
(12) United States Patent

USOO9652385B1

(10) Patent No.: US 9,652,385 B1
Chadwick et al. (45) Date of Patent: May 16, 2017

(54) APPARATUS AND METHOD FOR 2010, 0023706 A1 1/2010 Christie G06F 9,466
HANDLING ATOMC UPDATE OPERATIONS T11 150

2015,0242218 A1* 8, 2015 Shum GO6F9.3865
T12/216

(71) Applicant: ARM Limited, Cambridge (GB) 2016/0378662 A1* 12/2016 Gschwind........... G06F 12,0833

(72) Inventors: Gregory Andrew Chadwick, T11 135
Cambridge (GB); Adnan Khan, * cited by examiner
Cambridge (GB) Primary Examiner — Edward Dudek, Jr.

(73) Assignee: ARM Limited, Cambridge (GB) (74) Attorney, Agent, or Firm — Nixon & Vanderhye P.C.

(*) Notice: Subject to any disclaimer, the term of this (57) ABSTRACT
patent is extended or adjusted under 35 An apparatus and method are provided for handling atomic
U.S.C. 154(b) by 0 days. update operations. The apparatus has a cache storage to store

data for access by processing circuitry, the cache Storage
(21) Appl. No.: 14/953,093 having a plurality of cache lines. Atomic update handling

circuitry is used to handle performance of an atomic update
(22) Filed: Nov. 27, 2015 operation in respect of data at a specified address. When data

at the specified address is determined to be stored within a
(51) Int. Cl. cache line of the cache Storage, the atomic update handling

G06F 2/08 (2016.01) circuitry performs the atomic update operation on the data
G06F 9/52 (2006.01) from that cache line. Hazard detection circuitry is used to
G06F 9/38 (2006.01) trigger deferral of performance of the atomic update opera
G06F 2/0802 (2016.01) tion upon detecting that a linefill operation for the cache
G06F 2/085 (2016.01) storage is pending that will cause a chosen cache line to be

(52) U.S. Cl. Eated St. El that includes data R the specified aOCCSS, 1 operation causes the apparatus to
CPC self'E',i.e.: receive a sequence of data portions that collectively form the

• us • us data for storing in the chosen cache line. Partial linefill
12/0815 (2013.01); G06F 2212/1032 (2013.01) notification circuitry is used to provide partial linefill infor

(58) Field of Classification Search mation to the atomic update handling circuitry during the
CPC G06F 9/528: G06F 9/3834; G06F 12/0815 linefill operation, and the atomic update handling circuitry is
See application file for complete search history. arranged to initiate the atomic update operation responsive

to detecting from the partial linefill information that the data
(56) References Cited at the specified address is available for the chosen cache line.

U.S. PATENT DOCUMENTS

8,266,383 B1* 9/2012 Minkin G06F 12,084
T10/39

2008/009 1884 A1* 4/2008 Piry G06F 12,0831
711,141

200

248

as

211

LENEFiLL
DATA

L1 CACHE
ARRAYS

(DATACACHE)
246

CACHEACCESSINFO

241------
BUSINTERFACE

UNIT (BIU)

DATA

LOADSTOREPEPELINES

PARTAL
DATA 2O2 LINEFILL

FORWARING

FORWARDINGPATH

210 440

CACHEACCESS UPDATE

HAZARD
MONOR

LINEFILLIA244

50 NEEL, N260 2

This can provide a performance benefit, by avoiding the
need for the atomic update handling circuitry to await
completion of the linefill operation before beginning the
atomic update operation.

19 Claims, 9 Drawing Sheets

OPERATION
HANDLER
(MAYBE

NCORPORATED
INSTORE
BUFFER

CIRCUITRY)

232

PARTIA

NOTFER

LINEFIREQUEST
1 STOREREQUEST

242 FARATOMCRE6

U.S. Patent

NEAR
ATOMICS
HANDLED

HERE

May 16, 2017 Sheet 1 of 9

1OO 120

PROCESSOR CORE

LDIST PIPELINE LDIST PIPELINE

ONE OR MORE ONE ORMORE
CACHE CACHE
LEVELS LEVELS

LINEFILL LINEFILL
REQ REQ

LINEFILL REQ

SNOOP REQUESTS

US 9,652,385 B1

PROCESSOR CORE

105 PIPELINES
130

125

HANDLED

NEAR

s HERE

140

SNOOP 155 COHERENT
CIRCUITRY INTERCONNECT

ATOMICS
HANDLED

FAR

HERE

OPTIONAL FURTHER 145
CACHE LEVELS

MEMORY 150

FIG. 1

U.S. Patent May 16, 2017 Sheet 2 of 9 US 9,652,385 B1

200

LOAD/STORE PIPELINE(S)

DATA
FORWARDING

248 ATOMC
UPDATE

OPERATION
HANDLER
(MAYBE

INCORPORATED
INSTORE
BUFFER

CIRCUITRY)

CACHEACCESS
mm man m m ARBITER

LINEFILL
DATA

L1 CACHE
ARRAYS

(DATA CACHE)
246 232

CACHEACCESS INFO

BUSINTERFACE HAZARD RNA
UNIT (BIU) MONITOR NOTFER

LINEFILL/244
DATA

LINEFILL REQUEST
| STORE REQUEST
| FARATOMICREQ

FIG. 2

U.S. Patent May 16, 2017 Sheet 3 of 9 US 9,652,385 B1

DATABUS
(EG 128BITS)

CACHE LINE
UPDATE

310 315 320 325

CACHE
LINE
(EG 512
ITS) PORTION O PORTION 1 PORTION 2 PORTION 3

305
FIG. 3

U.S. Patent May 16, 2017 Sheet 4 of 9 US 9,652,385 B1

OPERATION OF
ATOMIC UPDATE
OPERATION
HANDLER ATOMC

UPDATE OPERATION
TO PROCESS

REQUEST CACHE
LOOKUP

RESPONSE s
RECEIVED

HAZARD
RAISED BY

BU
y 370

DATARETREVED
FROM CACHE

375
CACHE PARTIAL

LINE LINEFILL
LOCKED NOTIFICATION
DURING UPDATE OPERATION RECEIVED

THIS PERFORMED
PROCESS 38O
BY CACHE
ACCESS
ARBITER WRITE BACK RELATES

UPDATED DATATO
CACHE LINE TO PORTION

REQUIRED FOR
ATOMC
UPDATE

ISSUESIGNATO
BUTO CAUSE TO
BE HANDLED AS
FARATOMIC

FIG. 4

U.S. Patent May 16, 2017 Sheet 5 Of 9 US 9,652,385 B1

FROM LOADISTORE PIPELINE

ATOMIC
41 UPDATE

O OPERATION
HANDLER

405
BUFFER

TO
CACHE CONTROL
ACCESS CIRCUITRY
ARBITER

SLOT M-1

252 262
HAZARD PARTIAL

CONTROL LINEFILL
SIGNAL NOTIFICATION

SLOTX,
PORTIONY)

FIG. 5A

420 425 430

SLOT ADDRESS UPDATE STATUS
BITS DATA BITS \ 415

FIG. 5B

U.S. Patent May 16, 2017 Sheet 6 of 9 US 9,652,385 B1

200

LOAD/STORE PIPELINES

DATA
FORWARDING

PARTIAL
LINEFILL

248

ATOMIC
UPDATE

OPERATION HANDLER
(MAYBE

INCORPORATED
INSTORE
BUFFER

CIRCUITRY)

LINEFILL
DATA

L1 CACHE
ARRAYS

(DATA CACHE)
232

CACHEACCESS INFO

PARTIAL
LINEFILL
NOTIFIER

BUS INTERFACE
UNIT (BIU)

LINEFILL LINEFILL REQUEST
DATA | STORE REQUEST

| FARATOMIC REQ

FIG. 6

U.S. Patent May 16, 2017 Sheet 7 Of 9 US 9,652,385 B1

OPERATION OF
ATOMIC UPDATE
OPERATION
HANDLER ATOMIC

UPDATE OPERATION

TO PROCESS
Y

REQUEST CACHE
LOOKUP

RESPONSE
RECEIVED

360

HAZARD
RAISED BY

BU

DATARETRIEVED
FROM CACHE

CASE PARTAL
LINEFILL DATA

LOCKED RECEIVED
DURING

is UPDATE 9PERATION
PROCESS PERFORMED
BY CACHE
ACCESS
ARBITER WRITE BACK RELATES

UPDATED DATATO TO PORTION
CACHE LINE REQUIRED FOR

ATOMC
UPDATE

ISSUESIGNALTO
BUTO CAUSE TO
BE HANDLED AS
FARATOMIC

FIG. 7

U.S. Patent May 16, 2017 Sheet 8 of 9 US 9,652,385 B1

FROMLOAD/STORE PIPELINE

ATOMIC
UPDATE

OPERATION
HANDLER

TO
CACHE CONTROL
ACCESS CIRCUITRY
ARBITER

SLOT M-1

252/1442 440
HAZARD PARTIAL

CONTROL LINEFILL
SIGNAL DATAAND OTHER INFO

SLOTX,
PORTIONY)

FIG. 8

(ENIT EHOVO NI ||SET}{=} |N| HO ET TWA WIWO LOETES O| SLIG LESH.JO ESn) EnTVA VIVO

US 9,652,385 B1 Sheet 9 Of 9 May 16, 2017 U.S. Patent

(SLIG) Vd OWL +-===

US 9,652,385 B1
1.

APPARATUS AND METHOD FOR
HANDLING ATOMIC UPDATE OPERATIONS

BACKGROUND

The present technique relates to an apparatus and method
for performing atomic update operations. When processing
circuitry issues an atomic update operation specifying a
memory address, this will typically require the data at that
memory address to be obtained, some computation to be
performed using that obtained data, and then a data value to
be written back to the specified memory address dependent
on the outcome of that computation. This sequence of steps
needs to be performed atomically so that the data is not
accessed by another operation whilst the update operation is
being performed.
Many modern day data processing systems include one or

more levels of cache between the processing circuits and
memory, in which cached copies of the data at certain
memory addresses can be retained to improve speed of
access to that data by associated processing circuitry. One or
more levels of cache may be provided for the exclusive use
of an associated processing circuit, such caches often being
referred to as local caches, whilst other levels of cache may
be shared between multiple processing circuits, often being
referred to as shared cache.

Considering the earlier mentioned atomic update opera
tions, when it is determined that the specified address relates
to data that has been cached in a local cache, it may be
possible for that atomic update operation to be performed
using the local cache contents, in Such a situation the atomic
update operation being referred to as a near atomic opera
tion. However, before the near atomic operation can be
performed, certain pending cache access operations may
need to be completed, and this can give rise to a performance
impact in the handling of the atomic update operation. It
would be desirable to provide a mechanism for alleviating
this performance impact.

SUMMARY

In a first example configuration, there is provided an
apparatus comprising: a cache storage to store data for
access by processing circuitry, the cache storage having a
plurality of cache lines; atomic update handling circuitry to
handle performance of an atomic update operation in respect
of data at a specified address, the atomic update handling
circuitry being arranged, when data at the specified address
is stored within a cache line of the cache storage, to perform
the atomic update operation on the data from that cache line;
hazard detection circuitry to trigger deferral of performance
of the atomic update operation upon detecting that a linefill
operation for the cache storage is pending that will cause a
chosen cache line to be populated with data that includes
data at the specified address, the linefill operation causing
the apparatus to receive a sequence of data portions that
collectively form the data for storing in the chosen cache
line; partial linefill notification circuitry to provide partial
linefill information to the atomic update handling circuitry
during the linefill operation; and the atomic update handling
circuitry being arranged to initiate the atomic update opera
tion responsive to detecting from the partial linefill infor
mation that the data at the specified address is available for
the chosen cache line.

In a second example configuration, there is provided a
method of handling atomic update operations within an
apparatus having a cache storage to store data for access by

10

15

25

30

35

40

45

50

55

60

65

2
processing circuitry, the cache storage having a plurality of
cache lines, the method comprising: employing atomic
update handling circuitry to handle performance of the
atomic update operation in respect of data at a specified
address, the atomic update handling circuitry being
arranged, when data at the specified address is stored within
a cache line of the cache storage, to perform the atomic
update operation on the data from that cache line; triggering
deferral of performance of the atomic update operation upon
detecting that a linefill operation for the cache storage is
pending that will cause a chosen cache line to be populated
with data that includes data at the specified address; per
forming the linefill operation to cause the apparatus to
receive a sequence of data portions that collectively form the
data for storing in the chosen cache line; providing partial
linefill information to the atomic update handling circuitry
during the linefill operation; and initiating the atomic update
operation responsive to the atomic update handling circuitry
detecting from the partial linefill information that the data at
the specified address is available for the chosen cache line.

In a yet further example configuration, there is provided
an apparatus comprising: cache storage means for storing
data for access by processing circuitry, the cache Storage
means having a plurality of cache lines; atomic update
handling means for handling performance of an atomic
update operation in respect of data at a specified address, the
atomic update handling means, when data at the specified
address is stored within a cache line of the cache Storage
means, for performing the atomic update operation on the
data from that cache line, hazard detection means for trig
gering deferral of performance of the atomic update opera
tion upon detecting that a linefill operation for the cache
storage means is pending that will cause a chosen cache line
to be populated with data that includes data at the specified
address, the linefill operation causing the apparatus to
receive a sequence of data portions that collectively form the
data for storing in the chosen cache line; partial linefill
notification means for providing partial linefill information
to the atomic update handling means during the linefill
operation; and the atomic update handling means for initi
ating the atomic update operation responsive to detecting
from the partial linefill information that the data at the
specified address is available for the chosen cache line.

BRIEF DESCRIPTION OF THE DRAWINGS

The present technique will be described further, by way of
example only, with reference to embodiments thereof as
illustrated in the accompanying drawings, in which:

FIG. 1 is a block diagram of a system in which the
techniques of the described embodiments may be employed:

FIG. 2 is a block diagram illustrating in more detail
components provided in association with a level 1 data
cache in accordance with one embodiment;

FIG. 3 schematically illustrates how a linefill operation
may be performed using a plurality of cache accesses in
accordance with one embodiment;

FIG. 4 is a flow diagram illustrating the operation of the
atomic update operation handler of FIG. 2 in accordance
with one embodiment;

FIG. 5A is a block diagram illustrating components pro
vided within the atomic update operation handler in accor
dance with one embodiment;

FIG. 5B schematically illustrates fields provided within
each slot of the atomic update operation handler's buffer of
FIG. 5A in accordance with one embodiment;

US 9,652,385 B1
3

FIG. 6 illustrates how a forwarding path to the atomic
update operation handler may be used in accordance with an
alternative embodiment;

FIG. 7 is a flow diagram illustrating the operation of the
atomic update operation handler in accordance with the
embodiment of FIG. 6;

FIG. 8 schematically illustrates how partial linefill data
may be provided to the atomic update operation handler in
accordance with the embodiment of FIG. 6; and

FIG. 9 is a diagram illustrating the operation of a virtually
indexed, physically tagged cache that may be used as a level
one data cache in accordance with one embodiment.

DESCRIPTION OF EMBODIMENTS

Before discussing the embodiments with reference to the
accompanying figures, the following description of embodi
ments is provided.

In one embodiment, an apparatus is provided that has
cache storage for storing data for access by associated
processing circuitry, with the cache storage having a plural
ity of cache lines. Atomic update handling circuitry is then
used to handle performance of an atomic update operation in
respect of data at a specified address. When it is determined
that data at that specified address is stored within a cache
line of the cache Storage, the atomic update handling cir
cuitry is arranged to perform the atomic update operation on
the data from that cache line.

Hazard detection circuitry is used to detect certain hazard
conditions, and with regard to the atomic update operation
is arranged to trigger deferral of performance of that atomic
update operation upon detecting that a linefill operation for
the cache storage is pending, in a situation where that linefill
operation will cause a chosen cache line to be populated with
data that includes data at the specified address. In Such a
situation, it will be appreciated that once the linefill opera
tion has been completed, the cache will then contain the data
at the specified address, allowing the atomic update opera
tion to be performed directly on the data from the cache line.

However, since during a linefill operation an entire cache
line's worth of data is written into the cache, it can take a
significant period of time for the linefill operation to com
plete. In particular, during the linefill operation the apparatus
will receive from the memory system (either from a lower
level in the cache hierarchy or from main memory) a
sequence of data portions that collectively form the data for
storing in the chosen cache line, and the time taken to
receive all of the required data portions and store those
portions to the cache line in order to complete the linefill
operation can be significant.

In accordance with the described embodiment, rather than
having to wait for the linefill operation to complete, and the
hazard condition to thereby be removed, before performing
the atomic update handling circuitry, instead partial linefill
notification circuitry is provided which provides partial
linefill information to the atomic update handling circuitry
during the linefill operation. The atomic update handling
circuitry is then arranged to initiate the atomic update
operation in response to detecting from the partial linefill
information that the data at the specified address is available
for the chosen cache line.

In many situations, this will enable the atomic update
operation to be initiated before the linefill operation has been
completed, hence alleviating the potential performance
impact that would otherwise result from having to await

10

15

25

30

35

40

45

50

55

60

65

4
confirmation from the hazard detection circuitry that the
linefill operation has completed and the hazard is hence no
longer present.
The point at which the data at the specified address is

determined to be available for the chosen cache line may
vary dependent on embodiment. In one embodiment the data
at the specified address is available for the chosen cache line
once it has been stored within the chosen cache line. In one
particular example of Such an embodiment, the individual
data portions are written to the cache line as they are
received from the memory system, and hence the partial
linefill information can be based on the storage of each data
portion into the cache line.

However, in an alternative embodiment, the data at the
specified address is considered available for the chosen
cache line once it has been locally buffered within the
apparatus for storing within the chosen cache line. In one
such embodiment the data portions are still received in a
sequence from the memory system, but they are buffered
locally so that multiple data portions can then be written into
the chosen cache line at the same time (in one particular
embodiment the entire cache line's data is updated at the
same time using the buffered data portions). When adopting
such an approach, it is possible for the partial linefill
information to be based on the availability of the data
portions in the local buffer, without needing to wait for the
cache line to actually be written to during the linefill
operation.
The partial linefill information can take a variety of forms.

In one embodiment, the partial linefill notification circuitry
is arranged to provide the partial linefill information to the
atomic update handling circuitry to identify when each data
portion is available for the chosen cache line during the
linefill operation, and the atomic update handling circuitry is
arranged to determine from the partial linefill information
when the linefill operation has progressed to a point where
the data at the specified address is available for the chosen
cache line.

Hence, in this embodiment each time a data portion
becomes available for the chosen cache line during the
linefill operation, the atomic update handling circuitry is
notified. Based on this information, the atomic update han
dling circuitry can then determine when the data at the
specified address relevant to the atomic update operation is
available for the chosen cache line, and at that point can
initiate the atomic update operation even though the linefill
operation may not yet have completed.
As an alternative to the above approach, the partial linefill

notification circuitry may be arranged to determine when the
linefill operation has progressed to a point where the data
portions available for the chosen cache line include the data
at the specified address, and then to issue as the partial
linefill information an indication that the data at the specified
address is available for the chosen cache line. Hence, in this
embodiment, rather than the atomic update handling cir
cuitry being notified as each data portion becomes available
for the chosen cache line, the partial linefill notification
circuitry instead keeps track of the progress of the linefill
operation and determines when a point has been reached
where the data at the specified address required by the
atomic update operation is available for the chosen cache
line, and at that point provides a partial linefill notification
to the atomic update handling circuitry. The atomic update
handling circuitry can then respond to receipt of that partial
linefill information by initiating performance of the atomic
update operation.

US 9,652,385 B1
5

The partial linefill information can include a variety of
pieces of information dependent on embodiment. In one
embodiment, the partial linefill information comprises an
address portion indicative of a corresponding data portion
that is available for the chosen cache line during the linefill
operation. Hence, based on the address portion information,
the atomic update handling circuitry can then determine
whether the corresponding data portion that is available for
the chosen cache line includes the data at the specified
address relevant to the atomic update operation.

In one embodiment, the atomic update handling circuitry
may comprise a buffer having a plurality of buffer entries,
where each buffer entry may be used to store information
relating to a pending operation. The partial linefill notifica
tion circuitry may be provided with information about which
buffer entry any particular pending atomic update operation
is associated with, and in one embodiment the partial linefill
information then comprises an indication of the buffer entry
for which the partial linefill information is being provided.
This enables the atomic update handling circuitry to readily
determine for which atomic update operation the partial
linefill information is being provided.

In one embodiment, once the atomic update handling
circuitry detects in response to the partial linefill information
that the atomic update operation can be initiated, it will issue
a request to access the required data, whereafter the required
update operation on that data will be performed, typically
resulting in the updated data being written back to the cache
line.

However, in an alternative embodiment a data forwarding
path may be coupled to the atomic update handling circuitry
that can be used to provide to the atomic update handling
circuitry, as at least part of the partial linefill information, the
corresponding data portion that is available for the chosen
cache line. Accordingly, in Such an embodiment, the need to
read the data (from the cache or local buffer) may be
avoided, and instead the data provided directly over the data
forwarding path can be used.

In one embodiment, a dedicated data forwarding path may
be provided for the atomic update handling circuitry. How
ever, in an alternative embodiment the atomic update han
dling circuitry can be incorporated within a component that
already has such a data forwarding path to it. For example,
in one embodiment the atomic update handling circuitry
may be incorporated within a load/store pipeline of the
processing circuitry, and often a load/store pipeline will be
provided with a forwarding path to enable data retrieved via
a linefill operation to be provided directly to the processor.
That forwarding path can then be reused by the atomic
update handling circuitry.

The atomic update operation can take a variety of forms,
but in one embodiment comprises a read-modify-write
operation, where the data at the specified address, as avail
able for the chosen cache line, is obtained, a computation is
performed to produce a modified data value, and the modi
fied data value is written back to the chosen cache line.

Such an atomic update operation can take a variety of
forms, for example allowing a number of different compu
tations to be specified by different forms of the atomic
update operation. In addition, the atomic update operations
can be identified as being store operations or load opera
tions.

In one embodiment, when the atomic update operation is
an atomic load operation, then in addition to performing the
above described read-modify-write operation, the obtained
data at the specified address is output to the processing

5

10

15

25

30

35

40

45

50

55

60

65

6
circuitry. Hence, the processing circuitry receives the origi
nal data prior to it being modified by the read-modify-write
operation.
The above performance improvements that can be

realised through use of the partial linefill information to
enable the atomic update operation to be performed earlier
than it might otherwise be able to if it awaited completion of
the relevant linefill operation, can be particularly useful in
association with atomic load operations, since it is often the
case that a Subsequent operation to be performed by the
processing circuitry will be awaiting receipt of that data
from the atomic load operation. By reducing the latency of
the atomic load operation, this reduces the performance
impact on the Subsequent operation that is dependent on the
loaded data.

Whilst the atomic update operation can be a read-modify
write operation, it may alternatively take other forms. For
example in one embodiment the atomic update operation
comprises obtaining the data at the specified address as
available for the chosen cache line, performing a computa
tion to produce a result value, and selectively writing a
modified data value back to the chosen cache line dependent
on the result value. An example of Such an atomic update
operation would be a compare and Swap operation, where
the data value obtained from the specified address is com
pared with another value specified by the atomic update
operation (for example the contents of a specified register),
and then dependent on the result of the comparison, the data
value as stored at the specified address may be swapped for
a different data value. Again, by employing the above
described techniques to reduce the latency of the atomic
update operation, this can give rise to significant perfor
mance benefits.

In one embodiment cache access circuitry is used to store
the data into the chosen cache line during the linefill
operation. The cache access circuitry may update the cache
line one data portion at a time as each data portion becomes
available, or alternatively the data portions may be buffered
locally and then the cache access circuitry may write mul
tiple data portions (in one embodiment all of the data
portions constituting the data of the cache line) to the cache
line in one go.

In one embodiment, the cache access circuitry is arranged,
whilst the atomic update operation is being performed, to
lock the chosen cache line from being accessed at least for
any operations that could compromise atomicity of the
atomic update operation.

In one embodiment, any remaining parts of the linefill
operation are allowed to continue, since they will not relate
to the data that is the Subject of the atomic update operation,
and accordingly could not comprise the atomicity. Further,
hazard checking mechanisms employed for access requests
issued by the associated processing circuitry may be Sufi
cient to ensure that any access requests that could comprise
atomicity are stalled waiting for the atomic update operation
to complete, hence not requiring the cache line to specifi
cally be locked. However, certain types of operation could
potentially compromise atomicity of the atomic update
operation. One example is Snoop operations that are issued
to the apparatus from Snoop circuitry within a system
incorporating that apparatus. The Snoop circuitry is effec
tively an external source of access requests (in the form of
Snoop requests) to the cache structure. In accordance with
the above described embodiment, the cache access circuitry
is arranged to prevent Such a Snoop request accessing the
chosen cache line whilst the atomic update operation is
being performed in respect of that cache line. Once the

US 9,652,385 B1
7

atomic update operation is complete, then the cache access
circuitry will allow the Snoop operation to proceed.
The atomic update handling circuitry can be a dedicated

circuit provided purely for handling atomic update opera
tions. However, in an alternative embodiment it can be
provided as part of an existing structure in order to make use
of certain components of that existing structure. In one
particular embodiment, the atomic update handling circuitry
is provided within store buffer circuitry used to process store
operations requested by the processing circuitry. As part of
the process required to handle standard store operations, the
store buffer circuitry will be able to access the cache in order
to write data into selected cache lines. This functionality can
be utilised by the atomic update handling circuitry when
handling atomic update operations since, as will be apparent
from the above discussion, these will typically involve not
just reading data from the cache, but also writing data (after
it has been modified) back to the cache.

In one embodiment, the atomic update handling circuitry
is arranged, when data at the specified address is determined
not to be stored within a cache line of the cache storage and
there is no pending linefill operation for the cache storage
that will cause a chosen cache line to be populated with data
that includes data at the specified address, to output the
atomic update operation for handling by components exter
nal to the apparatus. In contrast to atomic update operations
that can be performed directly using the contents of the
cache storage, which will be referred to herein as near
atomic operations, atomic update operations that are output
for handling by components external to the apparatus will be
referred to as far atomic operations.

Particular embodiments will now be described with ref
erence to the Figures.

FIG. 1 illustrates an example of a system in which an
apparatus of the described embodiments may be employed.
For ease of illustration, the system includes only two pro
cessor cores 100, 120, but additional processor cores may be
provided, as indeed can other master devices that may or
may not include their own local caches. The core 100 has
various processor pipelines 105, one of which is a load/store
pipeline 110 used to handle load and store operations. The
load/store pipeline 110 can access one or more cache levels
115 provided locally within the core 100 by issuing access
requests specifying memory addresses. The core 120 is
constructed similarly, having pipelines 125 including a load/
store pipeline 130 that can issue access requests specifying
memory addresses to one or more cache levels 135 provided
locally within the core 120. In the embodiment described
herein, it will be assumed that the one or more cache levels
115, 135 include a level 1 data cache. Further lower levels
of cache may be provided within the blocks 115, 135, such
as local level 2 caches. Irrespective of whether there are
additional levels of cache, or just a level 1 cache, in each of
the blocks 115, 135, in the event of a miss within the local
cache levels, a linefill request will be propagated out to the
coherent interconnect 140 along with the memory address.
The coherent interconnect 140 includes snoop circuitry 155
which is used to implement a cache coherency protocol in
order to ensure that data coherency exists between the
various copies of data that may be held by the separate
processor cores local caches. In particular, by way of
example, it is important that if processor core 120 has a data
value in its local caches 135 which is more up-to-date than
data held in any shared lower hierarchical cache levels 145
and/or memory 150, then if the processor core 100 requires

10

15

25

30

35

40

45

50

55

60

65

8
access to that data and detects a miss in its local caches 115,
it can be ensured that the processor core 100 will access the
most up-to-date data.
The Snoop circuitry 155 seeks to maintain a record

indicating which cores it understands to have cached copies
of data, that record keeping track of the memory addresses
of the data and the cores that it believes to have locally
cached that data. Accordingly, in the event of a linefill
request being propagated from one of the processor cores
along with a memory address, the Snoop circuitry 155 can
check its local record to see if that memory address is
identified in its record, and if so which processor cores are
indicated as having a copy of that data. It can then issue a
Snoop request to the relevant processor core(s) in order to
cause each such processor core to access its local cache and
perform a required coherency action in respect to its copy of
the data. This may involve invalidating the local copy,
and/or may involve that processor core outputting its copy of
the data back to the Snoop circuitry, so that it can then be
returned to the requesting processor core. By way of
example, it will hence be appreciated that if a miss occurs in
the one or more cache levels 115 for an access request made
by the processor core 100, and that the most up-to-date
version of the data at that address resides in the local cache
hierarchy 135 of processor core 120, this will be detected by
the Snoop circuitry 155, and via the snoop request that data
can be retrieved and then provided back to the processor
core 100.

In addition to issuing standard load or store operations to
the associated cache levels, the load/store pipelines 110, 130
can also issue other types of operation which require
memory accesses to be performed. One particular example
is an atomic update operation as discussed earlier. Such an
atomic update operation will typically require data at a
specified memory address to be accessed, some manipula
tion operation to be performed using that data, and then an
updated data value to be written back to the memory
address. In some alternative examples of an atomic update
operation, the write back of a data value to the memory
address following the manipulation may depend on the
result of that manipulation operation.
When Such an atomic update operation is issued by a

load/store pipeline, then circuitry associated with the first
level of cache within the associated local cache levels 115,
135 will determine whether the data value at the specified
address of the atomic update operation is cached exclusively
within the local cache. If it is not currently exclusively
cached within the local cache, it may be possible to use the
Snoop functionality to render the local cache's copy an
exclusive copy. If the data value in question is exclusively
cached within the local cache, then the atomic update
operation can be performed locally with respect to the
caches contents, such an atomic update operation being
referred to as a near atomic operation. Further, if it is
detected that the data value of interest is not currently in the
cache, but is the Subject of a pending linefill operation to the
cache, and hence in due course will be present in the cache,
then the atomic update operation can be deferred awaiting
performance of the linefill operation. This again enables the
atomic update operation to be handled as a near atomic
operation. As will be discussed in more detail with reference
to the embodiments below, rather than having to wait for the
entire linefill operation to complete, using the techniques of
the embodiments described hereafter it is possible for the
atomic update operation to begin before the full linefill
operation has completed in many situations, hence providing
a performance improvement.

US 9,652,385 B1

If it is determined that the specified address for the atomic
update operation does not have its associated data cached
within the local cache structure, and is not the subject of a
pending linefill operation, then that atomic update operation
is propagated from the relevant processor core 100, 120 for
performance at a lower cache level 145 or memory 150. An
atomic update operation that needs to be handled in that
manner may be referred to as a far atomic operation.

FIG. 2 is a block diagram illustrating components pro
vided in association with the level 1 data cache in accor
dance with one embodiment, and in particular illustrating
how atomic update operations are handled. The level 1 data
cache arrays 220 are accessed under the control of a cache
access arbiter 210 that can receive cache access requests
from a variety of sources. For example, for a load access
request, the load/store pipeline 200 may issue an access
request to the cache access arbiter to cause a lookup to be
performed within the level 1 cache arrays 220. In the event
of a cache hit, then the requested data can be returned to the
load/store pipeline 200 from the level one cache arrays 220.
Store operations are typically only output by the load/store
pipeline once they reach the commit stage of the pipeline,
and at that point are forwarded to a store buffer. Although the
store buffer is not shown separately in FIG. 2, in one
embodiment the atomic update operation handler 230 is
actually provided as part of the store buffer circuitry. For a
store operation, the store buffer may then cause the cache
access arbiter 210 to perform a cache lookup in order to
determine whether the data the subject of the store operation
is within the cache, and if so the write data provided for the
store operation can be written directly into cache (assuming
the store operation relates to a cacheable store request).
As shown by the path 212, a bus interface unit (BIU) 240

is able to monitor the various cache accesses made by the
cache access arbiter 210, and the responses thereto. If a miss
is detected for a cache access, then the BIU 240 can issue a
linefill request over path 242 to the lower levels of the cache
hierarchy in order to cause the required to be returned as
linefill data over path 244. As the linefill data is returned, it
can be forwarded over path 246 to the cache access arbiter
210 in order to cause the requested data to be stored within
a chosen cache line of the cache array. If required, the data
can also be passed directly back to the load/store pipeline
200 via a data forwarding path 248.

Typically the cache line width exceeds the data bus width
on the path 244. Hence, when retrieving a cache line's worth
of data from the lower levels of the cache hierarchy in order
to perform a linefill operation, that data will typically be
returned as a sequence of data portions. In one embodiment,
as each data portion is returned, it can be passed over path
246 to cause the cache access arbiter 210 to perform an
access to the relevant cache line of the cache array in order
to write that data portion into the cache line. In accordance
with Such an approach, multiple cache accesses will be
performed to the cache array by the cache access arbiter 210
in order to populate the full cache line's worth of data during
the linefill operation.

In an alternative embodiment, a local buffer 211 may be
maintained by the cache access arbiter, so that as each data
portion for the linefill is returned, it is stored within the
buffer 211, and then when the full cache line's worth of data
is available, an access is then performed into the cache
arrays in order to store that cache line's worth of data into
the chosen cache line.
Due to the BIU 240 being aware of the various accesses

being performed in respect of the cache arrays 220 via the
cache access information passed over path 212, the BIU can

10

15

25

30

35

40

45

50

55

60

65

10
keep track of potential hazards that may arise, and in
particular can be provided with hazard monitoring circuitry
250 to track those hazards and issue appropriate control
signals in the event of a hazard being detected. As one
example of a hazard, whilst a linefill operation is pending, it
may be the case that the cache access arbiter issues an access
request in relation to a memory address that is contained
within the range of addresses that are the subject of the
linefill operation. If the data has not yet been written into the
cache, this would cause a miss to be detected in the cache,
but if the BIU detects that the data will be available once the
linefill operation is complete, it can notify the relevant
component in order to cause the cache access result to be
ignored by that component, and instead for the cache access
to be retried later by that component.

Considering atomic update operations, these will typically
be routed via the load/store pipeline 200 over the path 202
to the atomic update operation handler 230. Whilst the
atomic update operation handler 230 may be a separate
functional block associated with the cache, in one embodi
ment it can be incorporated as part of the store buffer
circuitry, and make use of some of the components already
provided within the store buffer circuitry. For example, the
store buffer circuitry will typically comprise a number of
buffer slots for storing pending store operations, and those
buffer slots can also be utilised to store pending atomic
update operations. The atomic update operations have some
properties similar to a store operation, since as part of their
functionality they will typically require a write to be per
formed to a cache line within the cache array, assuming the
atomic update operation can be handled as a near atomic
operation. Due to the write performed during performance of
the atomic update operation, then typically Such atomic
update operations will also only be routed over the path 202
from the load/store pipeline once the commit stage of the
load/store pipeline has been reached.
When the atomic update operation handler determines

that it has an atomic update operation to perform, it can issue
a request to the cache access arbiter 210 to cause the cache
access arbiter to perform a lookup within the level one cache
arrays 220. In the event of a hit, then the requested data can
be returned to the atomic update operation handler, where
the atomic update operation can then be performed on that
data. This will typically involve performing an update
operation using the data retrieved, resulting in the generation
of result data. In one embodiment, the result data is then
written back to the level one cache array via the atomic
update operation handler 230 issuing a write request to the
cache access arbiter 210 to cause the relevant cache line to
be accessed and the data written. Dependent on the type of
atomic update operation, then in some instances it may be
the case that the result of the update operation is first
analysed and, dependent on the value of that result, this may
then dictate whether the current content of the cache line is
updated as a final step of the atomic update operation.
Due to the earlier discussed functionality of the BIU 240,

if when the cache access arbiter 210 performs the initial
lookup operation in response to the atomic update operation
handler's request, a miss is detected in the level one cache
array, the BIU can nevertheless detect with reference to the
hazard monitoring function whether there is a pending
linefill request covering the specified address for the atomic
update operation. In that event, the hazard monitoring cir
cuitry 250 is arranged to send a control signal over path 252
to the atomic update operation handler 230 to trigger defer
ral of performance of the atomic update operation. In effect,
the atomic update operation handler then ignores the miss

US 9,652,385 B1
11

result returned from the cache access arbiter 210, and instead
awaits a further control signal from the BIU 240 before
reinitiating performance of the atomic update operation.
Due to the fact that the linefill data is typically received

over path 244 in multiple cycles, one data portion at a time,
it will be appreciated that a linefill operation potentially
takes significant time to perform. If the atomic update
operation handler 230 were to wait for the linefill operation
to complete, at which point the hazard would then be
removed, and a notification to that effect could be passed
from the hazard monitor 252 to the atomic update operation
handler 230, this could potentially cause the atomic update
operation to be stalled for a significant period of time. In the
embodiment described with reference to FIG. 2, this prob
lem is alleviated through use of a partial linefill notification
block 260. In particular, in one embodiment, as each portion
of data for a linefill operation is returned over path 244 and
routed over path 246 to the cache access arbiter 210, then a
notification of that fact can be issued over path 262 to the
atomic update operation handler 230.
The partial linefill information routed over path 262 to the

atomic update operation handler 230 can take a variety of
forms, but in one embodiment provides some address infor
mation Sufficient to identify the range of addresses associ
ated with the data portion. In one embodiment, it is also
arranged to identify the buffer slot in which the relevant
atomic update operation that has been stalled due to the
pending linefill operation is located. In particular, the slot
information can be passed to the BIU 240 at the time the
original hazard is detected, so that the BIU can associate the
slot identifier with the pending linefill, and accordingly the
partial linefill notifier 260 can issue slot-specific partial
linefill notifications over path 262.
As each piece of partial linefill information is returned

over path 262 to the atomic update operation handler 230, it
can assess whether the associated portion of data that has
been provided to the cache access arbiter 210 includes the
data that is the Subject of the stalled atomic update operation
(i.e. whether the address range associated with that portion
of data includes the specified address for the atomic update
operation in question).
As a result, it will be appreciated that, even prior to the

linefill operation completing, a situation may be detected
where a portion of data that has been returned as part of a
linefill operation already includes the data that the atomic
update operation needs. At that point, the atomic update
operation handler 230 can reissue its access request to the
cache access arbiter 210. In the embodiment where each
portion of data is written directly into the chosen cache line
as it is received by the cache access arbiter, it will be
appreciated that at this point a hit will be detected within the
relevant cache line of the cache array. Similarly, if the buffer
211 is used to temporarily buffer up the portions of data as
they are returned until a full cache line's worth of data has
been received, before writing the data into the cache line, a
hit can still be detected, since in one embodiment, as part of
the cache access lookup operation, the cache access arbiter
210 will also look within buffer 211. Accordingly, at this
point the required data can be returned to the atomic update
operation handler to enable the atomic update operation to
then be performed.

In due course, once the modifying step of the atomic
update operation has been performed, there will typically be
data to write back into the chosen cache line, and at this
point the atomic update operation handler will issue a
suitable request to the cache access arbiter 210 along with
the data to be written. If by that stage the original data has

5

10

15

25

30

35

40

45

50

55

60

65

12
been stored within the level one cache arrays, then the cache
access arbiter 210 can merely access the relevant cache line
and update the data concerned. If the relevant data is still
within the buffer 211, then it can be overwritten within the
buffer with the newly supplied data from the atomic update
operation handler 230, so that in due course once the data is
written into the cache arrays this will include the updated
data generated by the atomic update operation handler.

In the event that, when the initial request is sent from the
atomic update operation handler 230 to the cache access
arbiter 210 for a particular atomic update operation, a miss
is detected in the level one cache arrays 220, and the BIU
240 does not detect any pending linefill operation, in one
embodiment the atomic update operation will then be
handled as a far atomic operation. Accordingly, details of the
atomic update operation will be output from the atomic
update operation handler 230 over path 232 to the BIU 240,
from where that far atomic request will then be issued over
path 242 to the lower levels of the cache hierarchy.

For standard store operations that miss within the level
one cache, these can also be propagated onto the lower
levels of the cache hierarchy via the BIU 240 as store
requests over path 242.

FIG. 3 schematically illustrates how the individual data
portions constituting a cache line are received and pro
cessed. As shown by the block 300, individual data portions
will be received over path 244 by the BIU 240. In the
embodiment where the cache is accessed independently for
each data portion, then the cache line 305 will be written to
multiple times as each data portion is received in order to
populate the various cache line portions 310,315, 320, 325.
In this particular example, it is assumed that a cache line has
a length of 512 bits, and each data portion received over path
244 is 128 bits in length, hence requiring four separate
accesses to the cache line in order to fully populate the cache
line data. When using the buffer arrangement 211 within the
cache access arbiter, then it will be appreciated that it will
similarly take four separate operations to fill the buffer 211
with the cache line's worth of data, at which point it can then
be written directly into the chosen cache line via a single
cache access, assuming the bandwidth of the path between
the cache access arbiter 210 and the level one cache arrays
220 supports the writing of an entire cache line's worth of
data in one cycle.

FIG. 4 is a flow diagram illustrating the operation of the
atomic update operation handler 230 in accordance with one
embodiment. At step 350, it is determined whether there is
an atomic update operation to process. When there is, the
process then proceeds to step 355, where a cache lookup is
requested, by issuance of an appropriate signal to the cache
access arbiter 210. This will cause the cache access arbiter
to perform a lookup within the level one cache arrays 220,
and in due course provide a response back to the atomic
update operation handler.
At step 360, that response is awaited, and when received

it is then determined whether the response indicates that a hit
has been detected within the cache arrays. If so, then
typically the data will also be returned to the atomic update
operation handler as part of the response, causing the
required data to be retrieved from the cache at step 370. At
step 375, an update operation may be performed, the exact
form of the update operation being dependent on the type of
atomic update operation. This may for example involve
Some arithmetic logic computation being performed using
the data retrieved from the cache, and one or more other
values specified as part of the atomic update operation. This
results in the generation of result data, which may then be

US 9,652,385 B1
13

written back as updated data to the relevant cache line at Step
380. In one embodiment, this involves the atomic update
operation handler issuing a write access request to the cache
access arbiter 210 to cause the relevant cache line to be
written with the updated data.
As indicated in FIG. 4, during the performance of steps

370, 375, 380, the relevant cache line may be locked by the
cache access arbiter 210 to prevent any conflicting access to
that line taking place that could comprise the atomicity of
the atomic update operation. For accesses requested directly
by the load/store pipeline 200, no specific action will typi
cally be required by the cache access arbiter, since it will
typically be the case that a check will be made against the
contents of the store buffer entries (including the entries
maintained by the atomic update operation handler) in order
to detect whether there are any pending requests that cover
an address of an access to be requested by the load/store
pipeline, and in that event that access will be stalled (or
accessed with reference to the store buffer contents). How
ever, there are some accesses which are requested by com
ponents external to the relevant processor core, and these do
need to be prevented from taking place via the cache access
arbiter 210. One example is a snoop request issued by the
Snoop circuitry 155 of FIG. 1, which will typically be
forwarded to the cache access arbiter 210 to cause the
lookup to be performed within the cache. By locking the
relevant cache line during the period when steps 370, 375,
380 are being performed, this will prevent a Snoop request
seeking to access that relevant cache line from being pro
cessed whilst the atomic update operation is being per
formed. When the cache line is subsequently unlocked
following completion of step 380, then the Snoop request can
be processed.

If at step 365 a hit is not detected in the cache, it is then
determined at step 385 whether a hazard has been raised by
the BIU 240 over path 252. As discussed earlier, this will be
the case if the hazard monitor detects that there is a pending
linefill operation to a series of addresses that includes the
specified address for the atomic update operation. If a hazard
has been raised by the BIU, then the process proceeds to step
387, where partial linefill information is awaited over path
262. When a partial linefill notification is detected at step
387, then it is determined at step 390 whether it relates to the
portion of data required for the atomic update operation. As
discussed earlier, the atomic update operation handler can
detect this situation using address information provided as
part of the linefill notification. In particular, that address
information will specify the range of addresses associated
with the data portion retrieved over path 244, and it can then
be determined whether that includes the specified address of
the atomic update operation. If not, then the process returns
back to step 387 to await the next partial linefill notification.

However, once it is determined at step 390 that the portion
of data associated with the partial linefill notification
includes the data relevant for the atomic update operation,
then the process proceeds to step 355 where the atomic
update operation handler reissues its request to the cache
access arbiter 210. This time a hit will be detected (either
directly in the level one cache arrays, or within the buffer
211), and accordingly the process will proceed via steps 370,
375, 380 in order to cause the atomic update operation to be
performed. The process then returns to step 350.

If at step 385 no hazard is detected, then this means that
the atomic operation should be output over path 232 for
forwarding via the BIU 240 over path 242 for handling at a
lower stage of the cache hierarchy. Accordingly, the process
proceeds to step 395 where the atomic update operation

10

15

25

30

35

40

45

50

55

60

65

14
handler 230 issues a signal to the BIU 240 to cause the
atomic update operation to be handled by a lower level of the
cache hierarchy. Typically, this may cause the operation to
be handled as a far atomic operation by one of the lower
levels of cache 145.

Whilst in the above example arrangement, the partial
linefill notifier 260 is arranged to issue a partial linefill
notification as each portion of data is received over path 244
and routed over path 246 into the cache access arbiter 210,
in an alternative embodiment the analysis as to whether the
portion of data relates to the address of interest to the atomic
update operation could instead be performed within the BIU.
In that event, the partial linefill notifier 260 would only need
to issue a partial linefill notification over path 262 to the
atomic update operation handler once it has been determined
that a portion of data has been retrieved that includes the
data of interest to the atomic update operation. When
considering the process of FIG. 4, this would remove
decision step 390 from being part of the operation of the
atomic update operation handler. Instead, based on slot
information associated with the partial linefill notification on
path 262, the relevant atomic update operation could be
identified, and then the process returns to step 355.

FIG. 5A is a block diagram illustrating components that
may be provided with the atomic update operation handler
230 in accordance with one embodiment. Control circuitry
400 is used to control the overall operation and processing
of the individual atomic update operations. As each atomic
update operation is received from the load/store pipeline
over path 202, it is allocated into one of the slots of the buffer
405. Any number of known techniques can be employed for
deciding the order in which to perform the operations
contained within the various slots of the buffer. For example,
in one embodiment the system may be constrained to ensure
that atomic operations have to complete in their original
program order. However, in an alternative embodiment, the
system may allow the operations to be reordered subject to
there being no underlying ordering constraints (for example,
if two atomic operations were accessing the same address, or
if there was a barrier inserted between the two atomic
operations, this would necessitate them being performed in
order). Once the control circuitry has decided to process a
particular atomic update operation, then it sends a cache
access request to the cache access arbiter 210 and awaits the
response indicative of whether a hit or a miss has been
detected within the cache. When the required data is
retrieved via the cache access arbiter, then the required
update operation will be performed by suitable components
within the atomic update operation handler. In one embodi
ment, an ALU (arithmetic logic unit) 410 is provided for
performing various arithmetic logic operations as may be
required by the atomic update operations. Typically these
operations will involve performing some manipulation on
the data retrieved from the cache line, in combination with
one or more other values provided as part of the atomic
update operation. For example, an add operation may be
identified where a value specified by the atomic update
operation is added to the value retrieved from the cache in
order to produce a result data value for storing back to the
cache. When the result data is available, it can then be
written back into the relevant cache line via issuance of a
suitable control signal to the cache access arbiter 210.
As shown in FIG. 5A, the hazard control signal over path

252 and the partial linefill notifications over path 262 are
also routed to the control circuitry 400. Accordingly, in
situations where the hazard control signal 252 causes a
particular atomic update operation to be deferred, then as

US 9,652,385 B1
15

each partial linefill notification is received over path 262
specifying the slot number for that deferred atomic update
operation, an analysis can be performed using the remaining
information in the partial linefill notification to determine
whether the associated data portion to which the partial
linefill notification relates includes the data that is the
Subject of the atomic update operation. As discussed earlier,
to enable this analysis, the partial linefill notification can
include an address portion identifier (labelled as “portion Y”
in FIG. 5A), and based on that address information it can
then be determined whether the corresponding data portion
includes the data at the specified address for the atomic
update operation. If so, the atomic update operation can be
resumed.

FIG. 5B schematically illustrates information that may be
maintained within the slots of the buffer 405. Within each
slot 415, an address portion 420 will be provided to provide
an indication of the address to which the atomic update
operation relates. In one embodiment, this address field will
comprise a physical address, but in one particular embodi
ment where the cache is virtually indexed and physically
tagged, the address portion may additionally include a
number of virtual address bits that are required in order to
determine the appropriate index into the cache. A data field
425 is provided for also storing any relevant data relating to
the atomic update operation, for example data that is to be
used in combination with the data retrieved from the cache
line in order to perform the update operation. In addition,
each slot may contain various status bits 430 indicative of
the status of the associated atomic update operation.

In one embodiment, the atomic update operation handler
230 may actually be incorporated within the store buffer
circuitry, in which case the buffer 405 may also be used to
store standard store operations. For the store operations, the
slots 415 will still essentially provide the same fields 420,
425, 430, but in the event of a store operation the data field
425 is used to hold the data to be stored into the cache line.

FIG. 6 illustrates an alternative embodiment to that dis
cussed earlier with reference to FIG. 2, where a forwarding
path 440 is also provided to enable the individual data
portions of a linefill operation to be forwarded on directly to
the atomic update operation handler 230. This data path will
typically also be accompanied by Sideband information
generated by the partial linefill notifier 260 and specifying
the address associated with that data portion, and the slot
within the atomic update operation handler containing the
atomic update operation that has been stalled due to the
relevant pending linefill operation.

Whilst this embodiment adds certain cost and complexity
due to the need to provide the forwarding path 440, it does
enable the atomic update operation handler to be provided
directly with the data, hence avoiding the need to reissue the
access request to the cache access arbiter.

This is illustrated schematically with reference to FIG. 7,
which is an alternative version of the flow diagram of FIG.
4. In FIGS. 6 and 7, the components/steps that are the same
as discussed earlier with reference to FIGS. 2 and 4 are
labelled using the same reference numerals, and are not
discussed again here.
As can be seen from a comparison of FIG. 7 with FIG. 4,

step 387 of FIG. 4 is replaced with step 450 of FIG. 7, where
it is determined whether partial linefill data has been
received. Using the associated sideband information, it can
then be determined at step 390 whether the data portion
received over the forwarding path includes the data required
for the atomic update operation. If so, then the process can
effectively proceed directly to step 375 to perform the update

10

15

25

30

35

40

45

50

55

60

65

16
operation, and thereafter perform a write back operation at
step 380 to the cache line with the relevant cache data.
However, although a separate access request does not need
to be issued to the cache access arbiter 210 prior to per
forming steps 375 and 380, in one embodiment a control
signal is still issued to the cache access arbiter to notify the
cache access arbiter that the relevant atomic update opera
tion has been resumed, so that the cache access arbiter can
lock the relevant cache line whilst the atomic update opera
tion is in progress.

In the embodiment of FIG. 6 where the partial linefill data
is forwarded directly over path 440, then this approach can
also be used in situations where, instead of buffering data
locally within the buffer 211 of the cache access arbiter, the
BIU 240 instead buffers the various data portions of a linefill
within a buffer 241, and only when all of the data is available
does it then request the cache access arbiter 210 to store the
cache line's worth of data in the cache. The atomic update
operation handler 230 can still be advised via the forwarding
path 440 of the presence of the data within the BIU 240,
even if that data has not yet been forwarded to the cache
access arbiter. When step 380 is reached, and the data is
being written back to the effected cache line, then if that
effected cache line's data has still not been forwarded from
the buffer 241 to the cache access arbiter 210, then the BIU
240 is notified that the atomic update operation handler has
performed a write in respect of the particular block of data,
and that block of data is cleared within the BIU buffer 241.
This ensures that when the BIU buffer contents are subse
quently issued to the cache access arbiter 210 to cause a
write into the cache line, that write will not overwrite the
write data that the atomic update operation handler has
written into the cache.

FIG. 8 is a block diagram illustrating components pro
vided within the atomic update operation handler 230 of
FIG. 6. From a comparison with the earlier discussed FIG.
5A, it will be seen that the atomic update operation handler
is essentially unchanged. However, the control circuitry 400
now receives partial linefill data over path 440, along with
other sideband information over path 442. This sideband
information can in one embodiment identify the slot within
the buffer 405, and an address portion associated with the
partial linefill data provided over path 440.
The cachestructures used in the above described embodi

ments can take a variety of forms. In one embodiment the
cache structure Subjected to a near atomic operation may
take the form of a virtually indexed, physically tagged data
cache as illustrated in FIG. 9. Each cache entry within the
cache is formed from a tag entry 570 in one of the tag arrays
550 and a corresponding cache line 575 of data values within
the corresponding data array 560. The tag arrays 550 are
accessed using an index portion 520 of a specified virtual
address 510 in order to identify one tag entry from each of
the tag arrays, a tag array being provided for each way of the
cache. The group of tag entries accessed is referred to as the
set, as shown by the reference numeral 555 in FIG. 9.

It will be appreciated that the initial access to the tag
arrays 550 can be performed prior to translation of the
virtual address to a physical address, since only the index
portion 520 from the virtual address 510 is required. How
ever, in a virtually indexed, physically tagged cache, the tag
bits held within each tag entry 570 are actually physical
address bits, and accordingly the physical address will be
required in order to detect whether a hit or a miss has
occurred in the cache. Accordingly, in parallel with the
initial lookup in the tag arrays 550, a translation lookaside
buffer (TLB) 530 can be accessed in order to generate the

US 9,652,385 B1
17

physical address 535, and hence the relevant tag portion 540
of the physical address which needs to be compared with the
tag bits accessed from the tag arrays. As shown Schemati
cally in FIG. 9, each tag entry can additionally include
certain status bits, such as a valid bit indicating whether the
associated cache line of data stores valid data, and a dirty bit
indicating whether the data is dirty, i.e. is more up-to-date
than the data stored in memory. When accessing the tag
arrays using the virtual address index 520, then the various
tag bits will be output for any valid entries, as shown
schematically by the reference numeral 585. These can then
be compared by a comparison block 580 with the physical
address tag portion 540. In the event of a match being
detected, a hit condition is indicated, identifying that the
data that is the Subject of the access request is stored in the
data arrays 560.

For a load operation, the data arrays 560 can be accessed
in parallel with the tag array lookup, in order to access the
various cache lines within the set, indicated by the reference
numeral 565. The data in the cache lines can then be output,
as indicated by the reference numeral 590, so that in the
event of a hit the select circuitry 595 can then select the
cache line corresponding to the tag entry which caused the
hit, with the offset bits 522 from the virtual address being
used to identify the particular data value the subject of the
access. That data value can then be output from the cache
back to the processing circuitry that issued the access
request with the virtual address. It will be appreciated that
there are a number of ways of accessing the particular
required data value within the hit cache line, and for
example a sequence of multiplexers may be used to identify
the required data value to access.

In the event of a store access request that is cacheable, the
data arrays are not accessed in parallel with the tag array
access, but instead the physical address is first calculated,
and then an entry for the store access request is placed within
the store buffer once the load/store pipeline within the
processing circuitry has determined that the store operation
can be committed, i.e. that the write data to be written to
memory is now safe to be written out to memory. Once the
write access request has been stored in the store buffer along
with the physical address, then a lookup within the tag arrays
may be performed, and in the event of a hit the write data
specified can be used to update the relevant cache line within
the cache. This can happen directly in the event of an
exclusive write, where it can be guaranteed that the data is
not shared with another core. In the event of a non-exclusive
write, even if there is a hit in the cache, the access is treated
as a miss, in order to invoke the external Snoop circuitry to
invalidate any other copies of the data that may be held in
other caches, whereafter the data can then be written into the
cache.
As mentioned earlier, the atomic update operations used

in the described embodiments are also handled in a similar
way to store operations, since, when determined to be near
atomic, they will involve as part of their operation a store
operation in respect of a cache line.

From the above described embodiments, it will be appre
ciated that Such embodiments enable near atomic update
operations to be handled more efficiently. In particular, when
a near atomic update operation is stalled due to a pending
linefill operation, then due to the above described mecha
nisms it is possible to resume performance of that atomic
update operation earlier than might otherwise be the case if
completion of the linefill operation were awaited. This is
particularly beneficial in situations where the cache line
length exceeds the data width by which the various portions

10

15

25

30

35

40

45

50

55

60

65

18
of data for the cache line are returned from the lower levels
of the cache hierarchy, since in those situations the perfor
mance of the linefill operation can require a significant time
to complete.
The atomic update operations to which the techniques of

the described embodiments can be applied can take a wide
variety of different forms. For example, they may involve
read-modify-write type operations where a data value is read
from a cache line, an arithmetic logic operation is applied to
the data read from the cache line, typically by combining it
with other data specified by the atomic update operation, and
then the result data is written back to the relevant cache line.
The arithmetic logic operation may take a variety of forms,
for example add, Subtract, etc. In other embodiments, the
atomic update operation may again read a data value from
the cache line, and then perform some manipulation in order
to produce a result. However, Some analysis of that result
may then be performed in order to determine whether there
is a need to update the cache line contents, and accordingly
the writing back to the cache line is performed selectively
dependent on analysis of the result. An example of Such an
atomic update operation would be a compare and Swap
operation, where a value is read from the cache, compared
with another value specified by the atomic update operation,
and then a decision as to whether to write a value back into
the cache depends on whether the result of that comparison
indicates that the two values are equal or not equal.

In the present application, the words “configured to . . .
are used to mean that an element of an apparatus has a
configuration able to carry out the defined operation. In this
context, a “configuration” means an arrangement or manner
of interconnection of hardware or software. For example, the
apparatus may have dedicated hardware which provides the
defined operation, or a processor or other processing device
may be programmed to perform the function. “Configured
to does not imply that the apparatus element needs to be
changed in any way in order to provide the defined opera
tion.

Although illustrative embodiments of the invention have
been described in detail herein with reference to the accom
panying drawings, it is to be understood that the invention
is not limited to those precise embodiments, and that various
changes, additions and modifications can be effected therein
by one skilled in the art without departing from the scope
and spirit of the invention as defined by the appended
claims. For example, various combinations of the features of
the dependent claims could be made with the features of the
independent claims without departing from the scope of the
present invention.
We claim:
1. An apparatus comprising:
a cache storage to store data for access by processing

circuitry, the cache storage having a plurality of cache
lines;

atomic update handling circuitry to handle performance of
an atomic update operation in respect of data at a
specified address, the atomic update handling circuitry
being arranged, when data at the specified address is
stored within a cache line of the cache storage, to
perform the atomic update operation on the data from
that cache line;

hazard detection circuitry to trigger deferral of perfor
mance of the atomic update operation upon detecting
that a linefill operation for the cache storage is pending
that will cause a chosen cache line to be populated with
data that includes data at the specified address, the
linefill operation causing the apparatus to receive a

99

US 9,652,385 B1
19

sequence of data portions that collectively form the
data for storing in the chosen cache line;

partial linefill notification circuitry to provide partial
linefill information to the atomic update handling cir
cuitry during the linefill operation; and

the atomic update handling circuitry being arranged to
initiate the atomic update operation responsive to
detecting from the partial linefill information that the
data at the specified address is available for the chosen
cache line.

2. An apparatus as claimed in claim 1, wherein:
the partial linefill notification circuitry is arranged to

provide the partial linefill information to the atomic
update handling circuitry to identify when each data
portion is available for the chosen cache line during the
linefill operation; and

the atomic update handling circuitry is arranged to deter
mine from the partial linefill information when the
linefill operation has progressed to a point where the
data at the specified address is available for the chosen
cache line.

3. An apparatus as claimed in claim 1, wherein the partial
linefill notification circuitry is arranged to determine when
the linefill operation has progressed to a point where the data
portions available for the chosen cache line include the data
at the specified address, and then to issue as the partial
linefill information an indication that the data at the specified
address is available for the chosen cache line.

4. An apparatus as claimed in claim 1, wherein the partial
linefill information comprises an address portion indicative
of a corresponding data portion that is available for the
chosen cache line during the linefill operation.

5. An apparatus as claimed in claim 1, wherein:
the atomic update handling circuitry comprises a buffer

having a plurality of buffer entries, each buffer entry for
storing information relating to a pending operation; and

the partial linefill information comprises an indication of
the buffer entry for which the partial linefill information
is being provided.

6. An apparatus as claimed in claim 1, further comprising:
a data forwarding path coupled to the atomic update

handling circuitry and arranged to provide to the atomic
update handling circuitry, as at least part of the partial
linefill information, the corresponding data portion that
is available for the chosen cache line.

7. An apparatus as claimed in claim 6, wherein the atomic
update handling circuitry is incorporated within a load/store
pipeline of the processing circuitry.

8. An apparatus as claimed in claim 1, wherein the atomic
update operation comprises a read-modify-write operation,
where the data at the specified address, as available for the
chosen cache line, is obtained, a computation is performed
to produce a modified data value, and the modified data
value is written back to the chosen cache line.

9. An apparatus as claimed in claim 8, wherein the atomic
update operation is an atomic load operation where, in
addition to the read-modify-write operation, the obtained
data at the specified address is output to the processing
circuitry.

10. An apparatus as claimed in claim 1, wherein the
atomic update operation comprises obtaining the data at the
specified address as available for the chosen cache line,
performing a computation to produce a result value, and
selectively writing a modified data value back to the chosen
cache line dependent on the result value.

10

15

25

30

35

40

45

50

55

60

65

20
11. An apparatus as claimed in claim 1, further comprising

cache access circuitry to store the data into the chosen cache
line during the linefill operation.

12. An apparatus as claimed in claim 11, wherein the
cache access circuitry is arranged, whilst the atomic update
operation is being performed, to lock the chosen cache line
from being accessed at least for any operations that could
compromise atomicity of the atomic update operation.

13. An apparatus as claimed in claim 12, wherein the
cache access circuitry is arranged, whilst the atomic update
operation is being performed, to lock the chosen cache line
from being accessed for any Snoop operations.

14. An apparatus as claimed in claim 1, wherein the
atomic update handling circuitry is provided within store
buffer circuitry used to process store operations requested by
the processing circuitry.

15. An apparatus as claimed in claim 1, wherein the
atomic update handling circuitry is arranged, when data at
the specified address is determined not to be stored within a
cache line of the cache storage and there is no pending
linefill operation for the cache storage that will cause a
chosen cache line to be populated with data that includes
data at the specified address, to output the atomic update
operation for handling by components external to the appa
ratuS.

16. An apparatus as claimed in claim 1, wherein the data
at the specified address is available for the chosen cache line
once it has been stored within the chosen cache line.

17. An apparatus as claimed in claim 1, wherein the data
at the specified address is available for the chosen cache line
once it has been locally buffered within the apparatus for
storing within the chosen cache line.

18. A method of handling atomic update operations within
an apparatus having a cache storage to store data for access
by processing circuitry, the cache storage having a plurality
of cache lines, the method comprising:

employing atomic update handling circuitry to handle
performance of the atomic update operation in respect
of data at a specified address, the atomic update han
dling circuitry being arranged, when data at the speci
fied address is stored within a cache line of the cache
storage, to perform the atomic update operation on the
data from that cache line;

triggering deferral of performance of the atomic update
operation upon detecting that a linefill operation for the
cache storage is pending that will cause a chosen cache
line to be populated with data that includes data at the
specified address;

performing the linefill operation to cause the apparatus to
receive a sequence of data portions that collectively
form the data for storing in the chosen cache line;

providing partial linefill information to the atomic update
handling circuitry during the linefill operation; and

initiating the atomic update operation responsive to the
atomic update handling circuitry detecting from the
partial linefill information that the data at the specified
address is available for the chosen cache line.

19. An apparatus comprising:
cache storage means for storing data for access by pro

cessing circuitry, the cache storage means having a
plurality of cache lines;

atomic update handling means for handling performance
of an atomic update operation in respect of data at a
specified address, the atomic update handling means,
when data at the specified address is stored within a

US 9,652,385 B1
21

cache line of the cache storage means, for performing
the atomic update operation on the data from that cache
line;

hazard detection means for triggering deferral of perfor
mance of the atomic update operation upon detecting
that a linefill operation for the cache storage means is
pending that will cause a chosen cache line to be
populated with data that includes data at the specified
address, the linefill operation causing the apparatus to
receive a sequence of data portions that collectively
form the data for storing in the chosen cache line;

partial linefill notification means for providing partial
linefill information to the atomic update handling
means during the linefill operation; and

the atomic update handling means for initiating the atomic
update operation responsive to detecting from the par
tial linefill information that the data at the specified
address is available for the chosen cache line.

k k k k k

10

15

22

