessing resources will be required to generate it, leaving less
processing resources for other tasks. The various embodi
ments of the present disclosure do not require a collision
resistant hash. This decreases the amount of CPU usage
needed, allowing utilization of processing resources for
other processing tasks, which can increase system IOPS.

In yet another example, generally user writes can be
categorized as unique or duplicative. For unique user writes,
write performance using deduplication can be highly depen
dent on being able to determine the unique property as soon
as possible because the hash value will not be located in the
indexing structure. The various embodiments of the present
disclosure provide relatively fast detection of such unique
hash values using only RAM-resident information (e.g., the
tablet cache 216 and secondary index 204).

In still another example, for non-unique or duplicative
user writes, write performance using deduplication, and also
the deduplication ratio, can be highly dependent on being
able to locate patterns within user data write streams. The
various embodiments of the present disclosure help increase
performance by co-locating hash-to-storage mappings in the
tablet cache 216 and/or by associating hashes with a write
stream indicator to correlate specific hashes with a specific
write stream. Each permits faster lookup in RAM when a
user write pattern is detected, in turn increasing the dedu
plication ratio. A higher deduplication ratio can act to
increase write throughput by not requiring writes of dedu
plicated data.

In yet another example, a storage system should generally
be tolerant of failures. One way of increasing system fault
tolerance is by minimizing the amount of metadata which is
required to be correct in order to read and write user data
without error. In one embodiment, the data dictionary 200 of
the present disclosure can take on the role of a semi-trusted
advisor. That is, the metadata stored by the data dictionary
200 may be used only to Suggest to an external user or host
system where duplicative data might already be stored, but
the dictionary need not deduplicate or delete any Such
identified data. Instead, the system may leave it to the
external user or host system to verify any results of diction
ary queries. In this regard, the dictionary is not a required
component of the I/O path with the external host system, and
does not detriment read and write correctness, even if its
data becomes corrupted or destroyed.
Of course, other advantages of the various embodiments

of the present disclosure will be, or become, apparent to
those skilled in the art.

In the foregoing description, various embodiments of the
present disclosure have been presented for the purpose of
illustration and description. They are not intended to be
exhaustive or to limit the invention to the precise form
disclosed. Obvious modifications or variations are possible
in light of the above teachings. The various embodiments

US 9,672,216 B2
19

were chosen and described to provide the best illustration of
the principals of the disclosure and their practical applica
tion, and to enable one of ordinary skill in the art to utilize
the various embodiments with various modifications as are
Suited to the particular use contemplated. All Such modifi
cations and variations are within the scope of the present
disclosure as determined by the appended claims when
interpreted in accordance with the breadth they are fairly,
legally, and equitably entitled.

I claim:
1. A method for facilitating data deduplication in a data

storage system, the method comprising:
maintaining an electronic data library comprising a plu

rality of storage tablets, each storage tablet electroni
cally storing a plurality of hash-to-storage mappings,
each mapping a hash value to a storage address location
in a data storage Subsystem at which a block of data is
stored, the block of data translating to the hash value
pursuant to a hashing algorithm; and

maintaining a secondary index comprising a plurality of
filters, each filter electronically mapping each of a
plurality of hashes to a storage tablet of the data library
storing that particular hash in a hash-to-storage map
ping.

2. The method of claim 1, further comprising maintaining
the data library in non-volatile memory.

3. The method of claim 2, further comprising maintaining
the plurality of filters of the secondary index in random
access memory (RAM).

4. The method of claim 2, further comprising maintaining
the plurality of storage tablets in the data library as read
only.

5. The method of claim 1, wherein each of the plurality of
filters is a Bloomier filter.

6. An information handling system comprising:
a processor; and
a memory accessible to the processor and storing instruc

tions that, when executed by the processor, cause the
processor to:
maintain an electronic data library comprising a plu

rality of storage tablets, each storage tablet electroni
cally storing a plurality of hash-to-storage mappings,
each mapping a hash value to a storage address
location in the information handling system at which
a block of data is stored, the block of data translating
to the hash value pursuant to a hashing algorithm;
and

maintain a secondary index comprising a plurality of
filters, each filter electronically mapping each of a
plurality of hashes to a storage tablet of the data
library storing that particular hash in a hash-to
storage mapping.

7. The information handling system of claim 6, wherein
the data library is stored in non-volatile memory.

8. The information handling system of claim 7, wherein
the plurality of filters of the secondary index are stored in
random access memory (RAM).

9. The information handling system of claim 8, wherein
the hash-to-storage mappings for each storage tablet are
sorted by hash value.

10

15

25

30

35

40

45

50

55

20
10. The information handling system of claim 8, wherein

the hashing algorithm is a collision-resistant hash function.
11. The information handling system of claim 8, wherein

each of the plurality of filters is a Bloomier filter.
12. The information handling system of claim 11, wherein

the plurality of filters are categorized into layers, with a
plurality of filters in each layer.

13. The information handling system of claim 6, wherein
the plurality of filters are categorized into layers, with a
plurality of filters in each layer.

14. The information handling system of claim 12, wherein
the layers form a cascade of filter layers with, for each layer
above a bottom layer, a filter from that layer is formed from
a combination of the filters from a lower layer.

15. The information handling system of claim 7, wherein
the data library is a fixed size, circular log of storage tablets,
Such that when it is at capacity, the oldest storage tablet is
overwritten.

16. The information handling system of claim 6, wherein
one or more of the storage tablets of the data library are write
stream specific, storing only hash-to-storage mappings cor
responding to blocks of data from the same write stream.

17. The information handling system of claim 8, further
comprising a tablet cache stored in RAM, the tablet cache
comprising a Subset of storage tablets copied from the data
library.

18. The information handling system of claim 17, wherein
the tablet cache comprises a storage tablet copied from the
data library that has been most recently accessed for a
hash-to-storage mapping.

19. The information handling system of claim 11, wherein
the plurality of hashes mapped by the filters of the secondary
index are a pre-defined Subset of hashes stored in the storage
tablets of the data library.

20. A method for data deduplication in a data storage
system, the method comprising:

maintaining an electronic data library comprising a plu
rality of storage tablets, each storage tablet electroni
cally storing a plurality of hash-to-storage mappings,
each mapping a hash value to a storage address location
in the data storage system at which a block of data is
stored, the block of data translating to the hash value
pursuant to a hashing algorithm;

upon at least one of receipt and determination of a new
hash for incoming data pursuant to the hashing algo
rithm, at least one of
querying a tablet cache for a hash-to-storage mapping

comprising the new hash, the tablet cache compris
ing a Subset of storage tablets copied from the data
library; and

querying a secondary index for a hash-to-storage tablet
mapping comprising the new hash, the secondary
index comprising a plurality of filters, each filter
electronically mapping each of a plurality of key
hashes to a storage tablet of the data library storing
that particular key hash in a hash-to-storage map
ping.

