
(12) United States Patent
Desai et al.

USOO9665419B2

US 9,665.419 B2
*May 30, 2017

(10) Patent No.:
(45) Date of Patent:

(54) ENHANCED RESTART OF ACORE
DUMPING APPLICATION

(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)

(72) Inventors: Anand T. Desai, Austin, TX (US);
Andrew Dunshea, Austin, TX (US);
Antonio Garcia, Pflugerville, TX (US);
Douglas Griffith, Spicewood, TX (US);
Anil Kalavakolanu, Austin, TX (US)

(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 15/347,839

(22) Filed: Nov. 10, 2016

(65) Prior Publication Data

US 2017/OO60626 A1 Mar. 2, 2017

Related U.S. Application Data
(63) Continuation of application No. 14/557,815, filed on

Dec. 2, 2014.

(51) Int. Cl.
G06F II/07 (2006.01)
G06F 2/08 (2016.01)
G06F 9/48 (2006.01)
G06F II/4 (2006.01)
G06F 9/54 (2006.01)
G06F 2/0804 (2016.01)

(52) U.S. Cl.
CPC G06F II/0778 (2013.01); G06F 9/485

(2013.01); G06F 9/4818 (2013.01); G06F
9/541 (2013.01); G06F II/073 (2013.01);

G06F II/0766 (2013.01); G06F II/0793
(2013.01); G06F II/1407 (2013.01); G06F

II/1438 (2013.01); G06F II/1446 (2013.01);
G06F II/1471 (2013.01); G06F 11/1474

(2013.01); G06F 12/0804 (2013.01)
(58) Field of Classification Search

CPC G06F 11/0793; G06F 11/073; G06F
11/0766; G06F 11/0778; G06F 11/1407;

G06F 11/1438: G06F 11/1446; G06F
11/1471; G06F 11/1474; G06F 12/0804:

GO6F 9/485
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

3,814,919 A 6/1974 Repton et al.
4,695,949 A 9, 1987 Thatte et al.
6,601, 188 B1 7/2003 Wilding

(Continued)

OTHER PUBLICATIONS

IBM: List of IBM Patents or Patent Applications Treated as Related
(Appendix P), Dec. 21, 2016, 2 pages.

Primary Examiner — Matt Kim
Assistant Examiner — Paul Contino
(74) Attorney, Agent, or Firm — L. Jeffrey Kelly

(57) ABSTRACT

A method for enhanced restart of a core dumping application
is provided. The method includes stopping a plurality of
threads in an address space, except for the thread performing
the core dump. Computational segments are remapped to
client segments. Each open file descriptor in the address
space is closed. The application is terminated and the client
segments are flushed to external storage.

1 Claim, 5 Drawing Sheets

Stopping threads except for the thread
performing the core dump.

Writing header information to core file
40

Writing process thread state to core
file

Writing file descriptor cata
A20.

Writing load table information
423

Obtaining client segment and
remapping computational pages as

Adjusting page type counts
433

Closing file descriptors, shared
memory, IPChandles

442

US 9,665.419 B2
Page 2

(56)

6,681,348
6,779,132
6,792.559
7,290, 175
7,490,268
7,818,616
8,583,960
9,164,846
9,218,234
9,436,537

2003/O145157
2005/0210077
2008/0270422
2010/0268.993
2011/O295821
2013/0111264
2015,010O825
2016. O154701

References Cited

U.S. PATENT DOCUMENTS

B1
B2
B1
B1
B2
B2
B2
B2
B2
B2
A1
A1
A1
A1
A1
A1
A1
A1

1, 2004
8, 2004
9, 2004

10, 2007
2, 2009

10, 2010
11, 2013
10, 2015
12, 2015
9, 2016
T/2003
9, 2005

10, 2008
10, 2010
12/2011
5, 2013
4, 2015
6, 2016

Vachon
Andress et al.
Cohen et al.
Kessler et al.
Keromytis et al.
Kathail et al.
Settsu
Lang et al.
Wen
Desai et al.
Smullen et al.
Balakrishnan et al.
Craft et al.
Chaudhari et al.
Harris
Settsu
Jibu et al.
Desai et al.

US 9,665.419 B2 Sheet 1 of 5 May 30, 2017 U.S. Patent

(S)EOINEGI T\/NRHEILXE

U.S. Patent May 30, 2017 Sheet 2 of 5

2OO

Kernel Segment

Program Environment

User Memory Attachment

Program Text

Program Data, User Heap

User Memory Attachment

Shared Library Text and Data

User Thread Stack

FIGURE 2

2O5

21 O

215

220

225

215

235

240

US 9,665.419 B2

U.S. Patent May 30, 2017 Sheet 3 of 5 US 9,665.419 B2

Segment
Control Block

(SCB)

Descriptor
Descriptor

Descriptor PTR

FIGURE 3

U.S. Patent May 30, 2017 Sheet 4 of 5

Stopping threads except for the thread
performing the core dump.

4OO

Writing header information to core file.
410

Writing process thread state to core
file.
415

Writing file descriptor data.
42O

Writing load table information.
425

Obtaining client segment and
remapping Computational pageS as

client pages.
430

Adjusting page type Counts.
435

Closing file descriptors, shared
memory, IPC handles.

440

End

FIGURE 4

US 9,665.419 B2

US 9,665,419 B2
1.

ENHANCED RESTART OF A CORE
DUMPING APPLICATION

BACKGROUND

This disclosure relates generally to computer systems, and
more particularly to faster core dump completion, thus
allowing faster application restarts.
A core dump includes the program state data and contents

of computer memory that a computer program is using at a
given point in time. A core dump may be initiated at any time
the application program is running, but more typically the
core dump occurs when the application program abnormally
terminates due to a severe error condition. The program State
data includes: computer system control structures, such as
page tables; status flags; processor registers; program
instruction counter; and stack pointer. While the core dump
is being created and written to storage, the application
program’s resources, such as shared memory segments, and
inter-process communication (IPC) sockets, remain in use
until the core dump process completes. Therefore, restarting
the application program and its processes is delayed for the
duration of the core dump process because the new instance
of the application program needs the resources currently in
use. Especially when the application program consumes
large amount of system resources, collecting the core dump
data becomes time consuming in view of increasingly strict
system availability requirements. An application program
may have a customized file format for saving state data for
later problem determination. However, to be effective, the
file would have to be well designed to capture the appro
priate data for any given problem, yet be small enough to
enable quicker restart of the application program. Addition
ally, modifications to the application program would result
in re-design of the customized file, leading to costly invest
ment in maintenance resources to be effective. Conse
quently, system administrators may be encouraged to either
prematurely abort core dumps, or to collect only partial core
dumps, rather than extend the duration of the application
program Outage.

SUMMARY

According to one embodiment, a method for enhanced
restart of a core dumping application is provided. The
method includes: Stopping a plurality of threads in an
address space; continuing a thread, wherein the thread
performs a core dump; remapping a computational segment
to a client segment; closing each open file descriptor in the
address space; terminating the core dumping application;
and flushing the client segment to an external storage.

According to another embodiment, a computer program
product for enhanced restart of a core dumping application
is provided. The computer program product includes a
computer readable storage medium readable by a processing
circuit and storing instructions for execution by the process
ing circuit for performing a method is provided. The method
includes: stopping a plurality of threads in an address space;
continuing a thread, wherein the thread performs a core
dump; remapping a computational segment to a client seg
ment; closing each open file descriptor in the address space;
terminating the core dumping application; and flushing the
client segment to an external storage.

According to another embodiment, a computer system for
enhanced restart of a core dumping application is provided.
The computer system includes a memory, a processing unit
communicatively coupled to the memory, and a manage

10

15

25

30

35

40

45

50

55

60

65

2
ment module communicatively coupled to the memory and
processing unit, whereby the management module is con
figured to perform the steps of a method is provided. The
method includes: Stopping a plurality of threads in an
address space; continuing a thread, wherein the thread
performs a core dump; remapping a computational segment
to a client segment; closing each open file descriptor in the
address space; terminating the core dumping application;
and flushing the client segment to an external storage.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

For a more complete understanding of this disclosure,
reference is now made to the following brief description,
taken in conjunction with the accompanying drawings and
detailed description, wherein like reference numerals repre
sent like parts.

FIG. 1 illustrates an exemplary computing node operable
for various embodiments of the disclosure.

FIG. 2 illustrates computer memory regions of an exem
plary address space for a computer process.

FIG.3 illustrates a portion of exemplary control structures
for managing computer memory regions.

FIG. 4 is an operational flowchart illustrating an algo
rithm for enhanced restart of a core dumping application,
according to various embodiments of the disclosure.

FIG. 5 is a schematic block diagram of hardware and
Software of the computer environment according to an
embodiment of the processes of FIG. 4.

DETAILED DESCRIPTION

Although an illustrative implementation of one or more
embodiments is provided below, the disclosed systems and/
or methods may be implemented using any number of
techniques. This disclosure should in no way be limited to
the illustrative implementations, drawings, and techniques
illustrated below, including the exemplary designs and
implementations illustrated and described herein, but may
be modified within the scope of the appended claims along
with their full scope of equivalents.
The present disclosure relates generally to the field of

computer systems, and more particularly to an enhanced
restart of a core dumping application. In current operation,
an application may not restart until the core dump com
pletes, since the restarted application requires the resources
held by the core dumping application, and pages are copied
from the address space to a temporary memory area prior to
writing the core dump to the core file. The following
described exemplary embodiments provide a system,
method and program product to reduce the time required to
collect diagnostic information and restart a failed application
program. The technical effects and benefits include the
ability to reduce the time that an application is unavailable
to the business enterprise, and the conservation of memory
and computer system resources by eliminating the interme
diate copy to temporary memory.
As will be appreciated by one skilled in the art, aspects of

the present disclosure may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present disclosure may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi
ment combining Software and hardware aspects that may all
generally be referred to herein as a “circuit”, “module', or
“system’. Furthermore, aspects of the present invention may

US 9,665,419 B2
3

take the form of a computer program product embodied in
one or more computer readable medium(s) having computer
readable program code embodied thereon.

Aspects of the present disclosure are described below
with reference to flowchart illustrations and/or block dia
grams of methods, apparatus, (systems), and computer pro
gram products according to embodiments of the invention.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer program instructions.

Turning now to FIG. 1, a block diagram of an exemplary
computer system (server) 12 operable for various embodi
ments of the disclosure is presented. As shown, the server 12
is only one example of a suitable computer for enhanced
restart of a core dumping application, and is not intended to
Suggest any limitation as to the scope of use or functionality
of embodiments of the disclosure described herein.
The server 12 is operational in numerous other computing

system environments or configurations. For example, the
server 12 may be a standalone machine, a virtual partition on
physical host, a clustered server environment, or a distrib
uted cloud computing environment that include any of the
above systems or devices, and the like. When practiced in a
distributed cloud computing environment, tasks may be
performed by both local and remote servers 12 that are
linked together and communicate through a communications
network, such as the network 99.
The server 12 may be described in the context of execut

able instructions. Such as a program, or more specifically, an
operating system (OS) 40 that is an aggregate of program
modules 42 being executed by the processing unit 16 to
control the operation of the server 12. Program modules 42
perform particular tasks of the OS 40, such as process
management; memory management; and device manage
ment. The program modules 42 may be implemented as
routines, programs, objects, components, logic, or data
structures, for example. The program modules 42 perform
ing the particular tasks may be grouped by function, accord
ing to the server 12 component that the program modules 42
control. At least a portion of the program modules 42 may
be specialized to execute the algorithms of FIG. 4.

In a distributed computing environment, such as a cloud
computing environment, each participating server 12 may be
under the control of an OS 40 residing on each local and
remote server 12, respectively. In a virtual machine, also
referred to as a virtual server, each instance of the virtual
machine is an emulation of a physical computer. A physical
computer may host multiple virtual machine instances, each
sharing the hardware resources of the physical computer,
and each emulating a physical computer. Each of the virtual
machine instances is under the control of an OS 40.
As shown in FIG. 1, the components of the server 12 may

include, but are not limited to, one or more processors or
processing units 16, a system memory 28, and a bus 18 that
couples various system components, such as the system
memory 28, to processor 16.

System memory 28 can include computer system readable
media in the form of Volatile memory, such as random
access memory (RAM) 30 and/or cache memory 32. The
server 12 may further include other removable/non-remov
able, volatile/non-volatile computer system storage media.
By way of example only, a storage system 34 can be

provided as one or more devices for reading from and
writing to a non-removable, non-volatile magnetic media,
such as a hard disk drive (HDD) or an optical disk drive such
as a CD-ROM, DVD-ROM. Each device of the storage

10

15

25

30

35

40

45

50

55

60

65

4
system 34 can be connected to bus 18 by one or more data
media interfaces. The program modules 42, the OS 40, and
one or more application programs may be stored on the
storage system 34 and Subsequently loaded into memory 28
for execution, as needed.
The server 12 may also communicate with one or more

external devices 14 Such as a keyboard, a pointing device, a
display 24, etc.; one or more devices that enable a user to
interact with the server 12; and/or any devices (e.g., network
card, modem, etc.) that enable the server 12 to communicate
with one or more other computing devices. Such commu
nication can occur via I/O interfaces 22. Still, the server 12
can communicate with one or more networks such as a local
area network (LAN), a general wide area network (WAN).
and/or a public network (e.g., the Internet) via a network
adapter 20. As depicted, the network adapter 20 communi
cates with the other components of the server 12 via bus 18.
External storage adapter 26 connects the server 12 with
external storage Subsystems, such as a storage area network
(SAN) 15 or RAID array. Exemplary external storage adapt
ers 26 include, but are not limited to, a host bus adapter
(HBA), host channel adapter (HCA), SCSI, and iSCSI,
depending upon the architectural implementation. The exter
nal storage adapter 26 communicates with the processing
unit 16 and memory 28 of the server 12 over bus 18.

It should be understood that although not shown, other
hardware and/or software components could be used in
conjunction with the server 12. Examples include, but are
not limited to: microcode, device drivers, redundant pro
cessing units, external disk drive arrays, RAID systems, tape
drives, and data archival storage systems, etc.

Referring now to FIG. 2, computer memory regions (not
to Scale) of an exemplary process address space 200 are
illustrated. In some implementations, the address space of
the kernel of the OS 4.0 (FIG. 1) may differ in content and
structure from a process address space. Therefore as used
herein, an address space refers the address space of a
process. The address space, also referred to as a context,
represents the range of addressable locations that are allo
cated to a process. In a linear, or flat, memory model, the
memory allocated to an address space appears to be a
contiguous range of addresses. However, in a segmented
memory model, an address space 200 is allocated in terms
of segments, for example, of 256 megabytes (MB) each. A
reference to an address in a segmented address space
includes invoking server 12 hardware and OS 40 (both of
FIG. 1) components to identify the segment containing the
page reference and Subsequently translating the virtualized
address from the segment to a real address. The segmented
memory model allows a process to appear to have full access
to all of server 12 physical RAM. 30 (both of FIG. 1), and
also appear to reference more RAM 30 (FIG. 1) than is
physically present. The concept of translating virtualized
addresses to real addresses is both well-known in the art and
implementation dependent. Therefore, address translation,
as such, will not be discussed with reference to the present
disclosure, since any implementation may be used. While
the present disclosure is described as an exemplary seg
mented memory implementation, the present disclosure may
be implemented in a linear, or other, memory model, accord
ing to the architecture of the selected memory model.
A layout of address regions in an address space imple

mentation may be vendor or platform specific. For example,
the address space 200 may be similar to a representation of
a 64-bit address space in the LinuxOR or AIX(R) OS 4.0 (FIG.
1). However, each may differ from a Windows.(R) address
space 200 implementation, for example. Linux is the regis

US 9,665,419 B2
5

tered trademark of Linus Torvalds in the United States, other
countries, or both. AIX is the registered trademark of
International Business Machines Corporation in the United
States, other countries, or both. Microsoft, Windows, and the
Windows logo are trademarks of Microsoft Corporation in
the United States, other countries, or both.

The kernel segment 205 occupies the top of the address
space 200. This range of addresses is not available to the
process. The program environment 210 segment includes,
among other things, the name of the process being executed
and arguments that are passed into the process at start of
execution. The user memory attachment segments 215 are
available for the process to add a shared memory segment to
the address space 200. The attached segment may be used to
map a file from external storage into process memory, or for
communicating between two or more processes, also
referred to as inter process communication (IPC). The
program text 220 segment includes the executable code that
comes from the program running in the address space 200.
The program data 225 segment includes both initialized and
uninitialized global variables that the process is using. User
heap is an area of pre-reserved memory that the process
explicitly allocates and frees to store data in some amount
that may be unknown until the process is executing. The
shared library text and data 235 segment represents the area
in the address space 200 into which the OS 40 (FIG. 1) maps
a reference to a shared library. However, the shared library
may not be physically included in the address space 200. A
shared library may contain common functions, such as for
printing or mathematical calculations, that are used by
several processes. Through other OS 40 (FIG. 1) compo
nents, such as the linker and loader, the process may refer to
variables and invoke functions that are defined and located
in the shared library. Mapping a memory reference to the
shared library rather than copying the library into the
address space 200 not only saves memory resources, but also
ensures that the processes are using a uniformly consistent
copy of the library functions. The user thread stack 240
segment includes the return addresses, parameters, and local
variables of the function being executed.

In some implementations, the pages that the OS 40 (FIG.
1) identifies as belonging to the kernel segment 205, the
program data 225 segment, the shared library text and data
235 segment, and the user thread stack 240 segment may be
referred to as containing working storage pages. These are
pages that contain volatile data that is not preserved across
a reboot, such as by being backed by persistent file system
storage. Working storage pages may also be referred to as
computational pages. In other implementations, working
storage pages may be referred to as anonymous memory. In
an embodiment, a client segment that contains client pages
may be implemented. Client pages may be referred to as
those pages that contain cached data for files being read and
written to.

In FIG. 3, 300 illustrates a portion of exemplary control
structures that may be implemented for managing computer
memory regions in a segmented memory model. As shown
in 300, the segment control blocks (SCB) 315 may be
arranged in an array that is indexed by an index. 310. Each
SCB 315 may include: an identification of the type of
segment; a count of pages in the segment, for example,
allocated pages and pinned pages; and a pointer to the
descriptors 320. Each SCB may contain multiple descriptors
320. A descriptor 320 may be a structure for identifying the
address and location, for example in memory or on a paging
device, of the page being described. A descriptor 320 may
additionally include a pointerptr 325 to a structure that may

10

15

25

30

35

40

45

50

55

60

65

6
be used to translate a virtualized address to a real address. In
this implementation, each SCB 315 indicates the segment
type, such as working storage or client storage. The control
structures of FIG. 3 are presented by example, not by
limitation, as those skilled in the art may well realize.

Referring now to FIG. 4, an algorithm for enhanced
restart of a core dumping application, according to various
embodiments of the disclosure, is illustrated. A core dump
may be initiated manually, or as a result of a program
abnormally terminating due to a severe error condition.
Upon initiation of a core dump, at 400 the OS 4.0 (FIG. 1)
stops threads that are still executing in the address space 200
(FIG. 2), except for the thread that is performing the core
dump.
At 410, the OS 4.0 (FIG. 1) writes header information to

the core file for Subsequent use by a diagnostic utility in
interpreting the format and contents of the file. Among other
information, the header may include: an indicator of the file
format, such as executable and linkable format (ELF); an
indicator of the target instruction set architecture; and at
least one pointer to the data sections in the core file.
At 415, the OS 4.0 (FIG. 1) writes to the core file the state

of the process threads. In computing, a process may include
one or more threads. A thread may represent an independent
stream of program instructions that the OS 40 (FIG. 1) may
schedule to run simultaneously and independently of other
threads in the process. Being an independent stream of
program instructions, a thread may maintain structures that
are similar to those of the main process, including: a stack
pointer; registers; scheduling properties, such as priority;
signals; and thread-specific data.
At 420, the OS 4.0 (FIG. 1) writes to the core file the

descriptor data for each open file in the address space 200
(FIG. 2). A file descriptor represents an index into an array
of open files in a process or thread. Operations such as to
read, write, open, and close a file use the file descriptor to
locate the target of the I/O operation. The file descriptor,
according to the vendor-specific implementation, may point
to at least one structure that identifies: the file name and
location; and the I/O operation and status. A file may
include: directories and persistent locations containing data,
for example on disk drives; standard input, for example
through a keyboard; a pipe, which may be used for IPC
between a parent and child process; and a socket, which may
be used for IPC across a computer network.
At 425, the OS 4.0 (FIG. 1) writes the load table infor

mation for the process to the core file. As described previ
ously with reference to FIG. 2, a shared library is one that
contains functions or procedures that are used by multiple
processes, but that is only included in the address space 200
(FIG. 2) by a mapped memory reference. Since an address
space 200 (FIG. 2) may include more than one shared
library, at 425 the OS 4.0 (FIG. 1) writes the location where
the shared library is mapped in the address space. Addresses
are resolved for symbols and functions used by the process
but defined in the shared library.
At 430, the OS 4.0 (FIG. 1) maps computational pages as

client pages. As described previously with reference to
FIGS. 2 and 3, working storage pages may be referred to as
computational pages or non-persistent pages since they are
not backed by persistent file system storage, and client pages
contain cached data for file I/O. The SCB 315 (FIG. 3)
participates with components of the server 12 hardware and
the OS 40 (both of FIG. 1) to identify and locate pages
associated with the address space (FIG. 2). The OS 40 (FIG.
1) may obtain a client segment to receive the descriptors 320
(FIG. 3) from a working storage segment. Upon locating a

US 9,665,419 B2
7

segment containing working storage type pages, the OS 40
(FIG. 1) may remap, i.e., copy the descriptors 320 (FIG. 3)
from the working storage segment into the client segment.
Since a segment may be only partially allocated, only those
descriptors 320 (FIG. 3) that correspond to an allocated page
are copied. The components of the server 12 hardware and
the OS 40 (both of FIG. 1) may cooperate to locate the page,
for example through the ptr 325 (FIG. 3) and make the page
available for writing to the core file. For example, a page that
is paged out may be brought into memory from the external
paging device.

At 435, the OS 4.0 (FIG. 1) adjusts the page type counts.
The SCB 315 (FIG. 3) may include a count of how many
pages are present in the segment. The page count in the
working storage segment is decrement for each descriptor
320 (FIG. 3) that is removed, and the page count in the client
segment is incremented for each corresponding descriptor
320 (FIG. 3) that is added to the client segment.

At 440, the open file descriptors and IPC descriptors that
are associated with the address space 200 (FIG. 2) may be
closed, and shared memory segments that are attached to the
address space 200 (FIG. 2) may be released. When the client
segment is written to the core file, according to OS 4.0 (FIG.
1) protocols, the application program may be terminated and
restarted.

Referring now to FIG. 5, computing device 500 may
include respective sets of internal components 800 and
external components 900 that together may provide an
environment for a software application. Each of the sets of
internal components 800 includes one or more processors
820; one or more computer-readable RAMs 822; one or
more computer-readable ROMs 824 on one or more buses
826; one or more operating systems 828 executing the
method of FIG. 4; and one or more computer-readable
tangible storage devices 830. The one or more operating
systems 828 (including the additional data collection facil
ity) are stored on one or more of the respective computer
readable tangible storage devices 830 for execution by one
or more of the respective processors 820 via one or more of
the respective RAMs 822 (which typically include cache
memory). In the embodiment illustrated in FIG. 5, each of
the computer-readable tangible storage devices 830 is a
magnetic disk storage device of an internal hard drive.
Alternatively, each of the computer-readable tangible stor
age devices 830 is a semiconductor storage device Such as
ROM 824, EPROM, flash memory or any other computer
readable tangible storage device that can store a computer
program and digital information.

Each set of internal components 800 also includes a R/W
drive or interface 832 to read from and write to one or more
computer-readable tangible storage devices 936 Such as a
CD-ROM, DVD, SSD, memory stick, magnetic tape, mag
netic disk, optical disk or semiconductor storage device.

Each set of internal components 800 may also include
network adapters (or switch port cards) or interfaces 836
such as a TCP/IP adapter cards, wireless WI-FI interface
cards, or 3G or 4G wireless interface cards or other wired or
wireless communication links. The operating system 828
that is associated with computing device 500, can be down
loaded to computing device 500 from an external computer
(e.g., server) via a network (for example, the Internet, a local
area network, or other wide area network) and respective
network adapters or interfaces 836. From the network adapt
ers (or switch port adapters) or interfaces 836 and operating
system 828 associated with computing device 500 are
loaded into the respective hard drive 830 and network
adapter 836. The network may comprise copper wires,

10

15

25

30

35

40

45

50

55

60

65

8
optical fibers, wireless transmission, routers, firewalls,
Switches, gateway computers and/or edge servers.

Each of the sets of external components 900 can include
a computer display monitor 920, a keyboard 930, and a
computer mouse 934. External components 900 can also
include touch screens, virtual keyboards, touch pads, point
ing devices, and other human interface devices. Each of the
sets of internal components 800 also includes device drivers
840 to interface to computer display monitor 920, keyboard
930 and computer mouse 934. The device drivers 840, R/W
drive or interface 832 and network adapter or interface 836
comprise hardware and Software (stored in storage device
830 and/or ROM 824).

Various embodiments of the invention may be imple
mented in a data processing system suitable for storing
and/or executing program code that includes at least one
processor coupled directly or indirectly to memory elements
through a system bus. The memory elements include, for
instance, local memory employed during actual execution of
the program code, bulk storage, and cache memory which
provide temporary storage of at least Some program code in
order to reduce the number of times code must be retrieved
from bulk storage during execution.

Input/Output or I/O devices (including, but not limited to,
keyboards, displays, pointing devices, DASD, tape, CDs,
DVDs, thumb drives and other memory media, etc.) can be
coupled to the system either directly or through intervening
I/O controllers. Network adapters may also be coupled to the
system to enable the data processing system to become
coupled to other data processing systems or remote printers
or storage devices through intervening private or public
networks. Modems, cable modems, and Ethernet cards are
just a few of the available types of network adapters.
The present invention may be a system, a method, and/or

a computer program product. The computer program prod
uct may include a computer readable storage medium (or
media) having computer readable program instructions
thereon for causing a processor to carry out aspects of the
present invention.
The computer readable storage medium can be a tangible

device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals perse. Such
as radio waves or other freely propagating electromagnetic
waves, electromagnetic waves propagating through a wave
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.
Computer readable program instructions described herein

can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an

US 9,665,419 B2

external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, Switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations of the present invention may be assembler
instructions, instruction-set-architecture (ISA) instructions,
machine instructions, machine dependent instructions,
microcode, firmware instructions, state-setting data, or
either source code or object code written in any combination
of one or more programming languages, including an object
oriented programming language Such as Smalltalk, C++ or
the like, and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The computer readable program
instructions may execute entirely on the user's computer,
partly on the user's computer, as a stand-alone software
package, partly on the user's computer and partly on a
remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user's computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present invention.

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems), and computer program prod
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer readable program instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, Such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process
ing apparatus, or other device to cause a series of operational

10

15

25

30

35

40

45

50

55

60

65

10
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow
chart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of instructions, which comprises one or more
executable instructions for implementing the specified logi
cal function(s). In some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

Although preferred embodiments have been depicted and
described in detail herein, it will be apparent to those skilled
in the relevant art that various modifications, additions,
Substitutions and the like can be made without departing
from the spirit of the disclosure, and these are, therefore,
considered to be within the scope of the disclosure, as
defined in the following claims.

What is claimed is:
1. A computer program product for enhanced restart of a

core dumping application comprising a computer readable
storage medium readable by a processing circuit and storing
instructions for execution by the processing circuit for
performing a method comprising:

a computer readable memory;
a processing unit communicatively coupled to the com

puter readable memory;
a computer readable storage medium; and
program instructions stored on the computer readable

storage medium for execution by the processing unit
via the computer readable memory, the program
instructions comprising:

program instructions to stop a plurality of threads in an
address space;

program instructions to continue a thread, wherein the
continued thread performs a core dump;

program instructions to remap a computational segment to
a client segment, wherein the remapping comprises:
program instructions to obtain the client segment,

wherein the client segment includes a plurality of
client pages, and wherein the client pages comprise
cached file data;

program instructions to copy a plurality of segment
descriptors associated with a plurality of computa
tional pages from the computational segment to the
client segment;

program instructions to decrement a first count,
wherein the first count corresponds to a number of
computational pages identified by the plurality of
segment descriptors copied from the computational
segment, and

US 9,665,419 B2
11

program instructions to increment a second count,
wherein the second count corresponds to the number
of computational pages identified by the plurality of
segment descriptors copied to the client segment;

program instructions to close each open file descriptor 5
in the address space;

program instructions to terminate the core dumping
application; and

program instructions to flush the client segment to an
external storage. 10

k k k k k

12

