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(57) ABSTRACT 

Methods, apparatuses and systems directed to efficiently 
circumventing the limitations of client side rendering of 
virtual worlds. In a particular implementation, a proposed 
system renders each client viewport remotely, removing the 
burden of rendering a 3D scene from the local client device. 
3D viewports, rather than being rasterized on the local 
client, are instead generated on a remote render device 
which then transmits a visual representation of the viewport 
to the client device in a format (including, but not limited to 
a video stream) which the client can use to display the scene 
without requiring complex 3D rasterization. This process 
eliminates the need for the client to have any specialized 3D 
rendering software or hardware, or to install or download 
any persistent render assets on the local system. The hard 
ware requirements for the client are therefore roughly 
equivalent to those needed to play a continuous video 
Stream. 
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EFFICIENTLY IMPLEMENTING AND 
DISPLAYING INDEPENDENT 

3-DIMIENSIONAL INTERACTIVE 
VIEWPORTS OF A VIRTUAL WORLD ON 

MULTIPLE CLIENT DEVICES 

CROSS-REFERENCE TO RELATED 
APPLICATION 

The present application is a continuation of U.S. appli 
cation Ser. No. 14/467,224, now U.S. Pat. No. 9,214,038 
filed on Aug. 25, 2014 which is a continuation of U.S. 
application Ser. No. 13/968,575, filed on Aug. 16, 2013, now 
U.S. Pat. No. 8,817,025 which is a continuation of U.S. 
application Ser. No. 12/034,163 filed on Feb. 20, 2008 now 
U.S. Pat. No. 8,553,028 which claims priority to U.S. 
Provisional Application Ser. No. 60/983,320 filed Oct. 29, 
2007. The entireties of these applications are incorporated 
herein by reference. 

TECHNICAL FIELD 

The present disclosure generally relates to rendering of 
virtual world spaces in three-dimensions and, more particu 
larly, to efficient and Scalable mechanisms for remote 
device, or server-side, three-dimensional rendering across a 
large number of client devices. 

BACKGROUND 

Three-dimensional (3D) virtual worlds (for example, 
World Of Warcraft, Second Life, Runescape, etc.) allow 
users to enter and move about, as well as interact with other 
users and objects, within a three-dimensional virtual envi 
ronment. Such 3D virtual worlds systems generally operate 
in the following manner: 

1) They require a 3D rendering engine to be resident on 
the client’s system in order to render a user's viewport into 
the 3D world. 

2) The 3D rendering software further requires that the 
client machine have certain graphics processing capabilities 
which allow the 3D world to be rendered on the local 
machine. The more complex the world, the more powerful 
the client device's graphics capabilities must be. 

3) In order for a user to view a scene on her local system, 
the 3D rendering engine must have access to the assets 
necessary to build the scene accurately. Such assets typically 
include geometry mesh data (vertices, index and attribute 
buffers), material and shader definitions (including proce 
dural shaders), and texture maps. As scene complexity 
increases, the amount of data required to render a scene on 
a local client increases as well. Assets for Such complex 
virtual worlds are often included in a download or DVD that 
the user must first install before the 3D rendering engine on 
the local client can begin rendering a scene. Therefore, the 
more complex and dense the virtual world, the more data the 
user must either have installed or download on their system. 
Instantaneous virtual world rendering systems that depend 
on streaming render assets for client-side rendering may 
introduce objectionable visual artifacts as a viewport is 
procedurally refreshed with new textures and meshes that 
replace placeholder versions. 

4) Virtual world Systems generally use a centralized 
server system to persistently maintain the state of the world. 
State data from these servers are continuously sent to each 
client when needed (including position, orientation, Velocity 
and dynamics of objects within the world) in order for each 
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2 
viewport to remotely render the scene on the client’s local 
machine. If all clients have the same assets, and the same 
hardware graphics capabilities, visual parity across each 
client viewport is possible. 

However, the overhead of synchronizing states across 
each user's viewport when the client systems are not homog 
enous can become problematic in many cases, as the visual 
representation of the same viewport may vary across each 
client, based on the client's local graphics capabilities. For 
example, if a faceted 3D object is tessellated and smoothed 
in hardware on a client system which Supports curved patch 
tessellation, the silhouette of the object may appear to be 
significantly different than the silhouette of the same object 
on a client that does not Support tessellation. In the latter 
case, the client would be forced to render the 3D object with 
a faceted outline. These differences can create objectionable 
discontinuities among remotely rendered viewports in cases 
where collision detection is performed by the server on the 
aforementioned 3D object. If the server performs collision 
detection using the Smooth tessellated version of the object, 
and then transmits this singular result to each client, the 
visual representation of the point of impact and bounce 
vector from the collision may not appear to correspond to a 
valid point and slope on the surface of the object from the 
point of view of a user displaying the scene without tessel 
lation. This can become even more objectionable, when the 
tessellation is performed on a macroscopic object such as 
terrain, where control of vehicles or avatars depends heavily 
on an accurate representation of the ground Surface. These 
types of discontinuities between the state of world on the 
server, and the visual representation on an arbitrary client, 
increases significantly as a 3D virtual world becomes more 
complex, and the range of client devices that need to be 
Supported expands to mobile phones, TV set top boxes and 
other hardware that may have limited or no 3D graphics 
capabilities on the local machine. 

SUMMARY 

In particular embodiments, the present invention provides 
methods, apparatuses and systems directed to efficiently 
circumventing the limitations of client-side rendering of 
virtual worlds. In a particular implementation, a virtual 
world system renders each client viewport remotely, remov 
ing the burden of rendering a 3D scene from the local client 
device. 3D viewports, rather than being rasterized on the 
local client, are instead generated on a remote render device 
which then transmits a visual representation of the viewport 
to the client device in a format (including, but not limited to 
a video stream) which the client can use to display the scene 
without requiring complex 3D rasterization. This process 
eliminates the need for the client to have specialized 3D 
rendering software or hardware, or to install or download 
any persistent render assets on the local system. The hard 
ware requirements for the client, in one implementation, 
can, therefore, be reduced to that roughly equivalent to those 
needed to play a continuous video stream. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic diagram illustrating a computer 
network environment in which implementations of the 
invention may operate. 

FIG. 2 is an example server system architecture according 
to one possible implementation of the invention. 

FIG.3 is a flow chart illustrating a process flow according 
to one possible implementation of the invention. 
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FIGS. 4 thru 6 are diagrams that graphically illustrate how 
rays can be traced from an arbitrary spatial location within 
a cube map where distances are defined relative to a com 
mon reference point. 

DESCRIPTION OF EXAMPLE 
EMBODIMENT(S) 

The following example embodiments are described and 
illustrated in conjunction with apparatuses, methods, and 
systems which are meant to be illustrative, not limiting in 
Scope. 
A. Overview 

A.1. Network Environment 
FIG. 1 illustrates an example network environment in 

which particular implementations of the invention may 
operate. As FIG. 1 illustrates, particular implementations of 
the invention may operate in a network environment com 
prising a virtual world system 20 that is operatively coupled 
to a network cloud 60, which may include the Internet. 
Network cloud 60 generally represents one or more inter 
connected networks, over which the systems and hosts 
described herein can communicate. Network cloud 60 may 
include packet-based wide area networks (such as the Inter 
net), private networks, wireless networks, satellite networks, 
cellular networks, paging networks, and the like. Some of 
the networks in network cloud 60 may be circuit-switched 
networks. The computer network environment, including 
network 60 can be a packet-based communications environ 
ment, employing TCP/IP protocols (for example), and/or 
other Suitable protocols, and has a plurality of intercon 
nected digital packet transmission stations or routing nodes. 
Client nodes 82 and 84 are operably connected to the 
network environment via a network service provider or any 
other suitable means. Client nodes 82 and 84 may include 
personal computers or cell phones, as well as other types of 
mobile devices such as lap top computers, personal digital 
assistants (PDAs), etc. 

Virtual world system 20 is a network addressable system 
that hosts a virtual world or environment accessible to one 
or more users over a computer network. The virtual world 
system 20 may include web site and server functionality 
where users may request and receive identified web pages 
and other content over the computer network. The virtual 
world System may also allow users to configure and main 
tain personal avatars and interact with other avatars and 
objects hosted within a virtual environment. 

In particular implementations, virtual world system 20 
comprises one or more physical servers 22 and one or more 
data stores 24. The one or more physical servers 22 are 
operably connected to computer network 60 via a routter 26. 
The one or more physical servers 22 host functionality that 
allows users to interact with the virtual world, such as 
receiving requests from, and transmitting responsive data to, 
client nodes 82 and 84. In one implementation, the func 
tionality hosted by the one or more physical servers may 
include web or HTTP servers, RTSP servers, and the like. 

Physical servers 22, as discussed above, host functionality 
directed to Supporting and implementing virtual world sys 
tem. 20. In a particular implementation, the physical servers 
22 may host one or more instances of a virtual world server 
and one or more instances of a remote rendering device 
server. In one implementation, a data store 24 may store user 
information and state information of avatars and other 
objects or assets maintained in the virtual environment. A 
given data store 24 may also store content such as digital 
content data objects, user information, and other media 
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4 
assets. A content data object or a content object, in particular 
implementations, is an individual item of digital information 
typically stored or embodied in a data file or record. Content 
objects may take many forms, including: text (e.g., ASCII. 
SGML, HTML), images (e.g., jpeg, tif and gif), graphics 
(vector-based orbitmap), audio, video (e.g. mpeg), or other 
multimedia, and combinations thereof. Content object data 
may also include executable code objects, object or asset 
definitions, etc. Structurally, content data store 24 connotes 
a large class of data storage and management systems. In 
particular implementations, content data store 24 may be 
implemented by any suitable physical system including 
components, such as database servers, mass storage media, 
media library systems, and the like. 

A.2. Example Server System Architecture 
The server host systems described herein may be imple 

mented in a wide array of computing systems and architec 
tures. The following describes example computing architec 
tures for didactic, rather than limiting, purposes. 

FIG. 2 illustrates an example computing system architec 
ture, which may be used to implement a physical server. In 
one embodiment, hardware system 200 comprises a proces 
sor 202, a cache memory 204, and one or more software 
applications and drivers directed to the functions described 
herein. Additionally, hardware system 200 includes a high 
performance input/output (I/O) bus 206 and a standard I/O 
bus 208. A host bridge 210 couples processor 202 to high 
performance I/O bus 206, whereas I/O bus bridge 212 
couples the two buses 206 and 208 to each other. A system 
memory 214 and a network/communication interface 216 
couple to bus 206. For physical servers hosting remote 
rendering device functionality, hardware system 200 may 
further include one or more graphics processing units 224 
coupled to buses 206 and 208. In one implementation, the 
graphics processing unit 224 may be embodied in a graphics 
or display card that attaches to the server system architecture 
via a card slot. In other implementations, the graphics 
processor unit 224 may be integrated on the motherboard of 
the server system architecture. Mass storage 218, and I/O 
ports 220 couple to bus 208. Hardware system 200 may 
optionally include a keyboard and pointing device, and a 
display device (not shown) coupled to bus 208. Collectively, 
these elements are intended to represent a broad category of 
computer hardware systems, including but not limited to 
general purpose computer systems based on the X86-com 
patible processors manufactured by Intel Corporation of 
Santa Clara, Calif., and the x86-compatible processors 
manufactured by Advanced Micro Devices (AMD), Inc., of 
Sunnyvale, Calif., as well as any other Suitable processor. 
The elements of hardware system 200 are described in 

greater detail below. In particular, network interface 216 
provides communication between hardware system 200 and 
any of a wide range of networks, such as an Ethernet (e.g., 
IEEE 802.3) network, etc. Mass storage 218 provides per 
manent storage for the data and programming instructions to 
perform the above described functions implemented in the 
location server 22, whereas system memory 214 (e.g., 
DRAM) provides temporary storage for the data and pro 
gramming instructions when executed by processor 202. I/O 
ports 220 are one or more serial and/or parallel communi 
cation ports that provide communication between additional 
peripheral devices, which may be coupled to hardware 
system 200. 

Hardware system 200 may include a variety of system 
architectures; and various components of hardware system 
200 may be rearranged. For example, cache 204 may be 
on-chip with processor 202. Alternatively, cache 204 and 
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processor 202 may be packed together as a “processor 
module,” with processor 202 being referred to as the “pro 
cessor core.” Furthermore, certain embodiments of the pres 
ent invention may not require nor include all of the above 
components. For example, the peripheral devices shown 
coupled to standard I/O bus 208 may couple to high per 
formance I/O bus 206. In addition, in some embodiments 
only a single bus may exist, with the components of hard 
ware system 200 being coupled to the single bus. Further 
more, hardware system 200 may include additional compo 
nents, such as additional processors, storage devices, or 
memories. 

Graphics processing unit 224, in one implementation, 
comprises one or more integrated circuits and/or processing 
cores that are directed to mathematical operations com 
monly used in graphics rendering. In some implementations, 
the GPU 224 may use a special graphics unit instruction set, 
while in other implementations, the GPU may use a CPU 
like (e.g. a modified x86) instruction set. Graphics process 
ing unit 224 can implement a number of graphics primitive 
operations, such as blitting, texture mapping, pixel shading, 
frame buffering, and the like. Graphics processing unit 324 
may be a graphics accelerator, a GPGPU (General Purpose 
GPU), or any other suitable processing unit. 
As discussed below, in one implementation, the opera 

tions of one or more of the physical servers described herein 
are implemented as a series of Software routines run by 
hardware system 200. These software routines comprise a 
plurality or series of instructions to be executed by a 
processor in a hardware system, such as processor 202. 
Initially, the series of instructions may be stored on a storage 
device or other computer readable medium, such as mass 
storage 218. However, the series of instructions can be 
stored on any Suitable storage medium, Such as a diskette, 
CD-ROM, ROM, EEPROM, etc. Furthermore, the series of 
instructions need not be stored locally, and could be received 
from a remote storage device. Such as a server on a network, 
via network/communication interface 216. The instructions 
are copied from the storage device, such as mass storage 
218, into memory 214 and then accessed and executed by 
processor 202. 
An operating system manages and controls the operation 

of hardware system 200, including the input and output of 
data to and from Software applications (not shown). The 
operating system provides an interface between the Software 
applications being executed on the system and the hardware 
components of the system. According to one embodiment of 
the present invention, the operating system is the Windows.(R) 
95/98/NT/XP/Vista operating system, available from Micro 
soft Corporation of Redmond, Wash. However, the present 
invention may be used with other Suitable operating sys 
tems, such as the Apple Macintosh Operating System, 
available from Apple Computer Inc. of Cupertino, Calif., 
UNIX operating systems, LINUX operating systems, and 
the like. Of course, other implementations are possible. For 
example, the server functionalities described herein may be 
implemented by a plurality of server blades communicating 
over a backplane. 
B. Viewport Rendering Processes 
A viewport is a rendered representation of a virtual scene 

or environment from a given spatial location in the virtual 
environment and according to one or more view transform 
parameters (such as pitch, yaw, and field of view). Viewports 
can be rendered by generating a Viewport State DataObject 
(VSDO), which, in one implementation, comprises a layered 
cube map, and using a pixel or fragment shader to generate 
pixel values for the viewport. A cube map is essentially six 
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6 
texture maps stitched into a cube. Each texture map includes 
texels, which are essentially pixel information regarding a 
scene relative to a common reference point. A texture map 
on the face of a cube can be generated by rendering a scene 
from a common reference point using the faces of the cube 
as window rectangles. Each texel may contain material 
properties (index of refraction, color, etc.), the distance from 
the reference point, and a Surface normal vector. A set of 
layered texture maps representing a scene can be obtained 
using depth peeling. The number of peeling passes can be 
limited to control the number of layers. 

Each texel stores information on all object points between 
the reference point and the farthest object point. To generate 
a rendered representation of a scene corresponding to a 
layered cube map, a graphics processing unit may trace rays 
from a common origin to determine the distances between 
the origin and objects in the scene, using a fragment shader 
unit to compute the radiance at points visible from the 
origin. The render processing typically involves rasterizing 
the scene geometry and finding the first hits where the rays 
pass through the pixels. This approach, however, requires 
regeneration of the cube map when the spatial location 
(origin) of the viewport changes, such as when a player in 
a virtual world moves throughout a scene. 
The system and the methods described herein can be 

configured to efficiently circumvent these limitations, as 
well as limitations associated with client side rendering of 
virtual worlds. The proposed system, in one particular 
implementation, renders each client viewport remotely (rela 
tive to a given client), removing the burden of rendering a 
3D scene (or part of the processing associated with render 
ing a 3D scene) from the local client device. 3D viewports, 
rather than being rasterized on the local client, are instead 
generated on a remote render device, which then transmits 
a visual representation of the viewport to the client device in 
a format (including, but not limited to a video stream) which 
the client can use to display the scene without requiring 
complex 3D rasterization. This process eliminates the need 
for the client to have specialized 3D rendering software or 
hardware, and/or the need to install or download any per 
sistent render assets on the local system. The hardware 
resource requirements for the client are therefore roughly 
equivalent to those needed to play a continuous video 
Stream. 

In addition, implementations of the present invention can 
be configured to render multiple viewports, each corre 
sponding to different spatial location and view transform 
parameters, using the same Viewport State DataObject. This 
allows the computing resources used to create the Viewport 
State Data Object to be used in connection with multiple 
users or viewports. In addition, this may allow distributed 
virtual world systems where peer nodes with sufficient 
graphics processing capabilities may render novel viewports 
for other peers. 
The remote render device, which performs the actual 3D 

rendering for the client, may comprise a server (as discussed 
above) with one or more central processing units (CPUs), 
one or more network interfaces, an optional Graphics Pro 
cessor Unit or GPU (if the CPU is not powerful enough to 
render the viewports in the methods described herein), and 
a storage system interface for accessing a data storage 
system that maintains virtual world assets or objects for 
rendering. A remote render device (RRD) server can be part 
of a centralized cluster of machines or it can be a node within 
a distributed peer-to-peer network. In both cases, the RRD 
server has the graphics capabilities required to render a 3D 
viewport of a virtual world, and also has enough bandwidth 
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to transmit and transcode a simplified representation of the 
rendered view (e.g., a compressed video stream) to one or 
more clients. The remote render device server can Supply 
both continuous and session-based viewport render data to a 
client: 

1) Session based render packets: these render data packets 
represent discreet Snapshots of a viewport, and are used 
for static representations of a scene that a client device 
can further manipulate with minimal complexity on the 
local system. 

2) Continuous render streams: these render data streams 
are comprised of continuously updated, rendered rep 
resentations of each viewport managed by a remote 
render device, which are sent in real time (such as a 
video stream) to each client associated with the view 
port. Real-time RRD rendering of a dynamic scene and 
streaming back to the client enables real time interac 
tion with the remotely rendered viewport with reduced 
lag. 

The render data transmitted by a remote render device can 
beformatted in several ways for decoding and display by the 
client device, or for further processing and transcoding 
through a client that can additionally act as remote render 
device node in a peer-to-peer cloud that extends the pro 
cessing power of the root remote render devices in a 
centralized server system. In some implementations, the 
viewport may be completely rendered, while, in other imple 
mentations, the partially-rendered viewport can be transmit 
ted for further processing by a client or downstream node in 
a distributed system. 

Complete Viewport Render 
This format is comprised of a 2D image or video sequence 

created by a remote render device that fully encapsulates the 
viewport in a simple way for a client (e.g., a simple 2D 
image raster, Such as Joint Photographics Experts Group 
(JPEG) or Portable Network Graphics (PNG)). A client 
accepting this form of render data can do so without 3D or 
imaging processing capabilities. The remote render device 
may also output this data as a video stream viewable in most 
web browsers or other client applications by transcoding the 
render sequence into a common video format (Such as Ogg, 
Motion Picture Experts Group (MPEG)-2, MPEG-4, Part 10 
(a/k/a h.264), Motion JPEG (M-JPEG), etc). 

Partial Viewport Render: 
This render format exposes more information to a client 

device than the complete render format described above, 
allowing more powerful clients to finish rendering the 
viewport from a novel viewpoint (using the render methods 
described herein) without incurring additional rendering 
costs server side and thus freeing up server resources. This 
format further allows any arbitrary client with enough 
graphics processing power and bandwidth to retransmit 
novel, completely rendered viewports to thin clients without 
taxing the root remote render devices. AVSDO, as discussed 
above, contains a set of rendered layers of a cube map that 
are initially rasterized by a root remote render device, via 
depth peeling, where each layer of the rendered data seg 
ment contains depth information of a scene from a common 
reference point, material properties and optionally high 
dynamic range lighting values. This data encompasses 
enough information about the scene so that an (RRD server 
or client) can quickly create novel independent viewports, 
using the methods described herein, and stream them out to 
additional non-RRD capable clients. 
VSDOs can be initially generated on a root RRD. The root 

RRD performs this generation efficiently on a GPU, using 
cube maps and multiple render targets using depth peeling or 
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Some other Suitable process. The cube map layers can further 
be turned into 2D longitude latitude maps using the process 
illustrated in the pseudo code section set forth below and 
packed into standard 2D based representations which can 
further be sent as compressed video streams using a video 
codec designed for compressing 2D temporal video data. 
VSDOS can also contain partial scene representations (par 
tial Viewport State Data Object) versus a full 360-degree 
panoramic dataset in a complete VSDO. Partial VSDOs can 
include top down or isometric tiles of a scene, which a thin 
client can Subsequently use to scroll in 2D, without requiring 
the more complex image decoding of a complete VSDO. 
As the spatial location from which a viewport is to be 

rendered varies from the reference point of the VSDO, a hit 
function can be used to trace rays from the spatial location 
of the viewport to the objects in the scene defined by the 
VSDO. The viewport rendering functionality described 
herein uses the search algorithms described below to render 
views of a scene using one or more common VSDOs 
rendered from different spatial location and view transform 
parameters. That is, using the HIT function defined below, a 
single VSDO or set of VSDOs can be used to render multiple 
viewports, each with a different spatial location (or reference 
point) and different view transform parameters (such as 
pitch and yaw). 
To render a scene, a fragment shader computes the 

distance between the spatial location of the viewport and an 
object defined in the layer(s) of the cube map along a set of 
rays extending from the spatial location of the viewport. 
Since the spatial location of the viewport and the reference 
point of the cube map are often different, a search algorithm 
is used to find the distance for rendering of a given pixel. As 
described below, a two-phased search algorithm can be used. 
In a first phase, a linear search algorithm is used to compute 
a rough overshooting guess and an undershooting approxi 
mation that bound the intersection point of the ray. A second 
search process, bounded by the overshooting and under 
shooting values, searches for a more accurate intersection 
point. 

B.1. HIT Function 
With reference to FIGS. 4 to 6, assume for didactic 

purposes, that point o is the reference point of the layered 
cube map of a VSDO, and the point x is the current spatial 
location from which a viewport is to be rendered. The 
distanced from point x to the first object intersection in a 
given layer can be defined by a ray of the equation x+R*d, 
where R is the direction of the ray. However, for a ray 
extending from point X in the direction R, it is necessary to 
search for the distanced given that the distances in the cube 
map are computed relative to the reference point o, and not 
the spatial location of the viewport (x). Referring to FIG. 4, 
the distance d can be approximated by reading the distance 
(1) of the surface represented by the cube map layer with the 
direction of l=X--R*d, and comparing it with the distance of 
the approximating point 1 on the ray Ill. If Ill is approxi 
mately equal to 1", then the intersection is found. However, 
if the point on the ray (1) is in front of the surface (1|<1'), 
then the current approximation is undershooting. If the point 
on the ray (1) is beyond the surface (1|D|1'), then the current 
approximation is overshooting. In a linear search process, a 
rough overshooting and undershooting approximation is 
computed. Within these approximations, a second more 
accurate search is conducted to find the ray end point or 
object intersection. 

In a particular implementation, since the possible inter 
section points are on the ray defined by X--R*d, the search 
for the intersection or distance d can be conducted by 
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checking points r(d) X--R*d with an increasing sequence of 
positive values of d, and detecting the first pair of Subse 
quent or adjacent points, where one point of the pair 
overshoots and the second point undershoots. The actual 
intersection lies within these points. 
The linear search, in one implementation, can involve 

marching on a line segment that looks the same as the ray 
from the reference point, except that its two endpoints are at 
the same distance. The endpoints of this line segment can be 
obtained by projecting the start of the ray, r(0), and the end 
of the ray, r(OO), onto a unit sphere, resulting in a first 
endpoint s=X/XI and second endpoint e-R/R. The inter 
section is found at the texels that are seen at a direction 
between s and e, as shown in FIG. 5. 

The intersection algorithm can search these texels, mak 
ing uniform steps along the line segment S-e, where r(t)=s* 
(1-t)+et for t=0, At, 2At, . . . . 1. The correspondence 
between ray parameter d and parameter t can be found by 
projecting r' onto the ray, which leads to d(t)=(XI/IRI)*t/ 
(1-t). A fragment shader can take inputs of ray origin X (the 
spatial location of the viewport), direction R, and the cube 
map, and sequentially generate ray parameters d on points of 
the ray r and return an undershooting ray parameter d1 and 
an overshooting ray parameter dip. The variables lp and ppp 
in the following fragment shader code listing represent ratios 
|11/11" and pl/lp', respectively. 

float a = length(x) length (R): 
bool undershoot = false, overshoot = false: 
float dl, Ilp; Ray parameter and III/III of last undershooting 
float dip, ppp.; Ray parameter and pip' of last overshooting 
float t = 0.0001f. 
while(t K 1 &&. (overshoot and undershoot)) { 

float d = a *t (1 - t): 
float,3 r = x + R* d: 
float ra = texCUBElod(map, floatá(r.0)) a: 
if (ra > 0) { 

float rrp = length(r)/ra: 
if (rpp < 1) { 

dl = d. 
lipp = rrp; 
undershoot = true; 
else { 
dp = d. 
ppp = rrp; 
overshoot = true: 

else { 
undershoot = false: 
overshoot = false: 

The search algorithm finds a pair of undershooting and 
overshooting values of d in a layer of a cube map, making 
uniform steps Dt in texture space along the ray. Step size Dt 
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can be set based on the length of line segment S-e and the 
texel resolution of the cube map. At a given texel, the 
distance can be obtained from the alpha channel of the cube 
map. This linear search can be run for each layer of the cube 
map. The layer where the dip parameter is minimal contains 
the first hit of the ray. 

In some implementations, the linear search can be accel 
erated by determining minimum and maximum distance 
values (d) that bound the search space. When a ray is traced, 
it is intersected with spheres centered at the reference point 
(o) and having radii equal to the minimum and maximum 
distance values in the layer of the cube map. These two 
intersection points may reduce the ray space that needs to be 
searched and reduces the length of the line segment S-e to 
allow for fewer search steps with the same accuracy. 

With the undershooting and overshooting distance values 
(dl, dp), a secant search can be used to determine the 
intersection. The secant search assumes that the Surface is 
planar between the texel map distances of the overshooting 
and undershooting points. With this assumption, a line 
between 1' and p' is intersected by the ray at a point 
r=x--R*dn, where 

If a single secant step does not provide accurate results, din 
can replace dip or d1 (always keeping one of the overshooting 
or undershooting approximations) and proceed to iteratively 
compute din again. The following fragment shader code 
illustrates an example secant search implementation. 

for (int I = 0: I < NITER; i++) { 
din = di + (dip - dl) * (1-lipp), ppp-lpp); 
float,3 r = x + r * din; 
float rrp = length(r) texCUBElod(map, floatá-(r.0)).a; 
if (rrp < 0.999) { 

lipp = rrp; 
dl = din; 

} else if (rrp > 1.0001) { 
ppp = rrP: 
dp = din; 

} else i = NITER: 

The linear search algorithm that processes every layer of 
the cube map, and the secant search that processes a single 
layer, can be incorporated into a function—a HITO) function 
providing a tool that can trace a ray from an arbitrary spatial 
location within a scene defined by a cube map. 

B.2. Viewport Rendering 
The following code segment illustrates fragment shader 

pseudo code that can be used to render an arbitrary viewport 
position from layers of cube map samplers with depth 
information. 

if in this simple example, a cube mesh, centered at the camera origin, is passed into the pixel 
shader for rasterization 
// The VSDO is represented by a cubemap array, which is tied to the SceneID 
// The ViewPortID is used to lookup ViewPort specific data for the Novel ViewPort being 
rendered using this function (i.e. position, FOV, etc). 
fi result is the output fragment data to be written to the render target 
function backdrop (int SceneID, intViewPortID) 

if the view vector can be calculated by getting a normal to the vertex position of a 
skybox passed from the vertex shader 

i? or it can calculated completely in the pixel shader for the screen space fragment with a 
view transform set in a constant buffer and indexed with ViewPortID 

floats ViewDir=normalize(vertexpos.XZy); 
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-continued 
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// CubeMap Array is an array of Cubic Environment maps, with depth information 
fi camerapos ViewPortID a floats constant buffer entry storing the viewport's position 

in world space 
fi probepos is a floats constant buffer entry storing the world space origin of the cubic 

environment depth map being tested for a ray intersection 
if Hit(float3 pos, float3 ray, inout int LayerID) is a function that performs raycasting on 

all loaded depth cube map samplers using the ray intersection system described 
// The Hit() function's 3rd parameter is an inout value that is set to the cube map ID 

where that the ray intersects by the Hit() function after testing is done on all depth layers in the 
cube map array 

if the LayerID can index a cube map array, which along the HitPoint return value, can 
lookup the proper fragment to render for this viewport 

int LayerID; 
floatã HitPoint = Hit(camerapos ViewPortID-probeposSceneID.ViewDir. LayerID) 
result=texCUBE(CubeMap ArrayLayerID, HitPoint); 

While a centralized server farm could include one render 
server for every connected client, thus ensuring that each 
client has a dedicated graphics device for remotely rendering 
a client viewport, this would be inefficient compared to a 
client side-rendering model where a single virtual world 
server would handle many hundreds of users at once, due to 
the low complexity of processing and transmitting simple 
state information packets (i.e., object position, Velocity, 
etc.). The complexity of rendering a 3D viewport is orders 
of magnitude more complex than processing state informa 
tion, and thus, a render server that would perform brute force 
rendering naively for each viewport would require dispro 
portionately more processing power per user than a state 
based server model. 

The rendering methods described herein can reduce the 
processing time required for rendering novel viewports of a 
scene after a VSDO encompassing the novel viewports 
elements has been created. This process vastly increases the 
number of simultaneously rendered viewports that a single 
render device can generate. Rather than re-render each 
viewport naively, which, in the case of complex scenes 
would require a linear Scaling of processing power per 
additional viewport, the system can be configured to render 
additional viewports using the information contained in one 
or more VSDOs, which requires only a simple fragment 
operation per rendered screen pixel, and is thus more effi 
cient than brute force rendering of a scene containing 
complex and dense meshes. For example, this would allow 
an RRD server to generate a set of VSDOs for a segment of 
a virtual world, and re-use this generated set of VSDOs to 
provide rendered viewport output to multiple clients. In 
some implementations, the RRD server could provide the 
VSDOs to RRD clients or peers for rendering of viewports. 

B.3. Overview Creating A Viewport State DataObject 
A viewport state data object (VSDO) contains layers of 

scene information that are generated from an arbitrary 
reference point in a 3D scene on a remote render device. The 
viewport data object layers can be efficiently generated on a 
GPU in the following manner. In other words, GPUs have 
facilities that generate viewport state data objects given 
information regarding the objects in a scene and a reference 
point. 

1) A 3D scene managed by an RRD, each time it is 
significantly changed, is rendered into a series of cubic 
environment maps, or a single cubic environment map 
set, if multi-element cube maps are supported by the 
graphics processor unit. One GPU can be utilized to 
render the cubic maps. In other implementations, mul 
tiple GPUs can be used to separately render a face of a 
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cubic map into a commonly accessible memory space 
to accelerate generation of the VSDO. 

2) The multiple layer elements of the rendering output 
include: depth information and color information, and, 
for relighting and deferred shading purposes, may 
optionally contain per fragment Surface normals, UV 
texture coordinates, material properties and high 
dynamic range lighting information. 

3) If the VSDO being generated is intended to allow novel 
viewports to be created from different spatial reference 
positions (using Render Method 2, below), then the 
Scene is rendered using depth peeling. These additional 
cube maps (Depth layer sets) also comprise the ele 
ments described above, and are generated for each 
additional depth layer that is required to re-render 
overlapping elements within the radial clipping plane 
range of the viewport state date object (defined as the 
far clipping plane of the camera used to generate the 
VSDO). 

4) Static and dynamic objects can further be separated 
into additional layers, so that static scene elements can 
be cached in one set of cube maps-based VSDOs, and 
dynamic scene elements can be updated in another set 
of cube maps of the VSDOs (using operations 1-3) 
described above, enabling even faster generation of a 
VSDO when static scene elements are cached and 
combined with VSDOs containing only dynamic scene 
elements. 

5) The cube map VSDO layers generated in steps 1-4 can 
be transformed into 2D packed VSDOs (for example 
longitude latitude map, parabolic map set, helix map) in 
order to facilitate storage and transmission of the 
VSDO in 2D image formats. 

6) Sequences of complete VSDOs generated in linear or 
grid-based spatial sets can further be stacked together 
into a Volumetric texture (for single sampler access 
within a GPU shader) and also compressed as a 
sequence of grouped frames through standard 2D video 
codec techniques. 

C. Efficient Viewport Control and Streaming System 
FIG. 3 illustrates a process flow directed to a system that 

interacts with client devices and streams rendered viewport 
data to the client devices. In a particular implementation, a 
user on a client system 82 or 84 requests, through a network 
stream to a world state server, that a novel viewport with a 
specific view and spatial transform is to be rendered by a 
remote render device, and that the output is to be sent back 
to the client for display (302). The world state server, which 
manages a list of RRD nodes (either centralized or on a P2P 
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network), accepts the client request and routes the viewport 
render request to the appropriate RRD which could best 
generate or access a VSDO closest to the Novel Viewports 
spatial position (304). As a given user navigates within the 
virtual environment, changing the spatial position or view 
transform parameters, additional client requests may be 
transmitted to the world state server, which routes the client 
requests to the RRD node. In one implementation, the world 
state server maintains the State of one or more avatars, 
objects and other assets within the virtual environment. The 
state of these objects (such as spatial position and orientation 
parameters) may be provided to the remote render devices 
when generating VSDOs. 
As FIG. 3 illustrates, a given RRD accesses a buffer of 

pending viewport render requests sent by the world State 
server and either loads existing cached VSDOs and modifies 
or generates new VSDO(s) that will be required to fulfill the 
requests of each client (306). In this step for example, an 
RRD may regenerate or modify a VSDO if the state of one 
or more objects has changed. Rendering of each of the novel 
viewports is performed using render method 1 or 2, as 
discussed below (308). The instant RRD server may request 
an additional VSDO from another RRD node if the 
requested novel viewport requires a VSDO that is not 
optimally rendered on a single RRD. In a given implemen 
tation, one or more VSDOS may correspond to a room in a 
virtual environment for example. To render viewports for 
users whose avatars are located within the room for 
example, the RRD may process the VSDOs against the 
spatial and view transform parameters of the corresponding 
viewports. In some implementations, the RRD may render 
one viewport for multiple requests, if the spatial and view 
transform parameters are within a threshold distance. As 
FIG. 3 illustrates, the rendered viewport(s) may be post 
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complex 3-D scenes and stream novel viewports out to 
multiple clients, which then do not need client-side render 
ing engines which consume Substantial processing 
resources. Embodiments of the invention facilitate use of the 
system with thin client devices, such as hand-held and 
mobile devices. 
The client receives the rendered viewport, displays it on 

the local graphics device, and, as discussed above, may 
continue to asynchronously pass any further input and 
render requests relating to the viewport to the world state 
server. The process described above, when used to stream 
viewports, is essentially iterative in that the RRD repeats the 
processes described herein to generate rendered viewports 
for one or more clients and streams the rendered viewport 
data to the clients. As the clients manipulate I/O devices, 
Such as joysticks and keyboards, the world State server may 
change the spatial position and view transform of corre 
sponding viewports, as well as the state of the avatars and 
other objects within the virtual environment. In one imple 
mentation, a client can send simple keyboard or other local 
input state information to the world State server, moving all 
operations relating to viewport rendering for the client to the 
remote render system. The RRD could then handle and 
process world State collision requests using existing VSDO 
sets used for rendering to also perform collision detection 
and navigation logic efficiently for a large number of clients. 

If a viewport state data object is stored in a 2D format (as 
described above), the data contained therein can either be 
converted back into a cube map for efficient rendering on a 
GPU, or the data can be accessed directly in the rendering 
routines described below. This can be done through pixel 
shader operations that map 3D cube map texture lookups 
into 2D texture coordinate lookups, using the inverse trans 
form that encoded the VSDO cube map layer into a 2D raster 
(see following pseudocode). 

Fragment shader pseudo code to turn a cube map into longitudeflatitude map 
if uv is (x,y) uv coordinate of pixel being rendered into a 2D target 
if CubeMap is cube map texture sampler being converted into a 2D longitude/latitude map 
fi result is the output fragment data to be written to the render target 
function CubicMapto2DMAP(float2 uv, sampler CubeMap) 

float rx=radians (180*(uv.X-.5)*2); 
float ry=radians(-180*(uvy-.5)); 
floatã R. the 3 coordinate lookup vector for the CubeMap being converted 
R.x=sin(-rx)*cos(ry); 

result=texCUBE(CubeMap.R): 

processed 310 (e.g., adding text overlays, etc.) either by the 
root RRD, or an additional RRD node which can handle this 
task more efficiently. Furthermore, if compression or 
transcoding of the viewport is needed (based on either tags 
passed into the render request or server-side analysis of the 
clients abilities, such as HTTP header info), the world state 
server passes along a further request, or flags the client 
request, to the RRD in step 304 to either compress or 
transcode the viewport render on the same RRD (potentially 
on another CPU core or GPU core on the RRD) or to pass 
along the viewport render to another RRD node that can 
more efficiently handle this task (312,314). The post pro 
cessed viewport render is routed and sent back to the client 
from the RRD if no compression or transcoding is needed) 
or from a compressed and transcoded representation gener 
ated by the RRD (316). In this manner, an RRD server may 
utilize the facilities of a GPU, for example, to render 
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C.1. Viewport Rendering 
The complete VSDO can be rendered in 2 ways to create 

a novel viewport (NV), without requiring further complex 
rasterization of Scene geometry. The choice between ren 
dering methods depends on the relation between the center 
or reference point of the VSDOs and the spatial position or 
location of a given viewport. 

C.1.a. RENDER METHOD 1: Novel Viewport Orienta 
tion 

This method treats the VSDO as a cubic environment map 
(e.g., a sky box), centered about a novel viewport's world 
space and view origin. This method allows efficient re 
rendering of the novel viewport using any arbitrary orien 
tation (e.g., pitch, yaw, roll). In a scene with complex 
geometry, reducing the re-rendering process to a simple 
rasterization of a panoramic environment can therefore 
dramatically increase the speed by orders of magnitude 
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versus performing a complete re-render of the entire scene 
for each viewport. This method can be used in cases where 
the novel viewport's spatial reference position is approxi 
mately the same as the VSDO’s capture radius center 
(reference point), and only the viewports orientation (yaw, 
pitch, roll) and perspective transform need to be changed to 
create or render the viewports. According to this render 
method, a simple skybox cube model is centered at the novel 
viewports origin. The RRD, using the facilities of a GPU, 
attaches one or more VSDOs to a fragment or pixel shader 
as available inputs for the render pass. A pixel or fragment 
shader is a GPU resource that renders or shades pixels in a 
memory map in a fast, parallel processing operation. 
Depending on the capabilities and configuration of the GPU, 
multiple VSDOs may be mapped to a pixel shader, or the 
mapping may be a one-to-one relationship. Each novel 
viewport is rendered from its unique orientation and per 
spective parameters. In a particular implementation, the 
skybox pixel shader samples the VSDO using the view 
vector from the origin to render the VSDO as a panoramic 
environment. 
An example application of this method would be to 

generate a novel viewport for each avatar in an enclosed 
room of a virtual world, where each generated viewports 
orientation and perspective is aligned per render frame to 
keep its target avatar centered and properly cropped in the 
novel viewport (assuming each novel viewport shares its 
origin with the others at the center of the room, the point 
where the VSDO is generated). 

C.2. RENDER METHOD 2: Novel Viewport Position and 
Orientation 

Render method 2 expands the subset of novel viewports 
generated using render method 1 to include novel viewports 
that are generated from any arbitrary 3D spatial position (in 
addition to orientation and perspective) within the VSDO’s 
capture radius. Additional VSDO nodes can be dynamically 
linked together as additional sampler stages at render time in 
order to enable the novel viewport to rasterize elements 
outside of the bounds of a single VSDO capture radius. The 
method applies the parallel pixel shader processing power of 
a GPU to perform ray intersections tests on a VSDO, using 
the VSDO’s depth layers to generate a novel viewport from 
any point within the bounds of the VSDO’s capture radius. 

According to render method 2, the novel viewports 
requested world (spatial) and view transform are set (i.e., as 
shader constants if performing the rendering on a GPU). As 
above in Render Method 1, the depth and render layers of 
each VSDO required to render the novel viewport are 
prepared for rendering (i.e. loaded as texture samplers on a 
GPU), and a skybox mesh can be prepared as a dummy 
environment map as described in render method 1 and 
centered at the novel viewport's local rendering origin as in 
render method 1. 
The viewport is rasterized from the novel viewports 

requested world and view transform using the following 
fragment operation: Each fragment performs a ray traced hit 
test (see first pixel shader pseudocode section, above) on all 
VSDOs loaded in to the GPU for the viewport, using the 
world or spatial position set as the origin of the ray, and the 
ray's direction vector set to the match the view transform 
parameters. The ray hit test algorithm (see above), returns hit 
point and VSDO fragment layer information. Furthermore, 
depth information from a previously generated and cached 
VSDO of the scene's static elements can be used to merge 
these static scene elements with the new VSDO by including 
the cached VSDO. Overlapped elements can be processed 
and sorted correctly. If the ray-traced VSDO fragment 
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contains intermediate render state data (normal maps, dif 
fuse, specular, Fresnel, UV, material ID and other render 
elements) then deferred shading can be performed on these 
elements to produce a completely rendered fragment. The 
final processed fragment generated is rendered into Screen 
space in the novel viewport's render buffer. 
The skybox mesh is optional for both Render Methods 1 

and 2. A pixel shader that incorporates the novel viewports 
transform as a shader constants could rasterize the novel 
viewport entirely in a fragment or pixel shader, thus allow 
ing for multiple tiled novel viewport frames to be rendered 
in a large render target in a single pass, increasing the 
efficiency of the system even further. For example, in a 
multiple novel viewport environment, each novel viewport 
has spatial (world) and view transform parameters. The 
method of the invention can be configured to load the 
constants (spatial and view transform parameters) for all 
active viewports into a buffer, and to associate the locations 
of the memory map of the GPU to corresponding viewports 
and their constants. The pixel shader, as it writes each pixel 
into the memory map, applies the constants associated with 
that region of the memory map. By dividing the GPU 
memory map for multiple viewports, multiple viewport 
outputs can be generated in one render pass to improve 
Scalabability. For example, a particular graphics processor 
has a 8192x8192 pixel memory map, which allows a frag 
ment or pixel shader to rendter 1024 256x256 pixel view 
ports in one render pass. An RRD may then post-process and 
transmit the output to the clients corresponding to the 
viewports. 

C.3. Post Process Rendering on Novel Viewport 
Once a novel viewport is generated using Render Method 

1 or Render Method 2, it can further be re-rendered and 
differentiated into separate output streams for clients that 
may share the same viewport generated from Render Meth 
ods 1 or 2, but further require the application of minor render 
settings and/or overlay information. 
Minor Render Settings: These effects are performed on a 

Source novel viewport's render data and may include 
Vignette, exposure control, lens flares, chromatic aberra 
tions, ghosting and depth of field. These settings can be 
different for multiple users sharing the same viewport. 

Overlay Information: This render pass adds visual or 
textual interface or Surface scene elements specific to each 
client sharing a viewport. Depth sorted decal, sprite or 
projection map overlays can be applied onto a novel view 
port specific to each user. Optionally, using raw UV/Material 
ID deferred shading data that may be incorporated in the 
novel viewports texels, novel decals can be rendered over 
any arbitrary Surfaces in the scene. Overlay information 
processing and decal mapping may also be performed client 
side. 

Particular embodiments of the above-described process 
might be comprised of instructions that are stored on storage 
media. The instructions might be retrieved and executed by 
a processing system. The instructions are operational when 
executed by the processing system to direct the processing 
system to operate in accord with the present invention. Some 
examples of instructions are software, program code, firm 
ware, and microcode. Some examples of storage media are 
memory devices, tape, disks, integrated circuits, and servers. 
The term “processing system” refers to a single processing 
device or a group of inter-operational processing devices. 
Some examples of processing devices are integrated circuits 
and logic circuitry. Those skilled in the art are familiar with 
instructions, storage media, and processing systems. 
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Those skilled in the art will appreciate variations of the 
above-described embodiments that fall within the scope of 
the invention. In this regard, it will be appreciated that there 
are many possible orderings of the steps in the process 
described above and many possible modularizations of those 
orderings. Further, in embodiments where processing speed 
is not determinative, the process might run in the control 
plane rather than the data plane. In addition, while the 
embodiments discussed above are described as operating in 
connection with cubic maps, the invention can be used to 
operate in connection with any arbitrarily configured data 
structure that contains Voxelized or per-pixel spatial infor 
mation associated with the objects of a scene. As a result, the 
invention is not limited to the specific examples and illus 
trations discussed above, but only by the following claims 
and their equivalents. 

What is claimed is: 
1. A method comprising: 
accessing, by a processor, a buffer of requests for render 

ing one or more viewports that are representations of a 
three dimensional virtual environment, the requests are 
received from one or more remote client devices and 
each of the requests identifies respective spatial posi 
tions within the three dimensional virtual environment 
and view transform parameters of the viewports to be 
rendered; 

accessing by the processor, a list of remote render device 
(RRD) nodes: 

routing, by the processor, each of the client requests to an 
appropriate one of the RRD nodes for generating or 
accessing a VSDO (viewport state data object) such 
that the VSDO is used for one of the viewports that are 
rendered by the appropriate RRD nodes; and 

causing, by the processor, the appropriate RRD nodes to 
Supply data associated with the rendered viewports in 
one of session based render packets and continuous 
render streams to respective requesting remote client 
devices. 

2. The method of claim 1 wherein the VSDO comprises 
a cube map including one or more layers of spatial infor 
mation associated with the one or more objects of the scene. 

3. The method of claim 1 further comprising transmitting, 
by the processor, at least a subset of the VSDO by a root 
RRD. 

4. The method of claim 1 wherein the one or more remote 
client devices are peers in a peer-to-peer network. 

5. The method of claim 1, wherein the appropriate one of 
the RRD nodes for generating or accessing a VSDO further 
comprises: 

enabling, by the processor, a single one of the appropriate 
RRD nodes to generate one viewport for multiple 
requests that have the spatial positions and view trans 
form parameters within a threshold distance. 

6. The method of claim 1, wherein enabling the appro 
priate one of the RRD nodes for generating or accessing a 
VSDO further comprises: 

post processing, by the processor, at least a Subset of the 
rendered viewports, wherein the processor is associated 
with a root RRD. 

7. The method of claim 1, wherein the appropriate one of 
the RRD nodes for generating or accessing a VSDO further 
comprises: 

transmitting, by the processor, further requests from the 
remote client devices for compressing or transcoding 
the rendered viewports to a same RRD generated or 
modified the VSDOS. 
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8. The method of claim 1 further comprising partially 

rendering, by the processor, the requested viewport from the 
VSDOS. 

9. The method of claim 8, wherein partially rendering the 
requested viewport further comprises: 

rendering completely, by the processor, the requested 
viewport in a 2D image format. 

10. The method of claim 1, wherein the RRD node is the 
remote client device. 

11. The method of claim 10, further comprising: 
rendering completely, by the processor, the requested 

viewport as a video sequence that encapsulates the 
requested viewport; and 

streaming, by the processor, the video sequence to the 
remote client device by transcoding the video sequence 
into a common video format. 

12. The method of claim 11, wherein the common video 
format is one of Motion Picture Experts Group (MPEG)-2, 
MPEG-4 or Motion-JPEG. 

13. The method of claim 1, further comprising: 
enabling, by the processor, the selected RRD node to 

retransmit the completely rendered viewport to the 
remote client device. 

14. The method of claim 8, wherein the session based 
render packets represent discreet Snapshots of the partially 
rendered viewport. 

15. The method of claim 1, wherein the continuous render 
streams represent the three dimensional environment. 

16. The method of claim 1, further comprising: 
employing, by the processor, a hit function to trace rays 

from a spatial location of the viewport to objects in a 
scene defined by the VSDOs as the spatial location 
from which the viewport is to be rendered varies from 
a reference point of the VSDO. 

17. The method of claim 1, further comprising: 
maintaining, by the processor, state of objects within the 

three dimensional virtual environment; and 
providing, by the processor, the state of the objects to the 

selected RRD node. 
18. The method of claim 17, further comprising: 
modifying, by the processor, the VSDOs in response to a 

change in the state of at least one of the objects. 
19. The method of claim 1, further comprising: 
selecting, by the processor, another RRD node for gen 

erating at least one of the VSDOs when the selected 
RRD node does not optimally render the at least one 
VSDO. 

20. An apparatus comprising 
one or more processors; and 
a non-transitory processor-readable memory comprising: 
a remote rendering module comprising programming 

logic executable by the processors, the programming 
logic comprising: 
buffer accessing logic, executed by the processors, for 

accessing a buffer of requests for rendering one or 
more viewports that are representations of a three 
dimensional virtual environment, the requests are 
received from one or more remote client devices and 
each of the requests identifies respective spatial 
positions within the three dimensional virtual envi 
ronment and view transform parameters of the view 
ports to be rendered; 

node accessing logic, executed by the processors, for 
accessing a list of remote render device (RRD) 
nodes; 

routing logic, executed by the processors, for routing 
each of the client requests to an appropriate one of 
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the RRD nodes for generating or accessing a VSDO 
(viewport state data object) such that the VSDO is 
used for one of the viewports that are rendered by the 
appropriate RRD nodes: 

list accessing logic, executed by the processors, for 
accessing a list of remote render device (RRD) 
nodes; 

Selecting logic, executed by the processors, for select 
ing one of the remote render device (RRD) nodes for 
receiving a partially rendered viewport; and 

Supplying logic, executed by the processors, for caus 
ing the appropriate RRD nodes to Supply data asso 
ciated with the rendered viewports in one of session 
based render packets and continuous render streams 
to respective requesting remote client devices. 
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