
(12) United States Patent
Singh et al.

USOO965886OB2

US 9,658,860 B2
*May 23, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

SYSTEMAND METHOD FOR OPTIMIZING
BOOTUP PERFORMANCE

Applicant: Dell Products L.P., Round Rock, TX
(US)

Inventors: Vishal Singh, Bangalore (IN);
Muralidhara Mallur, Karnataka (IN)

Assignee: Dell Products L.P., Round Rock, TX
(US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 2 days.
This patent is Subject to a terminal dis
claimer.

Appl. No.: 14/451,824

Filed: Aug. 5, 2014

Prior Publication Data

US 2016/0041829 A1 Feb. 11, 2016

Int. C.
G06F 3/12 (2006.01)
G06F I3/38 (2006.01)
G06F 9/44 (2006.01)
G06F II/34 (2006.01)
U.S. C.
CPC G06F 9/4401 (2013.01); G06F II/34

(2013.01)
Field of Classification Search
CPC ... GO6F 9/44O1
USPC .. 71 Of68
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,849.241 B2 * 12/2010 Gschwind G06F 12/04
TO9,201

8,166,249 B2 * 4/2012 Koehler G06F 12,123
TO8/203

2003/O149793 A1 8/2003 Bannoura
2004/OOO6689 A1 1, 2004 Miller
2006/0230170 A1 10, 2006 Chintala
2007/0033322 A1 2/2007 Zimmer G06F 9,4401

T11 103
2008. O162524 A1 7/2008 LaFrance-Linden
2009,0187899 A1* 7, 2009 Mani GO6F 8.65

717,168
2011/0307640 Al 12/2011 Jones
2011/0320173 Al 12/2011 Levine
2012,019 1893 A1 7/2012 Kuiper
2013/01391.83 A1* 5, 2013 Mallur G06F 8.63

T19,321
2013/0254441 A1* 9/2013 Kipnis HO3M 7.30

T10/68
2015. O149737 A1 5, 2015 Hobson

* cited by examiner
Primary Examiner — Idriss N Alrobaye
Assistant Examiner — Brooke Taylor
(74) Attorney, Agent, or Firm — Baker Botts L.L.P.
(57) ABSTRACT
A system and method of optimizing the performance of an
information handling system is disclosed herein. One or
more data samples are generated by rebooting an informa
tion handling system and identifying one or more files
accessed during the bootup of the information handling
system. An identifier and access frequency for each of the
identified files are stored in a data sample. One or more data
samples are merged into a merged data sample. A compres
sion ratio is calculated for each of the identified files. One or
more of the files identified in the merged data sample are
selected for uncompression. The files selected for uncom
pression are uncompressed.

20 Claims, 10 Drawing Sheets

U.S. Patent May 23, 2017 Sheet 1 of 10 US 9,658,860 B2

as a sea as a as as a as a M. a. as a sea as a
N:::::::N &Y::::::: SS383

3:3:3:33:R

- or 3:

S3838.83.

v 3 :::

XE work

f 383 y Y --- -: M. X----- \
wa ^ Y

^ N 8:38; 8.

FG, 2.

U.S. Patent May 23, 2017 Sheet 2 of 10 US 9,658,860 B2

e8:a::12: Access age3.cs

g y

f
8:

FG. 3

sie&aine &ccess: egas cy

8: a. : : 8

8. :

2. E.

3.

8: a.

326

U.S. Patent May 23, 2017 Sheet 3 of 10

& Cassifiegley

i

F.G. 5
Accessi-regis: cy

SF:

S38

8:8

83-83+834
:----83.

388-3

a 3-i-n3+833
S----3:

33-8-

a7
S-3-3-3

8-S-E.

33----.

8.

a 8

US 9,658,860 B2

U.S. Patent May 23, 2017

access: see: cy

Sheet S of 10

Sizegii:

US 9,658,860 B2

:::::sk 38aig

g sy fog
38-3-33

32-33

238-9-8-8

Access: ese: cy

in-83+ 33+ais.

A Cassifie?e:-

FIG 9C

U.S. Patent May 23, 2017 Sheet 6 of 10 US 9,658,860 B2

F.G. 10

F.G.

U.S. Patent May 23, 2017 Sheet 7 of 10 US 9,658,860 B2

---------------------------------r

r

- stic:8: 3333i:ief 33A&ty2er / Elain
:::::: 8:8: . -law :::::iie :::::: 3.Citie

(3333 Sargisix;
gig 8.3: Sainges
838. 35

{{{aggie
{x}}{fess:0:

Riis
3.

F.G. 4

US 9,658,860 B2 U.S. Patent

F.G. 6

U.S. Patent May 23, 2017 Sheet 9 of 10 US 9,658,860 B2

::::::::::e::::$3:38:a::::::: 8

F.G. 7

U.S. Patent May 23, 2017 Sheet 10 of 10 US 9,658,860 B2

3:xt:x reg.388 (33:8 &3:::::
isis: wa. E:

£333-pie is: i:
3s.g. 8:38-3.33:

3 exteer: Sagle Co.: y :

F.G. 8

US 9,658,860 B2
1.

SYSTEMAND METHOD FOR OPTIMIZING
BOOTUP PERFORMANCE

TECHNICAL FIELD

This disclosure relates generally to information handling
systems and, more particularly, to networks having multiple
client devices.

BACKGROUND

As the value and use of information continues to increase,
individuals and businesses seek additional ways to process
and store information. One option available to users is
information handling systems. An information handling
system generally processes, compiles, stores, and/or com
municates information or data for business, personal, or
other purposes thereby allowing users to take advantage of
the value of the information. Because technology and infor
mation handling needs and requirements vary between dif
ferent users or applications, information handling systems
may also vary regarding what information is handled, how
the information is handled, how much information is pro
cessed, stored, or communicated, and how quickly and
efficiently the information may be processed, stored, or
communicated. The variations in information handling sys
tems allow for information handling systems to be general or
configured for a specific user or specific use Such as financial
transaction processing, airline reservations, enterprise data
storage, or global communications. In addition, information
handling systems may include a variety of hardware and
Software components that may be configured to process,
store, and communicate information and may include one or
more information handling systems, data storage systems,
and networking systems.

BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present inven
tion and its features and advantages, reference is now made
to the following description, taken in conjunction with the
accompanying drawings, in which:

FIG. 1 is a block diagram of selected elements of an
information handling system;

FIG. 2 is an example of a network environment;
FIGS. 3, 4, and 5 depict examples of data sets produced

by particular embodiments;
FIG. 6 depicts a merged data set;
FIG. 7 depicts a merged data set with compression ratios:
FIG. 8 depicts an example of a data set;
FIGS. 9A-9C depicts examples of data sets produced by

a particular embodiment;
FIG. 10 depicts an examplary XML schema used;
FIG. 11 depicts an instance of an XML file;
FIG. 12 depicts the architecture of a particular embodi

ment,
FIG. 13 is a flow chart illustrating the steps performed by

a particular embodiment during an initial optimization of the
system boot;

FIG. 14 is a flow chart illustrating the steps performed by
a particular embodiment during Subsequent optimizations of
the system boot;

FIG. 15 is a flow chart illustrating the steps performed by
a particular embodiment during an initial optimization of the
user application experience;

10

15

25

30

35

40

45

50

55

60

65

2
FIG. 16 is a flow chart illustrating the steps performed by

a particular embodiment during Subsequent optimizations of
the user application experience;

FIG. 17 is a flowchart illustrating the steps performed by
a particular embodiment to collect data samples during a
system boot; and

FIG. 18 is a flowchart illustrating the steps performed by
a particular embodiment to collect data samples during the
user application experience.

DETAILED DESCRIPTION

The detailed description set forth below is intended as a
description of various configurations of the Subject technol
ogy and is not intended to represent the only configurations
in which the subject technology may be practiced. The
appended drawings are incorporated herein and constitute a
part of the detailed description. The detailed description
includes specific details for the purpose of providing a
thorough understanding of the Subject technology. However,
it will be apparent to those skilled in the art that the subject
technology may be practiced without these specific details.
In some instances, well-known structures and components
are shown in block diagram form in order to avoid obscuring
the concepts of the Subject technology.

In the following description, details are set forth by way
of example to facilitate discussion of the disclosed subject
matter. It should be apparent to a person of ordinary skill in
the field, however, that the disclosed embodiments are
exemplary and not exhaustive of all possible embodiments.

For the purposes of this disclosure, an information han
dling system may include an instrumentality or aggregate of
instrumentalities operable to compute, classify, process,
transmit, receive, retrieve, originate, Switch, store, display,
manifest, detect, record, reproduce, handle, or utilize various
forms of information, intelligence, or data for business,
Scientific, control, entertainment, or other purposes. For
example, an information handling system may be a personal
computer, a PDA, a consumer electronic device, a network
storage device, or another Suitable device and may vary in
size, shape, performance, functionality, and price. The infor
mation handling system may include memory, one or more
processing resources such as a central processing unit (CPU)
or hardware or Software control logic. Additional compo
nents or the information handling system may include one or
more storage devices, one or more communications ports for
communicating with external devices as well as various
input and output (I/O) devices, such as a keyboard, a mouse,
and a video display. The information handling system may
also include one or more buses operable to transmit com
munication between the various hardware components.

Herein, a computer-readable non-transitory storage
medium or media may include one or more semiconductor
based or other integrated circuits (ICs) (Such, as for
example, field-programmable gate arrays (FPGAs) or appli
cation-specific ICs (ASICs)), hard disk drives (HDDs),
hybrid hard drives (HHDs), optical discs, optical disc drives
(ODDS), magneto-optical discs, magneto-optical drives,
floppy diskettes, floppy disk drives (FDDs), magnetic tapes,
solid-state drives (SSDs), RAM-drives, SECURE DIGITAL
cards or drives, any other Suitable computer-readable non
transitory storage media, or any suitable combination of two
or more of these, where appropriate. A computer-readable
non-transitory storage medium may be volatile, non-vola
tile, or a combination of volatile and non-volatile, where
appropriate.

US 9,658,860 B2
3

Particular embodiments are best understood by reference
to FIGS. 1-2, wherein like numbers are used to indicate like
and corresponding parts.

FIG. 1 illustrates an example information handling system
100. In particular embodiments, one or more information
handling systems 100 perform one or more steps of one or
more methods described or illustrated herein. In particular
embodiments, one or more information handling systems
100 provide functionality described or illustrated herein. In
particular embodiments, Software running on one or more
information handling systems 100 performs one or more
steps of one or more methods described or illustrated herein
or provides functionality described or illustrated herein.
Particular embodiments include one or more portions of one
or more information handling systems 100. Herein, refer
ence to an information handling system may encompass a
computing device, and vice versa, where appropriate. More
over, reference to an information handling system may
encompass one or more information handling systems,
where appropriate.

This disclosure contemplates any suitable number of
information handling systems 100. This disclosure contem
plates information handling system 100 taking any Suitable
physical form. As example and not by way of limitation,
information handling system 100 may be an embedded
information handling system, a system-on-chip (SOC), a
single-board information handling system (SBC) (such as,
for example, a computer-on-module (COM) or system-on
module (SOM)), a desktop information handling system, a
laptop or notebook information handling system, an inter
active kiosk, a mainframe, a mesh of information handling
systems, a mobile telephone, a personal digital assistant
(PDA), a server, a tablet information handling system, or a
combination of two or more of these. Where appropriate,
information handling system 100 may include one or more
information handling systems 100; be unitary or distributed;
span multiple locations; span multiple machines; span mul
tiple data centers; or reside in a cloud, which may include
one or more cloud components in one or more networks.
Where appropriate, one or more information handling sys
tems 100 may perform without substantial spatial or tem
poral limitation one or more steps of one or more methods
described or illustrated herein. As an example and not by
way of limitation, one or more information handling systems
100 may perform in real time or in batch mode one or more
steps of one or more methods described or illustrated herein.
One or more information handling systems 100 may perform
at different times or at different locations one or more steps
of one or more methods described or illustrated herein,
where appropriate.

In particular embodiments, information handling system
100 includes a processor 102, memory 104, storage 106, an
input/output (I/O) interface 108, a communication interface
110, and a bus 112. Although this disclosure describes and
illustrates a particular information handling system having a
particular number of particular components in a particular
arrangement, this disclosure contemplates any suitable
information handling system having any Suitable number of
any Suitable components in any Suitable arrangement.

In particular embodiments, processor 102 includes hard
ware for executing instructions, such as those making up a
computer program. As an example and not by way of
limitation, to execute instructions, processor 102 may
retrieve (or fetch) the instructions from an internal register,
an internal cache, memory 104, or storage 106; decode and
execute them; and then write one or more results to an
internal register, an internal cache, memory 104, or storage

10

15

25

30

35

40

45

50

55

60

65

4
106. In particular embodiments, processor 102 may include
one or more internal caches for data, instructions, or
addresses. This disclosure contemplates processor 102
including any suitable number of any suitable internal
caches, where appropriate. As an example and not by way of
limitation, processor 102 may include one or more instruc
tion caches, one or more data caches, and one or more
translation lookaside buffers (TLBs). Instructions in the
instruction caches may be copies of instructions in memory
104 or storage 106, and the instruction caches may speed up
retrieval of those instructions by processor 102. Data in the
data caches may be copies of data in memory 104 or storage
106 for instructions executing at processor 102 to operate
on; the results of previous instructions executed at processor
102 for access by Subsequent instructions executing at
processor 102 or for writing to memory 104 or storage 106:
or other Suitable data. The data caches may speed up read or
write operations by processor 102. The TLBs may speed up
virtual-address translation for processor 102. In particular
embodiments, processor 102 may include one or more
internal registers for data, instructions, or addresses. This
disclosure contemplates processor 102 including any Suit
able number of any suitable internal registers, where appro
priate. Where appropriate, processor 102 may include one or
more arithmetic logic units (ALUs); be a multi-core proces
sor; or include one or more processors 102. Although this
disclosure describes and illustrates a particular processor,
this disclosure contemplates any suitable processor.

In particular embodiments, memory 104 includes main
memory for storing instructions for processor 102 to execute
or data for processor 102 to operate on. As an example and
not by way of limitation, information handling system 100
may load instructions from storage 106 or another source
(such as, for example, another information handling system
100) to memory 104. Processor 102 may then load the
instructions from memory 104 to an internal register or
internal cache. To execute the instructions, processor 102
may retrieve the instructions from the internal register or
internal cache and decode them. During or after execution of
the instructions, processor 102 may write one or more results
(which may be intermediate or final results) to the internal
register or internal cache. Processor 102 may then write one
or more of those results to memory 104. In particular
embodiments, processor 102 executes only instructions in
one or more internal registers or internal caches or in
memory 104 (as opposed to storage 106 or elsewhere) and
operates only on data in one or more internal registers or
internal caches or in memory 104 (as opposed to storage 106
or elsewhere). One or more memory buses (which may each
include an address bus and a data bus) may couple processor
102 to memory 104. Bus 112 may include one or more
memory buses, as described below. In particular embodi
ments, one or more memory management units (MMUs)
reside between processor 102 and memory 104 and facilitate
accesses to memory 104 requested by processor 102. In
particular embodiments, memory 104 includes random
access memory (RAM). This RAM may be volatile memory,
where appropriate. Where appropriate, this RAM may be
dynamic RAM (DRAM) or static RAM (SRAM). Moreover,
where appropriate, this RAM may be single-ported or multi
ported RAM. This disclosure contemplates any suitable
RAM. Memory 104 may include one or more memories 104,
where appropriate. Although this disclosure describes and
illustrates particular memory, this disclosure contemplates
any suitable memory.

In particular embodiments, storage 106 includes mass
storage for data or instructions. As an example and not by

US 9,658,860 B2
5

way of limitation, storage 106 may include a hard disk drive
(HDD), a floppy disk drive, flash memory, an optical disc, a
magneto-optical disc, magnetic tape, or a Universal Serial
Bus (USB) drive or a combination of two or more of these.
Storage 106 may include removable or non-removable (or
fixed) media, where appropriate. Storage 106 may be inter
nal or external to information handling system 100, where
appropriate. In particular embodiments, storage 106 is non
Volatile, Solid-state memory. In particular embodiments,
storage 106 includes read-only memory (ROM). Where
appropriate, this ROM may be mask-programmed ROM,
programmable ROM (PROM), erasable PROM (EPROM),
electrically erasable PROM (EEPROM), electrically alter
able ROM (EAROM), or flash memory or a combination of
two or more of these. This disclosure contemplates mass
storage 106 taking any suitable physical form. Storage 106
may include one or more storage control units facilitating
communication between processor 102 and storage 106,
where appropriate. Where appropriate, storage 106 may
include one or more storages 106. Although this disclosure
describes and illustrates particular storage, this disclosure
contemplates any suitable storage.

In particular embodiments, I/O interface 108 includes
hardware, Software, or both, providing one or more inter
faces for communication between information handling sys
tem 100 and one or more I/O devices. Information handling
system 100 may include one or more of these I/O devices,
where appropriate. One or more of these I/O devices may
enable communication between a person and information
handling system 100. As an example and not by way of
limitation, an I/O device may include a keyboard, keypad,
microphone, monitor, mouse, printer, scanner, speaker, still
camera, stylus, tablet, touch screen, trackball, video camera,
another suitable I/O device or a combination of two or more
of these. An I/O device may include one or more sensors.
This disclosure contemplates any suitable I/O devices and
any suitable I/O interfaces 108 for them. Where appropriate,
I/O interface 108 may include one or more device or
software drivers enabling processor 102 to drive one or more
of these I/O devices. I/O interface 108 may include one or
more I/O interfaces 108, where appropriate. Although this
disclosure describes and illustrates a particular I/O interface,
this disclosure contemplates any suitable I/O interface.

In particular embodiments, communication interface 110
includes hardware, Software, or both providing one or more
interfaces for communication (such as, for example, packet
based communication) between information handling sys
tem 100 and one or more other information handling sys
tems 100 or one or more networks. As an example and not
by way of limitation, communication interface 110 may
include a network interface controller (NIC) or network
adapter for communicating with an Ethernet or other wire
based network or a wireless NIC (WNIC) or wireless
adapter for communicating with a wireless network, Such as
a WI-FI network. This disclosure contemplates any suitable
network and any suitable communication interface 110 for
it. As an example and not by way of limitation, information
handling system 100 may communicate with an ad hoc
network, a personal area network (PAN), a local area net
work (LAN), a wide area network (WAN), a metropolitan
area network (MAN), or one or more portions of the Internet
or a combination of two or more of these. One or more
portions of one or more of these networks may be wired or
wireless. As an example, information handling system 100
may communicate with a wireless PAN (WPAN) (such as,
for example, a BLUETOOTH WPAN), a WI-FI network, a
WI-MAX network, a cellular telephone network (such as,

10

15

25

30

35

40

45

50

55

60

65

6
for example, a Global System for Mobile Communications
(GSM) network), or other suitable wireless network or a
combination of two or more of these. Information handling
system 100 may include any Suitable communication inter
face 110 for any of these networks, where appropriate.
Communication interface 110 may include one or more
communication interfaces 110, where appropriate. Although
this disclosure describes and illustrates a particular commu
nication interface, this disclosure contemplates any Suitable
communication interface.

In particular embodiments, bus 112 includes hardware,
Software, or both coupling components of information han
dling system 100 to each other. As an example and not by
way of limitation, bus 112 may include an Accelerated
Graphics Port (AGP) or other graphics bus, an Enhanced
Industry Standard Architecture (EISA) bus, a front-side bus
(FSB), a HYPERTRANSPORT (HT) interconnect, an Indus
try Standard Architecture (ISA) bus, an INFINIBAND inter
connect, a low-pin-count (LPC) bus, a memory bus, a Micro
Channel Architecture (MCA) bus, a Peripheral Component
Interconnect (PCI) bus, a PCI-Express (PCIe) bus, a serial
advanced technology attachment (SATA) bus, a Video Elec
tronics Standards Association local (VLB) bus, or another
suitable bus or a combination of two or more of these. Bus
112 may include one or more buses 112, where appropriate.
Although this disclosure describes and illustrates a particular
bus, this disclosure contemplates any Suitable bus or inter
COnnect.

FIG. 2 illustrates an example configuration of networked
information handling systems (e.g. client devices and serv
ers). In particular embodiments, one or more client devices
220 and one or more servers 240 are connected via network
210. Network 210 may be a public network or a private (e.g.
corporate) network. Additionally, network 210 may, for
example, be a Local Area Network (LAN), a Wide Area
Network (WAN), a wireless network, the Internet, an
intranet or any other suitable type of network. In particular
embodiments, network 210 may include one or more routers
for routing data between client devices 220 and/or servers
240. A device (e.g., a client device 220 or a server 240) on
network 210 may be addressed by a corresponding network
address including, for example, an Internet protocol (IP)
address, an Internet name, a Windows Internet name service
(WINS) name, a domain name or other system name. In
particular embodiments, network 210 may include one or
more logical groupings of network devices Such as, for
example, one or more sites (e.g. customer sites) or Subnets.
As an example, a corporate network may include potentially
thousands of offices or branches, each with its own subnet
(or multiple subnets) having many devices. One or more
client devices 220 may communicate with one or more
servers 240 via any suitable connection including, for
example, a modem connection, a LAN connection including
the Ethernet or a broadband WAN connection including
DSL, Cable, Ti, T3, Fiber Optics, Wi-Fi, or a mobile
network connection including GSM, GPRS, 3G, or WiMax.

Client device 220 may be a desktop computer, a laptop
computer, a tablet computer, a handheld device, a mobile
phone, a kiosk, a vending machine, a billboard, or any
Suitable information handling system. In particular embodi
ments, a client device 220 is an embedded computer and
may have flash memory (e.g. a solid state drive) instead of
a hard disk drive. In particular embodiments, a client device
220 is a thin client having limited processing capabilities
and limited Storage, and Such a thin client may require
minimal management and updates. A client device 220 may
communicate with a server 240 via one or more protocols

US 9,658,860 B2
7

such as Hypertext Transfer Protocol (HTTP), Hypertext
Transfer Protocol Secure (HTTPS), File Transfer Protocol
(FTP), Common Internet File System (CIFS), Independent
Computing Architecture (ICA) protocol (developed by Cit
rix Systems, Inc.), Remote Desktop Protocol (RDP) (devel
oped by Microsoft Corporation), or any suitable protocol or
combination of protocols.
A server 240 may include one or more of a computing

device, a desktop computer, a laptop computer, a database,
a corporate server, a repository server, a configuration appli
cation server, a domain name system (DNS) server, a
dynamic host configuration protocol (DHCP) server, a vir
tual machine (e.g., VMware(R) Virtual Machine), a desktop
session (e.g., Microsoft Terminal Server), a published appli
cation (e.g., Microsoft Terminal Server), or any suitable
information handling system. As an example, a private (e.g.
corporate) network may include a device manager server
and a repository server each configured to communicate
with multiple client devices 220 across one or more
domains, sites, or subnets of network 210. In particular
embodiments, a server 240 may include one or more servers,
or functions of one or more servers. A client device 220 may
access Software resources provided by a server 240 such as,
for example, operating systems, add-ons, content, or any
other Suitable data, applications, or images. In particular
embodiments, a client 220 may access resources provided
by a server 240 only after providing suitable authentication
information. Alternatively, a server 240 may provide soft
ware or other resources automatically to one or more client
devices 220.

It may be desirable, in the case of a private (e.g. corporate)
network including multiple sites or subnets to deploy soft
ware (including, e.g., all or part of one or more operating
systems, applications, add-ons, or data) to one or more client
devices 220 across one or more sites or subnets. The client
devices 220 may, for example, be located remotely from one
or more servers 240 (including, e.g., device managers or
resource repositories), and as such, there may be challenges
in deploying Software or other resources to the client
devices. As an example, limited connectivity or limited
speed due to bandwidth constraints or network latencies may
create delays in deploying Software. As another example,
remote sites or Subnets may not include managed compo
nents or may not have any personnel with information
technology expertise necessary to implement software
deployment to client devices at the sites or subnets. Addi
tionally, as the size of operating system images or other
content (e.g. videos) increases, deploying software or other
data to remote sites or subnets may be further delayed. These
issues may be further exacerbated in the case of embedded
computers such as thin clients, which may have limited
processing capability and limited storage space. Traditional
approaches involving using a static remote software reposi
tory for each subnet or site may not be feasible due to cost
or management and monitoring requirements.

In particular embodiments, one or more servers 240 of a
network 210 may include a device manager that may man
age one or more client devices 220 (e.g. thin clients) of one
or more sites or Subnets of the network. The device manager
may, for example, be a software-based management tool that
allows for Software imaging, software updates, and Software
configurations to be deployed to the clients from one or more
servers. The device manager may also perform any other
Suitable management function to manage client devices
including, for example, enabling or performing (e.g. auto
matically) device discovery, tracking of assets (e.g. hard
ware or software inventory) at client devices, monitoring the

10

15

25

30

35

40

45

50

55

60

65

8
status or health of client devices, applying one or more
policies to client devices (including, e.g., network settings of
the client devices), or remote administration and shadowing
of client devices. The device manager may deliver any
Suitable resources including, for example, operating sys
tems, add-ons, content, or any other Suitable data, applica
tions, or images to one or more thin client devices 220 of
network 210.

In particular embodiments, a client device Such as client
device 220 (e.g. a thin client) may be designed with minimal
or limited storage capacity (e.g. in a hard disk). The client
device may be required, however, to run an operating system
Such as WINDOWS EMBEDDED or WINDOWS
SERVER, but the footprint of such an operating system may
grow over time with newer releases or updates. Hence, client
devices may, over time, begin to run low on free storage
space (e.g. in the hard disk). Unwanted files may be deleted
or full Volume compression of the storage medium (e.g. the
hard disk) may be implemented to increase available storage
space. However, full Volume compression may introduce
performance shortcomings (e.g. increased number of
instruction cycles required to compress/uncompress data in
the volume) from the point of view of an end user of the
client device. In particular embodiments, optimized volume
compression may be implemented to reduce effective disk
usage on a client device while minimizing impact on system
performance.

In particular embodiments, system boot performance of a
client device may be improved via selective compressing
and uncompressing of data in the storage Volume (e.g. hard
disk) of the client device. In such embodiments, data is
sampled during system boot-up of the client device. During
boot-up of the client device system, a first set of raw data
regarding disk activity (e.g. reads or writes to the disk) is
collected (e.g. by one or more counter APIs) for use in the
initial process of performance improvement. In this phase,
file access details for data or files resident on the storage
volume of the client device are collected during the system
boot process. In particular embodiments, multiple data sets
or samples of file access details are collected during one or
more boot-up processes, to allow for more consistent and
effective data collection. The number of data samples may
be taken as input and this number may be used to trigger that
same number of reboots of the client device system. During
each of those boot-ups, file/data access frequencies (for each
file/unit of data accessed) are collected. Each boot-up data
sample may be saved in a separate file (e.g. a temporary file
that is unknown to a user of the client device). FIGS. 3, 4,
and 5 represent examples of data sets or samples that may be
produced by a particular embodiment. Each data set may
comprise a plurality of entries, each entry corresponding to
a file accessed during a sampling interval. An entry may
contain an identifier for the file accessed (e.g. FileName),
and the number of times the file was accessed (e.g. Access
Frequency).
Once the desired number of data samples has been

collected, these samples may be merged together into a file
(e.g. an XML file), which will contain both identifying
information (e.g. names) of files accessed during boot-up
and their respective frequencies of access. The data gathered
in system boot-up may, for example, be independent of any
specific application that may run on the client device and
may, for example, depend on what mode the client device is
booted into or what drivers, applications, or startup items are
loaded at the time of data measurement. Additionally, the
data gathered during system boot-up may include data that
may not be measurable once the system is fully booted up.

US 9,658,860 B2

In particular embodiments, a tool or utility (e.g. a system
service of the client device) may start upon boot-up of the
client device and may include one or more major modules.
The tool or utility may include a data sampler module, which
may include a lightweight processing thread (e.g. running in
the background) that collects filenames of files which have
been accessed, as well as each file’s corresponding fre
quency of access, and stores this information in a file (e.g.
an XML file) corresponding to the particular boot cycle. The
tool or utility may also include a boot data sampler module,
which takes as input a desired number of samples (e.g. input
by a user or administrator of the client device). The boot data
sampler module may restart the client device based on the
desired number of samples (e.g. if 6 samples are desired,
then the boot data sampler module may restart the client
device 6 times). During each boot-up of the client device, the
boot data sampler module may collect the filenames of files
which have been accessed, as well as each file's correspond
ing frequency of access, and stores this information in a file
(e.g. an XML file) corresponding to the particular boot cycle.
This data may be collected using boot performance counters
that keep track of the number of boot cycles (e.g. stopping
once the number of the present boot cycle equals the desired
sample count). Sampling may be initiated based on a sched
ule for boot performance optimization.

Example pseudocode for sampling data during system
boot-up of the client device is as follows (e.g. as performed
by a boot data sampler module of a tool or utility of the client
device):

INPUT:
Data Sample Count(n)
OUTPUT:
Files which are accessed during System boot with fre

quency of file being accessed in XML format, for the
specified number of Data Sample Counts, Boot.xml

PROCEDURE:
Step 1: Input count of data samples.
Step 2: If n-0, goto step 9, else continue.
Step 3: Restart the system.
Step 4: During the System boot process retrieve the file
names and frequency (no. of times a system file will be
accessed during the boot process) of files which are
being accessed using Boot performance Counters API.

Step 5: Store File list in a xml file, Boot(n).xml
Step 6: n=n-1.
Step 7: While (n>0) goto step 3.
Step 8: Merge Boot(i).xml, where (i=1:i-ni----) and

store in one Final XML and name it as Boot.xml.
Step 9: End
In particular embodiments, application performance (e.g.

from the point of view of an end user) of a client device may
be improved via selective compression and uncompressing
of data in the storage Volume (e.g. hard disk) of the client
device. In these embodiments, data may be sampled (e.g.
collected by counter APIs) during the running of one or more
applications on the client device. In particular embodiments,
multiple data samples may be gathered to get more consis
tent and effective data regarding file accesses over a par
ticular (e.g. user-specified) time period. Information about
the trend of file accesses (e.g. during productivity hours or
at any point in time) may be obtained, and this data may
assist in selecting which files to process for compression or
uncompressing. When gathering data during the running of
one or more applications on the client device, two inputs are
required. First, the duration of one sampling “unit (e.g. one
hour) is required (and this value may be defined by a user).
Second, the number of samples desired for collection must

10

15

25

30

35

40

45

50

55

60

65

10
be specified. Once the process of data sampling is initiated,
file access frequencies for each file being accessed during
each sampling unit is collected. This data may be saved in
a file (e.g. a temporary file). Once, the desired number of
samples (e.g. sampling units) have been collected, the
samples may be merged together (e.g. in an XML file) in a
file that includes the files accessed (and their respective
frequencies of access) during the running of one or more
applications on the client device. In particular embodiments,
there is no need for a system restart between each sampling
unit (e.g. as with the gathering of system boot-up data).
Additionally, the gathering of data samples may, in particu
lar embodiments, occur continuously (e.g. as a service that
runs all the time once the client device is booted up). The
merging of data samples may, in particular embodiments,
occur at a particular time (e.g. at the end of the business
day), which may be specified by a user or administrator of
the client device.
The tool or utility (e.g. a system service of the client

device) described herein may include an application data
sampler module, which takes as input a desired sample
length and a desired number of samples (e.g. a sample
interval length and a sample count). The application data
sample module may collect the filenames of files that have
been accessed (and their corresponding file access frequen
cies) and store this information in a file (e.g. an XML file)
corresponding to the particular sample number. This data
may be collected using performance counters that keep track
of the sample interval and sample counts. This data may be
in the form depicted in FIGS. 3, 4, and 5, as described
previously.

Example pseudocode for sampling data during applica
tion runtime of the client device is as follows (e.g. as
performed by an application data sampler module of a tool
or utility of the client device):
INPUT:
Data Sample Count(n)
Data Sample Interval(t)
OUTPUT:
Files which are accessed during User Application Expe

rience for a defined sampling interval, for the specified
number of Data Sample Counts. App.xml

PROCEDURE:
Step 1: Input Data Sample Count(n) & Data Sample

Interval(t).
Step 2: If n=0t=0, goto step 9, else continue.
Step 3: Start Data Collection.
Step 4: During User Application Experience retrieve the

file names and frequency (no. of times files being
accessed) of files being accessed using System perfor
mance counters API.

Step 5: Store this data in XML, App(n).xml
Step 6: n=n-1.
Step 7: While (n>0), goto step 3.
Step 8: Merge App(i).xml, where (i-1:i-ni----) and store

in one Final XML and name it as App.xml.
Step 9: End
Once data samples are gathered, whether they are samples

gathered during system boot-up or samples gathered during
application runtime on the client device, these data samples
may be merged or otherwise consolidated. For example,
multiple system-boot up samples (taken, for example, during
multiple system boot-up processes of the client device) may
be merged together in one file. As another example, multiple
application runtime samples (taken, for example, during one
or more sampling periods of one or more lengths during
application runtime of the client device) may be merged

US 9,658,860 B2
11

together in one file. In particular embodiments, the first data
sample gathered is a reference, and for each of the N desired
samples after the first data sample (e.g. samples 2 through
N), the file access frequency information is added (e.g.
appended) to the reference file. Once sample merging is
complete for all the data samples, the result is a file with
entries including filenames of those files that have been
accessed during one or more of the samples (and corre
sponding access frequencies). The data in this file spans all
the reboots (if the samples are gathered during system
boot-up) or spans the effective sample timeline (e.g. the total
sampling duration of all the samples, if the samples are
gathered during application runtime).
The tool or utility (e.g. a system service of the client

device) described herein may include a merge module,
which may be a low-priority processing thread that performs
the merging of collected data samples (collected, e.g. by the
data sampler module) during a suitable time (e.g. during an
idle state of the client device). Example pseudocode for
merging collected data samples is as follows (e.g. as per
formed by a merge module of a tool or utility of the client
device):

INPUT:
Boot(i).xml/App(i).xml, where (i-2:i-ni----) & n is the
number of sample count. For simplicity we'll define
File(i)=Boot(i).xml/App(i).xml

OUTPUT:
XML file, containing the list of files, for un compression.

Boot.xml/App.xml
PROCEDURE:
Step 1: Read File(1).xml and File(i).xml
Step 2: For each File entry in File(1).xml, if there is an

entry in File(i).xml, add the frequency of access of the
entry in File(i).xml with that of File(1).xml, else update
the file with the corresponding entry and its frequency
in File(1).xml.

Step 3: while (i=2:i-ni----). Goto Step 1
Step 4: Rename File(1).xml as Boot.XML/App.XML.
FIG. 6 is a representation of a merged or consolidated data

set that results from combining the first, second, and third
data sets represented by FIGS. 3, 4, and 5 respectively.

In particular embodiments, once the data samples are
merged, a compression ratio may be calculated for each file
(or other data) entry of the merged data. The compression
ratio may be obtained based on two attributes for a com
pressed file: 1) the size of the file on a storage volume of the
client device (e.g. disk) when uncompressed and 2) the size
of the file on the storage volume when compressed. The
compression ratio for a file is equal to the size of the
uncompressed form of the file divided by the size of the
compressed form of the file. Once the compression ratio for
an entry in the merged dataset is calculated, the compression
ratio may be appended to the entry for that file in the
combined dataset. That is, in the final merged file (e.g. an
XML file), the entry for a specific data file may include
metadata about the file (including, e.g. the filename), access
frequency of the file across all the data samples in the
merged data file, and a compression ratio for the file.
Example pseudocode for calculating a compression ratio
(e.g. performed by an analyzer module of the tool or utility
of the system of the client device, described herein) is as
follows:

INPUT:
Boot.xml/App.xml
OUTPUT:
The compression ratio for each entry in Boot.xml/Ap

p.xml.

5

10

15

25

30

35

40

45

50

55

60

65

12
PROCEDURE:
Step 1: Read Boot.xml or App.xml
Step 2: For each file in the xml (Boot.xml OR app.xml),

(a) Read the Size of File (Sf)
(b) Read the Size of File on Disk (Sd)
(c) Obtain the compression ratio (CR), CR=(SfSd)

Step 3: Update the Compression Ratio (CR), for each file
entry in Boot.Xml/App.xml, as an attribute.

FIG. 7 is a representation of the output of a particular
embodiment calculating compression ratios for the dataset
and files depicted in FIG. 6. In the particular embodiment,
the size of each file and the size of each file on disk are
additional attributes (e.g. Sizeoffile and Sizeof FileonDisk,
respectively) stored in a Boot.xml/App.xml file.

In particular embodiments, once the compression ratio
has been calculated for each file (or other data unit) in the
merged data set, old data samples and new data samples may
be analyzed. This analysis may later be used to determine
whether any files (or other data units) are suitable candidates
for compression. For example, files which were previously
uncompressed but are now are not being used as frequently
may be compressed in order to save disk space. Additionally,
recently-used files or newer files (as indicated by the latest
data samples in the merged data set), may be uncompressed
to enhance system performance. This comparison of older
data samples and newer data samples may provide a clearer
picture of the deviation in the files being accessed now
versus those files that were previously being accessed. In
one embodiment, those files that were both accessed in older
data samples and not accessed in newer data samples may be
compressed to save disk space. Example pseudocode for
analyzing data sets for compression (e.g. performed by an
analyzer module of the tool or utility of the system of the
client device, described herein) is as follows:
INPUT:
Boot old.xml/App old.xml (if present); these are the files

used during last optimization task.
Boot.xml/App.xml.
OUTPUT:
Updated Boot old.xml/App old.xml,

staged for compression.
Common.xml
PROCEDURE:
Step 1: Read Boot old.xml/App old.xml, if it exists, else

goto Step 4.
Step 2: Read Boot.xml/App.xml.
Step 3: For each entry in Boot.xml/App.xml, if it exists in

Boot old.xml/App old.xml, remove the entry from
Boot old.xml/App old.xml and save the entry with the
respective values in another Xml, common.xml.

Step 4: End.
In particular embodiments, once the merged data set has

been analyzed, particular files may be selected and sorted for
compression. In this step, the old merged data (for Samples
gathered during boot-up or during application runtime of the
client device) is compared with the new merged data, and
common files between the old and new datasets are deter
mined. In particular embodiments, files in the new merged
data set with a compression ratio of 1 (indicating that the file
has not been compressed, or the file was already been
uncompressed during the last optimization cycle) may be
excluded from becoming candidates for compression. Addi
tionally, files that are common to both the old merged data
samples and the new merged data samples are excluded from
becoming candidates for compression. For each of the file
entries remaining in the current/new merged data set, the
computational overhead weight for the file entry is calcu

with files pre

US 9,658,860 B2
13

lated by multiplying the frequency of access for the file by
the file size (e.g. in kilobytes). This calculated weight value
is a measure of the appropriateness of the file as a candidate
for uncompressing, as the greater the file size and the more
frequent the access to the file, the greater the number of CPU
cycles that will be spent on uncompressing the file every
time it is accessed in the storage Volume (e.g. if it is not
compressed), and the lower the performance of the system.
The calculated weight value for a file may be saved for each
file entry (e.g. appended to the entry in the file for the
merged data set), and the file entries may be sorted in
descending order with respect to the calculated weight value,
so that those entries with a higher weight value will be more
likely to be uncompressed by this process than those entries
with a lower weight value (e.g. lower on the list). In
particular embodiments, the calculated weight value may be
scaled over all the entries on a scale from 0 to 100 (e.g.
where a higher weight value leads to a higher likelihood of
being selected for compression). Example pseudocode for
selecting files for compression (e.g. performed by an ana
lyzer module of the tool or utility of the system of the client
device, described herein) is as follows:

INPUT:
Boot.xml
OR
App.xml
Common.xml, if present
OUTPUT:
Updated Boot.xml/App.xml, this file will contain the list

of files which can be processed.
PROCEDURE:
Step 1: Read Boot.xml/App.xml.
Step 2: Read Common.xml, if no common.xml, goto step

4.
Step 3: For each file in common.xml, remove the corre

sponding entry in Boot.Xml/App.xml
Step 4: For each file entry, if the compression ratio (CR)

is 1, remove the entry from Boot.xml/App.xml.
Step 5: For each file entry, get the file size (from

Boot.xml/App/xml) and compute the weight by multi
plying the File Size with the frequency and update the
XML with a weight attribute of respective entry.

Step 6: Sort entries in Boot.xml/App.xml in the descend
ing order, with respect to the Weight, and update
Boot.xml/App.xml.

In particular embodiments, once the file or data entries
have been Sorted by some measure of performance (e.g. the
calculated weight value described herein), a subset of those
files listed in the merged data set (e.g. in the merged XML
file) may be selected for compression or uncompressing. For
example, in this phase, the files that should be uncompressed
to enhance system performance may be identified based on
a particular measure or degree of performance. The degree
of performance desired is taken as an input, and the updated,
merged and current data is read. The degree of performance
is a number (e.g. between 0 and 100) that may determine the
extent to which system performance is preferred over disk
space usage. If the total file count in the current data set (e.g.
the current merged data set) is N, and the degree of perfor
mance desired is X, then the count of those files to be
uncompressed will be Y=(X*N)/100. Starting from the first
entry in the sorted list of file entries in the merged data set,
the first Y files from the current dataset may be marked (e.g.
with a flag for each entry) for uncompressing. Example
pseudocode for marking files for uncompression (e.g. per
formed by an analyzer module of the tool or utility of the
system of the client device, described herein) is as follows:

10

15

25

30

35

40

45

50

55

60

65

14
INPUT:
Boot.xml/App.xml
Degree of Performance (DoP): This is the value, input by

the User, as to how much of a Performance gain does
he need, on a scale of 1-100. 1 refers to least perfor
mance gain and 100 refer to maximum obtainable
performance gain.

OUTPUT:
Boot.Xml/App.xml, updated with appropriate un com

pression flags, for each entry.
PROCEDURE:
Step 1: Read the DoP.
Step 2: Read Boot.xml/App.xml
Step 3: Count the number of entries (FileCount) under

Boot.xml/App.xml.
Step 4: Compute the Un compression File Count (UFC).

UFC=(DoP*FileCount)/100, number rounded off to the
nearest integer.

Step 5: For each entry in Boot.xml/App.xml, set the
uncompression flag and decrement UFC, starting from
the first entry, until UFC is 0.

In particular embodiments, if an optimization cycle (e.g.
one or more of the steps described herein) has already been
run, then files which have previously been uncompressed
(e.g. marked by flags set in the entries corresponding to
those files) and are not currently being actively used may be
compressed. In particular embodiments, the comparison of
the current merged dataset with a previous merged data set
allows for an identification of such files. In particular
embodiments, these identified files may be compressed
using the “Compact utility provided by MICROSOFT.
Once the compression of these data files is over, the old or
previous merged data set may be deleted. Example pseudo
code for compressing particular files (e.g. performed by a
compression module of the tool or utility of the system of the
client device, described herein) is as follows:
INPUT:
Boot old.xml/App old.xml
OUTPUT:
Optimized experience.
PROCEDURE:
Step 1: Read Boot old.xml/App old.xml
Step 2: For each file in the list, compress.
Step 3: Delete Boot old.xml/App old.xml
In particular embodiments, particular files may be

selected for uncompressing based on flags set for the entries
corresponding to those files in the current merged data set.
Once the files flagged for uncompressing are uncompressed
(e.g. using the "Compact utility), the current data set is
merged with the data common to the older data set and the
current data set. The degree of performance index may also
be removed in this phase, and the older data set XML file
may be archived or designated as the last set of files which
have been analyzed for optimization. Example pseudocode
for compressing particular files (e.g. performed by an
uncompressing module of the tool or utility of the system of
the client device, described herein) is as follows:

INPUT:
Boot.xml/App.xml
OUTPUT:
Optimized experience.
PROCEDURE:
Step 1: Read Boot.xml/App.xml
Step 2: For each file in the list with the un compression

flag set, un compress.
Step 3: Merge Boot.Xml/App.xml and common.xml and

save as Boot old.xml/App old.xml

US 9,658,860 B2
15

Particular embodiments are further described with refer
ence to FIGS. 7-10. FIG. 8 is a representation of an
exemplary Boot old.xml/App old.xml file. In a particular
embodiment, a comparison process is used to identify
entries in the Boot old.xml/App old.xml that are not pres
ent in the Boot.xml/App.xml file corresponding to FIG. 7.
Such a process would identify File 20, File 21, File 22, and
File 23. File 20, File 21, File 22, and File 23 are selected for
compression. After the particular embodiment moves entries
for files in common between Boot old.xml/App old.xml
and Boot.xml/App.xml to Common.xml, Boot.xml/App.xml
will only contain entries for files identified during in the
most recent data samples, as depicted in FIG. 9A. The
entries in Boot.xml/App.xml are filtered to remove files with
a compression ratio 1:1. In this example, File 12 has a
compression ratio of 1:1, and has been removed from
Boot.xml/App.xml, as depicted in FIG. 9B. The weight of
each entry is calculated and added as an attribute. The entries
are then sorted by weight in descending order. The resulting
data set is depicted in FIG. 9C. The files for uncompression
can be selected from the set of entries depicted in FIG. 9C.
In a particular embodiment, a degree of performance param
eter may be Supplied by the system user or administrator, or
by a default value. In the particular embodiment, the degree
of performance is expressed as a integer ranging from 0-100.
The number of files to be uncompressed can be determined
by the formula Such as: (degree of performance parameter)
* (number of entries suitable for uncompression)/100. In this
example, using the data set depicted in FIG. 9C, and a degree
of performance parameter of 67, the formula results in 2 files
being selected. Thus, in the particular embodiment, the first
two entries are selected for uncompression (File 8 and File
14). At this point, the files selected for compression may be
compressed, and the files selected for uncompression may
be uncompressed.

In particular embodiments, sample and file data may be
stored in XML files. FIG. 10 depicts an XML schema used
in by a particular embodiment. FIG. 11 is an example of an
instance of a data set using the XML Schema depicted in
FIG 10.

FIG. 12 depicts the architecture of a particular embodi
ment. A data sampler module monitors and collects infor
mation regarding files accessed during system boot or during
the user application experience. The data sampler module is
operable to create and merge data samples. A data analyzer
module collects the data samples from the data sampler. The
data analyzer module selects the files for compression and
uncompression as disclosed herein. An action or execution
module performs the compression and uncompression
operations, and updates the reference data for use in the next
optimization cycle. For example, a Boot.Xml/App.xml file
may be updated.

FIG. 13 is a flow chart illustrating the steps performed by
a particular embodiment during an initial optimization of the
system boot. At step 1300, data samples are collected during
system boot. At step 1305, the collected data samples are
merged. At step 1310, the compression ratio is calculated for
each file identified in the data samples. At step 1315, the file
selection algorithm selects the files identified in the data
samples to be uncompressed. The file selection algorithm
may assign a weight to each file that is based upon its size
and its frequency of access. The algorithm may also receive
a degree of performance parameter that is used in the file
selection process. At step 1320, files selected by the algo
rithm are uncompressed. At step 1325, reference data is
stored. For example, the reference data may comprise a
Boot old.xml file.

10

15

25

30

35

40

45

50

55

60

65

16
FIG. 14 is a flow chart illustrating the steps performed by

a particular embodiment during Subsequent optimizations of
the system boot. At step 1400, data samples are collected
during system boot. At step 1405, the collected data samples
are merged. At step 1410, the compression ratio is calculated
for each file identified in the data samples. At step 1415,
which may be done in parallel, the reference data from the
last optimization of the system boot is compared with the
current data samples. At step 1420, files are selected for
compression. For example, if a file was uncompressed
during a previous system boot optimization (as determined
from the reference data), but the same file was not identified
in the current data samples, the file may be selected for
compression. At step 1430, the files selected for compres
sion are compressed, and the reference data is updated at
step 1440. At step 1425, the data file selection algorithm
receives the compared data from step 1415 and the com
puted compression ratios for the files identified in the current
data samples from step 1410. The data file selection algo
rithm then selects files for uncompression. At step 1435, the
selected files are uncompressed. At step 1440, the reference
data is updated to account for the files that have been
uncompressed.

FIG. 15 is a flow chart illustrating the steps performed by
a particular embodiment during an initial optimization of the
user application experience. At step 1500, data samples are
collected during the user application experience. At step
1505, the collected data samples are merged. At step 1510,
the compression ratio is calculated for each file identified in
the data samples. At step 1515, the file selection algorithm
determines the files identified in the data samples to be
uncompressed. The file selection algorithm may assign a
weight to each file that is based upon its size and its
frequency of access. The algorithm may also receive a
degree of performance parameter that is used in the file
selection process. At step 1520, files selected by the algo
rithm are uncompressed. At step 1525, reference data is
stored. For example, the reference data may comprise an
App old.xml file.

FIG. 16 is a flow chart illustrating the steps performed by
a particular embodiment during Subsequent optimizations of
the user application experience. At step 1600, data samples
are collected during the user application experience. At step
1605, the collected data samples are merged. At step 1610,
the compression ratio is calculated for each file identified in
the data samples. At step 1615, which may be done in
parallel, the reference data from the last optimization of the
system boot is compared with the current data samples. At
step 1620, files are selected for compression. For example,
if a file was uncompressed during a previous user applica
tion experience optimization, as indicated by the reference
data, but the same file was not identified in the current data
samples, the file may be selected for compression. At step
1630, the files selected for compression are compressed, and
the reference data is updated at step 1640. At step 1625, the
data file selection algorithm receives the compared data
from step 1615 and the computed compression ratios for the
files identified in the current data samples from step 1610.
The data file selection algorithm selects files for uncompres
sion. At step 1635, the selected files are uncompressed. At
step 1640, the reference data is updated to account for the
files that have been uncompressed.

FIG. 17 is a flowchart illustrating the steps performed by
a particular embodiment to collect data samples during a
system boot. At step 1700, the process starts. At step 1705,
a data sample count is read. The data sample count (N) is a
parameter that may be set by a user or may be a default

US 9,658,860 B2
17

value. At step 1710, if the data sample count is zero, the
process ends at step 1740. If the data sample count is not
Zero, the sampling process is initialized at step 1715. At step
1720, the system is restarted or rebooted. At step 1725, the
files retrieved during the system boot are identified, and the
frequency of file access is tracked. At step 1730, after the
system has booted, information about the files accessed, and
the frequency of access, is stored in a file. At step 1735, the
data sample count is decremented, and control passes back
to step 1710.

FIG. 18 is a flowchart illustrating the steps performed by
a particular embodiment to collect data samples during the
user application experience. At step 1800, the process starts.
At step 1805, a data sample count (N) is read. The data
sample count is a parameter that may be set by a user or
administrator, or may be a default value. A sample interval
(T) is also read. The sample interval is a parameter that may
be set by a user or administrator, or may be a default value.
At step 1810, if the data sample count is zero, the process
ends at step 1840. If the data sample count is not zero, the
sampling process is initialized at step 1815. At step 1820, the
files retrieved during the user application experience during
the sample interval are identified, and the frequency of file
access is tracked. At step 1825, after the sample time interval
is complete, information about the files accessed, and the
frequency of access, is stored in a file. At step 1830, the data
sample count is decremented, and control passes back to step
1810.

Herein, 'or' is inclusive and not exclusive, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, “A or B' means "A, B, or both,”
unless expressly indicated otherwise or indicated otherwise
by context. Moreover, “and” is both joint and several, unless
expressly indicated otherwise or indicated otherwise by
context. Therefore, herein, "A and B’ means "A and B,
jointly or severally, unless expressly indicated otherwise or
indicated otherwise by context.
The Scope of this disclosure encompasses all changes,

Substitutions, variations, alterations, and modifications to the
example embodiments described or illustrated herein that a
person having ordinary skill in the art would comprehend.
The scope of this disclosure is not limited to the example
embodiments described or illustrated herein. Moreover,
although this disclosure describes and illustrates respective
embodiments herein as including particular components,
elements, feature, functions, operations, or steps, any of
these embodiments may include any combination or permu
tation of any of the components, elements, features, func
tions, operations, or steps described or illustrated anywhere
herein that a person having ordinary skill in the art would
comprehend. Furthermore, reference in the appended claims
to an apparatus or system or a component of an apparatus or
system being adapted to, arranged to, capable of configured
to, enabled to, operable to, or operative to perform a
particular function encompasses that apparatus, system,
component, whether or not it or that particular function is
activated, turned on, or unlocked, as long as that apparatus,
system, or component is so adapted, arranged, capable,
configured, enabled, operable, or operative.

What is claimed is:
1. A method of optimizing the performance of an infor

mation handling system comprising:
generating one or more data samples by:
rebooting the information handling system for a prede

termined number of boot cycles, wherein the predeter

10

15

25

30

35

40

45

50

55

60

65

18
mined number of boot cycles is based, at least in part,
on a predetermined number of data samples to be
generated;

identifying one or more files accessed during the bootup
of the information handling system for each reboot,
wherein a separate data sample is generated for each
reboot;

determining an access frequency for each of the identified
one or more files accessed;

and storing an identifier and the access frequency for each
of the identified one or more files accessed;

merging the one or more data samples into a merged data
sample:

computing a compression ratio for each of the identified
one or more files accessed in the merged data sample:

storing the compression ratio for each of the identified one
or more files accessed in the merged data sample;

analyzing the one or more data samples and one or more
previous data samples to determine which of the iden
tified one or more files accessed are recently-used files
and which of the identified one or more files accessed
are new files;

selecting one or more of the identified one or more files
accessed from the merged data sample for uncompres
sion;

and uncompressing the selected one or more of the
identified one or more files accessed for uncompres
sion.

2. The method of claim 1, wherein selecting one or more
of the identified one or more files accessed for umcompres
sion further comprises:

determining a weight for each of the identified one or
more files accessed in the merged data sample:

and selecting one or more of the identified one or more
files accessed based upon the weight and a degree of
performance.

3. The method of claim 2, wherein the weight for each
identified one or more files accessed is determined by
multiplying a file size of the identified one or more files
accessed by the access frequency of the identified one or
more files accessed.

4. The method of claim 1, further comprising:
comparing the merged data sample with a reference data;
selecting files identified in the reference data that are not

identified in the merged data sample for compression;
compressing the selected files identified in the reference

data for compression; and
replacing the reference data with the merged sample data.
5. The method of claim 1, wherein identifying one or

more files accessed during the bootup of the information
handling system comprises monitoring and collecting infor
mation about the identified one or more files accessed by a
data sampler module.

6. The method of claim 1, wherein each data sample is
stored in a file, wherein the file comprises identifying
information of the identified one or more files accessed and
the access frequency for each of the identified one or more
files accessed.

7. The method of claim 1. wherein the number of one or
more data samples generated is based upon a received
parameter.

8. One or more computer-readable non-transitory storage
media embodying logic that is operable when executed to:

generating one or more data samples by:
rebooting an information handling system for a predeter

mined number of boot cycles, wherein the predeter

US 9,658,860 B2
19

mined number of boot cycles is based, at least in part,
on a predetermined number of data samples to be
generated;

identifying one or more files accessed during the bootup
of the information handling system for each reboot,
wherein a separate data sample is generated for each
reboot;

determining an access frequency for each of the identified
one or more files accessed;

and storing an identifier and the access frequency for each
of the identified one or more files accessed;

merging the one or more data samples into a merged data
Sample:

computing a compression ratio for each of the identified
one or more files accessed in the merged data sample:

storing the compression ratio for each of the identified one
or more files accessed in the merged data sample:

analyzing the one or more data samples and one or more
previous data samples to determine which of the iden
tified one or more files accessed are recently-used files
and which of the identified one or more files accessed
are new files;

selecting one or more of the identified one or more files
accessed from the merged data sample for uncompres
Sion;

and uncompressing the selected one or more of the
identified one or more files accessed for uncompres
Sion.

9. The media of claim 8, wherein selecting one or more of
the identified one or more files accessed for uncompression
further comprises:

determining a weight for each of the identified one or
more files accessed in the merged data sample:

and selecting one or more of the identified one or more
files accessed based upon the weight and a degree of
performance.

10. The media of claim 9, wherein the weight for each
identified one or more files accessed is determined by
multiplying a file size of the identified one or more files
accessed by the access frequency of the identified one or
more files accessed.

11. The media of claim 8, further comprising:
comparing the merged data sample with a reference data;
selecting files identified in the reference data that are not

identified in the merged data sample for compression;
compressing the selected files identified in the reference

data for compression; and
replacing the reference data with the merged sample data.
12. The media of claim8, wherein identifying one or more

files accessed during the bootup of the information handling
System comprises monitoring and collecting information
about the identified one or more files accessed by a data
sampler module.

13. The media of claim 8, wherein each data sample is
stored in a file, wherein the file comprises identifying
information of the identified one or more files accessed and
the access frequency for each of the identified one or more
files accessed.

14. The media of claim 8, wherein the number of one or
more data samples generated is based upon a received
parameter.

15. An information handling system comprising:
one or more processors; and

10

15

25

30

35

40

45

50

55

60

20
a memory coupled to the processors comprising instruc

tions executable by the processors, the processors being
operable when executing the instructions to: generating
one or more data samples by:

rebooting the information handling system for a prede
termined number of boot cycles, wherein the predeter
mined number of boot cycles is based, at least in part,
on a predetermined number of data samples to be
generated;

identifying one or more flies accessed during the bootup
of the information handling system for each reboot,
wherein a separate data sample is generated for each
reboot;

determining an access frequency for each of the identified
one or more files accessed;

and storing an identifier and the access frequency for each
of the identified one or more files accessed;

merging the one or more data samples into a merged data
sample:

computing a compression ratio for each of the identified
one or more files accessed in the merged data sample:

storing the compression ratio for each of the identified one
or more files accessed in the merged data sample:

analyzing the one or more data samples and one or more
previous data samples to determine which of the iden
tified one or more files accessed are recently-used files
and which of the identified one or more files accessed
ace new files;

selecting one or more of the identified one or more files
accessed from the merged data sample for uncompres
sion;

and uncompressing the selected one or more of the
identified one or more files accessed for uncompres
sion.

16. The information handling system of claim 15, wherein
selecting one or more of the identified one or more files
accessed for uncompression further comprises:

determining a weight for each of the identified one or
more files accessed in the merged data sample:

and selecting one or more of the identified one or more
files accessed based upon the weight and a degree of
performance.

17. The information handling system of claim 16, wherein
the weight for each identified one or more files accessed is
determined by multiplying a file size of the identified one or
more files accessed by the access frequency of the identified
one or more files accessed.

18. The information handling system of claim 15, further
comprising:

comparing the merged data sample with a reference data;
selecting files identified in the reference data that are not

identified in the merged data sample for compression;
compressing the selected files identified in the reference

data for compression; and
replacing the reference data with the merged sample data.
19. The information handling system of claim 15, wherein

identifying one or more files accessed during the bootup of
the information handling system comprises monitoring and
collecting information about the identified one or more files
accessed by a data sampler module.

20. The information handling system of claim 15, wherein
the number of one or more data samples generated is based
upon a received parameter.

ck ck *k k k

