
United States Patent

USOO9659041B2

(12) (10) Patent No.: US 9,659,041 B2
Sambamurthy et al. (45) Date of Patent: May 23, 2017

(54) MODEL FOR CAPTURING AUDIT TRAIL 25. ck 93. alts. al.
- - - OWCC

DATA WITH REDUCED PROBABILITY OF 7,707,642 B1 4/2010 Herbach et al.
LOSS OF CRITICAL DATA 8.296,534 B1 * 10/2012 Gupta et al. T11 162

2004/0158475 A1* 8/2004 Juzeszyn et al. 705/1
(75) Inventors: Govinda Raj Sambamurthy, 2005/0193035 A1* 9/2005 Byrne 707/2O2

2006/0179482 A1* 8, 2006 Alcazar et al. 726/22

RNS SNES." (IN); 2007/0050366 A1 3/2007 Bugir et al.
amacnanara Kao, Isangalore s 2008/0281960 A1* 11/2008 Schibler TO9,224

Viswanath Pasupuleti, Kadapa (IN) 2009/03 19772 A1* 12/2009 Singh et al. ... T13,153
2010/0017536 A1* 1/2010 Colvig et al. ... TO9,238

(73) Assignee: Oracle International Corporation, 2010, 0131545 A1 5/2010 Srivastava et al. 707/769
Redwood Shores, CA (US) (Continued)

(*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS
patent is extended or adjusted under 35
U.S.C. 154(b) by 118 days. Laserfiche Audit Trail, Automate the Monitoring and Reporting on

Business Processes, http://www.laserfiche.com/en-us/Products/Au
(21) Appl. No.: 13/360,822 dit-Trail, Copyright 2011, pp. 1-2.

(Continued)
(22) Filed: Jan. 30, 2012

O O Primary Examiner — Heather Herndon
(65) Prior Publication Data Assistant Examiner — Soheila (Gina) Davanlou

US 2013/O1981 38 A1 Aug. 1, 2013 (74) Attorney, Agent, or Firm — Iphorizons PLLC;
Narendra Reddy Thappeta

(51) Int. Cl.
G06F 7/30 (2006.01) (57) ABSTRACT
G06F II/34 (2006.01) An aspect of the present invention provides for capturing of

(52) U.S. Cl. audit trail data related to processing of requests. In an
CPC. G06F 17730309 (2013.01); G06F II/3476 embodiment, the received requests are classified into a first

(2013.01) category and a second category. For each request in the first
(58) Field of Classification Search category, the corresponding audit trail data is stored directly

USPC 707/648, E17.046,703 into non-volatile storage upon processing of the request. On
See application file for complete search history. the other hand, for each request in the second category, the

audit trail data is first stored into a volatile memory upon
(56) References Cited processing of the request, and then later copied from the

U.S. PATENT DOCUMENTS years memory to non-volatile storage. Thus, the audit trail
ata corresponding to both categories of requests is even

5,032.979 A 7, 1991 Hecht et al. tually available stored on non-volatile storage.
6,079,000 A * 6/2000 Cooper et al. T11 162
7,200,777 B1 * 4/2007 Bouchee T14/45 12 Claims, 4 Drawing Sheets

Data
Storage

160

Server System
140

Report Generator
70

Client System
10A

Client System
110B

Client System
110C

US 9,659,041 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0161919 A1* 6/2010 Dodgson et al. T11 161
2010/0185693 A1* 7/2010 Murty et al. 707/8O3
2010/0228.764 A1* 9, 2010 Sallakonda GO6F 17,3051

707/769
2010/0250623 A1* 9, 2010 Manis et al. 707/809
2010/0274962 A1* 10, 2010 Mosek et al. T11 113
2011/0246444 A1 10/2011 Jenkins et al.

OTHER PUBLICATIONS

Cincom ECM, Security, Audit Trail and Supervision. http://ecm.
cincom.com/cincom-ecm/solution-overview?, Copyright 2011, pp.
1-3.
Cincom ECM, Solution Overview, http://ecm.cincom.com/cincom
ecm/solution-overview? security-audit-trail-and-Supervision/
Copyright 2011, pp. 1-3.
Ademero, Inc., Content CentralTM Document Management Soft
ware, http://www.ademero.com/, Downloaded circa Nov. 20, 2011,
p. 1-1.

* cited by examiner

US 9,659,041 B2 Sheet 1 of 4 May 23, 2017 U.S. Patent

I °{OICH

uue?sÁS Januas

US 9,659,041 B2 Sheet 2 of 4 May 23, 2017 U.S. Patent

ºg GT5-S

US 9,659,041 B2
1.

MODEL FOR CAPTURING AUDIT TRAIL
DATA WITH REDUCED PROBABILITY OF

LOSS OF CRITICAL DATA

BACKGROUND OF THE INVENTION

Technical Field
The present disclosure relates to capturing of audit trail

data, and more specifically to models and techniques for
capturing audit trail data with reduced probability of loss of
critical data.

Related Art
Audit trail is often maintained in relation to processing of

various requests. In general, digital processing systems
perform a corresponding task specified in each request,
while audit trail data is captured to represent various aspects
of processing of the request. Some examples of captured
information include the data representing the occurrence of
the request, computing resources consumed for processing
the request, electronic objects accessed, user or system from
which the request is received, completion time of the
request, timestamp of the request etc. However, audit trail
data can include any information of interest, as Suited for the
corresponding environment and type of request, as is well
known in the relevant arts.

Capturing of audit trail data is generally required to meet
one or more requirements, Suitable for the corresponding
environment. One requirement in an environment is that, the
approach ensure that critical audit data be captured reliably,
or at least there is reduced probability of loss of such critical
audit data. It is generally required that such a requirement be
met without substantially impacting the processing of regu
lar requests.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments of the present invention will be
described with reference to the accompanying drawings
briefly described below.

FIG. 1 is a block diagram illustrating an example envi
ronment in which several aspects of the present invention
can be implemented.

FIG. 2 is a flowchart illustrating the manner in which
audit trail data is captured, in an embodiment of the present
invention.

FIG. 3 is a block diagram illustrating the details of an
example computing system in which several aspects of the
present invention are implemented.

FIG. 4 is a block diagram illustrating the details of a
digital processing system in which several aspects of the
present invention are operative by execution of appropriate
Software instructions.

In the drawings, like reference numbers generally indicate
identical, functionally similar, and/or structurally similar
elements. The drawing in which an element first appears is
indicated by the leftmost digit(s) in the corresponding ref
erence number.

DETAILED DESCRIPTION OF THE
INVENTION

1. Overview
An aspect of the present invention provides for capturing

of audit trail data related to processing of requests. In an
embodiment, the received requests are classified into a first
category and a second category. For each request in the first
category, the corresponding audit trail data is stored directly

10

15

25

30

35

40

45

50

55

60

65

2
into a non-volatile storage upon processing of the request.
On the other hand, for each request in the second category,
the audit trail data is first stored into a volatile memory upon
processing of the request, and then later copied from the
Volatile memory to the non-volatile storage. Thus, the audit
trail data corresponding to both categories of requests is
available stored on non-volatile storage.

In an embodiment, the first category includes more criti
cal requests compared to those in the second category.
According to an aspect, the more critical requests include
write requests and less critical requests comprise read
requests, whereby the audit data corresponding to write
requests is immediately stored in the non-volatile storage
upon processing of the corresponding request, and the audit
data corresponding to read requests is first stored only in a
Volatile memory upon processing of the corresponding
request, and later transferred in a batch mode to non-volatile
Storage.

According to another aspect, the non-volatile storage
contains a first database system and a second database
system. The first database system is implemented based on
a schema without constraints and the second database sys
tem is implemented based on a schema which enforces
constraints (primary/foreign key constraints). The audit data
for the critical requests are first stored in the first database
system and later transferred to the second database system.
The audit data for the non-critical requests is also transferred
from the volatile memory to the second database system,
such that the entire audit data is eventually available from a
single database system for generating reports.

Thus, the audit data for the critical requests is captured in
the first database system with less processing requirements,
and then captured in the second database system with
comparative more processing requirements (to enforce the
constraints). On the other hand, for non-critical requests, the
initial resource requirement is further reduced since the audit
data is captured only into a volatile memory (RAM). Addi
tional resources are expended to transfer the audit data to the
second database system, thereby providing corresponding
level of reliability. The processing resources are used effi
ciently since consumption of resources (upon processing of
the corresponding requests) is reduced by using RAM for
the non-critical requests, and by using the database system
without constraints for the critical requests.

Several aspects of the present invention are described
below with reference to examples for illustration. However,
one skilled in the relevant art will recognize that the inven
tion can be practiced without one or more of the specific
details or with other methods, components, materials and so
forth. In other instances, well-known structures, materials,
or operations are not shown in detail to avoid obscuring the
features of the invention. Furthermore, the features/aspects
described can be practiced in various combinations, though
only some of the combinations are described herein for
conciseness.

2. Example Environment
FIG. 1 is a block diagram illustrating an example envi

ronment in which several aspects of the present invention
can be implemented. The diagram is shown containing client
systems 110A-110C, network 130, server 140, data storage
160, and report generator 170. Merely for illustration, only
representative number/type of devices and systems are
shown in FIG. 1. Many environments often contain many
more systems, both in number and type, depending on the
purpose for which the environment is designed. Each block
of FIG. 1 is described below in further detail.

US 9,659,041 B2
3

Network 130 provides connectivity between server sys
tem 140 and clients 110A-110C, report generator 170 and
data storage 160, server system 140 and data storage 160.
Network 130 may be implemented using protocols such as
Transmission Control Protocol (TCP) and/or Internet Pro
tocol (IP), well known in the relevant arts. In general, in
TCP/IP environments, an IP packet is used as a basic unit of
transport, with the source address being set to the IP address
assigned to the Source system from which the packet origi
nates and the destination address set to the IP address of the
target system to which the packet is to be eventually
delivered. A (IP) packet is said to be directed to a target
system when the destination IP address of the packet is set
to the (IP) address of the target system, such that the packet
is eventually delivered to the target system by network 130.
When the packet contains content such as port numbers,
which specifies the target application, the packet may be said
to be directed to such application as well. Network 130 may
be implemented using any combination of wire-based or
wireless mediums.

Each of clients 110A-110C sends the requests in the form
of packets directed to server system 140 on network 130.
Each client system may correspond to a personal computer
system, tablet system, mobile phone, work Station, etc., as
will be apparent to one skilled in the relevant arts by reading
the disclosure herein.

Data storage 160 represents a non-volatile (persistent)
storage facilitating storage and retrieval of data by applica
tions executing in server system 140. Data storage 160 may
contain multiple storage units, each providing a correspond
ing non-volatile storage. Some of Such storage units may
provide for storage and retrieval of data using structured
queries Such as SQL (Structured Query Language). Alter
natively, or in addition, Some of the storage units may be
implemented as a respective file server providing Storage
and retrieval of data in the form of files organized as one or
more directories, as is well known in the relevant arts. Thus,
data storage 160 may contain various electronic objects that
are required for processing the requests received from client
systems 110A-110C. In addition, data storage 160 provides
for storage of audit trail data as well.

Report generator 170 processes the audit trail data stored
in data storage 160 over the network 130 on path 135, and
generates reports Suitable for examination by auditors (or
other human beings). Report generator 170 may generate
queries in the form of SQL (directed to SQL databases) to
retrieve relevant data of interest from data store, in gener
ating the reports.

Server system 140 executes various user applications,
which process corresponding requests received on path 134.
The generated results may be sent on network 130 via path
134 to the client system to which the response is to be
delivered. RAM (random access memory) 145 represents a
Volatile memory used by various applications executing in
server system 140. As used in the present application,
volatile memory represents RAM (or CAM) type storage
units, which have several addressable locations (unlike
registers which are used typically in CPUs or other process
ing elements), Suitable for storing many records.

Server system 140 may capture audit trail data related to
at least Some of Such requests. In general, the audit trail data
is to be stored in non-volatile storage (e.g., in data storage
160) to complete capturing of the audit trail data over
network 130 on path 134 and 135. It should be appreciated
that there are several resources (e.g., computing resources,
paths to various storage components, etc.) that are shared for
both processing of requests and for capturing of audit trail

10

15

25

30

35

40

45

50

55

60

65

4
data related to the requests. Accordingly, there are often
scenarios (typically in busiest durations in which requests
are received) when server system 140 may not have suffi
cient resources to both process the requests and complete
capturing of the audit trail data.

Several aspects of the present invention address at least
Some of the requirements and/or problems noted above.

3. Reliable Capture of Audit Trail Data
FIG. 2 is a flowchart illustrating the manner in which

audit trail data is captured reliably, in an embodiment of the
present invention. The flowchart is described with respect to
FIG. 1 merely for illustration. However, many of the features
can be implemented in other environments also without
departing from the scope and spirit of several aspects of the
present invention, as will be apparent to one skilled in the
relevant arts by reading the disclosure provided herein. The
flow chart begins in step 201, in which control immediately
passes to step 210.

In step 210, server system 140 receives requests for
processing. Each request may specify the desired task to be
performed. Performance of the task may entail usage of
appropriate processing resources, storage resources, etc.
Control then passes to 220.

In step 220, server system 140 classifies the received
requests into two categories—critical requests and non
critical requests. While the flow chart is described as clas
Sifying into only two categories, it should be appreciated
classification into more categories is within the scope and
spirit of several aspects of the present invention. Further
more, the classification of requests into critical and non
critical categories (or higher and lower priorities) can be
based on any criteria, as suited in the specific environment.
In one embodiment, write requests (which cause data to be
stored/modified) and read requests directed to confidential
objects are classified as critical requests, and the remaining
read requests are classified as non-critical requests. Control
then passes to step 230.

Steps 230-280 operate to process each of the classified
requests. It should be appreciated that such processing often
occurs in parallel to steps 210 and 220, though shown as
sequential step for ease of understanding. Similarly, some of
the steps of 230-280 may also be performed in parallel, as
will be apparent to one skilled in the relevant arts by reading
the disclosure provided herein.

Thus, server system 140 selects a request to process in
step 230. Such selection can be based on any criteria such as
first-come-first-serve or according to any prioritization
approach, as will be apparent to one skilled in the relevant
arts by reading the disclosure provided herein.

In step 240, server system 140 determines whether the
selected request is a critical request or non-critical request,
according to the determination of step 230. Control passes to
step 280 in case of critical requests and to step 250 other
wise.

In step 250, server system 140 stores audit trail informa
tion for the request in a volatile memory, for example, RAM
145. Thus, the audit trail information for non-critical
requests is stored in RAM 145 upon (around the time of)
processing of the corresponding requests. By storing the
information in the Volatile memory, the information is
preserved for further processing in future. Furthermore, the
processing resources required in the immediate future are
also conserved, since storage into a RAM requires minimal
processing resources as well.

In step 260, server system 140 determines whether it is
time to copy data from RAM 145 to a non-volatile storage.
Such time can be determined based on various consider

US 9,659,041 B2
5

ations such as the time elapsed since previous copying, the
amount of memory (within RAM 145) already used (either
for the audit trail data stored in step 250 or the aggregate
memory usage by all applications together), etc. Control
passes to step 270 if it is determined that the information
from RAM 145 is to be copied to a non-volatile storage and
to step 230 (where a next request is selected) otherwise.

In step 270, server system 140 copies the audit trail
information from RAM 145 to non-volatile storage (e.g.,
data storage 160) in batch mode, i.e., the audit trail infor
mation related to several requests may be copied in (Sub
stantially) Successive processing cycles. It may thus be
appreciated that there is some risk that audit trail data is not
preserved, for example, if server system 140 goes down
before the data is copied in step 270, but such a risk may be
acceptable since the data at risk is non-critical. The locations
in the RAM storing such data, can thereafter be reused,
implying removal of data after copying, and thus copying
may also be viewed as transferring of the data to data storage
160. Control then passes to step 230.

In step 280, server system 140 immediately stores audit
trail information for the critical request in a non-volatile
storage (e.g., data storage 160). In case of external systems
Such as data storage 160, storing entails sending the data in
appropriate format (e.g., SQL queries) to cause the data to be
eventually stored in data storage 160. However, internal
units (e.g., secondary storage) can also be used as the
non-volatile storage. Thus, without Substantial delay (as for
non-critical requests), the audit trail data is immediately
stored in the non-volatile storage. The critical data is thus
captured reliably upon processing of the corresponding
requests. Control then passes to step 230 for processing the
next request.

It may thus be appreciated that the critical data is captured
reliably, while the non-critical data is sought to be captured
with lesser immediate processing overhead. Yet, the audit
trail information for the non-critical requests is captured into
non-volatile storage, when the corresponding (processing
and other) resources are possibly available at a later suitable
time. Thus, server system 140 may be able to timely process
requests, without being substantially affected by the audit
trail capture requirements.

The approaches thus described may be implemented in
several environments. The implementation in an example
environment is described below in further detail.

4. Example Implementation
FIG. 3 is a block diagram illustrating the details of

implementation of an example embodiment. The block
diagram is shown containing primary database 355, second
ary database 350 and the details of server system 140. Server
system 140 is shown containing network interface 360,
RAM 145 and JVM (Java Virtual Machine) environment
330. JVM 330 is in turn shown containing J2EE Application
340, which in turn has various modules (scheduler 380,
request processing module 310, audit objects 370, user
interface module 390, and audit processing module 320).
Each block of FIG. 3 is described below in further detail.

Each of primary and secondary databases 355/350 repre
sents a database operable using SQL queries, and thus
represents a non-volatile storage as well. Primary database
355 is designed to store audit trail information using a
schema, defined without constraints (e.g., foreign key con
straints, etc.). Due to the absence of Such constraints, the
audit trail data is quickly (with minimal processing require
ments) stored in primary database 355. As described in
sections below, scheduler 380 operates to transfer the data

10

15

25

30

35

40

45

50

55

60

65

6
therefore to secondary database 350, which has a schema
defined to enforce constraints.
Though the constraints are not enforced in primary data

base 355, the columns are chosen such that each row is
ensured to be unique, for example, by virtue of the electronic
objects accessed, user or system from which the request is
received, completion time of the request, timestamp of the
request, etc., (and thus having an implicit primary key), and
accordingly transfer to secondary database 350 does not
cause loss of information. Thus, the two databases may be
viewed as being part of data storage 160. Furthermore, the
two databases can potentially be implemented in a single
database management system, as corresponding tables/sche
mas. Path 341 may also be viewed as being a part of paths
134 and 135.
Network interface 360 provides the physical, electrical

and protocol interfaces to enable server system 140 to send
and receive IP packets on each of paths 134, 341 and 351.
Each packet thus may relate a request or response.

Audit objects 370 represent various electronic objects
(e.g., documents, software code files, libraries, email com
munications, application data, etc.) accessed during process
ing of requests. Though the objects are shown internal to
server system 140, it should be appreciated that some of the
objects can be external to the server system (e.g., within a
database system such as primary database 355).

Request processing module 310 receives and processes
each request. The result generated by processing Such
requests is sent via network interface 360. It may be appre
ciated that some of the requests cause audit objects 370 to be
accessed (either as read or write operations).

User interface module 390 provides a convenient user
interface (e.g., Graphical user interface) using which a user
can specify the aspects of request processing that are to be
captured as audit trail information/data, and the manner in
which the captured data is to be classified. For ease of
understanding, it is assumed that a user specifies that write
requests and read access to specific audit objects 370 (e.g.,
confidential data) are to be treated as critical requests and the
rest as non-critical requests. The user may further specify
various parameters for operation of scheduler 380, as
described in sections below. The user specified information
may be stored in the form of configuration files in a
non-volatile storage, for example, as XML data.

Audit processing module 320 forms the audit information
with respect to requests processed by request processing
module 310. Thus, audit processing module 320 may be
implemented with appropriate interfaces to request process
ing module 310 (and other components of server system
140, including the operating system, etc.) to identify the
requests and the corresponding attributes of interest (e.g.,
whether read or write request, the processing resources
consumed, the arrival time, completion time, request time
stamp, etc.). The implementation of audit processing module
320 to identify such attributes depends on the specific
environment, and will be apparent to one skilled in the
relevant arts by reading the disclosure herein.

Audit processing module 320 further operates based on
the user specified parameters noted above with respect to
user interface module 390. In particular, the critical and
non-critical requests are identified and the corresponding
audit trail information is processed as described above with
respect to steps 280 and 250 respectively. The audit trail
information for non-critical requests is stored in RAM 145
and that related to critical requests is stored in primary
database 355. To store the audit trail information for critical

US 9,659,041 B2
7

requests, audit processing module 320 may send the corre
sponding data in the form of appropriate SQL queries.

Scheduler 380 operates in accordance with the parameters
specified by user interface 390 in transferring the data in
RAM 145 and primary database 355 to secondary database
350 (using network interface 360). As noted above, the
configuration data may indicate when it is appropriate to
copy data in RAM 145 to secondary database 350 (as
described above with respect to step 260). When it is deemed
to be appropriate (i.e., Suitable duration) in accordance with
the user specified parameters, scheduler 380 transfers the
data in RAM 145 to secondary database 350 via network
interface 360 using appropriate SQL queries.

Similarly, scheduler 380 may determine when it is appro
priate to transfer the data stored in primary database 355 to
secondary database 350 using network interface 360. Appro
priate SQL queries may be issued to both the databases to
effect the transfer of data.

Thus, it should be appreciated that the critical data is
stored with less processing requirements (due to absence of
enforcement of constraints) into primary database 355, and
thereafter transferred to secondary database 350 at a time
when the resources are available in abundance. As the audit
trail data for both critical and non-critical requests available
in secondary database 350, report generator 170 can gener
ate reports by interfacing with secondary database 350
alone.
The description is continued with respect to a digital

processing system in which several features are operative
when the corresponding executable modules are executed.

5. Digital Processing System
FIG. 4 is a block diagram illustrating the details of digital

processing system 400 in which various aspects of the
present invention are operative by execution of appropriate
executable modules. Digital processing system 400 may
correspond to server system 140. Digital processing system
400 may contain one or more processors (such as a central
processing unit (CPU) 410), random access memory (RAM)
420, secondary memory 430, graphics controller 460, dis
play unit 470, network interface 480, and input/output
interface 490. All the components except display unit 470
may communicate with each other over communication path
450, which may contain several buses as is well known in
the relevant arts.
CPU 410 may execute instructions stored in RAM 420

(which also includes RAM 145) to provide several features
of the present invention. CPU 410 may contain multiple
processing units, with each processing unit potentially being
designed for a specific task. Alternatively, CPU 410 may
contain only a single general-purpose processing unit.
RAM 420 may receive instructions from secondary

memory 430 using communication path 450. RAM 420 is
shown currently containing software instructions constitut
ing shared environment 425 and/or user programs 426
(which include application 420 of FIG. 4 when system 400
represents server system 130). Shared environment 425
contains utilities shared by user programs, and Such shared
utilities include operating system, JVM 330, device drivers,
etc., which provide a (common) run-time environment for
execution of user programs/applications (including 340).

Graphics controller 460 generates display signals (e.g., in
RGB format) to display unit 470 based on data/instructions
received from CPU 410. Display unit 470 contains a display
screen to display the images defined by the display signals.
Input/output interface 490 includes input as well as output
devices to enable a user to interact with system 400, and thus

10

15

25

30

35

40

45

50

55

60

65

8
provides the basis for user interface 390 as well. Network
interface 480 corresponds to network interface 360.

Secondary memory 430 (representing a non-transitory
storage/medium) may contain hard drive 435, flash memory
436, and removable storage drive 437. Secondary memory
430 may store data (e.g., audit trail data for critical requests)
and software instructions (for example, for performing the
steps of FIG. 2), which enable digital processing system 400
to provide several features in accordance with the present
invention.
Some or all of the data and instructions may be provided

on removable storage unit 440, and the data and instructions
may be read and provided by removable storage drive 437
to CPU 410. Floppy drive, magnetic tape drive, CD-ROM
drive, DVD Drive, Flash memory, removable memory chip
(PCMCIA Card, EPROM) are examples of such removable
storage drive 437.
Removable storage unit 440 may be implemented using

medium and storage format compatible with removable
storage drive 437 such that removable storage drive 437 can
read the data and instructions. Thus, removable storage unit
440 includes a computer readable storage medium having
stored therein computer software and/or data. However, the
computer (or machine, in general) readable storage medium
can be in other forms (e.g., non-removable, random access,
etc.).

In this document, the term "computer program product' is
used to generally refer to secondary memory 430. These
computer program products are means for providing soft
ware to digital processing system 400. CPU 410 may
retrieve the Software instructions, and execute the instruc
tions to provide various features of the present invention
described above.

It should be understood that numerous specific details,
relationships, and methods are set forth to provide a full
understanding of the invention. For example, many of the
functions units described in this specification have been
labeled as modules/blocks in order to more particularly
emphasize their implementation independence.

Reference throughout this specification to “one embodi
ment”, “an embodiment, or similar language means that a
particular feature, structure, or characteristic described in
connection with the embodiment is included in at least one
embodiment of the present invention. Thus, appearances of
the phrases “in one embodiment”, “in an embodiment and
similar language throughout this specification may, but do
not necessarily, all refer to the same embodiment.

Furthermore, the described features, structures, or char
acteristics of the invention may be combined in any Suitable
manner in one or more embodiments. In the above descrip
tion, numerous specific details are provided Such as
examples of programming, Software modules, user selec
tions, network transactions, database queries, database struc
tures, hardware modules, hardware circuits, hardware chips,
etc., to provide a thorough understanding of embodiments of
the invention.

6. Conclusion
While various embodiments of the present invention have

been described above, it should be understood that they have
been presented by way of example only, and not limitation.
Thus, the breadth and scope of the present invention should
not be limited by any of the above-described exemplary
embodiments, but should be defined only in accordance with
the following claims and their equivalents.

It should be understood that the figures and/or screen
shots illustrated in the attachments highlighting the func
tionality and advantages of the present invention are pre

US 9,659,041 B2
9

sented for example purposes only. The present invention is
sufficiently flexible and configurable, such that it may be
utilized in ways other than that shown in the accompanying
figures.

Further, the purpose of the following Abstract is to enable
the Patent Office and the public generally, and especially the
Scientists, engineers and practitioners in the art who are not
familiar with patent or legal terms or phraseology, to deter
mine quickly from a cursory inspection the nature and
essence of the technical disclosure of the application. The
Abstract is not intended to be limiting as to the scope of the
present invention in any way.
What is claimed is:
1. A method of capturing audit trail data related to

processing of requests, said method being performed in a
server system providing access to a plurality of electronic
objects, said method comprising:

receiving a plurality of requests, with processing of each
request requiring access to a corresponding set of
electronic objects of said plurality of electronic objects
provided access to by said server system;

classifying each of said plurality of requests into one of a
first category and a second category, wherein a first set
of requests of said plurality of requests are classified
into said first category in view of each of said first set
of requests being a write request modifying one or
more of said corresponding set of electronic objects,
and wherein a second set of requests of said plurality of
requests are classified into said second category in view
of each of said second set of requests being a read
request for one or more of said corresponding set of
electronic objects:

processing each of said plurality of requests by perform
ing corresponding tasks by accessing the corresponding
set of electronic objects of said plurality of electronic
objects,

wherein audit trail data is formed in relation to perfor
mance of the corresponding tasks, wherein said audit
trail data for each request comprises details of access
ing the corresponding set of electronic objects during
said processing of the request;

for each write request of said first set of requests classified
in said first category, storing the audit trail data corre
sponding to the write request directly into a first
database system upon said processing of the write
request, and later transferring the audit trail data cor
responding to the write request to a second database
system from said first database system,

wherein said first database system is according to a first
Schema and said second database system is according
to a second schema, wherein each of said first database
system and said second database system is designed to
facilitate storing of said audit trail data using SQL
(structured query language) queries,

wherein said second schema specifies primary and foreign
key constraints, which are not specified in said first
Schema,

wherein said storing first stores the audit trail data corre
sponding to each write request of said first set of
requests in said first database system without enforcing
said constraints due to said first schema not specifying
said constraints,

wherein said transferring to said second database system
causes said constraints to be enforced in said second
database system; and

for each read request of said second set of requests
classified in said second category, storing the audit trail

10

15

25

30

35

40

45

50

55

60

65

10
data corresponding to the read request first into a
Volatile memory upon said processing of the read
request and then copying the audit trail data corre
sponding to the read request from said volatile memory
to said second database system.

2. The method of claim 1, wherein said copying copies the
audit trail data for each read request of said second set of
requests from said volatile memory to said second database
system upon lapse of a pre-specified duration since previous
copying or when the data stored in said volatile memory
exceeds a pre-specified threshold, and

wherein said copying copies the audit trail data for each
write request of said first set of requests from said first
database system to said second database system only
upon lapse of a corresponding pre-specified duration
since previous copying.

3. The method of claim 2, further comprising generating
reports, covering both of said first set of requests and said
second set of requests, based on the audit trail data stored in
said second database system.

4. The method of claim 1, wherein said classifying
comprises:

determining whether each of said plurality of requests can
be classified into said first category; and

including the request in said first set of requests if said
determining determines that the request can be classi
fied into said first category, and in said second set of
requests otherwise.

5. A non-transitory computer readable medium carrying
one or more sequences of instructions for causing a server
system to capture audit trail data related to processing of
requests, said server system providing access to a plurality
of electronic objects, wherein execution of said one or more
instructions by one or more processors contained in said
server system causes said server system to perform the
actions of:

receiving a plurality of requests, with processing of each
request requiring access to a corresponding set of
electronic objects of said plurality of electronic objects
provided access to by said server system;

classifying each of said plurality of requests into one of a
first category and a second category, wherein a first set
of requests of said plurality of requests are classified
into said first category in view of each of said first set
of requests being a write request modifying one or
more of said corresponding set of electronic objects,
and wherein a second set of requests of said plurality of
requests are classified into said second category in view
of each of said second set of requests being a read
request for one or more of on said corresponding set of
electronic objects;

processing each of said plurality of requests by perform
ing corresponding tasks by accessing the corresponding
set of electronic objects of said plurality of electronic
objects,

wherein audit trail data is formed in relation to perfor
mance of the corresponding tasks, wherein said audit
trail data for each request comprises details of access
ing the corresponding set of electronic objects during
said processing of the request;

for each write request of said first set of requests classified
in said first category, storing the audit trail data corre
sponding to the write request directly into a first
database system upon said processing of the request,
and later transferring the audit trail data corresponding
to the request to a second database system from said
first database system,

US 9,659,041 B2
11

wherein said first database system is according to a first
Schema and said second database system is according
to a second schema, wherein each of said first database
system and said second database system is designed to
facilitate storing of said audit trail data using SQL
(structured query language) queries,

wherein said second schema specifies primary and foreign
key constraints, which are not specified in said first
Schema,

wherein said storing first stores the audit trail data corre
sponding to each write request of said first set of
requests in said first database system without enforcing
said constraints due to said first schema not specifying
said constraints,

wherein said transferring to said second database system
causes said constraints to be enforced in said second
database system; and

for each read request of said second set of requests
classified in said second category, storing the audit trail
data corresponding to the read request first into a
Volatile memory upon said processing of the read
request and then copying the audit trail data corre
sponding to the read request from said volatile memory
to said second database system.

6. The non-transitory computer readable medium of claim
5, wherein said copying copies the audit trail data for each
read request of said second set of requests from said volatile
memory to said second database system upon lapse of a
pre-specified duration since previous copying or when the
data stored in said volatile memory exceeds a pre-specified
threshold, and

wherein said copying copies the audit trail data for each
write request of said first set of requests from said first
database system to said second database system only
upon lapse of a corresponding pre-specified duration
since previous copying.

7. A server system comprising:
a memory to store instructions;
a processor to retrieve said instructions and execute the

retrieved instructions, wherein execution of said
instructions causes said server system to perform the
actions of:
receiving a plurality of requests, with processing of

each request requiring access to a corresponding set
of electronic objects of a plurality of electronic
objects provided access to by said server system;

classifying each of said plurality of requests into one of
a first category and a second category, wherein a first
set of requests of said plurality of requests are
classified into said first category in view of each of
said first set of requests being a write request modi
fying one or more of said corresponding set of
electronic objects, and wherein a second set of
requests of said plurality of requests are classified
into said second category in view of each of said
second set of requests being a read request for one or
more of said corresponding set of electronic objects;

processing each of said plurality of requests by per
forming corresponding tasks by accessing the corre
sponding set of electronic objects of said plurality of
electronic objects,

wherein audit trail data is formed in relation to perfor
mance of the corresponding tasks, wherein said audit
trail data for each request comprises details of
accessing the corresponding set of electronic objects
during said processing of the request;

10

15

25

30

35

40

45

50

55

60

65

12
for each write request of said first set of requests

classified in said first category, storing the audit trail
data corresponding to the write request directly into
a first database system upon said processing of the
write request, and later transferring the audit trail
data corresponding to the write request to a second
database system from said first database system,

wherein said first database system is according to a first
schema and said second database system is accord
ing to a second schema, wherein each of said first
database system and said second database system is
designed to facilitate storing of said audit trail data
using SQL (Structured query language) queries,

wherein said second schema specifies primary and
foreign key constraints, which are not specified in
said first schema,

wherein said storing first stores the audit trail data
corresponding to each write request of said first set
of requests in said first database system without
enforcing said constraints due to said first schema
not specifying said constraints,

wherein said transferring to said second database sys
tem causes said constraints to be enforced in said
second database system; and

for each read request of said second set of requests
classified in said second category, storing the audit
trail data corresponding to the read request first into
a volatile memory upon said processing of the read
request and then copying the audit trail data corre
sponding to the read request from said volatile
memory to said second database system.

8. The server system of claim 7, wherein said server
system copies the audit data for each read request of said
second set of requests from said volatile memory to said
second database system upon lapse of a pre-specified dura
tion since previous copying or when the data stored in said
Volatile memory exceeds a pre-specified threshold, and

wherein said server system copies the audit trail data for
each write request of said first set of requests from said
first database system to said second database system
only upon lapse of a corresponding pre-specified dura
tion since previous copying.

9. The method of claim 1, wherein audit trail data for
multiple read requests of said second set of requests is stored
in said volatile memory before said copying is performed in
a batch mode to said second database system,

wherein said volatile memory is reused for storing audit
trail data for later received ones of said second set of
requests.

10. The non-transitory computer readable medium of
claim 5, wherein audit trail data for multiple read requests of
said second set of requests is stored in said volatile memory
before said copying is performed in a batch mode to said
second database system,

wherein said volatile memory is reused for storing audit
trail data for later received ones of said second set of
requests.

11. The server system of claim 7, wherein audit trail data
for multiple read requests of said second set of requests is
stored in said volatile memory before said copying is
performed in a batch mode to said second database system,

wherein said volatile memory is reused for storing audit
trail data for later received ones of said second set of
requests.

12. The non-transitory computer readable medium of
claim 5, wherein said copying copies the audit trail data for
each read request of said second set of requests from said

US 9,659,041 B2
13

Volatile memory to said second database system upon lapse
of a pre-specified duration since previous copying or when
the data stored in said volatile memory exceeds a pre
specified threshold, and

wherein said audit trail data for each write request of said
first set of requests is copied from said first database
system to said second database system only upon lapse
of a corresponding pre-specified duration since previ
ous copying.

10

14

