
USOO9665296B2

(12) United States Patent (10) Patent No.: US 9,665.296 B2
Wu et al. (45) Date of Patent: May 30, 2017

(54) METHOD AND COMPUTING DEVICE FOR G06F 9/3084; G06F 9/3004: G06F
USING BOTH VOLATILE MEMORY AND 3/0619; G06F 3/0632: G06F 3/0655;
NON-VOLATILE SWAP MEMORY TO G06F 3/067; G06F 9/4401; G06F 9/445;
PRE-LOAD A PLURALITY OF G06F 12/12–12/128: G06F 3/0677
APPLICATIONS USPC .. 711/165

See application file for complete search history.
(71) Applicant: SanDisk Technologies Inc., Plano, TX

(US) (56) References Cited

(72) Inventors: Robert S. Wu, Milpitas, CA (US); Jian U.S. PATENT DOCUMENTS
Chen, Menlo Park, CA (US); Ashish
Karkare, Milpitas, CA (US); Alon 6,581,133 B1* 6/2003 Bitner G06F 12fO246

365,185.11
Marcu, Tel Mond (IL); Vsevolod 6,933,919 B1 8/2005 Anderson et al.
Mountaniol, Givataim (IL) 7,003,621 B2 2/2006 Koren

7,110,301 B2 9, 2006 Lee
(73) Assignee: SanDisk Technologies LLC, Plano, TX 7,315,916 B2 1/2008 Bennett

(US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 88 days. DE 10 2004 O55,051 B3 10/2005

(21) Appl. No.: 14/272,244 OTHER PUBLICATIONS

(22) Filed: May 7, 2014 https://www.ibm.com/support knowledgecenter/ZOsbasics/com.
ibm.ZoS.Zconcepts/Zconcepts 91.htm.

(65) Prior Publication Data (Continued)

US 2015/0324137 A1 Nov. 12, 2015
Primary Examiner — Jared Rutz

(51) Int. Cl. Assistant Examiner — Jana Blust
G06F 9/445 (2006.01) (74) Attorney, Agent, or Firm — Brinks Gilson & Lione
G06F 3/06 (2006.01)
G06F 9/44 (2006.01) (57) ABSTRACT
G06F 2/08 (2016.01) The following embodiments generally relate to the use of a

(52) U.S. Cl. 'Swap area' in a non-volatile memory as an extension to
CPC G06F 3/0619 (2013.01); G06F 3/0632 Volatile memory in a computing device. These embodiments

(2013.01); G06F 3/0655 (2013.01); G06F include techniques to use both volatile memory and non
3/0679 (2013.01); G06F 9/4401 (2013.01); Volatile Swap memory to pre-load a plurality of applications,

G06F 9/445 (2013.01); G06F 12/08 to control the bandwidth of Swap operations, to encrypt data
(2013.01); G06F 2206/1014 (2013.01) stored in the Swap area, and to perform a fast clean-up of the

(58) Field of Classification Search Swap area.
CPC G06F 12/023; G06F 12/0238; G06F

12/0246; G06F 12/0862; G06F 9/30047; 23 Claims, 19 Drawing Sheets

58.

a^
--- - 5

Systein Boot. ---

- Y- S2
- S is ee emory -

availabie? -
Y. - 540

Y-1 - 1.

Yes, ow

nam ------ : fedeterried :
- icia died Aplications
-> cit to exteridriencry :

53 -

US 9,665.296 B2
Page 2

(56)

7,433,951
7,826,469

8, 112,755

8, 187,936
8,261,009
8,554,986
8,694,754
8,738,840
8,819,337
8,898,374
8,909,888
8,972,675
9,053,019

2002/0134.222

2004/003O882

2004.0068627
2006, 0083.069

2006, O123320
2007/OOO5883
2007, OO16725
2007/0055813
2007/O168632
2007/0226443

2008/0059785
2008.OO74931
2009,0083478
2009/0113444

2009/011.9450
2009/0172255
2009/O198874
2009/0222639
2009,0240873
2009,02916.96

2010/0064111
2010.0075760
2010/0118434
2010, 0169540
2010.019 1874
2010/027.4955
2011/0010722
2011/0066792

2011 0145490
2011/0213954

2011/0302224

2012/O167100
2012/O1981.74
2012fO254520
2012fO254966
2012fO3O3865
2012/0324481

2013, OO31298

2013,0046921
2013, OO67138
2013, O132638
2013/027O643
2013/0305247
2013/0311751

2013,0326113
2013,0326116
2014/01297.58

References Cited

U.S. PATENT DOCUMENTS

A1
A1
A1
A1
A1
A1*

A1
A1
A1
A1
A1
A1*

A1
A1
A1
A1
A1
A1
A1
A1*

A1
A1
A1
A1
A1
A1*

A1
A1
A1
A1
A1
A1*

A1
A1
A1

10, 2008
11, 2010

2, 2012

5, 2012
9, 2012

10, 2013
4, 2014
5, 2014
8, 2014
11/2014
12, 2014
3/2015
6, 2015
9, 2002

2, 2004

4, 2004
4, 2006

6, 2006
1/2007
1/2007
3, 2007
7/2007
9, 2007

3, 2008
3, 2008
3, 2009
4, 2009

5/2009
T/2009
8, 2009
9, 2009
9, 2009
11/2009

3, 2010
3, 2010
5, 2010
T/2010
T/2010

10, 2010
1, 2011
3, 2011

6, 2011
9, 2011

12/2011

6, 2012
8, 2012

10, 2012
10, 2012
11, 2012
12, 2012

1, 2013

2, 2013
3/2013
5, 2013

10, 2013
11, 2013
11, 2013

12, 2013
12, 2013
5, 2014

Waldspurger
Li HO4L 47,2441

370,412
Apacible G06F94843

T18, 104
Alsmeier et al.
Freikorn
Lee
Schuette
TZeng
Oshinsky et al.
Yang
Goss et al.
Avila et al.
Roh
Tamura G06F 12,121

84,622
Forman G06F9,445

T13/100
Sechrest et al.
Fasoli G11C 5/04

365,185.19
Vogt
Trika
Chu et al.
Ingram et al.
Zeevi
Giampaolo G06F 17,301.44

711/17O
O'Connell
Kim
Kunimatsu et al.
Hackborn G06F 9,461

T19,312
Saeki et al.
Yeh et al.
TZeng
Hyvonen et al.
Yu et al.
Cortes HO4W 4/OO

455,466
Kunimatsu et al.
Shimabukuro et al.
Inoue
Sinclair
Feeley et al.
Lasser et al.
Matsuyama
Shaeffer G06F 12fO246

T11 103
Lee et al.
Baik G06F 9/4418

713/2
Yairi GO6F 3.0605

707/824
Li et al.
Nellans et al.
Roh
Parker
Hars
Xia GO6F9,485

T19,320
Tan G06F 12fO246

T11 103
Pyeon
Schuette et al.
Horn et al.
Lee et al.
Easton et al.
Kurihara GO6F9,3877

T12/28
Wakrat et al.
Goss et al.
Okada

2014/0229605 A1 8, 2014 Besser HO4L 43/12
TO9,224

2014/0258600 A1* 9/2014 Grignani G06F 1,3203
T11 103

2014/033101.0 A1* 11/2014 Rankin G06F 12/08
T11 118

2015, 0026415 A1 1/2015 Clausen G06F 12fO862
711 137

2015,0178188 A1* 6, 2015 Grin G06F 12fO246
T11 103

2015,0293701 A1* 10, 2015 Kim G06F 3,061
71O/5

OTHER PUBLICATIONS

“Linux Swap Space', published Feb. 28, 2011 by Tony Kay
herinafter “Linux', pp. 1-5 (http://www.linuxjournal.com/article?
10678).*
Arya, P., “A Survey of 3D Nand Flash Memory”. EECS Int'll
Graduate Program, National Chiao Tung University, 2012, pp.
1-11.
Jang et al., “Vertical Cell Array using TCAT(Terabit Cell Array
Transistor) Technology for Ultra High Density NAND Flash
Memory,” 2009 Symposium on VLSI Technology Digest of Techni
cal Papers, pp. 192-193, 2009.
Nowak, E. et al., “Intrinsic Fluctuations in Vertical NAND Flash
Memories', 2012 Symposium On VLSI Technology Digest of Tech
nical Papers, 2012, pp. 21-22.
“Write Amplification'. http://en.wikipedia.org/wiki/Write amplifi
cation, 13 pages, printed Mar. 9, 2013.
Application as Filed for U.S. Appl. No. 13/800.256 entitled,
“Mobile Computing Device and Method for Dynamic Application
Hibernation Implemented with Non-Linux Operating System”, filed
Mar. 13, 2013, 41 pages.
Application as Filed for U.S. Appl. No. 13/800,330 entitled,
“Mobile Computing Device and Method for Dynamic Application
Hibernation Implemented with Function Calls Sent From an Appli
cation Management Layer Running in a User Space to an Operating
System Kernel”, filed Mar. 13, 2013, 41 pages.
Application as Filed for U.S. Appl. No. 13/829,010 entitled, "Stor
age Module and Method for Regulating Garbage Collection Opera
tions based on Write Activity of a Host', filed Mar. 14, 2013, 23
pageS.
Application as Filed for U.S. Appl. No. 14/219,868 entitled, “Com
puting Device and Method for Predicting Low Memory Condi
tions', filed Mar. 19, 2014, 33 pages.
Application as Filed for U.S. Appl. No. 14/133,979, filed Dec. 19.
2013, 121 pages.
Application as Filed for U.S. Appl. No. 14/136,103, filed Dec. 20.
2013, 56 pages.
Application as Filed for U.S. Appl. No. 14/254.393 entitled, "Stor
age Module and Method for Adaptive Burst Mode”, filed Apr. 16.
2014, 31 pages.
Office Action for U.S. Appl. No. 14/254,393 dated Jun. 16, 2014, 18
pageS.
International Search Report and Written Opinion for PCT/US2015/
024843 dated Jul. 27, 2015, 9 pages.
Office Action for U.S. Appl. No. 14/272,251 dated Sep. 18, 2015, 31
pageS.
Office Action for U.S. Appl. No. 14/272,238 dated Jan. 12, 2016, 72
pageS.
Office Action for U.S. Appl. No. 14/272,257 dated Jan. 8, 2016, 7
pageS.
Office Action for U.S. Appl. No. 14/272.255, dated Apr. 5, 2016, 12
pageS.
Office Action for U.S. Appl. No. 14/272,251, dated May 5, 2016, 35
pageS.
Office Action in U.S. Appl. No. 14/272,257, dated Jul. 21, 2016, 8
pageS.
Office Action in U.S. Appl. No. 14/272,238 dated Sep. 8, 2016, 81
pageS.

US 9,665.296 B2
Page 3

(56) References Cited

OTHER PUBLICATIONS

Office Action in U.S. Appl. No. 14/272.255 dated Nov. 2, 2016, 16
pageS.
Office Action in U.S. Appl. No. 14/272,251 dated Nov. 17, 2016, 26
pageS.

* cited by examiner

U.S. Patent May 30, 2017 Sheet 1 of 19 US 9,665.296 B2

- 39

isgay evice tiser it fevice

hio-Voisie
visitory

other Functionality
s sociate(s)

Computing Device

Figure 1

U.S. Patent May 30, 2017 Sheet 2 of 19 US 9,665.296 B2

RE.8. CRY
:NERFACE

Storage evice

Figure 2

U.S. Patent May 30, 2017 Sheet 3 of 19 US 9,665.296 B2

- : Applications

305 pro- T - user Space
s: Appiication vanagement ilayer

's near cravana

. Woiate Non-ficiatie : processor Memory Memory

1 O 130
s

120

Figure 3

US 9,665.296 B2 Sheet 4 of 19 May 30, 2017 U.S. Patent

US 9,665.296 B2 Sheet 5 Of 19 May 30, 2017 U.S. Patent

G eun61-3

US 9,665.296 B2 Sheet 6 of 19 May 30, 2017 U.S. Patent

O9 eun61-g9 eun61-vý9 eun61-3

U.S. Patent May 30, 2017 Sheet 7 Of 19 US 9,665.296 B2

mammammam f

Systern Boot

- s 72 S. w /
-1 Y - - X

-- S-1 - Ca re -
- Prinary list Ya Yes - a a s

X to: > - - - -> Applications be -
Y- - S. oaded? -

-- ra - -
N.

W.

r -

Yes
-1 \ ^ -1 Y

- -- - is free memory is
is availabie? -- Y. -

Y- 1.
Y- -

al -*
- -

78

...4. ... Y 1.
i

oad is : logs arge : oad 'inary ecciary

Applications Aisgicatios out to
gxtended erry

Figure 7

US 9,665.296 B2 Sheet 8 of 19 May 30, 2017 U.S. Patent

r

8320

U.S. Patent May 30, 2017 Sheet 9 Of 19 US 9,665.296 B2

900
r 3. k

System 3oot

--a 1a - S& N 920 . -1 \{ - '^
- is free iner:33ry N. --> - System in clie
\ availabie - , state? -

- - r

-1 - N -
Yes Yes

93. 38:
/ - c. 850 ---------4----------- ------------------------------- -- , / ; Free neirory by :

' - a--- s -1s free memory. No noving RU pages
toad Primary ->. available? -T -> or agg?ications to :
Applications - - ; extended, swap

a-a-a-a-a-a-a-a-a--- ^ :... memory......:
Yes 970

------------------ 4. i33d Secondary :
: Applications and :

A. move to extended
neory

- - - - - - - - - - - .

Figure 9

US 9,665.296 B2 Sheet 10 of 19 May 30, 2017 U.S. Patent

--------s-s-s-s-s-s--'''''r's

- - - - - - - - - - - -·~~~~}, {{{h3qe&&

*************************,·)&&.*..*
------------------&

) {}{} co
d
d

c
: {}{}{}{}{}? ° {}{}{}{}$$? 60000;

U.S. Patent May 30, 2017 Sheet 12 of 19 US 9,665.296 B2

1200

ju 1210 lwl-w-waaaaaaaaaaaaaaaaaaaaaaaaaaa-rar
Systef?: r s. -a, -i-.

t ki-line 230 s ar User Specified
Ortraiafeites
WerfSi26ftC.

Figure 12

110

rist
Pocessor

Figure 13

U.S. Patent May 30, 2017 Sheet 13 Of 19 US 9,665.296 B2

4 - 1430 - 1443
Syste: ; :- i-agri- -

: Re 8 uses Specified NANR Patameter's
Corio Parameters: : Performance; - -
Wher-Size: Etc. latency

- is - Swag Qut Y. Y&S
Y. Needed? -
Ys

Figure 14

40 120

East NAND i-SeSS

- t

Figure 15

US 9,665.296 B2 U.S. Patent

U.S. Patent May 30, 2017 Sheet 15 Of 19 US 9,665.296 B2

Encryption process

- s
: s t

- ?: }r. ---...-a, -------------
Y- Agiication layer

a

Sacre :
33:

Figure 17

secryptic process

---, s
2019 - r" Applicatio layer

L. application
Xere:

Figure 20

U.S. Patent May 30, 2017 Sheet 16 of 19 US 9,665.296 B2

ost Sets

Storage evice

vetia

-4---------&3.a.r.--...-----

Applicatio

: :

ra.-----a-a-a-a-a-a-a-a-a-a-a-

Swap Area

p-------------------andshake isitiatization

A. K m
..a m

... Key Setup
Crypto ---------......

gives AK.-r

...ata transier

Figure 18

US 9,665.296 B2 Sheet 17 of 19 May 30, 2017 U.S. Patent

****~~~~ -……….…: ~~~~~…

US 9,665.296 B2 Sheet 18 of 19 May 30, 2017 U.S. Patent

~~~~\~~~~ 
  

  

  

  

  

  

  

  

  



U.S. Patent May 30, 2017 Sheet 19 Of 19 US 9,665.296 B2 

Singe bock erase 

Figure 26 

witi ock erase 

Figure 27 

  



US 9,665,296 B2 
1. 

METHOD AND COMPUTING DEVICE FOR 
USING BOTH VOLATILE MEMORY AND 
NON-VOLATILE SWAP MEMORY TO 

PRE-LOAD A PLURALITY OF 
APPLICATIONS 

BACKGROUND 

Today, one of the main trends with mobile computing 
devices, such as Smartphones and tablets, is the ever-in 
creasing demand for mobile Volatile memory (e.g., DRAM), 
which has gone from 256 K to a few gigabytes and is still 
rising. With DRAM scaling slowing down, there is a burden 
on a mobile computing device to effectively use its DRAM. 
One of these burdens is the number of applications (or 
“apps') that can be loaded into the DRAM. To launch an 
application, a processor in the computing device loads 
computer-readable program code for the application from 
non-volatile memory (e.g., Flash memory) into volatile 
memory (e.g., DRAM) and then executes the code. Execut 
ing the code can create application data, which is also stored 
in the volatile memory. The time required to launch an 
application may be seen as an inconvenience by some users, 
so some computing devices are designed to automatically 
pre-load a set of applications into the DRAM during the 
boot-up process of the computing device, when the user is 
normally expecting there to be some delay. By being pre 
loaded, the user is able to almost instantly access an appli 
cation after power-up rather than waiting for the application 
to launch from Scratch. Because a computing device has a 
limited amount of DRAM, there is a limit as to the number 
of applications that can be pre-loaded into DRAM. As such, 
unless an application is among the limited number pre 
loaded into DRAM, a user will experience some delay in 
waiting for the application to launch. 

OVERVIEW 

Embodiments of the present invention are defined by the 
claims, and nothing in this section should be taken as a 
limitation on those claims. 

In one embodiment, a method and computing device are 
disclosed for using both volatile memory and non-volatile 
Swap memory to pre-load a plurality of applications. In one 
method, a plurality of applications are pre-loaded in Volatile 
memory in the computing device until it is determined that 
available space in the volatile memory has dropped below a 
threshold level. An application is pre-loaded in the volatile 
memory by copying application code for the application 
from the non-volatile memory into the volatile memory, 
executing the application code from the Volatile memory, 
and storing created application data in the Volatile memory. 
When it is determined that the available space in the volatile 
memory has dropped below the threshold level, the appli 
cation data for at least one application is moved from the 
Volatile memory to the non-volatile memory. 

In another embodiment, a method and computing device 
are disclosed for bandwidth control of a swap operation. In 
one method, a plurality of applications are loaded in volatile 
memory in the computing device. An application is loaded 
in the Volatile memory by copying application code for the 
application from the non-volatile memory into the volatile 
memory, executing the application code from the Volatile 
memory, and storing created application data in the Volatile 
memory. A bandwidth at which the application data for at 
least one application should be moved from the volatile 
memory to the non-volatile memory during a Swap operation 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
is determined, and the application data for the at least one 
application is moved from the volatile memory to the 
non-volatile memory during a Swap operation according to 
the determined bandwidth. 

In another embodiment, a method and computing device 
are disclosed for encrypting data stored in a Swap area. In 
one method, an application is loaded in the Volatile memory 
by copying application code for the application from the 
non-volatile memory into the Volatile memory, executing the 
application code from the volatile memory, storing created 
application data in the Volatile memory. The application data 
for the application is moved from the volatile memory to the 
non-volatile memory during a Swap operation, and the 
application data is encrypted before it is stored in the 
non-volatile memory. 

In another embodiment, a method and computing device 
are disclosed for fast erase of a Swap area in a non-volatile 
memory. In one method, a controller of a storage module is 
in communication with a processor of a computing device, 
and the storage module has a non-volatile memory with a 
Swap area storing data that was swapped out of a volatile 
memory of the computing device. The controller of the 
storage module receives a multi-block erase command from 
the processor of the computing device to erase the plurality 
of blocks in the Swap area in non-volatile memory and, in 
response to receiving the command, simultaneously erases 
all of the plurality of blocks. 

Other embodiments are possible, and each of the embodi 
ments can be used alone or together in combination. Accord 
ingly, various embodiments will now be described with 
reference to the attached drawings. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram of an exemplary computing 
device of an embodiment. 

FIG. 2 is a block diagram of an exemplary storage device 
of an embodiment. 

FIG. 3 is an illustration of the functional relationship 
between applications, an application management layer, and 
an operating system kernel of an embodiment. 

FIGS. 4A-4C are diagrams that illustrate a Swapping 
mechanism of an embodiment. 

FIG. 5 is a flowchart of a method of an embodiment for 
pre-loading an application. 

FIGS. 6A-6C are diagrams that illustrate a swapping 
mechanism of an embodiment. 

FIG. 7 is a flowchart of a method of an embodiment for 
pre-loading an application. 

FIG. 8 is a diagram that illustrates a Swapping mechanism 
of an embodiment. 

FIG. 9 is a flowchart of a method of an embodiment for 
pre-loading an application. 

FIG. 10 is a graph of swap operations of an embodiment 
without bandwidth control. 

FIG. 11 is a graph of Swap operations of an embodiment 
with bandwidth control. 

FIG. 12 is a flow chart of a method of an embodiment for 
bandwidth control of a Swap operation. 

FIG. 13 is an illustration of bandwidth control of a swap 
operation of an embodiment. 

FIG. 14 is an illustration of a method of an embodiment 
for bandwidth control of a swap operation. 

FIG. 15 is an illustration of bandwidth control of a swap 
operation of an embodiment. 



US 9,665,296 B2 
3 

FIG. 16 is an illustration of a method of an embodiment 
for encrypting data to be stored in a Swap area in a 
non-volatile memory. 

FIG. 17 is an illustration of an encryption process of an 
embodiment. 

FIG. 18 is an illustration of a host set-up process of an 
embodiment. 

FIG. 19 is an illustration of a memory device set-up 
process of an embodiment for encryption. 

FIG. 20 is an illustration of a decryption process of an 
embodiment. 

FIG. 21 is an illustration of a memory device set-up 
process of an embodiment for decryption. 

FIG. 22 is an illustration of a host-based encryption 
process of an embodiment. 

FIG. 23 is an illustration of a host-based decryption 
process of an embodiment. 

FIG. 24 is an illustration of a storage-device-based 
encryption process of an embodiment. 

FIG. 25 is an illustration of a storage-device-based 
decryption process of an embodiment. 

FIG. 26 is an illustration of a single-block erase process 
of an embodiment. 

FIG. 27 is an illustration of a multi-block erase process of 
an embodiment. 

DETAILED DESCRIPTION OF THE 
PRESENTLY PREFERRED EMBODIMENTS 

Introduction 
The following embodiments generally relate to the use of 

a "swap area’ in a non-volatile memory as an extension to 
Volatile memory in a computing device. These embodiments 
include techniques to use both Volatile memory and non 
Volatile Swap memory to pre-load a plurality of applications, 
to control the bandwidth of Swap operations, to encrypt data 
stored in the Swap area, and to perform a fast clean-up of the 
Swap area. These embodiments can be used alone or in 
combination with one another, and other embodiments are 
provided. Before turning to these and other embodiments, 
the following section provides a discussion of exemplary 
computing and storage devices that can be used with these 
embodiments. Of course, these are just examples, and other 
Suitable types of computing and storage devices can be used. 

Exemplary Computing and Storage Devices 
Turning now to the drawings, FIG. 1 is a block diagram 

of a computing device 100 of an embodiment. As shown in 
FIG. 1, the computing device 100 comprises a processor 
110, non-volatile memory 120, volatile memory 130 (e.g., 
RAM), a display device 140, a user input device 150, and 
one or more optional other functionality module(s) 160. The 
computing device 100 can take any Suitable form, such as, 
but not limited to, a mobile phone, a tablet computer, a 
digital media player, a game device, a personal digital 
assistant (PDA), a mobile (e.g., notebook, laptop) personal 
computer (PC), a book reader, or any combination thereof. 
The computer device 100 can be a mobile or non-mobile 
(e.g., desktop, set-top) device. The user input device 150 can 
also take any suitable form and can be separate from or 
integrated with the display device 140. For example, the user 
input device 150 can be a physical keyboard or can be a 
touch-sensitive surface on the display device 140. The 
optional other functionality module(s) 160 can also take any 
Suitable form, depending on the nature of the computing 
device 100. For example, if the computing device 100 is a 
mobile phone, the other functionality module(s) 160 can 
include hardware and/or software components to make and 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
place telephone calls. As another example, if the computing 
device 100 has network connectivity capabilities, the other 
functionality module(s) 160 can include a network interface. 
Of course, these are just some examples, and other imple 
mentations can be used. Also, the computing device 100 can 
include other components (e.g., an audio output, input 
output ports, etc.) that are not shown in FIG. 1 to simplify 
the drawings. 
The processor 110 is responsible for running the general 

operation of the computing device 100. This includes, for 
example, running an operating system, as well as various 
applications. The computer-readable program code for the 
operating system and applications can be stored in the 
non-volatile memory 120 and then loaded into the volatile 
memory 130 for execution. The following embodiments 
provide several examples of methods that can be performed 
by the processor 110. 
The non-volatile and volatile memories 120, 130 can take 

any suitable form. For example, the volatile memory 130 
can use any current or future technology for implementing 
random access memory (RAM) (or dynamic random access 
memory (DRAM)). In one embodiment, the non-volatile 
memory 120 takes the form of a solid-state (e.g., flash) 
memory and can be one-time programmable, few-time pro 
grammable, or many-time programmable. The non-volatile 
memory 120 can be two-dimensional or three-dimensional 
and can use single-level cell (SLC), multiple-level cell 
(MLC), triple-level cell (TLC), or other memory technolo 
gies, now known or later developed. 
The non-volatile memory 120 can simply be a memory 

chip or can be part of a self-contained storage device with its 
own controller. An example of such a storage device 200 is 
shown in FIG. 2. As illustrated in FIG. 2, the storage device 
200 comprises a controller 210 and non-volatile memory 
220. The controller 210 comprises a memory interface 211 
for interfacing with the non-volatile memory 220 and a host 
interface 212 for placing the storage device 200 in commu 
nication with other components of the computing device 
100. As used herein, the phrase “in communication with 
could mean directly in communication with or indirectly in 
communication with through one or more components, 
which may or may not be shown or described herein. For 
example, the computing device 100 and storage device 200 
can each have mating physical connectors that allow the 
storage device 100 to be removably connected to the com 
puting device 100. 
The controller 210 also comprises a central processing 

unit (CPU) 213, an optional hardware crypto-engine 214 
operative to provide encryption and/or decryption opera 
tions, read access memory (RAM) 215, read only memory 
(ROM) 216 which can store firmware for the basic opera 
tions of the storage device 100, and a non-volatile memory 
(NVM) 217 which can store a device-specific key used for 
encryption/decryption operations, when used. The controller 
210 can be implemented in any suitable manner. For 
example, the controller 210 can take the foam of a micro 
processor or processor and a computer-readable medium 
that stores computer-readable program code (e.g., software 
or firmware) executable by the (micro)processor, logic 
gates, Switches, an application specific integrated circuit 
(ASIC), a programmable logic controller, and an embedded 
microcontroller, for example. 
The storage device 200 can be embedded in or removably 

connected with the computing device 100. For example, the 
storage device 200 can take the form of an iNANDTM 
eSD/eMMC embedded flash drive by SanDisk Corporation 
or can take the form of a removable memory device. Such as 



US 9,665,296 B2 
5 

a Secure Digital (SD) memory card, a microSD memory 
card, a Compact Flash (CF) memory card, a universal serial 
bus (USB) device, or a solid-state drive (SSD). 

Returning to FIG. 1, the non-volatile memory 120 can 
store computer-readable program code that is executed by 
the processor 110 to provide various functions of the com 
puting device 100. For example, the non-volatile memory 
120 can store computer-readable program code for one or 
more applications ("apps'), as well as code for an operating 
system kernel. When the processor 110 executes these sets 
of code, the processor 100 runs the software to enable their 
functionality. 
As shown in FIG. 3, a typical model for the operation of 

the software in the computing device 100 partitions the 
“space' of the software into two main components: the user 
space (which contains applications 300 and an application 
management layer 305 (or “application manager)) and the 
operating system space (which contains the operating sys 
tem kernel 310). In general, the operating system kernel 310 
is the component of the operating system that serves as a 
bridge between the applications 300 and the application 
management layer 305 (both of which are running in the user 
space) and the processor 110 and non-volatile and volatile 
memories 120, 130 by managing the communication 
between these software and hardware components. The 
application management layer 305 is responsible for deter 
mining which of the applications 300 should reside in 
volatile memory 130, and the operating system kernel 310 is 
responsible for deciding which of the applications 300 
should be allocated to the processor 110. The application 
management layer 305 requests a service from the operating 
system kernel 310 by issuing function calls, such as, for 
example, close, open, read, wait, and write calls. 

In the user space, the relevant objects are applications 
(e.g., Such as apps for making a phone call, taking a picture, 
opening a video, etc.), and each application translates into a 
process (or several processes) that need to run in order to 
Support the application’s functionality. Each process has a 
projection into the kernel space. From the operating system 
kernel's perspective, a process is an entity that requires 
resources: memory, time slots to run in, structures that 
describe the process, etc. The operating system kernel 310 is 
the process manager and allocates the memory resources and 
the time slots where the process can run. So, in Some sense, 
the processes can be said to run in the operating system 
kernel 310; however, the operating system kernel 310 has no 
knowledge of the functionality of the processes. The oper 
ating system kernel 310 does not even know if a process is 
running in the background or foreground. From the operat 
ing system kernel's perspective, the process is defined by the 
resources it needs to Support it. 

In the user space, the application management layer 305 
is aware of the functionality of each process, of the pro 
cesses associated with each application 300, and of the 
priority of an application 300 and its associated processes. In 
order to support the operating system kernel 310 in its role 
of resource allocation to the processes running in the oper 
ating system kernel 310, the application management layer 
305 in the user space can compute a priority parameter, 
Sometimes known as adjustment, and reports this parameter 
to the operating system kernel 310. Typically, the adjustment 
parameter is added to the structure defining the process (i.e., 
the reflection of the process in the kernel space) and will be 
updated on a regular basis. For example, the adjustment 
parameter can be defined as a 16-level parameter where a 
low value indicates high priority and a high value indicates 
low priority. Whenever memory resources are insufficient 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
for fulfilling a memory allocation request of a process (in the 
operating system kernel 310), the operating system kernel 
310 may free some memory in the volatile memory 130, 
either by Swapping (i.e., moving some data from the volatile 
memory 130 (e.g., RAM) into the non-volatile memory 
(e.g., main storage)) or by ending (or "killing) low-priority 
processes (as indicated by the adjustment parameter). The 
operating system kernel 310 can compute a first threshold 
function: A=F (free memory, required memory), where A is 
a number in the range of the adjustment parameter. Then, the 
operating system kernel 310 can kill any process with an 
adjustment greater than (or equal) to A in order to fulfill the 
requests from current processes. 
The following embodiments can be implemented in any 

suitable manner in the computing device 100. For example, 
as discussed above, the processor 110 of the computing 
device 100 can execute an operating system kernel 310 as 
well as applications 300 and an application management 
layer 310 running in the user space. The operating system 
kernel 310 can be Linux or incompatible with Linux. Oper 
ating systems with a kernel incompatible with Linux 
include, but are not limited to, Windows operating systems 
(e.g., Windows 8 NT and Windows 8) and Apple operating 
systems (e.g., iOS and Mac-OSX). Also, the various acts 
discussed below can be performed by sending function calls 
from the application management layer 305 to the operating 
system kernel 310. 

Further, in Some embodiments, a storage device (e.g., 
eMMC or UFS devices) can be designed with a special 
partition of the same chip, or a special chip, that is designed 
for high performance and endurance. This may assist in the 
adoption of swap operations in mobile computing devices. 
That is, many current mobile operating systems do not 
enable swap due to the concern of the endurance of embed 
ded storage devices. Specifically, the concern is that if Swap 
is utilized as a DRAM extension, it will result in increased 
traffic and cause severe stress to the embedded device, 
possibly damaging the device and rendering the whole 
system non-operable. Also, traditionally, eMMC devices all 
have limited endurance and are not designed for Swapping. 
Using a partition or special chip designed for high perfor 
mance and endurance can help address this issue. The 
following section provides more information on the Swap 
ping process. 

General Overview of Swapping Operations 
As mentioned above, to launch an application, the pro 

cessor 110 in the computing device 100 loads computer 
readable program code for the application from the non 
volatile memory 120 into the volatile memory 130 and then 
executes the code. Executing the code can create dynamic 
application data, which is also stored in the Volatile memory 
130. As used herein, “dynamic application data (or “appli 
cation data') refers to data that is dynamically allocated by 
the application for internal use and maintains the State 
information of the application, Such that, if lost, will require 
the application to be reloaded. Examples of Such application 
data include, but are not limited to, temporary data that is 
buffered, data allocated in an internal stack or cache, or 
Video/graphic data that is buffered for rendering purposes, 
data from specific or shared libraries, and data generated 
from external data (e.g., from a network). 

Because a computing device typically has a relatively 
Small amount of Volatile memory as compared to non 
volatile memory, there is a limit as to the number of 
applications that can be loaded into volatile memory. That is, 
while computing devices are generally fitted with sufficient 
volatile memory (e.g., DRAM) for handling the memory 



US 9,665,296 B2 
7 

requirements during the initial system boot process, addi 
tional memory may be needed when applications are loaded 
on an as-needed basis by the operating system or explicitly 
by the user. As such, as some point, the computing device 
100 may need to end (or “kill) one or more applications 
currently running in the volatile memory 130 in order to 
provide Volatile memory resources for a new application. 
However, to re-start a killed application, the launching 
process is repeated, and this may cause an undesirable delay 
for the user. To reduce this delay, instead of killing the 
application, the processor 110 can use the non-volatile 
memory 120 as a memory extension to the storage space in 
the volatile memory 130, and move (or “swap out”) the 
application data from the volatile memory 130 to the non 
volatile memory 120. (As the code for the application itself 
is already stored in the non-volatile memory 120, the code 
residing in the volatile memory 130 can simply be deleted 
instead of moved to the non-volatile memory 120). In this 
way, when the user wants to re-launch the application, after 
the application code is executed, the processor 110 simply 
needs to move the “swapped-out” application data from the 
non-volatile memory 120 to the volatile memory 130, 
instead of generating the application data again from scratch, 
as the Swapped-out application data contains all the state 
information needed for the application to continue. This 
reduces the delay the user experiences when re-launching 
the application. FIGS. 4A-4C illustrate this swap process in 
more detail. 

In FIGS. 4A-4C, the volatile memory 130 is diagram 
matically shown as dynamic DRAM (DDR) memory, and 
the non-volatile memory 130 is diagrammatically shown as 
SWAP memory. As noted above, the SWAP memory can be 
a partition in the non-volatile memory 120 or can be a 
separate memory device. These figures show a “Swap thresh 
old,” which is the minimum amount of available space that 
the volatile memory 130 is desired to have for caching and 
other operations. The operating system of the computing 
device 100 maintains a dynamic pool of available memory 
for use by the kernel and a separate pool for application 
usage. A Swapping operation occurs when the available 
space in the volatile memory 130 has dropped below the 
threshold level. 

In FIG. 4A, the volatile memory (DDR) 130 stores the 
application code and application data for Apps 2 through 
n+1. App 1 has already been Swapped out, so the application 
data for App 1 is stored in the non-volatile memory (SWAP) 
120. During a normal operating mode, the computing device 
100 will be in a steady state, where the system RAM (DDR) 
utilization will be below a predetermined threshold level 
(e.g., for system caching). As long as the computing device 
100 does not exceed this threshold, the computing device 
will maintain its steady state. If there is any action that 
causes the DDR usage to exceed the threshold, such as a 
New App launch (see FIG. 4B), the DDR usage will trigger 
a Swap action. As shown in FIG. 4C, when this occurs, the 
processor 110 moves the application data for App 2 from the 
DDR to the SWAP memory (and deletes the application code 
for App 2 from the DDR) to create room in the DDR for the 
New App (now called App n+2). Thus, the New App launch 
causes the computing device 100 to rebalance the available 
memory by effecting a swap action from the DDR to the 
SWAP area, thereby freeing-up system RAM for future use. 

It should be noted that the processor 110 can use any 
Suitable technique for determining which application to 
Swap out. For example, in the memory Swapping mechanism 
that can be used with Linux systems in Android phones, 
specific portions of application data in the volatile memory 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
are moved to the non-volatile memory using a least-re 
cently-used (LRU) mechanism to determine which pieces 
(e.g., in increments of 4 KB) can be moved to the non 
Volatile memory. This method provides a scheme for moving 
out old, cold data that has not and will likely not be accessed 
for some time. In Linux, a Swap area consists of 4 KB slots, 
where there is one slot for each memory page. The first slot 
is the Swap area header. When an anonymous page (i.e., a 
page not in the file system) is Swapped out, it will be written 
to the Swap area. When the process needs this page later, the 
page will be retrieved from the Swap area. If the page is 
brought-in for write, the corresponding slot will be marked 
as invalid and can be re-used. However, if the page is 
brought-in for read, it will have two copies: one in DRAM 
and the other in the Swap area. If the page is modified later, 
the copy in the swap area will be invalidated. If the page is 
swapped out with no modifications, the copy in the DRAM 
will be invalidated. 

In operation, Linux will file a contiguous 256 page free 
space call a Swap file cluster for Swap out. Once the space 
is used up, Linux will find the next cluster sequentially and 
search from the beginning of the Swap area to minimize the 
seek time. If no such cluster can be found, the processor will 
find the first available slots for swap out. After reboot, the 
swap area will start empty. The swap cluster will be allo 
cated from the previous shutdown to improve wear leveling. 
Therefore, at the beginning, the Swap out trace is likely 
sequential. The free slots will be fragmented eventually, 
which can cause performance issues since the Swap out 
becomes a random write. 

After an extended period ofuse, the whole Swap space can 
be used up, and "wrap around” can occur, where previously 
written pages that are now marked “invalid’ can be re 
written. Invalid pages can be pages that were swapped to the 
non-volatile memory and read back to the DRAM and are no 
longer needed. Also, depending on the usage pattern and 
workload, Some pages may never be read back to the 
DRAM. As a result, the swap space can be severely frag 
mented and full of “invalid’ data. 
Embodiments Relating to Pre-Loading Applications 
While the Swapping mechanism discussed above reduces 

the delay in re-launching an application, the user will still 
experience a delay when launching the application for the 
first time. To address this issue, operating systems in some 
modern-day computing devices are designed to automati 
cally pre-load a set of applications during the boot-up 
process of the computing device, when the user is normally 
expecting there to be some delay. As used here, a “pre 
loaded' application refers to an application that was auto 
matically launched without the user specifically, manually 
requesting the application to be launched at the time the user 
wants to actually use the application (e.g., without the user 
touching the icon for the application on the display Screen). 
(However, as mentioned below, a user can designate in 
advance which applications should be pre-loaded.) That 
way, when the computing device is booted up, there will be 
a core set of applications that are ready to go without any 
delay experienced by the user. However, the number of 
application that can be pre-loaded into the DRAM is limited 
by the size of the DRAM. Also, when additional applications 
are to be launched after power-up, those additional applica 
tions will also need to be loaded into the DRAM. As some 
point, the DRAM will become saturated (no/low free 
memory), and applications in the DRAM will need to be 
killed before any further applications can be loaded or, in 
Some extreme cases, loaded and killed. Once an application 
is killed, the processor will need to restart the initial code 



US 9,665,296 B2 
9 

launch sequence the next time the user chooses to launch it, 
which requires time and possibly incurs additional network 
charges. 

This embodiment takes advantage of the Swap space in 
the non-volatile memory 120 in order to pre-load more 
application that just those that will fit in the volatile memory 
130. That is, instead of just pre-loading the core set of 
applications into the volatile memory 130, the processor 110 
in this embodiment loads additional applications. If the 
loading of one or more of these additional applications 
causes the amount of available space in volatile memory 130 
to drop below the threshold level, the application data of one 
or more applications can be moved from the volatile 
memory 130 to the non-volatile memory 120. So, there will 
be pre-loaded applications both in the volatile memory 130 
and the non-volatile memory 120). If the user chooses an 
application that is pre-loaded in the volatile memory 130, the 
application will respond with no/minimal delay. (The user 
may or may not know whether an application is pre-loaded 
and, if it is, which memory it resides in.) However, if the 
user chooses an application that is pre-loaded in the non 
volatile memory 130, the application code and the applica 
tion data will need to be loaded into the volatile memory 
130. While this will take some time, it will take less time 
than launching the application from scratch. Thus, this 
embodiment can be used to allow more applications to be 
loaded into a combination of volatile and non-volatile 
memory. This allows for faster application launch as loading 
program data sequentially from the non-volatile memory is 
faster than launching the application from the Scratch. 

In general, the processor 110 in this embodiment pre 
loads a plurality of applications in the volatile memory 130 
until it is determined that available space in the volatile 
memory 130 has dropped below a threshold level. The 
processor 110 pre-loads an application by copying applica 
tion code for the application from the non-volatile memory 
130 into the volatile memory 120, executing the application 
code from the volatile memory 130, wherein executing the 
application code creates application data, and storing the 
application data in the volatile memory 130. When the 
processor 110 determines that the available space in the 
volatile memory 130 has dropped below the threshold level, 
the processor 110 moves the application data for at least one 
application from the volatile memory 130 to the non-volatile 
memory 120. The processor 110 can also delete the appli 
cation code from the volatile memory 130 for the application 
(s) whose application data was moved from the volatile 
memory 130 to the non-volatile memory 120. 

This embodiment can be implemented in any suitable 
way. For example, applications can be pre-loaded during 
boot time of the computing device 100. Several actions 
occur during the boot-up process, such as jumping to a reset 
vector (i.e., a default address for the first line of code that 
needs to be executed to power-up the computing device 
100), initiating the boot strap sequence, executing the boot 
loader to initialize the basic system hardware, initiating the 
operating system kernel load process where additional hard 
ware and peripherals are brought up and the core system 
drivers are loaded, initializing the file system (e.g., activat 
ing the Swap partition and sending a TRIM command to 
clean blocks), and loading system drivers. As noted above, 
in more-advanced operating systems, a set of applications 
can be pre-loaded into the volatile memory 130 during 
boot-up in anticipation of user interaction, and, in this 
embodiment, additional applications are pre-loaded for user 
experience enhancement. 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
Returning to the drawings, FIG. 5 is a flowchart 400 of an 

embodiment for pre-loading applications during boot-up of 
the computing device 100 and will be illustrated in conjunc 
tion with FIG. 6A-6C. As shown in FIG. 5, the processor 110 
first starts the system boot process (act 510). As shown in 
FIG. 6A, during the start of the boot process, both the 
volatile memory (DDR) 130 and the SWAP portion of the 
non-volatile memory 120 are empty. During the boot pro 
cess, the processor 110 determines if there is free memory 
available in the volatile memory 130 (i.e., whether or not the 
available space in the volatile memory 130 has dropped 
below a threshold) (act 520). If there is free memory 
available in the volatile memory 130, the processor 110 
pre-loads an application in the volatile memory 130 (act 
530) (see FIG. 6B). The processor 110 continues this process 
of pre-loading applications into the volatile memory 130 
until the swap threshold is met, and the processor 110 
determines that there is no more free memory available. At 
that point, the processor 110 moves the application data from 
one or more of the pre-loaded applications to the non 
volatile memory 120 (and can delete the application code for 
those applications from the volatile memory 130) (act 540). 
This is illustrated in FIG. 6C, with App 1 being swapped out 
of the DDR and into the SWAP area. The other pre-loaded 
applications (App 2 through App n+1) remain in the DDR. 
The determination of which application(s) to Swap out can 

be made in any suitable way. For example, the computing 
device 100 can store a list of application(s) (predetermined 
or user-created) whose application data should be moved 
from the volatile memory 130 to the non-volatile memory 
120 when it is determined that the available space in the 
volatile memory 130 has dropped below the threshold level. 
As another example, the computing device 100 can stores 
multiple lists (again, predetermined or user-created). Such as 
a list of primary applications and a list of secondary appli 
cations, where the primary applications are pre-loaded 
before the secondary applications are pre-loaded (more than 
two lists can be used). This example is illustrated in the flow 
chart 7OO of FIG. 7. 
As shown in FIG. 7, during system boot of the computing 

device (act 710), the processor loads the applications from 
the primary list (act 720) and determines if there is sufficient 
free space in the volatile memory 130 (act 730). If there is, 
the processor 110 pre-loads applications from the primary 
list as long as there is available space in the Volatile memory 
130. After the primary list of applications has been pre 
loaded, the processor 110 determines whether there is 
enough room in the volatile memory 130 for more applica 
tions to be pre-loaded (act 750). If there is, the processor 110 
pre-loads the applications from the second list into the 
volatile memory 130 and, if the volatile memory 130 is 
running out of room, moves them out to the non-volatile 
memory 120 as needed (act 760). With this embodiment, the 
processor 110 pre-loads whatever “core” applications are 
listed in the first list (e.g., applications specified by a mobile 
computing device manufacturer or user) and them pre-loads 
other applications in the volatile memory 130 (if there is 
space) or in the non-volatile memory 130. 

FIG. 8 illustrates this swapping process in more detail. As 
shown in FIG. 8, when an application is launched, the code 
for the application is loaded from the file system area of the 
non-volatile memory 120 into the DDR area 130 (act 810). 
As mentioned above, there are several steps to an application 
launch process. Memory from the free memory pool 
(DRAM) is dynamically allocated on an as-needed basis 
depending on the application load. During the initial appli 
cation launch, the code is loaded into DRAM. Depending on 



US 9,665,296 B2 
11 

the specific libraries referenced, some shared libraries are 
loaded into the shared memory. Data is dynamically allo 
cated by the application for internal use (“application data'). 
This could include buffers for temporary data storage, allo 
cation for internal stack or cache, or even video/graphic 
buffer for rendering purposes. This memory typically main 
tains the state information of the application and if lost (or 
forcefully killed) will cause the application to reload. That 
is, the application data stores the state of the application, so 
the application can later be restored to the state it was in 
when the application data was Swapped out to the non 
Volatile memory. 

In some embodiments, the application data, but not the 
application code, will be swapped out to the non-volatile 
memory 130, as the application code is static (not dynamic) 
and will not change throughout the life of the application. As 
such, the application code can be re-loaded from the file 
system section of the non-volatile memory 130. The appli 
cation data, however, is generated after code execution 
(CPU overhead) and, in some cases, from data that needs to 
be downloaded through a network connection. This combi 
nation creates an overhead on the application launch time. 

Returning to FIG. 8, the processor 110 executes the code, 
generates application data, and allocates memory for the 
application data (act 820). Additional memory may be used 
for shared libraries or graphics buffering. The swap pro 
cesses move the application data from the DDR area 130 to 
the swap space non-volatile memory 120 (act 830). If the 
application is terminated (willingly or forcefully). Some data 
will be preserved in the data partition (act 840). As noted 
above, this process continues with as many of those appli 
cations being pre-loaded into the volatile memory 130 as 
possible, and the others pre-loaded into the volatile memory 
130 and then swapped out to the non-volatile memory 120. 

In the examples shown in FIGS. 7-8, the primary and 
secondary applications are pre-loaded during booting of the 
computing device 100. In another embodiment, shown in the 
flow chart 900 in FIG. 9, the primary applications are 
pre-loaded during booting of the computing device 100, but 
the secondary applications are pre-loaded during idle times 
after the computing device 100 has been booted. Idle time 
can be determined in any Suitable way, including, but not 
limited to, based on the number of threads active over time, 
the amount of processor 110 activity, and whether the 
computing device 100 is in standby mode. As shown in FIG. 
9, during system boot (act 910), the applications listed in the 
primary list are pre-loaded, if there is available memory 
(acts 920 and 930). Then, after the computing device 100 has 
booted up, the processor 110 determines when it is in the idle 
state (act 940). When the processor 110 is in the idle state, 
the processor 110 will pre-load applications listed in the 
secondary list, if there is available memory (acts 950, 960). 
If there isn't available memory, the processor 110 swaps out 
applications into the swap space (act 960). 

There are many alternatives that can be used with these 
embodiments. For example, instead of using application 
lists, system-defined parameters can be used to specify 
which applications to pre-load and which specific services to 
defer to prevent excessive boot time. Also, a best-fit algo 
rithm can be used to determine the most-efficient method 
ology to pre-load the applications, and most-recently-used 
application and user-preference algorithms can be used as 
pre-loading factors. Further, different techniques can be used 
to determine the application preload sequence, determine 
when to preload applications (e.g. to avoid preloading when 
the computing device 100 is in its critical loading process, 
as this can slow down boot up), dynamically manage free, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
cached, and Swap memory, and automatically terminate 
specific applications during the time of critical memory 
allocation. 

Embodiments Relating to Bandwidth Control of a Swap 
Operation 
As mentioned above, operating systems of modern com 

puting devices utilize different Swapping algorithms to 
extend system memory to varying degrees of Success. Some 
of the algorithms include the use of temporal-based Swap 
ping (e.g., least-recently-used page-based swapping) and 
contextual/spatial-based Swapping (i.e., application/chunk 
based swapping). In computing devices that are bandwidth 
bound, there are issues dealing with user experience, spe 
cifically when large (in size or number) input/output (I/O) 
operations Saturate the bus between the processor and the 
memory, leaving users with a less-than-optimal experience. 
Accordingly, one of the biggest issues in using the Swap 
mechanism is the added latency to the system. Due to the 
intrinsic design of NAND architecture, a need exists for a 
more-optimal method to balance latency with throughput. 
NAND performance is bottlenecked by the I/O operations 
when doing Small-sized random commands; while, on the 
other hand, sequential commands greatly improve the 
throughput. User experience is proportional to the perfor 
mance of the read command—the longer a read command 
takes to complete, the longer the delay felt by the user. Large 
commands increase the time-to-completion for each com 
mand. Without the ability to prioritize the commands, it is 
very likely that a large sequential command or a series of 
commands will delay other commands long enough to make 
the system irresponsive. With the introduction of a swap 
operation in NAND-based storage devices, there is a need to 
load balance the available throughput of the device against 
this latency. This is directly felt by the user when an action 
is taken (e.g., with an application launch). This premise also 
hold true for other swap-based operations. The amount of 
memory Swapped out is directly proportional to the memory 
demand, and, in times of severe memory shortage, large 
chunks of memory will be swapped out over a short period 
of time. 

FIG. 10 is a graph that illustrates this problem by showing 
an example of the cumulative effect of swap and I/O 
operations. As shown in this graph, there are three peaks 
where very abrupt swap-outs cause spikes in the I/O utili 
zation. The following embodiment seeks to address the issue 
through the use of bandwidth rate control. As shown in the 
graph of FIG. 11, by using bandwidth control to lower the 
I/O utilization, the three peaks in FIG. 10 are smoothed out. 
To provide for this Smoothed-out operation, in one 

embodiment, the processor 110 determines a bandwidth at 
which at least some of the application data for at least one 
application should be moved from the volatile memory 130 
to the non-volatile memory 120 during a Swap operation, 
and then moves the data according to the determined band 
width. There are several techniques that the processor 110 
can use to determine the appropriate bandwidth. For 
example, the processor 110 can allow a user to set the 
bandwidth control through one or more predefined system 
parameters. In another example, advanced heuristics and/or 
NAND parameters can be used to define an optimal thresh 
old for swap over a predetermined period of time. Both of 
these techniques seek to lessen the effects of swap on the I/O 
throughput and command latency, which adversely affect the 
user experience. 

Returning to the drawings, the diagram 1200 in FIG. 12 
illustrates a user-control technique in which bandwidth in a 
Swap operation is regulated by a parameterized control 



US 9,665,296 B2 
13 

technique. As shown in FIG. 12, during system run-time (act 
1210), the processor 110 determines if a swap out is needed 
(act 1220). If it is, the processor 110 takes a set of user 
specified control parameters into account when Swapping 
out data into the non-volatile memory 120 of the storage 
device 200. In this way, the processor 110 relies on system 
memory requirements to decide when to perform a Swap 
operation but relies upon user-specified parameters to deter 
mine the Swap-out characteristics. The set of user-specified 
control parameters can include one or more of the following 
parameters: Swap size (the amount of data to Swap over a 
period of time (or per frequency parameter), which allows 
the system to better “smooth out the I/O traffic and reduce 
the bursty transactions that lead to latency issues), Sampling/ 
Swap frequency (the frequency of occurrence (e.g., number 
of times per sec.), transfer size (this defines the low-level 
transfer size, where the bigger the size, the more efficient the 
transfer because of less overhead (but this may possibly 
increases latency due to blocking on specific types of I/O 
schedulers)), swap threshold (the threshold when swap-out 
would occur), and kill threshold (the threshold when an 
application should be killed instead of swapped-out). Of 
course, these are just examples, and other types of param 
eters can be used. 

FIG. 13 is an illustration of this parameterized control 
mechanism. In this illustration, the Swap size is represented 
by the width of the pipe, as it defines how much data can go 
through the pipe over a certain period of time. The sampling/ 
Swap frequency is represented by the number of arrows, as 
it indicates how many times (e.g., per second) the processor 
110 will examine the system behavior and force a swap-out, 
if needed. The transfer size refers to the width of each 
individual arrow. 
As mentioned above, another technique that can be used 

for bandwidth control employs advanced heuristics and/or 
NAND parameters to define an optimal threshold for swap 
over a predetermined period of time. This technique utilizes 
feedback from the NAND device to the host that is fed 
through an algorithm to automatically determine the best 
settings to use. Manual control of any/all parameters can be 
allowed to bypass limitations, and additional parameters can 
be used as a percentage of the maximum throughput of the 
device. This allows balancing the throughput/latency on a 
fine scale irrespective of the underlying device. This tech 
nique will be discussed in conjunction with FIGS. 14 and 15. 
As shown in the diagram 1400 in FIG. 14, during system 

run-time (act 1410), the processor 110 determines if a swap 
out is needed (act 1420). If it is, the processor 110 takes into 
account not only the set of user-specified control parameters, 
as above (act 1420), but also takes into account NAND 
parameters. Such as, for example, performance/latency (act 
1440). That is, this embodiment uses advanced heuristics 
and/or NAND parameters to define an optimal threshold for 
Swap over a predetermined period of time. So, the processor 
110 can use the characteristics of the non-volatile memory 
120 to automatically adjust the user-specified control param 
eters to fit the characteristics of the non-volatile memory 
120. This is shown diagrammatically in FIG. 15, where 
arrow 1510 shows the communication of the NAND param 
eters from the NAND (the non-volatile memory 120) to the 
processor 1510, and arrows 1520 represent how the user 
defined parameters are automatically adjusted for a “best fit” 
scenario and determine the correct bandwidth control to use. 
This allows efficient, sequential transfer size to maximize 
Swap out while at the same time using advanced bandwidth 
shaping algorithms to minimize latency for good user expe 
rience. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
There are several alternatives that can be used with these 

embodiments. For example, in one alternative, the processor 
110 can monitor for all I/O utilization and dynamically vary 
the Swap bandwidth. This can include the steps of measuring 
I/O traffic load in the system, limiting memory Swap out, 
predicting I/O traffic (based on predetermined or calculated 
past data), delaying/deferring a Swap transfer until a later 
time, and dynamic chunk size setting based on load. 

Embodiments Relating to Encryption of Data in Swap 
Area 
One problem observed by many nonvolatile storage sys 

tems is the security of the data stored within. Given the data 
is persistent across power-down cycles, any sensitive infor 
mation or data, be it sensitive application data or licensed 
content, stored in the device is susceptible to theft. One 
method to combat this theft is through the use of digital 
rights management (DRM) and/or encryption; however, this 
type of protection is currently done on a per-application 
basis and not during memory management operations. Such 
as a Swap operation. As explained above, in most modern 
operating systems, virtual memory Subsystems make use of 
a Swap operation to “extend the available system memory. 
Depending on the algorithm used, a Swap mechanism could 
be used to store the least utilized memory pages. In scenarios 
where application security is based on key exchange or 
privately-generated keys, the keys are stored in Volatile 
memory. In times of severe memory pressure, it is conceiv 
able that the key and/or data could be swapped out onto 
non-volatile storage, thereby leaving this sensitive key and/ 
or data exposed, as there exists a possibility that the storage 
device can be removed, and the data extracted with mali 
cious intent. Additionally, it is possible to overwrite the data 
at any location in the non-volatile memory with malicious 
code. The underlying technology may afford some level of 
security through translation table lookups, but it is not 100% 
fool proof 
To address these issues, in this embodiment, data is 

encrypted before it is stored in the non-volatile memory 
extension area (the Swap area). By providing security fea 
tures in the virtual memory Swapping mechanism (in either 
or both hardware and software), sensitive data will be 
protected during the power down state. Securing data 
through encryption will also allow the system to detect 
intrusion and determine whether the data has been compro 
mised. This can be done by integrating encryption capabili 
ties in the virtual memory or in the entire region in the 
memory device. FIG. 16 is a flow chart 1600 that illustrates 
the general principles of this embodiment. As shown in FIG. 
16, during a memory management operation (act 1610), the 
processor 110 determines if the memory is low (act 1620), 
and, if it is, moves data from the volatile memory 1640 to the 
non-volatile memory 1660 to perform a swap operation. As 
shown in FIG. 16, this embodiment includes an encryption/ 
decryption module 1630, 1650 in either or both of the host 
or storage devices. So, with this embodiment, the data can 
be encrypted as it is moved in to the Swap out area and 
decrypted it as it is being moved out of the Swap out area. 
This provides maximum endurance level with a minimum 
amount (if any) of manual customization of product param 
eters. 

As mentioned above, the encryption/decryption function 
ality can be part of host or the memory device feature set, or 
a combination of both. This way, this embodiment can be 
adaptive to different usage models. That is, the goal of 
ensuring the security of the Swapped-out data by setting up 
a secure path for the data can be attained by embedding a 
security channel (through hardware or software Support) 



US 9,665,296 B2 
15 

either on the host or on the storage device. Depending on the 
security requirements, it is also possible to enable security 
on both the host and the storage device. The alternatives will 
now be discussed in conjunction with FIGS. 17-25. 

FIG. 17 illustrates an encryption process in which both the 
host and the storage device contain a cryptographic module 
for encryption/decryption. The encryption process is initi 
ated when the host detects a Swap out (to the Swap area) is 
needed to free up system memory (act 1710). The host will 
select an application or memory to Swap out depending on 
the algorithm used (e.g., least recently used) (act 1720). 
Once the memory to be swapped out has been determined, 
the kernel will initialize the hardware to prepare for the 
encryption process (act 1730). As shown in FIG. 18, this can 
involve handshaking between the crypto-driver 1820 in the 
kernel and the hardware crypto-engine 1820. Depending on 
the requirements, handshaking between the host and device 
crypto engines 1820, 1930 (see FIG. 19) may be needed (act 
1740). The encryption process may also require a token or 
a series of tokens (or rolling token) to achieve a high level 
of security. Once everything has been set-up correctly, the 
data transfer can take place to the designated area in the 
swap space (acts 1750 and 1760). 

FIG. 20 illustrates the decryption process that is initiated 
when the host detects that required memory has been 
swapped out. First, the processor 110 determines that a 
Swap-in is needed to access data stored in the Swap area (act 
2010). The processor 110 then selects the memory to swap 
in (act 2020). The host hardware is then initialized to prepare 
for the data transfer and decryption, and the crypto-engines 
on both the host and the storage devices are set-up to 
handshake to determine the necessary information for secure 
data transfer and for decryption/validation (acts 2030 and 
2040). As shown in FIG. 21, this can include handshaking 
between the crypto-driver 1820 in the kernel and the crypto 
engine 1930 in the memory device. Then, the data is ready 
to be transferred (act 2050). 

There are several alternatives that can be used with these 
embodiments. For example, while the above embodiments 
have crypto-engines both in the host and storage device, 
there can be a crypto-engine 2200 just in the host device 
(FIGS. 22 and 23) or crypto-engine 2300 just in the storage 
device (FIGS. 24 and 25). 

Embodiments Relating to Fast Clean-Up of Swap Area 
When the host computing device does a power cycle (e.g., 

when a PC or smartphone is turned off), all the data in the 
volatile memory is lost, and the system will start afresh. 
However, the Swap space in the non-volatile memory main 
tains the previously swapped-out data, even though none of 
the data is valid or relevant. In order for the swap space of 
the non-volatile memory to become serviceable again, the 
Swap space in the non-volatile memory should be cleaned up 
and erased to restore the original time 0 state (i.e., so there 
is no Swapped-out data stored in the non-volatile memory). 
As the erase speed of Flash is quite slow (e.g., 5-20 msec), 
erasing all of the thousands of the blocks of the swap area 
(e.g., a few GB) can take seconds, during which time the 
Swap space is not useable. Even if Swap is not needed right 
after system boot up, the Swap space still needs to be cleaned 
up to make it useable, and this will take system time and 
energy. 

This embodiment addresses this problem by simultane 
ously erasing all the blocks in the Swap space (e.g., at boot 
up) to efficiently clean and reset the whole Swap space. In 
this embodiment, the processor 110 takes the fact that the 
computing device is booting up as a signal that all the data 
in the Swap space from previous sessions is no longer valid 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
and needs to be clean up. Specifically, during boot up, the 
processor 110 resets the reset vector and initiates the boot 
strap sequence, and executes the boot loader to initialize the 
basic system hardware. The processor 110 also initiates the 
operating system kernel load process where the more 
advanced system hardware is brought up and the core 
system drivers are loaded. The Swapping mechanism is 
initiated as part of the system boot process. The initiation 
process includes cleaning the Swap partition by erasing the 
content of the partition, either through a pseudo erase which 
only modifies the mapping table or actual overwrite of the 
data for security purposes. As NAND internally remaps the 
logical address, a special command is needed to force an 
actual erase of the used NAND blocks. The command can be 
a TRIM or DISCARD command from the operating system. 
The Swap partition can use the command, in conjunction 
with the type of partition, to determine how best to erase the 
partition. This could be done as a single command to the 
entire partition or as a command that defines a list of blocks 
tO erase. 

At the NAND flash level, there can exist specific com 
mands that will allow control over erase of the entire device. 
This provides a facility to Support features such as secure 
erase or fast format but does not allow for the flexibility to 
allow partial erase on a partition level. Traditional Support 
relies on serializing (or in limited circumstances, parallel 
Support across dies/channels) the erase commands resulting 
in poor performance. This embodiment Supports multi-block 
or partition erase through support at the NAND flash level 
that will allow parallel block erase. This support can be 
provided through a special NAND command, which is 
referred to here as Multi-Block Erase. The introduction of 
this feature allows for fast partition erase at the system level. 
In previous designs, the NAND controller performs a 
pseudo erase (clearing the table entries associated with the 
erased region) to speed up the erase process. With this 
methodology, there are additional delays introduced in that 
a new block needs to be erased before it can be used. With 
the introduction of Multi-Block Erase, the system now can 
introduce true fast erase of the series of blocks request by the 
system. The storage device can provide Support for this 
Multi-Block Erase command where a list of block addresses 
can be sent into the NAND die to determine what blocks are 
to be erased. By iterating through this list of to-be-erased 
blocks, the memory device can simultaneously erase the 
needed blocks, thereby reducing the overhead of erasing 
each block independently. Any Suitable syntax can be used 
for this command, such as: <MBE CMD) <ROW ADDR 
(plane & chip)> <DATAs, where data represents the block 
addresses to be erased. By issuing a multi-block erase 
command that lists all the invalid blocks of the swap 
partition, the storage device can erase them all in a single 
command. This will restore the Swap space to an “all 
erased state, making it ready for the next Swap, without the 
need to trigger garbage collection. In other words, this 
provides a total clean slate and restart. 

FIGS. 26 and 27 will be used to illustrate different 
methods that can be used to erase the Swap area in the 
non-volatile memory. FIG. 26 illustrates the single block 
erase method. In this method, the host controller 110 sends 
a trim/discard/erase command to the memory device noti 
fying it of the region of blocks to erase (act 2610). The host 
controller 110 updates the flash translation layer (FTL) in the 
storage device controller with the erased blocks. Depending 
on the FTL design, the memory device may do a background 
erase or hold the blocks until needed. The host controller 110 
then sends the write commands to the memory (act 2620). 



US 9,665,296 B2 
17 

The blocks are used (and are erased prior to use) as needed, 
and there may be some background erase operations to avoid 
erase overhead (act 2630). This method may prove to be less 
efficient if a large number of blocks need to be erased 
quickly or if a (fast) secure erase is needed, as in the case of 
Swap. 
To address this, the multi-block erase process of FIG. 27 

can be used. Here, the host processor 110 sends a trim/ 
discard/erase command to the NAND notifying it of the 
region of blocks to erase (act 2710), and the memory device 
controller issues a multi-block erase command with a list of 
blocks to be erased. Using the provided list of blocks, the 
storage device controller will erase all the blocks simulta 
neously in approximately the same amount of time it takes 
to erase a single block (act 2720). After the blocks have been 
erased, the host processor 110 can send write commands (act 
2730). 

Exemplary Memory Technologies 
As mentioned above, any type of memory technology can 

be used. Semiconductor memory devices include volatile 
memory devices, such as dynamic random access memory 
(“DRAM) or static random access memory (“SRAM) 
devices, non-volatile memory devices, such as resistive 
random access memory (“ReRAM), electrically erasable 
programmable read only memory (“EEPROM), flash 
memory (which can also be considered a Subset of 
EEPROM), ferroelectric random access memory 
(“FRAM), and magnetoresistive random access memory 
(“MRAM), and other semiconductor elements capable of 
storing information. Each type of memory device may have 
different configurations. For example, flash memory devices 
may be configured in a NAND or a NOR configuration. 
The memory devices can be formed from passive and/or 

active elements, in any combinations. By way of non 
limiting example, passive semiconductor memory elements 
include ReRAM device elements, which in some embodi 
ments include a resistivity Switching storage element, Such 
as an anti-fuse, phase change material, etc., and optionally a 
steering element, such as a diode, etc. Further by way of 
non-limiting example, active semiconductor memory ele 
ments include EEPROM and flash memory device elements, 
which in some embodiments include elements containing a 
charge storage region, such as a floating gate, conductive 
nanoparticles, or a charge storage dielectric material. 

Multiple memory elements may be configured so that they 
are connected in series or so that each element is individu 
ally accessible. By way of non-limiting example, flash 
memory devices in a NAND configuration (NAND 
memory) typically contain memory elements connected in 
series. ANAND memory array may be configured so that the 
array is composed of multiple strings of memory in which a 
string is composed of multiple memory elements sharing a 
single bit line and accessed as a group. Alternatively, 
memory elements may be configured so that each element is 
individually accessible, e.g., a NOR memory array. NAND 
and NOR memory configurations are exemplary, and 
memory elements may be otherwise configured. 
The semiconductor memory elements located within and/ 

or over a Substrate may be arranged in two or three dimen 
sions, such as a two dimensional memory structure or a three 
dimensional memory structure. 

In a two dimensional memory structure, the semiconduc 
tor memory elements are arranged in a single plane or a 
single memory device level. Typically, in a two dimensional 
memory structure, memory elements are arranged in a plane 
(e.g., in an X-Z direction plane) which extends Substantially 
parallel to a major Surface of a Substrate that Supports the 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
memory elements. The substrate may be a wafer over or in 
which the layer of the memory elements are formed or it 
may be a carrier substrate which is attached to the memory 
elements after they are formed. As a non-limiting example, 
the Substrate may include a semiconductor Such as silicon. 
The memory elements may be arranged in the single 

memory device level in an ordered array, Such as in a 
plurality of rows and/or columns. However, the memory 
elements may be arrayed in non-regular or non-orthogonal 
configurations. The memory elements may each have two or 
more electrodes or contact lines, such as bit lines and word 
lines. 
A three dimensional memory array is arranged so that 

memory elements occupy multiple planes or multiple 
memory device levels, thereby forming a structure in three 
dimensions (i.e., in the x, y and Z directions, where the y 
direction is substantially perpendicular and the X and Z 
directions are substantially parallel to the major surface of 
the substrate). 
As a non-limiting example, a three dimensional memory 

structure may be vertically arranged as a stack of multiple 
two dimensional memory device levels. As another non 
limiting example, a three dimensional memory array may be 
arranged as multiple vertical columns (e.g., columns extend 
ing Substantially perpendicular to the major Surface of the 
Substrate, i.e., in they direction) with each column having 
multiple memory elements in each column. The columns 
may be arranged in a two dimensional configuration, e.g., in 
an X-Z plane, resulting in a three dimensional arrangement of 
memory elements with elements on multiple vertically 
stacked memory planes. Other configurations of memory 
elements in three dimensions can also constitute a three 
dimensional memory array. 
By way of non-limiting example, in a three dimensional 

NAND memory array, the memory elements may be coupled 
together to form a NAND string within a single horizontal 
(e.g., X-Z) memory device levels. Alternatively, the memory 
elements may be coupled together to form a vertical NAND 
string that traverses across multiple horizontal memory 
device levels. Other three dimensional configurations can be 
envisioned wherein some NAND strings contain memory 
elements in a single memory level while other strings 
contain memory elements which span through multiple 
memory levels. Three dimensional memory arrays may also 
be designed in a NOR configuration and in a ReRAM 
configuration. 

Typically, in a monolithic three dimensional memory 
array, one or more memory device levels are formed above 
a single Substrate. Optionally, the monolithic three dimen 
sional memory array may also have one or more memory 
layers at least partially within the single Substrate. As a 
non-limiting example, the Substrate may include a semicon 
ductor Such as silicon. In a monolithic three dimensional 
array, the layers constituting each memory device level of 
the array are typically formed on the layers of the underlying 
memory device levels of the array. However, layers of 
adjacent memory device levels of a monolithic three dimen 
sional memory array may be shared or have intervening 
layers between memory device levels. 
Then again, two dimensional arrays may be formed 

separately and then packaged together to form a non 
monolithic memory device having multiple layers of 
memory. For example, non-monolithic stacked memories 
can be constructed by forming memory levels on separate 
Substrates and then stacking the memory levels atop each 
other. The substrates may be thinned or removed from the 
memory device levels before stacking, but as the memory 



US 9,665,296 B2 
19 

device levels are initially formed over separate substrates, 
the resulting memory arrays are not monolithic three dimen 
sional memory arrays. Further, multiple two dimensional 
memory arrays or three dimensional memory arrays (mono 
lithic or non-monolithic) may be foamed on separate chips 
and then packaged together to form a stacked-chip memory 
device. 

Associated circuitry is typically required for operation of 
the memory elements and for communication with the 
memory elements. As non-limiting examples, memory 
devices may have circuitry used for controlling and driving 
memory elements to accomplish functions such as program 
ming and reading. This associated circuitry may be on the 
same Substrate as the memory elements and/or on a separate 
substrate. For example, a controller for memory read-write 
operations may be located on a separate controller chip 
and/or on the same Substrate as the memory elements. 
One of skill in the art will recognize that this invention is 

not limited to the two dimensional and three dimensional 
exemplary structures described but cover all relevant 
memory structures within the spirit and scope of the inven 
tion as described herein and as understood by one of skill in 
the art. 

Conclusion 
It is intended that the foregoing detailed description be 

understood as an illustration of selected forms that the 
invention can take and not as a definition of the invention. 
It is only the following claims, including all equivalents, that 
are intended to define the scope of the claimed invention. 
Finally, it should be noted that any aspect of any of the 
preferred embodiments described herein can be used alone 
or in combination with one another. 

What is claimed is: 
1. A method for using volatile and non-volatile memory to 

pre-load a plurality of applications in a computing device, 
the method comprising: 

performing during boot up of a computing device having 
a volatile memory and a non-volatile memory: 
pre-loading a plurality of applications in the Volatile 
memory until it is determined that available space in 
the volatile memory has dropped below a threshold 
level, wherein an application is pre-loaded in the 
volatile memory by: 
copying application code for the application from the 

non-volatile memory into the volatile memory; 
executing the application code from the Volatile 

memory, wherein executing the application code 
creates application data; 

storing the application data in the Volatile memory, 
wherein the application data maintains current 
state information of the application; and 

further during boot up, in response to determining that 
the available space in the volatile memory has 
dropped below the threshold level: 
moving the application data for some but not all of 

the plurality of applications from the volatile 
memory to a Swap area of the non-volatile 
memory and deleting the application code from 
the volatile memory for the some but not all of the 
plurality of applications whose application data 
was moved from the volatile memory to the non 
Volatile memory; and 

pre-loading at least one additional application in the 
additional space in the volatile memory created by 
moving the application data and deleting the appli 
cation code; 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
wherein after the computing device is booted up, there 

is application data for pre-loaded applications in both 
the Volatile memory and the Swap area of the non 
Volatile memory. 

2. The method of claim 1 further comprising: 
after the application data for the at least one application 

has been moved from the volatile memory to the 
non-volatile memory, pre-loading at least one addi 
tional application and moving application data for the 
at least one additional application to the non-volatile 
memory. 

3. The method of claim 1, wherein the computing device 
stores a list of application(s) whose application data should 
be moved from the volatile memory to the non-volatile 
memory when it is determined that the available space in the 
volatile memory has dropped below the threshold level. 

4. The method of claim 1, wherein the plurality of 
applications are pre-loaded during booting of the computing 
device. 

5. The method of claim 1, wherein the computing device 
stores a list of primary applications and a list of secondary 
applications, and wherein the primary applications are pre 
loaded before the secondary applications are pre-loaded. 

6. The method of claim 5, wherein the primary applica 
tions and the secondary applications are pre-loaded during 
booting of the computing device. 

7. The method of claim 5, wherein the primary applica 
tions are pre-loaded during booting of the computing device, 
but the secondary applications are pre-loaded during idle 
times after the computing device has been booted. 

8. The method of claim 1, wherein the computing device 
is a mobile device. 

9. The method of claim 1, wherein the non-volatile 
memory is part of a storage module, and wherein the storage 
module is embedded in the computing device. 

10. The method of claim 1, wherein the non-volatile 
memory is part of a storage module, and wherein the storage 
module is removably connected to the computing device. 

11. The method of claim 1, wherein the non-volatile 
memory has a three-dimensional configuration. 

12. A computing device comprising: 
a volatile memory; 
a non-volatile memory; and 
a processor in communication with the Volatile and non 

Volatile memory, wherein the processor is configured 
tO: 
pre-load a plurality of applications in the Volatile 
memory during boot up of the computing device 
until it is determined that available space in the 
volatile memory has dropped below a threshold 
level, wherein an application is pre-loaded in the 
volatile memory by: 
copying application code for the application from the 

non-volatile memory into the volatile memory; 
executing the application code from the Volatile 

memory, wherein executing the application code 
creates application data; 

storing the application data in the Volatile memory, 
wherein the application data maintains current 
state information of the application; 

further during boot up, in response to determining that 
the available space in the volatile memory has 
dropped below the threshold level: 
moving the application data for Some but not all of 

the plurality of applications from the volatile 
memory to a Swap area of the non-volatile 
memory and deleting the application code from 



US 9,665,296 B2 
21 

the volatile memory for the some but not all of the 
plurality of applications whose application data 
was moved from the volatile memory to the non 
volatile memory 

pre-loading at least one additional application in the 
additional space in the volatile memory created by 
moving the application data and deleting the appli 
cation code; 

wherein after the computing device is booted up, there 
is application data for pre-loaded applications in both 
the Volatile memory and the Swap area of the non 
Volatile memory. 

13. The computing device of claim 12, wherein the 
processor is further configured to 

after the application data for the at least one application 
has been moved from the volatile memory to the 
non-volatile memory, pre-load at least one additional 
application and move application data for the at least 
one additional application to the non-volatile memory. 

14. The computing device of claim 12, wherein the 
computing device stores a list of application(s) whose appli 
cation data should be moved from the volatile memory to the 
non-volatile memory when it is determined that the available 
space in the volatile memory has dropped below the thresh 
old level. 

15. The computing device of claim 12, wherein the 
plurality of applications are pre-loaded during booting of the 
computing device. 

16. The computing device of claim 12, wherein the 
computing device stores a list of primary applications and a 
list of secondary applications, and wherein the primary 
applications are pre-loaded before the secondary applica 
tions are pre-loaded. 

17. The computing device of claim 16, wherein the 
primary applications and the secondary applications are 
pre-loaded during booting of the computing device. 

18. The computing device of claim 16, wherein the 
primary applications are pre-loaded during booting of the 
computing device, but the secondary applications are pre 
loaded during idle times after the computing device has been 
booted. 

19. The computing device of claim 12, wherein the 
computing device is a mobile device. 

10 

15 

25 

30 

35 

40 

22 
20. The computing device of claim 12, wherein the 

non-volatile memory is part of a storage module, and 
wherein the storage module is embedded in the computing 
device. 

21. The computing device of claim 12, wherein the 
non-volatile memory is part of a storage module, and 
wherein the storage module is removably connected to the 
computing device. 

22. The computing device of claim 12, wherein the 
non-volatile memory has a three-dimensional configuration. 

23. A computing device comprising: 
a volatile memory; 
a non-volatile memory; 
means for, during boot up of the computing device, 

pre-loading a plurality of applications in the Volatile 
memory until it is determined that available space in 
the volatile memory has dropped below a threshold 
level, wherein an application is pre-loaded in the Vola 
tile memory by: 
copying application code for the application from the 

non-volatile memory into the volatile memory; 
executing the application code from the Volatile 
memory, wherein executing the application code 
creates application data; 

storing the application data in the Volatile memory, 
wherein the application data maintains current state 
information of the application; and 

means for, further during boot up, in response to deter 
mining that the available space in the Volatile memory 
has dropped below the threshold level: 
moving the application data for some but not all of the 

plurality of applications from the volatile memory to 
a Swap area of the non-volatile memory and deleting 
the application code from the volatile memory for 
the some but not all of the plurality of applications 
whose application data was moved from the volatile 
memory to the non-volatile memory; and 

pre-loading at least one additional application in the 
additional space in the Volatile memory created by 
moving the application data and deleting the appli 
cation code: 

wherein after the computing device is booted up, there is 
application data for pre-loaded applications in both the 
volatile memory and the swap area of the non-volatile 
memory. 


