
(12) United States Patent
Urbach

USOO965.940OB2

US 9,659,400 B2
*May 23, 2017

(10) Patent No.:
(45) Date of Patent:

(54) EFFICIENTLY IMPLEMENTING AND
DISPLAYING INDEPENDENT
3-DIMIENSIONAL INTERACTIVE
VIEWPORTS OF A VIRTUAL WORLD ON
MULTIPLE CLIENT DEVICES

(71) Applicant: Julian Michael Urbach, Los Angeles,
CA (US)

(72) Inventor: Julian Michael Urbach, Los Angeles,
CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.
This patent is Subject to a terminal dis
claimer.

(21) Appl. No.: 14/966,481

(22) Filed: Dec. 11, 2015

(65) Prior Publication Data

US 2016/O171743 A1 Jun. 16, 2016

Related U.S. Application Data
(63) Continuation of application No. 14/467,224, filed on

Aug. 25, 2014, now Pat. No. 9,214,038, which is a
(Continued)

(51) Int. Cl.
G06T I7/00 (2006.01)
G06T IS/00 (2011.01)
G06F 3/4 (2006.01)
G06T I5/04 (2011.01)
H04N 2L/2343 (2011.01)

(Continued)
(52) U.S. Cl.

CPC G06T 15/005 (2013.01); G06F 3/1415
(2013.01); G06T 15/04 (2013.01); H04N

21/2393 (2013.01); H04N 21/234309

(2013.01); H04N 2 1/816 (2013.01); G06T
2200/04 (2013.01); G06T 2200/16 (2013.01);

G06T 2219/024 (2013.01)
(58) Field of Classification Search

None
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

8,232,989 B2 * 7/2012 Hyndman GO6T 13/40
345/419

2006/0247046 A1* 11/2006 Choi A63F 13/12
463,36

2008. O158232 A1* 7/2008 Shuster GO6T 13/40
345/474

* cited by examiner

Primary Examiner — Said Broome
(74) Attorney, Agent, or Firm — James J. DeCarlo:
Greenberg Traurig, LLP

(57) ABSTRACT

Methods, apparatuses and systems directed to efficiently
circumventing the limitations of client side rendering of
virtual worlds. In a particular implementation, a proposed
system renders each client viewport remotely, removing the
burden of rendering a 3D scene from the local client device.
3D viewports, rather than being rasterized on the local
client, are instead generated on a remote render device
which then transmits a visual representation of the viewport
to the client device in a format (including, but not limited to
a video stream) which the client can use to display the scene
without requiring complex 3D rasterization. This process
eliminates the need for the client to have any specialized 3D
rendering software or hardware, or to install or download
any persistent render assets on the local system. The hard
ware requirements for the client are therefore roughly
equivalent to those needed to play a continuous video
Stream.

20 Claims, 6 Drawing Sheets

24

CompressTranscode
Viewport Output

US 9,659.400 B2
Page 2

Related U.S. Application Data
continuation of application No. 13/968.575, filed on
Aug. 16, 2013, now Pat. No. 8,817,025, which is a
continuation of application No. 12/034,163, filed on
Feb. 20, 2008, now Pat. No. 8,553,028.

(60) Provisional application No. 60/983,320, filed on Oct.
29, 2007.

(51) Int. Cl.
H04N 2L/239 (2011.01)
H04N 2L/8 (2011.01)

U.S. Patent May 23, 2017 Sheet 1 of 6 US 9,659,400 B2

Virtual World System 20

Network Cloud

U.S. Patent May 23, 2017 Sheet 2 of 6 US 9,659,400 B2

2 25O 2O

Cache Network
Interface

2O

High Performance I/O Bus2O6

26

224

Graphics
Processing Unit

Standard I/O Bus2O8.

28 22O) FIG 2

U.S. Patent May 23, 2017 Sheet 3 of 6

2O2
Receive Client Request for
ViewPort Stream (userid,

spatial position, view direction,
field of view, i/o inputs)

RouteRequest
tO RR)

Viewport
Rendering

Load Existing cached
VSDOs, & Modify
and/or generate new
VSDO(s), as required

208
Render Novel
Viewport(s)

Post Process
Viewport(s)

Yes
Compress

Return Viewport
Output to
Client(s)

Compress/Transcode
Of Transcode -- Viewport Output

US 9,659,400 B2

20 FIG. 3

U.S. Patent May 23, 2017 Sheet 4 of 6 US 9,659,400 B2

Distance (T)
Stored in
Texture Map
Layer

Surface
Represented
by Layer

FIG. 4

U.S. Patent May 23, 2017 Sheet S of 6 US 9,659,400 B2

FIG. 5

U.S. Patent May 23, 2017 Sheet 6 of 6 US 9,659,400 B2

Distance
Layer

p

fSg
N

FIG. 6 Surface Represented
by Layer

US 9,659,400 B2
1.

EFFICIENTLY IMPLEMENTING AND
DISPLAYING INDEPENDENT

3-DIMIENSIONAL INTERACTIVE
VIEWPORTS OF A VIRTUAL WORLD ON

MULTIPLE CLIENT DEVICES

CROSS-REFERENCE TO RELATED
APPLICATION

The present application is a continuation of U.S. appli
cation Ser. No. 14/467,224, now U.S. Pat. No. 9,214,038
filed on Aug. 25, 2014 which is a continuation of U.S.
application Ser. No. 13/968,575, filed on Aug. 16, 2013, now
U.S. Pat. No. 8,817,025 which is a continuation of U.S.
application Ser. No. 12/034,163 filed on Feb. 20, 2008 now
U.S. Pat. No. 8,553,028 which claims priority to U.S.
Provisional Application Ser. No. 60/983,320 filed Oct. 29,
2007. The entireties of these applications are incorporated
herein by reference.

TECHNICAL FIELD

The present disclosure generally relates to rendering of
virtual world spaces in three-dimensions and, more particu
larly, to efficient and Scalable mechanisms for remote
device, or server-side, three-dimensional rendering across a
large number of client devices.

BACKGROUND

Three-dimensional (3D) virtual worlds (for example,
World Of Warcraft, Second Life, Runescape, etc.) allow
users to enter and move about, as well as interact with other
users and objects, within a three-dimensional virtual envi
ronment. Such 3D virtual worlds systems generally operate
in the following manner:

1) They require a 3D rendering engine to be resident on
the client’s system in order to render a user's viewport into
the 3D world.

2) The 3D rendering software further requires that the
client machine have certain graphics processing capabilities
which allow the 3D world to be rendered on the local
machine. The more complex the world, the more powerful
the client device's graphics capabilities must be.

3) In order for a user to view a scene on her local system,
the 3D rendering engine must have access to the assets
necessary to build the scene accurately. Such assets typically
include geometry mesh data (vertices, index and attribute
buffers), material and shader definitions (including proce
dural shaders), and texture maps. As scene complexity
increases, the amount of data required to render a scene on
a local client increases as well. Assets for Such complex
virtual worlds are often included in a download or DVD that
the user must first install before the 3D rendering engine on
the local client can begin rendering a scene. Therefore, the
more complex and dense the virtual world, the more data the
user must either have installed or download on their system.
Instantaneous virtual world rendering systems that depend
on streaming render assets for client-side rendering may
introduce objectionable visual artifacts as a viewport is
procedurally refreshed with new textures and meshes that
replace placeholder versions.

4) Virtual world Systems generally use a centralized
server system to persistently maintain the state of the world.
State data from these servers are continuously sent to each
client when needed (including position, orientation, Velocity
and dynamics of objects within the world) in order for each

10

15

25

30

35

40

45

50

55

60

65

2
viewport to remotely render the scene on the client’s local
machine. If all clients have the same assets, and the same
hardware graphics capabilities, visual parity across each
client viewport is possible.

However, the overhead of synchronizing states across
each user's viewport when the client systems are not homog
enous can become problematic in many cases, as the visual
representation of the same viewport may vary across each
client, based on the client's local graphics capabilities. For
example, if a faceted 3D object is tessellated and smoothed
in hardware on a client system which Supports curved patch
tessellation, the silhouette of the object may appear to be
significantly different than the silhouette of the same object
on a client that does not Support tessellation. In the latter
case, the client would be forced to render the 3D object with
a faceted outline. These differences can create objectionable
discontinuities among remotely rendered viewports in cases
where collision detection is performed by the server on the
aforementioned 3D object. If the server performs collision
detection using the Smooth tessellated version of the object,
and then transmits this singular result to each client, the
visual representation of the point of impact and bounce
vector from the collision may not appear to correspond to a
valid point and slope on the surface of the object from the
point of view of a user displaying the scene without tessel
lation. This can become even more objectionable, when the
tessellation is performed on a macroscopic object such as
terrain, where control of vehicles or avatars depends heavily
on an accurate representation of the ground Surface. These
types of discontinuities between the state of world on the
server, and the visual representation on an arbitrary client,
increases significantly as a 3D virtual world becomes more
complex, and the range of client devices that need to be
Supported expands to mobile phones, TV set top boxes and
other hardware that may have limited or no 3D graphics
capabilities on the local machine.

SUMMARY

In particular embodiments, the present invention provides
methods, apparatuses and systems directed to efficiently
circumventing the limitations of client-side rendering of
virtual worlds. In a particular implementation, a virtual
world system renders each client viewport remotely, remov
ing the burden of rendering a 3D scene from the local client
device. 3D viewports, rather than being rasterized on the
local client, are instead generated on a remote render device
which then transmits a visual representation of the viewport
to the client device in a format (including, but not limited to
a video stream) which the client can use to display the scene
without requiring complex 3D rasterization. This process
eliminates the need for the client to have specialized 3D
rendering software or hardware, or to install or download
any persistent render assets on the local system. The hard
ware requirements for the client, in one implementation,
can, therefore, be reduced to that roughly equivalent to those
needed to play a continuous video stream.

DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic diagram illustrating a computer
network environment in which implementations of the
invention may operate.

FIG. 2 is an example server system architecture according
to one possible implementation of the invention.

FIG.3 is a flow chart illustrating a process flow according
to one possible implementation of the invention.

US 9,659,400 B2
3

FIGS. 4 thru 6 are diagrams that graphically illustrate how
rays can be traced from an arbitrary spatial location within
a cube map where distances are defined relative to a com
mon reference point.

DESCRIPTION OF EXAMPLE
EMBODIMENT(S)

The following example embodiments are described and
illustrated in conjunction with apparatuses, methods, and
systems which are meant to be illustrative, not limiting in
Scope.
A. Overview

A.1. Network Environment
FIG. 1 illustrates an example network environment in

which particular implementations of the invention may
operate. As FIG. 1 illustrates, particular implementations of
the invention may operate in a network environment com
prising a virtual world system 20 that is operatively coupled
to a network cloud 60, which may include the Internet.
Network cloud 60 generally represents one or more inter
connected networks, over which the systems and hosts
described herein can communicate. Network cloud 60 may
include packet-based wide area networks (such as the Inter
net), private networks, wireless networks, satellite networks,
cellular networks, paging networks, and the like. Some of
the networks in network cloud 60 may be circuit-switched
networks. The computer network environment, including
network 60 can be a packet-based communications environ
ment, employing TCP/IP protocols (for example), and/or
other Suitable protocols, and has a plurality of intercon
nected digital packet transmission stations or routing nodes.
Client nodes 82 and 84 are operably connected to the
network environment via a network service provider or any
other suitable means. Client nodes 82 and 84 may include
personal computers or cell phones, as well as other types of
mobile devices such as lap top computers, personal digital
assistants (PDAs), etc.

Virtual world system 20 is a network addressable system
that hosts a virtual world or environment accessible to one
or more users over a computer network. The virtual world
system 20 may include web site and server functionality
where users may request and receive identified web pages
and other content over the computer network. The virtual
world System may also allow users to configure and main
tain personal avatars and interact with other avatars and
objects hosted within a virtual environment.

In particular implementations, virtual world system 20
comprises one or more physical servers 22 and one or more
data stores 24. The one or more physical servers 22 are
operably connected to computer network 60 via a routter 26.
The one or more physical servers 22 host functionality that
allows users to interact with the virtual world, such as
receiving requests from, and transmitting responsive data to,
client nodes 82 and 84. In one implementation, the func
tionality hosted by the one or more physical servers may
include web or HTTP servers, RTSP servers, and the like.

Physical servers 22, as discussed above, host functionality
directed to Supporting and implementing virtual world sys
tem. 20. In a particular implementation, the physical servers
22 may host one or more instances of a virtual world server
and one or more instances of a remote rendering device
server. In one implementation, a data store 24 may store user
information and state information of avatars and other
objects or assets maintained in the virtual environment. A
given data store 24 may also store content such as digital
content data objects, user information, and other media

10

15

25

30

35

40

45

50

55

60

65

4
assets. A content data object or a content object, in particular
implementations, is an individual item of digital information
typically stored or embodied in a data file or record. Content
objects may take many forms, including: text (e.g., ASCII.
SGML, HTML), images (e.g., jpeg, tif and gif), graphics
(vector-based orbitmap), audio, video (e.g. mpeg), or other
multimedia, and combinations thereof. Content object data
may also include executable code objects, object or asset
definitions, etc. Structurally, content data store 24 connotes
a large class of data storage and management systems. In
particular implementations, content data store 24 may be
implemented by any suitable physical system including
components, such as database servers, mass storage media,
media library systems, and the like.

A.2. Example Server System Architecture
The server host systems described herein may be imple

mented in a wide array of computing systems and architec
tures. The following describes example computing architec
tures for didactic, rather than limiting, purposes.

FIG. 2 illustrates an example computing system architec
ture, which may be used to implement a physical server. In
one embodiment, hardware system 200 comprises a proces
sor 202, a cache memory 204, and one or more software
applications and drivers directed to the functions described
herein. Additionally, hardware system 200 includes a high
performance input/output (I/O) bus 206 and a standard I/O
bus 208. A host bridge 210 couples processor 202 to high
performance I/O bus 206, whereas I/O bus bridge 212
couples the two buses 206 and 208 to each other. A system
memory 214 and a network/communication interface 216
couple to bus 206. For physical servers hosting remote
rendering device functionality, hardware system 200 may
further include one or more graphics processing units 224
coupled to buses 206 and 208. In one implementation, the
graphics processing unit 224 may be embodied in a graphics
or display card that attaches to the server system architecture
via a card slot. In other implementations, the graphics
processor unit 224 may be integrated on the motherboard of
the server system architecture. Mass storage 218, and I/O
ports 220 couple to bus 208. Hardware system 200 may
optionally include a keyboard and pointing device, and a
display device (not shown) coupled to bus 208. Collectively,
these elements are intended to represent a broad category of
computer hardware systems, including but not limited to
general purpose computer systems based on the X86-com
patible processors manufactured by Intel Corporation of
Santa Clara, Calif., and the x86-compatible processors
manufactured by Advanced Micro Devices (AMD), Inc., of
Sunnyvale, Calif., as well as any other Suitable processor.
The elements of hardware system 200 are described in

greater detail below. In particular, network interface 216
provides communication between hardware system 200 and
any of a wide range of networks, such as an Ethernet (e.g.,
IEEE 802.3) network, etc. Mass storage 218 provides per
manent storage for the data and programming instructions to
perform the above described functions implemented in the
location server 22, whereas system memory 214 (e.g.,
DRAM) provides temporary storage for the data and pro
gramming instructions when executed by processor 202. I/O
ports 220 are one or more serial and/or parallel communi
cation ports that provide communication between additional
peripheral devices, which may be coupled to hardware
system 200.

Hardware system 200 may include a variety of system
architectures; and various components of hardware system
200 may be rearranged. For example, cache 204 may be
on-chip with processor 202. Alternatively, cache 204 and

US 9,659,400 B2
5

processor 202 may be packed together as a “processor
module,” with processor 202 being referred to as the “pro
cessor core.” Furthermore, certain embodiments of the pres
ent invention may not require nor include all of the above
components. For example, the peripheral devices shown
coupled to standard I/O bus 208 may couple to high per
formance I/O bus 206. In addition, in some embodiments
only a single bus may exist, with the components of hard
ware system 200 being coupled to the single bus. Further
more, hardware system 200 may include additional compo
nents, such as additional processors, storage devices, or
memories.

Graphics processing unit 224, in one implementation,
comprises one or more integrated circuits and/or processing
cores that are directed to mathematical operations com
monly used in graphics rendering. In some implementations,
the GPU 224 may use a special graphics unit instruction set,
while in other implementations, the GPU may use a CPU
like (e.g. a modified x86) instruction set. Graphics process
ing unit 224 can implement a number of graphics primitive
operations, such as blitting, texture mapping, pixel shading,
frame buffering, and the like. Graphics processing unit 324
may be a graphics accelerator, a GPGPU (General Purpose
GPU), or any other suitable processing unit.
As discussed below, in one implementation, the opera

tions of one or more of the physical servers described herein
are implemented as a series of Software routines run by
hardware system 200. These software routines comprise a
plurality or series of instructions to be executed by a
processor in a hardware system, such as processor 202.
Initially, the series of instructions may be stored on a storage
device or other computer readable medium, such as mass
storage 218. However, the series of instructions can be
stored on any Suitable storage medium, Such as a diskette,
CD-ROM, ROM, EEPROM, etc. Furthermore, the series of
instructions need not be stored locally, and could be received
from a remote storage device. Such as a server on a network,
via network/communication interface 216. The instructions
are copied from the storage device, such as mass storage
218, into memory 214 and then accessed and executed by
processor 202.
An operating system manages and controls the operation

of hardware system 200, including the input and output of
data to and from Software applications (not shown). The
operating system provides an interface between the Software
applications being executed on the system and the hardware
components of the system. According to one embodiment of
the present invention, the operating system is the Windows.(R)
95/98/NT/XP/Vista operating system, available from Micro
soft Corporation of Redmond, Wash. However, the present
invention may be used with other Suitable operating sys
tems, such as the Apple Macintosh Operating System,
available from Apple Computer Inc. of Cupertino, Calif.,
UNIX operating systems, LINUX operating systems, and
the like. Of course, other implementations are possible. For
example, the server functionalities described herein may be
implemented by a plurality of server blades communicating
over a backplane.
B. Viewport Rendering Processes
A viewport is a rendered representation of a virtual scene

or environment from a given spatial location in the virtual
environment and according to one or more view transform
parameters (such as pitch, yaw, and field of view). Viewports
can be rendered by generating a Viewport State DataObject
(VSDO), which, in one implementation, comprises a layered
cube map, and using a pixel or fragment shader to generate
pixel values for the viewport. A cube map is essentially six

10

15

25

30

35

40

45

50

55

60

65

6
texture maps stitched into a cube. Each texture map includes
texels, which are essentially pixel information regarding a
scene relative to a common reference point. A texture map
on the face of a cube can be generated by rendering a scene
from a common reference point using the faces of the cube
as window rectangles. Each texel may contain material
properties (index of refraction, color, etc.), the distance from
the reference point, and a Surface normal vector. A set of
layered texture maps representing a scene can be obtained
using depth peeling. The number of peeling passes can be
limited to control the number of layers.

Each texel stores information on all object points between
the reference point and the farthest object point. To generate
a rendered representation of a scene corresponding to a
layered cube map, a graphics processing unit may trace rays
from a common origin to determine the distances between
the origin and objects in the scene, using a fragment shader
unit to compute the radiance at points visible from the
origin. The render processing typically involves rasterizing
the scene geometry and finding the first hits where the rays
pass through the pixels. This approach, however, requires
regeneration of the cube map when the spatial location
(origin) of the viewport changes, such as when a player in
a virtual world moves throughout a scene.
The system and the methods described herein can be

configured to efficiently circumvent these limitations, as
well as limitations associated with client side rendering of
virtual worlds. The proposed system, in one particular
implementation, renders each client viewport remotely (rela
tive to a given client), removing the burden of rendering a
3D scene (or part of the processing associated with render
ing a 3D scene) from the local client device. 3D viewports,
rather than being rasterized on the local client, are instead
generated on a remote render device, which then transmits
a visual representation of the viewport to the client device in
a format (including, but not limited to a video stream) which
the client can use to display the scene without requiring
complex 3D rasterization. This process eliminates the need
for the client to have specialized 3D rendering software or
hardware, and/or the need to install or download any per
sistent render assets on the local system. The hardware
resource requirements for the client are therefore roughly
equivalent to those needed to play a continuous video
Stream.

In addition, implementations of the present invention can
be configured to render multiple viewports, each corre
sponding to different spatial location and view transform
parameters, using the same Viewport State DataObject. This
allows the computing resources used to create the Viewport
State Data Object to be used in connection with multiple
users or viewports. In addition, this may allow distributed
virtual world systems where peer nodes with sufficient
graphics processing capabilities may render novel viewports
for other peers.
The remote render device, which performs the actual 3D

rendering for the client, may comprise a server (as discussed
above) with one or more central processing units (CPUs),
one or more network interfaces, an optional Graphics Pro
cessor Unit or GPU (if the CPU is not powerful enough to
render the viewports in the methods described herein), and
a storage system interface for accessing a data storage
system that maintains virtual world assets or objects for
rendering. A remote render device (RRD) server can be part
of a centralized cluster of machines or it can be a node within
a distributed peer-to-peer network. In both cases, the RRD
server has the graphics capabilities required to render a 3D
viewport of a virtual world, and also has enough bandwidth

US 9,659,400 B2
7

to transmit and transcode a simplified representation of the
rendered view (e.g., a compressed video stream) to one or
more clients. The remote render device server can Supply
both continuous and session-based viewport render data to a
client:

1) Session based render packets: these render data packets
represent discreet Snapshots of a viewport, and are used
for static representations of a scene that a client device
can further manipulate with minimal complexity on the
local system.

2) Continuous render streams: these render data streams
are comprised of continuously updated, rendered rep
resentations of each viewport managed by a remote
render device, which are sent in real time (such as a
video stream) to each client associated with the view
port. Real-time RRD rendering of a dynamic scene and
streaming back to the client enables real time interac
tion with the remotely rendered viewport with reduced
lag.

The render data transmitted by a remote render device can
beformatted in several ways for decoding and display by the
client device, or for further processing and transcoding
through a client that can additionally act as remote render
device node in a peer-to-peer cloud that extends the pro
cessing power of the root remote render devices in a
centralized server system. In some implementations, the
viewport may be completely rendered, while, in other imple
mentations, the partially-rendered viewport can be transmit
ted for further processing by a client or downstream node in
a distributed system.

Complete Viewport Render
This format is comprised of a 2D image or video sequence

created by a remote render device that fully encapsulates the
viewport in a simple way for a client (e.g., a simple 2D
image raster, Such as Joint Photographics Experts Group
(JPEG) or Portable Network Graphics (PNG)). A client
accepting this form of render data can do so without 3D or
imaging processing capabilities. The remote render device
may also output this data as a video stream viewable in most
web browsers or other client applications by transcoding the
render sequence into a common video format (Such as Ogg,
Motion Picture Experts Group (MPEG)-2, MPEG-4, Part 10
(a/k/a h.264), Motion JPEG (M-JPEG), etc).

Partial Viewport Render:
This render format exposes more information to a client

device than the complete render format described above,
allowing more powerful clients to finish rendering the
viewport from a novel viewpoint (using the render methods
described herein) without incurring additional rendering
costs server side and thus freeing up server resources. This
format further allows any arbitrary client with enough
graphics processing power and bandwidth to retransmit
novel, completely rendered viewports to thin clients without
taxing the root remote render devices. AVSDO, as discussed
above, contains a set of rendered layers of a cube map that
are initially rasterized by a root remote render device, via
depth peeling, where each layer of the rendered data seg
ment contains depth information of a scene from a common
reference point, material properties and optionally high
dynamic range lighting values. This data encompasses
enough information about the scene so that an (RRD server
or client) can quickly create novel independent viewports,
using the methods described herein, and stream them out to
additional non-RRD capable clients.
VSDOs can be initially generated on a root RRD. The root

RRD performs this generation efficiently on a GPU, using
cube maps and multiple render targets using depth peeling or

10

15

25

30

35

40

45

50

55

60

65

8
Some other Suitable process. The cube map layers can further
be turned into 2D longitude latitude maps using the process
illustrated in the pseudo code section set forth below and
packed into standard 2D based representations which can
further be sent as compressed video streams using a video
codec designed for compressing 2D temporal video data.
VSDOS can also contain partial scene representations (par
tial Viewport State Data Object) versus a full 360-degree
panoramic dataset in a complete VSDO. Partial VSDOs can
include top down or isometric tiles of a scene, which a thin
client can Subsequently use to scroll in 2D, without requiring
the more complex image decoding of a complete VSDO.
As the spatial location from which a viewport is to be

rendered varies from the reference point of the VSDO, a hit
function can be used to trace rays from the spatial location
of the viewport to the objects in the scene defined by the
VSDO. The viewport rendering functionality described
herein uses the search algorithms described below to render
views of a scene using one or more common VSDOs
rendered from different spatial location and view transform
parameters. That is, using the HIT function defined below, a
single VSDO or set of VSDOs can be used to render multiple
viewports, each with a different spatial location (or reference
point) and different view transform parameters (such as
pitch and yaw).
To render a scene, a fragment shader computes the

distance between the spatial location of the viewport and an
object defined in the layer(s) of the cube map along a set of
rays extending from the spatial location of the viewport.
Since the spatial location of the viewport and the reference
point of the cube map are often different, a search algorithm
is used to find the distance for rendering of a given pixel. As
described below, a two-phased search algorithm can be used.
In a first phase, a linear search algorithm is used to compute
a rough overshooting guess and an undershooting approxi
mation that bound the intersection point of the ray. A second
search process, bounded by the overshooting and under
shooting values, searches for a more accurate intersection
point.

B.1. HIT Function
With reference to FIGS. 4 to 6, assume for didactic

purposes, that point o is the reference point of the layered
cube map of a VSDO, and the point x is the current spatial
location from which a viewport is to be rendered. The
distanced from point x to the first object intersection in a
given layer can be defined by a ray of the equation x+R*d,
where R is the direction of the ray. However, for a ray
extending from point X in the direction R, it is necessary to
search for the distanced given that the distances in the cube
map are computed relative to the reference point o, and not
the spatial location of the viewport (x). Referring to FIG. 4,
the distance d can be approximated by reading the distance
(1) of the surface represented by the cube map layer with the
direction of l=X--R*d, and comparing it with the distance of
the approximating point 1 on the ray Ill. If Ill is approxi
mately equal to 1", then the intersection is found. However,
if the point on the ray (1) is in front of the surface (1|<1'),
then the current approximation is undershooting. If the point
on the ray (1) is beyond the surface (1|D|1'), then the current
approximation is overshooting. In a linear search process, a
rough overshooting and undershooting approximation is
computed. Within these approximations, a second more
accurate search is conducted to find the ray end point or
object intersection.

In a particular implementation, since the possible inter
section points are on the ray defined by X--R*d, the search
for the intersection or distance d can be conducted by

US 9,659,400 B2
9

checking points r(d) X--R*d with an increasing sequence of
positive values of d, and detecting the first pair of Subse
quent or adjacent points, where one point of the pair
overshoots and the second point undershoots. The actual
intersection lies within these points.
The linear search, in one implementation, can involve

marching on a line segment that looks the same as the ray
from the reference point, except that its two endpoints are at
the same distance. The endpoints of this line segment can be
obtained by projecting the start of the ray, r(0), and the end
of the ray, r(OO), onto a unit sphere, resulting in a first
endpoint s=X/XI and second endpoint e-R/R. The inter
section is found at the texels that are seen at a direction
between s and e, as shown in FIG. 5.

The intersection algorithm can search these texels, mak
ing uniform steps along the line segment S-e, where r(t)=s*
(1-t)+et for t=0, At, 2At, 1. The correspondence
between ray parameter d and parameter t can be found by
projecting r' onto the ray, which leads to d(t)=(XI/IRI)*t/
(1-t). A fragment shader can take inputs of ray origin X (the
spatial location of the viewport), direction R, and the cube
map, and sequentially generate ray parameters d on points of
the ray r and return an undershooting ray parameter d1 and
an overshooting ray parameter dip. The variables lp and ppp
in the following fragment shader code listing represent ratios
|11/11" and pl/lp', respectively.

float a = length(x) length (R):
bool undershoot = false, overshoot = false:
float dl, Ilp; Ray parameter and III/III of last undershooting
float dip, ppp.; Ray parameter and pip' of last overshooting
float t = 0.0001f.
while(t K 1 &&. (overshoot and undershoot)) {

float d = a *t (1 - t):
float,3 r = x + R* d:
float ra = texCUBElod(map, floatá(r.0)) a:
if (ra > 0) {

float rrp = length(r)/ra:
if (rpp < 1) {

dl = d.
lipp = rrp;
undershoot = true;
else {
dp = d.
ppp = rrp;
overshoot = true:

else {
undershoot = false:
overshoot = false:

The search algorithm finds a pair of undershooting and
overshooting values of d in a layer of a cube map, making
uniform steps Dt in texture space along the ray. Step size Dt

10

15

25

30

35

40

45

50

10
can be set based on the length of line segment S-e and the
texel resolution of the cube map. At a given texel, the
distance can be obtained from the alpha channel of the cube
map. This linear search can be run for each layer of the cube
map. The layer where the dip parameter is minimal contains
the first hit of the ray.

In some implementations, the linear search can be accel
erated by determining minimum and maximum distance
values (d) that bound the search space. When a ray is traced,
it is intersected with spheres centered at the reference point
(o) and having radii equal to the minimum and maximum
distance values in the layer of the cube map. These two
intersection points may reduce the ray space that needs to be
searched and reduces the length of the line segment S-e to
allow for fewer search steps with the same accuracy.

With the undershooting and overshooting distance values
(dl, dp), a secant search can be used to determine the
intersection. The secant search assumes that the Surface is
planar between the texel map distances of the overshooting
and undershooting points. With this assumption, a line
between 1' and p' is intersected by the ray at a point
r=x--R*dn, where

If a single secant step does not provide accurate results, din
can replace dip or d1 (always keeping one of the overshooting
or undershooting approximations) and proceed to iteratively
compute din again. The following fragment shader code
illustrates an example secant search implementation.

for (int I = 0: I < NITER; i++) {
din = di + (dip - dl) * (1-lipp), ppp-lpp);
float,3 r = x + r * din;
float rrp = length(r) texCUBElod(map, floatá-(r.0)).a;
if (rrp < 0.999) {

lipp = rrp;
dl = din;

} else if (rrp > 1.0001) {
ppp = rrP:
dp = din;

} else i = NITER:

The linear search algorithm that processes every layer of
the cube map, and the secant search that processes a single
layer, can be incorporated into a function—a HITO) function
providing a tool that can trace a ray from an arbitrary spatial
location within a scene defined by a cube map.

B.2. Viewport Rendering
The following code segment illustrates fragment shader

pseudo code that can be used to render an arbitrary viewport
position from layers of cube map samplers with depth
information.

if in this simple example, a cube mesh, centered at the camera origin, is passed into the pixel
shader for rasterization
// The VSDO is represented by a cubemap array, which is tied to the SceneID
// The ViewPortID is used to lookup ViewPort specific data for the Novel ViewPort being
rendered using this function (i.e. position, FOV, etc).
fi result is the output fragment data to be written to the render target
function backdrop (int SceneID, intViewPortID)

if the view vector can be calculated by getting a normal to the vertex position of a
skybox passed from the vertex shader

i? or it can calculated completely in the pixel shader for the screen space fragment with a
view transform set in a constant buffer and indexed with ViewPortID

floats ViewDir=normalize(vertexpos.XZy);

US 9,659,400 B2
11

-continued

12

// CubeMap Array is an array of Cubic Environment maps, with depth information
fi camerapos ViewPortID a floats constant buffer entry storing the viewport's position

in world space
fi probepos is a floats constant buffer entry storing the world space origin of the cubic

environment depth map being tested for a ray intersection
if Hit(float3 pos, float3 ray, inout int LayerID) is a function that performs raycasting on

all loaded depth cube map samplers using the ray intersection system described
// The Hit() function's 3rd parameter is an inout value that is set to the cube map ID

where that the ray intersects by the Hit() function after testing is done on all depth layers in the
cube map array

if the LayerID can index a cube map array, which along the HitPoint return value, can
lookup the proper fragment to render for this viewport

int LayerID;
floatã HitPoint = Hit(camerapos ViewPortID-probeposSceneID.ViewDir. LayerID)
result=texCUBE(CubeMap ArrayLayerID, HitPoint);

While a centralized server farm could include one render
server for every connected client, thus ensuring that each
client has a dedicated graphics device for remotely rendering
a client viewport, this would be inefficient compared to a
client side-rendering model where a single virtual world
server would handle many hundreds of users at once, due to
the low complexity of processing and transmitting simple
state information packets (i.e., object position, Velocity,
etc.). The complexity of rendering a 3D viewport is orders
of magnitude more complex than processing state informa
tion, and thus, a render server that would perform brute force
rendering naively for each viewport would require dispro
portionately more processing power per user than a state
based server model.

The rendering methods described herein can reduce the
processing time required for rendering novel viewports of a
scene after a VSDO encompassing the novel viewports
elements has been created. This process vastly increases the
number of simultaneously rendered viewports that a single
render device can generate. Rather than re-render each
viewport naively, which, in the case of complex scenes
would require a linear Scaling of processing power per
additional viewport, the system can be configured to render
additional viewports using the information contained in one
or more VSDOs, which requires only a simple fragment
operation per rendered screen pixel, and is thus more effi
cient than brute force rendering of a scene containing
complex and dense meshes. For example, this would allow
an RRD server to generate a set of VSDOs for a segment of
a virtual world, and re-use this generated set of VSDOs to
provide rendered viewport output to multiple clients. In
some implementations, the RRD server could provide the
VSDOs to RRD clients or peers for rendering of viewports.

B.3. Overview Creating A Viewport State DataObject
A viewport state data object (VSDO) contains layers of

scene information that are generated from an arbitrary
reference point in a 3D scene on a remote render device. The
viewport data object layers can be efficiently generated on a
GPU in the following manner. In other words, GPUs have
facilities that generate viewport state data objects given
information regarding the objects in a scene and a reference
point.

1) A 3D scene managed by an RRD, each time it is
significantly changed, is rendered into a series of cubic
environment maps, or a single cubic environment map
set, if multi-element cube maps are supported by the
graphics processor unit. One GPU can be utilized to
render the cubic maps. In other implementations, mul
tiple GPUs can be used to separately render a face of a

25

30

35

40

45

50

55

60

65

cubic map into a commonly accessible memory space
to accelerate generation of the VSDO.

2) The multiple layer elements of the rendering output
include: depth information and color information, and,
for relighting and deferred shading purposes, may
optionally contain per fragment Surface normals, UV
texture coordinates, material properties and high
dynamic range lighting information.

3) If the VSDO being generated is intended to allow novel
viewports to be created from different spatial reference
positions (using Render Method 2, below), then the
Scene is rendered using depth peeling. These additional
cube maps (Depth layer sets) also comprise the ele
ments described above, and are generated for each
additional depth layer that is required to re-render
overlapping elements within the radial clipping plane
range of the viewport state date object (defined as the
far clipping plane of the camera used to generate the
VSDO).

4) Static and dynamic objects can further be separated
into additional layers, so that static scene elements can
be cached in one set of cube maps-based VSDOs, and
dynamic scene elements can be updated in another set
of cube maps of the VSDOs (using operations 1-3)
described above, enabling even faster generation of a
VSDO when static scene elements are cached and
combined with VSDOs containing only dynamic scene
elements.

5) The cube map VSDO layers generated in steps 1-4 can
be transformed into 2D packed VSDOs (for example
longitude latitude map, parabolic map set, helix map) in
order to facilitate storage and transmission of the
VSDO in 2D image formats.

6) Sequences of complete VSDOs generated in linear or
grid-based spatial sets can further be stacked together
into a Volumetric texture (for single sampler access
within a GPU shader) and also compressed as a
sequence of grouped frames through standard 2D video
codec techniques.

C. Efficient Viewport Control and Streaming System
FIG. 3 illustrates a process flow directed to a system that

interacts with client devices and streams rendered viewport
data to the client devices. In a particular implementation, a
user on a client system 82 or 84 requests, through a network
stream to a world state server, that a novel viewport with a
specific view and spatial transform is to be rendered by a
remote render device, and that the output is to be sent back
to the client for display (302). The world state server, which
manages a list of RRD nodes (either centralized or on a P2P

US 9,659,400 B2
13

network), accepts the client request and routes the viewport
render request to the appropriate RRD which could best
generate or access a VSDO closest to the Novel Viewports
spatial position (304). As a given user navigates within the
virtual environment, changing the spatial position or view
transform parameters, additional client requests may be
transmitted to the world state server, which routes the client
requests to the RRD node. In one implementation, the world
state server maintains the State of one or more avatars,
objects and other assets within the virtual environment. The
state of these objects (such as spatial position and orientation
parameters) may be provided to the remote render devices
when generating VSDOs.
As FIG. 3 illustrates, a given RRD accesses a buffer of

pending viewport render requests sent by the world State
server and either loads existing cached VSDOs and modifies
or generates new VSDO(s) that will be required to fulfill the
requests of each client (306). In this step for example, an
RRD may regenerate or modify a VSDO if the state of one
or more objects has changed. Rendering of each of the novel
viewports is performed using render method 1 or 2, as
discussed below (308). The instant RRD server may request
an additional VSDO from another RRD node if the
requested novel viewport requires a VSDO that is not
optimally rendered on a single RRD. In a given implemen
tation, one or more VSDOS may correspond to a room in a
virtual environment for example. To render viewports for
users whose avatars are located within the room for
example, the RRD may process the VSDOs against the
spatial and view transform parameters of the corresponding
viewports. In some implementations, the RRD may render
one viewport for multiple requests, if the spatial and view
transform parameters are within a threshold distance. As
FIG. 3 illustrates, the rendered viewport(s) may be post

10

15

25

30

14
complex 3-D scenes and stream novel viewports out to
multiple clients, which then do not need client-side render
ing engines which consume Substantial processing
resources. Embodiments of the invention facilitate use of the
system with thin client devices, such as hand-held and
mobile devices.
The client receives the rendered viewport, displays it on

the local graphics device, and, as discussed above, may
continue to asynchronously pass any further input and
render requests relating to the viewport to the world state
server. The process described above, when used to stream
viewports, is essentially iterative in that the RRD repeats the
processes described herein to generate rendered viewports
for one or more clients and streams the rendered viewport
data to the clients. As the clients manipulate I/O devices,
Such as joysticks and keyboards, the world State server may
change the spatial position and view transform of corre
sponding viewports, as well as the state of the avatars and
other objects within the virtual environment. In one imple
mentation, a client can send simple keyboard or other local
input state information to the world State server, moving all
operations relating to viewport rendering for the client to the
remote render system. The RRD could then handle and
process world State collision requests using existing VSDO
sets used for rendering to also perform collision detection
and navigation logic efficiently for a large number of clients.

If a viewport state data object is stored in a 2D format (as
described above), the data contained therein can either be
converted back into a cube map for efficient rendering on a
GPU, or the data can be accessed directly in the rendering
routines described below. This can be done through pixel
shader operations that map 3D cube map texture lookups
into 2D texture coordinate lookups, using the inverse trans
form that encoded the VSDO cube map layer into a 2D raster
(see following pseudocode).

Fragment shader pseudo code to turn a cube map into longitudeflatitude map
if uv is (x,y) uv coordinate of pixel being rendered into a 2D target
if CubeMap is cube map texture sampler being converted into a 2D longitude/latitude map
fi result is the output fragment data to be written to the render target
function CubicMapto2DMAP(float2 uv, sampler CubeMap)

float rx=radians (180*(uv.X-.5)*2);
float ry=radians(-180*(uvy-.5));
floatã R. the 3 coordinate lookup vector for the CubeMap being converted
R.x=sin(-rx)*cos(ry);

result=texCUBE(CubeMap.R):

processed 310 (e.g., adding text overlays, etc.) either by the
root RRD, or an additional RRD node which can handle this
task more efficiently. Furthermore, if compression or
transcoding of the viewport is needed (based on either tags
passed into the render request or server-side analysis of the
clients abilities, such as HTTP header info), the world state
server passes along a further request, or flags the client
request, to the RRD in step 304 to either compress or
transcode the viewport render on the same RRD (potentially
on another CPU core or GPU core on the RRD) or to pass
along the viewport render to another RRD node that can
more efficiently handle this task (312,314). The post pro
cessed viewport render is routed and sent back to the client
from the RRD if no compression or transcoding is needed)
or from a compressed and transcoded representation gener
ated by the RRD (316). In this manner, an RRD server may
utilize the facilities of a GPU, for example, to render

50

55

60

65

C.1. Viewport Rendering
The complete VSDO can be rendered in 2 ways to create

a novel viewport (NV), without requiring further complex
rasterization of Scene geometry. The choice between ren
dering methods depends on the relation between the center
or reference point of the VSDOs and the spatial position or
location of a given viewport.

C.1.a. RENDER METHOD 1: Novel Viewport Orienta
tion

This method treats the VSDO as a cubic environment map
(e.g., a sky box), centered about a novel viewport's world
space and view origin. This method allows efficient re
rendering of the novel viewport using any arbitrary orien
tation (e.g., pitch, yaw, roll). In a scene with complex
geometry, reducing the re-rendering process to a simple
rasterization of a panoramic environment can therefore
dramatically increase the speed by orders of magnitude

US 9,659,400 B2
15

versus performing a complete re-render of the entire scene
for each viewport. This method can be used in cases where
the novel viewport's spatial reference position is approxi
mately the same as the VSDO’s capture radius center
(reference point), and only the viewports orientation (yaw,
pitch, roll) and perspective transform need to be changed to
create or render the viewports. According to this render
method, a simple skybox cube model is centered at the novel
viewports origin. The RRD, using the facilities of a GPU,
attaches one or more VSDOs to a fragment or pixel shader
as available inputs for the render pass. A pixel or fragment
shader is a GPU resource that renders or shades pixels in a
memory map in a fast, parallel processing operation.
Depending on the capabilities and configuration of the GPU,
multiple VSDOs may be mapped to a pixel shader, or the
mapping may be a one-to-one relationship. Each novel
viewport is rendered from its unique orientation and per
spective parameters. In a particular implementation, the
skybox pixel shader samples the VSDO using the view
vector from the origin to render the VSDO as a panoramic
environment.
An example application of this method would be to

generate a novel viewport for each avatar in an enclosed
room of a virtual world, where each generated viewports
orientation and perspective is aligned per render frame to
keep its target avatar centered and properly cropped in the
novel viewport (assuming each novel viewport shares its
origin with the others at the center of the room, the point
where the VSDO is generated).

C.2. RENDER METHOD 2: Novel Viewport Position and
Orientation

Render method 2 expands the subset of novel viewports
generated using render method 1 to include novel viewports
that are generated from any arbitrary 3D spatial position (in
addition to orientation and perspective) within the VSDO’s
capture radius. Additional VSDO nodes can be dynamically
linked together as additional sampler stages at render time in
order to enable the novel viewport to rasterize elements
outside of the bounds of a single VSDO capture radius. The
method applies the parallel pixel shader processing power of
a GPU to perform ray intersections tests on a VSDO, using
the VSDO’s depth layers to generate a novel viewport from
any point within the bounds of the VSDO’s capture radius.

According to render method 2, the novel viewports
requested world (spatial) and view transform are set (i.e., as
shader constants if performing the rendering on a GPU). As
above in Render Method 1, the depth and render layers of
each VSDO required to render the novel viewport are
prepared for rendering (i.e. loaded as texture samplers on a
GPU), and a skybox mesh can be prepared as a dummy
environment map as described in render method 1 and
centered at the novel viewport's local rendering origin as in
render method 1.
The viewport is rasterized from the novel viewports

requested world and view transform using the following
fragment operation: Each fragment performs a ray traced hit
test (see first pixel shader pseudocode section, above) on all
VSDOs loaded in to the GPU for the viewport, using the
world or spatial position set as the origin of the ray, and the
ray's direction vector set to the match the view transform
parameters. The ray hit test algorithm (see above), returns hit
point and VSDO fragment layer information. Furthermore,
depth information from a previously generated and cached
VSDO of the scene's static elements can be used to merge
these static scene elements with the new VSDO by including
the cached VSDO. Overlapped elements can be processed
and sorted correctly. If the ray-traced VSDO fragment

10

15

25

30

35

40

45

50

55

60

65

16
contains intermediate render state data (normal maps, dif
fuse, specular, Fresnel, UV, material ID and other render
elements) then deferred shading can be performed on these
elements to produce a completely rendered fragment. The
final processed fragment generated is rendered into Screen
space in the novel viewport's render buffer.
The skybox mesh is optional for both Render Methods 1

and 2. A pixel shader that incorporates the novel viewports
transform as a shader constants could rasterize the novel
viewport entirely in a fragment or pixel shader, thus allow
ing for multiple tiled novel viewport frames to be rendered
in a large render target in a single pass, increasing the
efficiency of the system even further. For example, in a
multiple novel viewport environment, each novel viewport
has spatial (world) and view transform parameters. The
method of the invention can be configured to load the
constants (spatial and view transform parameters) for all
active viewports into a buffer, and to associate the locations
of the memory map of the GPU to corresponding viewports
and their constants. The pixel shader, as it writes each pixel
into the memory map, applies the constants associated with
that region of the memory map. By dividing the GPU
memory map for multiple viewports, multiple viewport
outputs can be generated in one render pass to improve
Scalabability. For example, a particular graphics processor
has a 8192x8192 pixel memory map, which allows a frag
ment or pixel shader to rendter 1024 256x256 pixel view
ports in one render pass. An RRD may then post-process and
transmit the output to the clients corresponding to the
viewports.

C.3. Post Process Rendering on Novel Viewport
Once a novel viewport is generated using Render Method

1 or Render Method 2, it can further be re-rendered and
differentiated into separate output streams for clients that
may share the same viewport generated from Render Meth
ods 1 or 2, but further require the application of minor render
settings and/or overlay information.
Minor Render Settings: These effects are performed on a

Source novel viewport's render data and may include
Vignette, exposure control, lens flares, chromatic aberra
tions, ghosting and depth of field. These settings can be
different for multiple users sharing the same viewport.

Overlay Information: This render pass adds visual or
textual interface or Surface scene elements specific to each
client sharing a viewport. Depth sorted decal, sprite or
projection map overlays can be applied onto a novel view
port specific to each user. Optionally, using raw UV/Material
ID deferred shading data that may be incorporated in the
novel viewports texels, novel decals can be rendered over
any arbitrary Surfaces in the scene. Overlay information
processing and decal mapping may also be performed client
side.

Particular embodiments of the above-described process
might be comprised of instructions that are stored on storage
media. The instructions might be retrieved and executed by
a processing system. The instructions are operational when
executed by the processing system to direct the processing
system to operate in accord with the present invention. Some
examples of instructions are software, program code, firm
ware, and microcode. Some examples of storage media are
memory devices, tape, disks, integrated circuits, and servers.
The term “processing system” refers to a single processing
device or a group of inter-operational processing devices.
Some examples of processing devices are integrated circuits
and logic circuitry. Those skilled in the art are familiar with
instructions, storage media, and processing systems.

US 9,659,400 B2
17

Those skilled in the art will appreciate variations of the
above-described embodiments that fall within the scope of
the invention. In this regard, it will be appreciated that there
are many possible orderings of the steps in the process
described above and many possible modularizations of those
orderings. Further, in embodiments where processing speed
is not determinative, the process might run in the control
plane rather than the data plane. In addition, while the
embodiments discussed above are described as operating in
connection with cubic maps, the invention can be used to
operate in connection with any arbitrarily configured data
structure that contains Voxelized or per-pixel spatial infor
mation associated with the objects of a scene. As a result, the
invention is not limited to the specific examples and illus
trations discussed above, but only by the following claims
and their equivalents.

What is claimed is:
1. A method comprising:
accessing, by a processor, a buffer of requests for render

ing one or more viewports that are representations of a
three dimensional virtual environment, the requests are
received from one or more remote client devices and
each of the requests identifies respective spatial posi
tions within the three dimensional virtual environment
and view transform parameters of the viewports to be
rendered;

accessing by the processor, a list of remote render device
(RRD) nodes:

routing, by the processor, each of the client requests to an
appropriate one of the RRD nodes for generating or
accessing a VSDO (viewport state data object) such
that the VSDO is used for one of the viewports that are
rendered by the appropriate RRD nodes; and

causing, by the processor, the appropriate RRD nodes to
Supply data associated with the rendered viewports in
one of session based render packets and continuous
render streams to respective requesting remote client
devices.

2. The method of claim 1 wherein the VSDO comprises
a cube map including one or more layers of spatial infor
mation associated with the one or more objects of the scene.

3. The method of claim 1 further comprising transmitting,
by the processor, at least a subset of the VSDO by a root
RRD.

4. The method of claim 1 wherein the one or more remote
client devices are peers in a peer-to-peer network.

5. The method of claim 1, wherein the appropriate one of
the RRD nodes for generating or accessing a VSDO further
comprises:

enabling, by the processor, a single one of the appropriate
RRD nodes to generate one viewport for multiple
requests that have the spatial positions and view trans
form parameters within a threshold distance.

6. The method of claim 1, wherein enabling the appro
priate one of the RRD nodes for generating or accessing a
VSDO further comprises:

post processing, by the processor, at least a Subset of the
rendered viewports, wherein the processor is associated
with a root RRD.

7. The method of claim 1, wherein the appropriate one of
the RRD nodes for generating or accessing a VSDO further
comprises:

transmitting, by the processor, further requests from the
remote client devices for compressing or transcoding
the rendered viewports to a same RRD generated or
modified the VSDOS.

10

15

25

30

35

40

45

50

55

60

65

18
8. The method of claim 1 further comprising partially

rendering, by the processor, the requested viewport from the
VSDOS.

9. The method of claim 8, wherein partially rendering the
requested viewport further comprises:

rendering completely, by the processor, the requested
viewport in a 2D image format.

10. The method of claim 1, wherein the RRD node is the
remote client device.

11. The method of claim 10, further comprising:
rendering completely, by the processor, the requested

viewport as a video sequence that encapsulates the
requested viewport; and

streaming, by the processor, the video sequence to the
remote client device by transcoding the video sequence
into a common video format.

12. The method of claim 11, wherein the common video
format is one of Motion Picture Experts Group (MPEG)-2,
MPEG-4 or Motion-JPEG.

13. The method of claim 1, further comprising:
enabling, by the processor, the selected RRD node to

retransmit the completely rendered viewport to the
remote client device.

14. The method of claim 8, wherein the session based
render packets represent discreet Snapshots of the partially
rendered viewport.

15. The method of claim 1, wherein the continuous render
streams represent the three dimensional environment.

16. The method of claim 1, further comprising:
employing, by the processor, a hit function to trace rays

from a spatial location of the viewport to objects in a
scene defined by the VSDOs as the spatial location
from which the viewport is to be rendered varies from
a reference point of the VSDO.

17. The method of claim 1, further comprising:
maintaining, by the processor, state of objects within the

three dimensional virtual environment; and
providing, by the processor, the state of the objects to the

selected RRD node.
18. The method of claim 17, further comprising:
modifying, by the processor, the VSDOs in response to a

change in the state of at least one of the objects.
19. The method of claim 1, further comprising:
selecting, by the processor, another RRD node for gen

erating at least one of the VSDOs when the selected
RRD node does not optimally render the at least one
VSDO.

20. An apparatus comprising
one or more processors; and
a non-transitory processor-readable memory comprising:
a remote rendering module comprising programming

logic executable by the processors, the programming
logic comprising:
buffer accessing logic, executed by the processors, for

accessing a buffer of requests for rendering one or
more viewports that are representations of a three
dimensional virtual environment, the requests are
received from one or more remote client devices and
each of the requests identifies respective spatial
positions within the three dimensional virtual envi
ronment and view transform parameters of the view
ports to be rendered;

node accessing logic, executed by the processors, for
accessing a list of remote render device (RRD)
nodes;

routing logic, executed by the processors, for routing
each of the client requests to an appropriate one of

US 9,659,400 B2
19

the RRD nodes for generating or accessing a VSDO
(viewport state data object) such that the VSDO is
used for one of the viewports that are rendered by the
appropriate RRD nodes:

list accessing logic, executed by the processors, for
accessing a list of remote render device (RRD)
nodes;

Selecting logic, executed by the processors, for select
ing one of the remote render device (RRD) nodes for
receiving a partially rendered viewport; and

Supplying logic, executed by the processors, for caus
ing the appropriate RRD nodes to Supply data asso
ciated with the rendered viewports in one of session
based render packets and continuous render streams
to respective requesting remote client devices.

k k k k k

10

15

20

