
(12) United States Patent
Anyuru

US00964,5837B2

US 9,645,837 B2
May 9, 2017

(10) Patent No.:
(45) Date of Patent:

(54) METHODS FOR COMPILATION, A
COMPLER AND A SYSTEM

(71) Applicant: Optis Circuit Technology, LLC, Plano,
TX (US)

(72) Inventor: Andreas Anyuru, Lund (SE)

(73) Assignee: OPTIS CIRCUIT TECHNOLOGY,
LLC, Plano, TX (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

(21) Appl. No.: 14/431,890

(22) PCT Filed: Oct. 25, 2013

(86). PCT No.: PCT/EP2013/072374

S 371 (c)(1),
(2) Date: Mar. 27, 2015

(87) PCT Pub. No.: WO2014/067866
PCT Pub. Date: May 8, 2014

(65) Prior Publication Data

US 2015/0286491 A1 Oct. 8, 2015

(30) Foreign Application Priority Data

Oct. 29, 2012 (EP) 12190304

(51) Int. Cl.
G06F 9/455 (2006.01)
G06F 9/45 (2006.01)

(52) U.S. Cl.
CPC G06F 9/4552 (2013.01); G06F 8/48

USPC .. 717/148
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

7,426,721 B1* 9/2008 Saulpaugh HO4L 67/16
T17,143

8,850,410 B2 * 9/2014 Burugula GO6F9FOO
T12/208

2005/0155026 A1* 7/2005 DeWitt, Jr. G06F 8. 443
717,158

(Continued)

OTHER PUBLICATIONS

Anonymous, "Buffered profiling approach for dynamically com
piled code”. IP.com Document No. 000214127. Jan. 13, 2012, 4pg.*

(Continued)

Primary Examiner — Ryan Coyer
(74) Attorney, Agent, or Firm — The Danamraj Law
Group, P.C.; Thomas L. Crisman; Kenneth A. McClure

(57) ABSTRACT

A method in a Just-In-Time, JIT compiler for compiling
code in a JIT-compiler for a heterogeneous multiprocessor
system is provided. The method comprises compiling a
Snippet of input code, whereby one or more compiled code
Snippets are generated for the Snippet of input code. The one
or more compiled code Snippets are tagged with one or more
Snippet specific characteristics. One or more compiled code
Snippets are selected from the compiled code Snippets, based
on said Snippet specific characteristics. The one or more
selected compiled code Snippets are executed on one or
more of the plurality of processors. While executing, run
time data is gathered, where the gathered data is tagged for
which processor in the heterogeneous multiprocessor system

(2013.01) it is related to.
(58) Field of Classification Search

CPC G06F 8/48; G06F 9/4552 19 Claims, 5 Drawing Sheets

301 System 300 3O2
^

i

2 Cace data is strictions
For "big" fast) processor A18

--

interco? rect of criptus 403

S "little" power- sittie" power
efficient processor s

Cof

:

eficientiocessef
Core 1

3

t2 Cache data and instructions: 18
Fo; "ittie" power-efficient) processor

&

:

-
:

i

US 9,645,837 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2010.0153934 A1* 6, 2010 Lachner G06F 8.45
T17,146

2014f0082597 A1* 3, 2014 Chafi G06F 8. 443
T17,148

2014/0247887 A1* 9, 2014 Brueck HO4N 19,40
375,240.26

OTHER PUBLICATIONS

Auerbach et al., “Lime: a Java-Compatible and Synthesizable
Language for Heterogeneous Architectures'. ACM, 2010, 20pg.*
Eichenberger et al., “Optimizing Compiler for a Cell Processor'.
IEEE, 2005, 12pg.*
Silberman et al., “Architectural Architectural Framework for Sup
porting Heterogeneous Instruction-Set Architectures'. IEEE, 1993,
18pg.*
International Search Report issued in corresponding International
application No. PCT/EP2013/072374, date of mailing of the search
report Feb. 7, 2014.
Written Opinion of the International Searching Authority issued in
International application No. PCT/EP2013/072371, date of mailing
Feb. 7, 2014.
Fursin, Grigori et al., “A Practical Method for Quickly Evaluating
Program Optimizations.” First International Conference on High
Performance Embedded Architectures and Compilers, Barcelona,
Spain, Nov. 17-18, 2005, pp. 29-46, XPO19024254, ISBN: 978-3-
540-30317-6.

* cited by examiner

US 9,645,837 B2 Sheet 1 of 5 May 9, 2017 U.S. Patent

- - - - - - - -- ? ? JIT Compiler

Fig. 1

U.S. Patent May 9, 2017 Sheet 2 of 5

2O1
Compiling u?

-202

-203

Fig. 2

US 9,645,837 B2

U.S. Patent

Shared
Memory
Buffer
A09

May 9, 2017 Sheet 4 of 5 US 9,645,837 B2

JIT Compiler 110

ParSer 405

Code Generator
4O7

Code Cache 406

Processing
Unit 420

Profiler
408

Kernel Module

Performance
Counter FIFO
Buffer 413

Hardware
Level

GPU 416 Hardware
P-X 417

Fig. 4

U.S. Patent May 9, 2017 Sheet S of 5 US 9,645,837 B2

Fig. 5

US 9,645,837 B2
1.

METHODS FOR COMPILATION, A
COMPLER AND A SYSTEM

TECHNICAL FIELD

Embodiments herein relate to a method in a heteroge
neous multiprocessor system comprising a Just-In-Time,
JIT compiler for compiling code. The system comprises a
plurality of processors for executing code. The method
comprises compiling one Snippet of input code, whereby one
or more compiled code Snippets are generated for the Snippet
of input code, and wherein each respective of the one or
more compiled code Snippets corresponds to the one Snippet
of input code. Further embodiments herein relate to a
method in a JIT compiler, to a JIT compiler, to a system and
to a computer program product for compilation for a multi
processor System.

BACKGROUND

In many computer systems including mobile electronic
devices such as mobile phones and tablets, Symmetric
Multiprocessing (SMP) are common. An SMP system is a
computer hardware architecture where multiple identical
processors, sometimes called cores in an SMP system, are
connected to a single shared main memory. Since the
processors are identical the system may have a single
instance of an Operating System (OS) with a scheduler
scheduling a number of tasks on the identical processors. If
load balancing between the processors is disregarded, it does
not matter which processor the scheduler schedules a task on
since the processors are identical.
Power consumption is a very important characteristic for

mobile electronic devices. Hence different strategies to save
power have evolved. For example Dynamic Voltage Fre
quency Scaling (DVFS) where the voltage and the frequency
for a processor is changed dynamically in run-time allow the
system to decrease Voltage and frequency in order to save
power when less performance is needed by a system. As an
example, a user of a mobile electronic device is only reading
email which is typically a task that does not require much
performance from the system. Central Processing Unit
(CPU) hotplug is another example of a power save technique
for SMP systems where a processor may be powered off
completely.

To meet the demand for even higher-performance mobile
platforms and at the same time being power efficient when
the user is performing tasks that require less performance,
heterogeneous multi-core systems where high performance
but less power efficient processors are paired with smaller,
power efficient processors delivering less performance have
been investigated. An example of Such a system is the
company ARM’s big.LITTLE.
The first big.LITTLE system from ARM uses a “big”

Cortex-A15 processor, which is a high performance proces
sor, paired with a “LITTLE Cortex-A7 processor, which is
a power efficient processor. Both the smaller Cortex-A7 and
the larger Cortex-A15 use the same instruction set and
binary code built for the Cortex-A7 may execute on the
Cortex-A15 and the other way around. There may be dif
ferent variations of how many Cortex-A15 processors and
how many Cortex-A7 processors that are used. A common
configuration may be to have two Cortex-A15 processors
paired with two Cortex-A7 processors.

Even if an instruction set is the same between the different
processors in a heterogeneous multi-core system the micro
architecture may be very different. Examples of character

10

15

25

30

35

40

45

50

55

60

65

2
istics that often differ between the processors are instruction
and data cache sizes, length of pipeline, branch prediction
characteristics, if the processor may execute instructions
out-of-order or not and a number of other digital circuits in
the processors. For example a big processor might have
several Arithmetic and Logic Units (ALUs) and Floating
Point Units (FPUs) while the small processor might only
have one. Another difference may be number of entries in
the Translation Lookaside Buffer (TLB).

Today many runtime environments use Just-in-Time (JIT)
compilation where code is compiled to native machine code
in run-time just before it is executed on a processor. Such
environments are for example Google's Android for mobile
devices where all applications are compiled to native
machine code in runtime by the Dalvik Virtual Machine
(VM) most JavaScript implementations used in client side
web browsers such as Google Chrome or Firefox both for
PCs, laptops, Android smartphones and tablets, and Micro
Soft's .NET Framework.
A strategy that a JIT compiler may use to balance the

requirement for short compilation and at the same time do
optimizations so the code may run faster is to first compile
all the code as quickly as possible without spending too
much time trying to do any optimizations. Then when the
compiled code is executed the binary is profiled to identify
Some hot parts of the code that are executed frequently and
compile these hot parts again but this time trying to optimize
the code more. An example of this is the latest version of
Google's V8 JavaScript engine (http://blog.chromium.org/
2010/12/new-crankshaft-for-v8.html) which is used in e.g.
Android on ST-Ericsson, Qualcomm, TI, Samsung and other
chipset vendor's products. Here JavaScript code is first
compiled as quickly as possible without doing too much
optimizations. Then the binary is profiled in run-time to
identify which parts of the code that are executed many
times. These portions are often referred to as hot spots. Then
the V8 JavaScript engine performs a second compilation
pass and this time it spends extra time trying to optimize the
hot spots.

SUMMARY

An object of embodiments herein is to improve perfor
mance of a multi-processor System. According to a first
aspect, the object is achieved by a method in a heteroge
neous multiprocessor system comprising a Just-In-Time,
JIT compiler for compiling code, and comprising a plurality
of processors for executing code. The method comprises
compiling one Snippet of input code, whereby one or more
compiled code Snippets are generated for the Snippet of input
code, and wherein each respective of the one or more
compiled code Snippets corresponds to the one Snippet of
input code. The method further comprises tagging the one or
more compiled code Snippets with respective one or more
Snippet specific characteristics, selecting one or more com
piled code Snippets from the one or more compiled code
Snippets, based on said Snippet specific characteristics,
executing the one or more selected compiled code Snippets
on one or more of the plurality of processor. While execut
ing, run-time data is gathered, the gathered run-time data is
tagged for which processor in the heterogeneous multipro
cessor System it is related to.

In other embodiments, methods herein further comprises
further tagging the one or more executed compiled code
Snippets with the gathered run-time data, re-compiling one
or more of the executed compiled code Snippets based on the
tagging or further tagging and the gathered runtime data to

US 9,645,837 B2
3

generate one or more re-compiled code Snippets, re-select
ing one or more re-compiled code Snippets from the re
compiled code Snippets, based on said Snippet specific
characteristics and on said gathered run-time data, re-ex
ecuting one or more selected compiled code Snippets on one
or more of said plurality of processors. By selecting and
executing code Snippets in this way, enabling use of run-time
data as input to the JIT compilation process, the proposed
method results in a more efficient native machine code that
executes faster, and is more power efficient compared to
conventional methods for executing code in a JIT-compiler.
Since code is executed in a more power efficient way, a
result is longer battery life for a mobile battery powered
device using the method. Alternatively, a smaller battery
may be used which could result in a lighter device. Since
code Snippets are selected in run-time it is possible to select
the most efficient code Snippet for the current conditions,
e.g. which processor in the heterogeneous multi-processor
system the code is currently executed on. As a result, the
program that the JIT compiler executes will be executed
faster. Further, instead of executing faster on a given com
puter system with a specific specification related to perfor
mance, e.g. size of caches, size of TLBs, frequency of
processors, efficiency of processor pipeline, etc., with the
proposed method it is possible to gain the same executing
time for a computer system with simpler and therefore
cheaper specification, e.g. Smaller caches, Smaller TLB,
lower frequency on processors and less efficient processor
pipeline.

In other embodiments, in the action executing, methods
herein further comprises identifying one or more code
sections executed a plurality of times.

In other embodiments, in any of the selection actions,
selection is further based on which processor the code
currently executes on.

In other embodiments, in the step of executing, run-time
data is gathered by use of one or more hardware perfor
mance COunterS.

In other embodiments, in the step of executing, run-time
data comprises bandwidth load measurements.

According to another aspect a method in a Just-In-Time,
JIT compiler for compiling code for a heterogeneous mul
tiprocessor system comprising a plurality of processors is
provided. The JIT compiler is associated with the heteroge
neous multiprocessor system. The method comprises com
piling one Snippet of input code, whereby one or more
compiled code Snippets are generated for the Snippet of input
code, and wherein each respective of the one or more
compiled code Snippets corresponds to the one Snippet of
input code. The method further comprises tagging the one or
more compiled code Snippets with respective one or more
Snippet specific characteristics, and selecting one or more
compiled code Snippets to be executed from the one or more
compiled code Snippets, based on said Snippet specific
characteristics.

In other embodiments, methods herein further comprises
further tagging the one or more executed compiled code
Snippets with gathered run-time data after the code has been
executed on one of the processors, re-compiling one or more
of the executed compiled code Snippets based on the tagging
or further tagging and the gathered runtime data to generate
one or more re-compiled code Snippets, re-selecting one or
more re-compiled code Snippets to be executed from the
re-compiled code Snippets, based on said Snippet specific
characteristics and on said gathered run-time data.

10

15

25

30

35

40

45

50

55

60

65

4
In other embodiments, in any of the selection actions,

selection is further based on which processor the code
currently executes on.

In another aspect a Just-In-Time, JIT compiler compiling
code for a heterogeneous multiprocessor System is provided.
The JIT compiler is associated with the heterogeneous
multiprocessor system comprising a plurality of processors,
and the JIT compiler is adapted to compile one Snippet of
input code, whereby one or more compiled code Snippets is
generated for the Snippet of input code. Each respective of
the one or more compiled code Snippets corresponds to the
one Snippet of input code. The compiler is adapted to tag the
one or more compiled code Snippets with one or more
Snippet specific characteristics, select one or more compiled
code Snippets from the compiled code Snippets, based on
said Snippet specific characteristics, and execute the one or
more selected compiled code Snippets on one or more of the
plurality of processors. While executing, run-time data is
gathered, where the gathered run-time data is tagged for
which processor in the heterogeneous multiprocessor system
it is related to.

In other embodiments, the JIT compiler is further adapted
to further tag the one or more executed compiled code
Snippets with the gathered run-time data, re-compile one or
more of the executed compiled code Snippets based on the
tagging, the further tagging and the gathered runtime data to
generate one or more re-compiled code Snippets, select one
or more re-compiled code Snippets from the re-compiled
code Snippets, based on said Snippet specific characteristics
and on said gathered run-time data, re-execute the one or
more selected compiled code Snippets on one or more of said
plurality of processors.

In still other embodiments, the JIT compiler is further
adapted to tag each of the identified one or more code
sections executed a plurality of times with a respective
identity identifying which one out of the plurality of pro
cessors it was generated for.

In other embodiments, the JIT compiler is further adapted
to select code Snippet based on which processor that the code
currently executes on.

In other embodiments, the JIT compiler is further adapted
to gather run-time data by use of one or more hardware
performance counters.

In other embodiments, the JIT compiler is further adapted
to gather bandwidth load measurements. Thus, methods
disclosed herein may use values from bandwidth load mea
Surements for compiling code for a multi-processor system.
Since the method takes bandwidth load into account when
selecting the most efficient code Snippet for the current
conditions, it is possible to select a code Snippet in the JIT
compiler that generates lower bandwidth load on the system
bus in cases where the current condition already show that
there is a high load on the system bus. Thereby, more
available bandwidth for the rest of the IP-blocks connected
to system bus.

In another aspect, a heterogeneous multiprocessor system
comprising a Just-In-Time, JIT compiler for compiling code
is provided. The system comprises a plurality of processors
and is adapted to compile one Snippet of input code,
whereby one or more compiled code Snippets is generated
for the Snippet of input code, each respective of the one or
more compiled code Snippets corresponds to the one Snippet
of input code. The system is adapted to tag the one or more
compiled code Snippets with one or more Snippet specific
characteristics, select one or more compiled code Snippets
from the compiled code Snippets, based on said Snippet
specific characteristics, and execute the one or more selected

US 9,645,837 B2
5

compiled code Snippets on one or more of the plurality of
processors. While executing, run-time data is gathered,
where the gathered run-time data is tagged for which pro
cessor in the heterogeneous multiprocessor System it is
related to.

In other embodiments, the heterogeneous multiprocessor
system is further adapted to further tag the one or more
executed compiled code Snippets with the gathered run-time
data, re-compile one or more of the executed compiled code
Snippets based on the tagging, the further tagging and the
gathered runtime data to generate one or more re-compiled
code Snippets. The system is further adapted to select one or
more re-compiled code Snippets from the re-compiled code
Snippets, based on said Snippet specific characteristics and
on said gathered run-time data, and re-execute the one or
more selected compiled code Snippets on one or more of said
plurality of processors.

In other embodiments, the heterogeneous multiprocessor
system is further adapted to tag each of the identified one or
more code sections executed a plurality of times with a
respective identity identifying which one out of the plurality
of processors it was generated for.

In other embodiments, the heterogeneous multiprocessor
system is further adapted to select code Snippet based on
which processor that the code currently executes on.

In other embodiments, the heterogeneous multiprocessor
system further comprises one or more hardware perfor
mance counters, and wherein the system is further adapted
to gather run-time data by use of the one or more hardware
performance counters.

In other embodiments, the heterogeneous multiprocessor
system is further adapted to gather bandwidth load measure
mentS.

In still another aspect, a computer program product for
compilation for a multi-processor System is provided. The
computer program product comprises a computer readable
storage medium having computer readable program code
embodied therein, and the computer readable program code
is configured to carry out one or more of the methods herein.

According to Some other embodiments described herein,
a system compiling code for a multi-processor system in at
least two phases is provided. According to still further
embodiments, methods for compiling code in at least two
phases for a multi-processor system are provided.

BRIEF DESCRIPTION OF THE DRAWINGS

Examples of embodiments herein are described in more
detail with reference to attached drawings in which:

FIG. 1 is a block diagram showing a system with a JIT
compiler according to embodiments herein.

FIG. 2 is a flow chart over methods described herein.
FIG. 3 shows a heterogeneous multi-processor system

containing two processor clusters;
FIG. 4 is an overview of a System on Chip, SoC, with two

processor clusters and a JIT compiler system;
FIG. 5 is a sequence chart that describes execution of

native machine code in a JIT compiler;

DETAILED DESCRIPTION

As part of developed embodiments herein, a problem will
first be identified and discussed. One advantage with Just
in-Time compilation method is that runtime characteristics
of a particular program that is executed by a virtual machine
may be taken into account when native machine code is
generated. It is also important to note that since the compi

10

15

25

30

35

40

45

50

55

60

65

6
lation happens in run-time, just before the code will be
executed, the compilation time is much more important than
when compiling a traditional C or C++ programs with a
traditional static compiler such as GCC. Since the compi
lation time is critical for a Just-in-Time compiler there is less
time available for the Just-in-Time compiler to do advanced
optimizations that speed up the execution time. Even if
advanced optimizations may speed up the execution time,
they often take longer time to perform during the compila
tion So when considering the total compilation time plus the
execution time it is not always efficient to do too advanced
compilation optimizations in a JIT compiler.
AJIT compiler that makes use of profiling information is

actually taking program properties, e.g. how often specific
blocks or methods are executed, into account. However,
with just profiling information it cannot normally take into
account information from the hardware architecture Such as
cache misses, pipeline stalls, TLB misses, etc. To take
advantage of hardware architecture events such as cache
misses, pipeline stalls, TLB misses, information from hard
ware performance counters may be used to guide the com
piler. Hardware performance counters are available in most
modern CPUs.

In a multi-processor system based on SMP, or a single
processor System, where all processors are identical includ
ing same cache sizes, pipeline lengths, branch characteris
tics, etc. it will matter less on which processor the different
tasks are executed as long as the work is approximately
evenly distributed over the available processors. In a het
erogeneous multi-core processor System where different
processors in the system may have very different character
istics, different tasks are more or less suitable for the
different processors. Even if it is possible to execute all type
of tasks on all processors if the instruction set is the same
this is not optimal. For example, a task which consists of
code that has a lot of branches will typically execute less
well on a processor with less advanced branch prediction
logic or a processor with high penalty for branch prediction
misses. Another situation is a task that performs a lot of
memory accesses. Such a task or process will usually benefit
more from running on a processor with a large and fast
cache. Thus, a JIT compiler compiling code for a multi-core
processor System need to compromise if produced binary
code should work well on all type of processors present in
a heterogeneous multi-processor System. If run-time infor
mation, like performance counters, is used as input to the JIT
compiler this run-time information is only accurate for the
processor where it is measured.

Embodiments herein will now be exemplified in the
following detailed non-limiting description.

FIG. 1 schematically illustrates a heterogeneous multi
processor system 100. A Just-In-Time, JIT compiler 110 is
adapted to compile code for the heterogeneous multiproces
sor system 100. The JIT compiler 110 comprises a process
ing unit 420 adapted to compile code by selecting a com
piled code snippet for a snippet of input code. The JIT
compiler 110 is associated with the heterogeneous multi
processor System 100 comprising a plurality of processors
120, 122, and the processing unit 420 is adapted to compile
the Snippet of input code, whereby one or more compiled
code Snippets are generated for the Snippet of input code.
Each respective of the one or more compiled code Snippets
corresponds to the one Snippet of input code.
The processing unit 420 is further adapted to tag the one

or more compiled code Snippets with one or more Snippet
specific characteristics, select one or more compiled code
Snippets from the compiled code Snippets, based on said

US 9,645,837 B2
7

Snippet specific characteristics, and to execute the one or
more compiled code Snippets on one or more of the plurality
of processors 120, 122. While executing, run-time data is
gathered. The processing unit 420 is further adapted to,
where the gathered data is tagged for which processor 120,
122 in the heterogeneous multiprocessor system 100 it is
related to, further tag the one or more executed compiled
code Snippets with the gathered run-time data, re-compile
one or more of the executed compiled code Snippets based
on the tagging, the further tagging, and the gathered runtime
data to generate one or more re-compiled code Snippets,
select one or more re-compiled code Snippets from the
re-compiled code Snippets, based on said Snippet specific
characteristics and on said gathered run-time data, and to
re-execute the one or more selected compiled code Snippets
on one or more of said plurality of processors 120, 122.
The processing unit 420 may further be adapted to gather

run-time data by use of one or more hardware performance
counters 104 comprised in the system 100. The processing
unit 420 may also be adapted to gather bandwidth load
measurements. Since run-time information Such as mea
sured performance counter 104 values and the bandwidth
load measurements may be done on a specific processor 120,
122 in the heterogeneous multi-processor System, the JIT
compiler 110 is able to generate compiled code, several
native machine code Snippet versions for the same input
code Snippet. All the different native machine code Snippets
are tagged with properties that identifies under which con
ditions the specific native machine code Snippet is executed
most efficiently. The most important property that a native
machine code Snippet is tagged with is which processor 120,
122 in the heterogeneous multi-processor system the native
machine code Snippet is generated for. Another property is
if the native machine code Snippet is specifically Suitable in
a case where there is a low, or high, bandwidth load on the
system bus. For example if the JIT compiler 110 produces
two different native machine code snippets for the same
input code and one of the native machine Snippets contains
many additional memory accesses to read or write data, this
native machine code Snippet could be tagged with the
property that it is less suitable in a case where the bandwidth
load on the system bus is high.

With reference to FIG. 2, a method in method in a
Just-In-Time, JIT compiler 110 adapted to efficiently
execute code for a heterogeneous multiprocessor system 100
will now be described. As mentioned above the JIT compiler
110 is associated with a heterogeneous multiprocessor sys
tem 100 comprising a plurality of processors 120, 122. The
method selects a native machine code Snippet for a snippet
of input code. Input code may for example be given by a user
of the heterogeneous multiprocessor system 100.

Action 201
The JIT compiler compiles the snippet of input code,

whereby one or more alternative compiled code Snippets is
generated for the Snippet of input code.

Action 202
The JIT compiler tags one or more compiled code Snip

pets with one or more Snippet specific characteristics.
Thereby, compiled code Snippets are tagged with static
characteristics, known from start.

Action 203
One or more compiled code snippets are selected from the

alternative versions of code Snippets, based on said static
Snippet specific characteristics.

Action 204
The one or more selected code Snippets are executed on

one or more of the plurality of processors 120, 122. While

10

15

25

30

35

40

45

50

55

60

65

8
executing, run-time data is gathered, where the gathered data
is tagged for which processor 120, 122 in the heterogeneous
multiprocessor system 100 it is related to. During execution
of the generated native machine code Snippets the JIT
compiler 110 may use the run-time information Such as
which processor 120 in the heterogeneous multi-processor
system that is executing the native machine code Snippet
and/or the current bandwidth load on the system bus to in
run-time select the most efficient native machine code Snip
pet.

Action 205
The one or more executed code snippets are further

tagged with the gathered run-time data.
Action 206
One or more of the executed code Snippets is re-compiled

based on the tagging and the gathered runtime data to
generate one or more alternative versions of re-compiled
code Snippets.

Action 207
One or more efficient re-compiled code Snippets are

selected from the alternative versions of the code snippets,
based on said Snippet specific characteristics and on said
gathered run-time data.
The one or more selected native machine code Snippets

are re-executed under action 204 on one or more of said
plurality of processors 120, 122.

In other embodiments, the executing further comprises
identifying one or more code sections executed a plurality of
times. In other embodiments, in the executing, run-time data
is gathered by use of one or more hardware performance
counters 104.

In still other embodiments, in executing, run-time data
comprises bandwidth load measurements. In other embodi
ments, the JIT compiler 110 is further adapted to gather
bandwidth load measurements. Further, values from band
width load measurements, for example performed by SBAG,
may be used to make efficient decisions of which native
machine code to generate. Bandwidth utilization measure
ment hardware block may be used for this purpose. As
examples such blocks may be as SBAG in ST-Ericsson
U8500, L8540 and L8680 platforms, which optionally may
be used to make still further efficient decisions for a second
phase of the JIT compilation. Bandwidth load measurements
may as well be used in multi-processor Systems with iden
tical processors 120 or processors 122 as well as in multi
processor systems with different type of processors 120,
122. The reason that another possible input, bandwidth load
on the system bus, may be important when selecting native
machine code snippet is that the JIT compiler 110 might
have a possibility to choose between two different strategies
when generating the binary code. One of the strategies might
be more advantageous if the other IP-blocks Such as e.g. a
Graphic processing Unit (GPU) hardware video decoders,
2D graphic engines or modem hardware accelerators con
nected to the main interconnect do not generate much traffic
on the bus to the system memory. The other strategy might
be better if there are high load from other IP-blocks to the
system memory. An example of when this latter case with
the bandwidth on the system bus is important is if the JIT
compiler when generating the binary code for a certain
function notice that it has two options. It may either generate
a LookUp Table (LUT) or it may calculate the values each
time the function is called. If the LUT is large so it occupies
a large amount of memory it will probably not fit well in the
caches. Still if the function is very complex to calculate, the
LUT might be more efficient if the bandwidth load on the
main memory is low. On the other hand if the bandwidth

US 9,645,837 B2
9

load on the main memory is high, it is better for the JIT
compiler to choose the native machine code Snippet that
actually calculates values in run-time instead of using the
lookup table which will result in even higher memory
bandwidth load.

In other embodiments, the JIT compiler is further adapted
to gather run-time data by use of one or more hardware
performance counters 104. When hardware performance
counters 104 are used as input to the compilation the values
measured by the hardware performance counters 104 are
mostly relevant on the measured processor 120, 122. For
example if a specific hardware performance counter 104
measuring cache misses are used as input when JIT com
piling for a “LITTLE processor 122 in a heterogeneous
multi-processor System the native machine code Snippet that
is produced by the JIT compiler is not optimal for the “big”
processor 120, since it was not compiled for this processor
and the two processors 120, 122 may have very different
cache characteristics.

In other embodiments, the selection is further based on
which processor 120, 122 the code currently executes on.

In other embodiments, the JIT compiler 110 is further
adapted to tag each of the identified one or more code
sections executed a plurality of times with a respective
identity identifying which one out of the plurality of pro
cessors 120, 122 it was generated for.

In other embodiments, the JIT compiler 110 is further
adapted to select code Snippet based on which processor
120, 122 that the code currently executes on.

According to some embodiments described herein, a JIT
compiler system 100 compiles code in several phases. In a
first basic phase a JIT compilation is done as fast as possible
without any optimizations that take any longer time. When
the JIT compiled native code is executed it is at the same
time profiled with a profiler 408 located in the JIT compiler
110. The JIT compiler 110 may use hardware performance
counters 104, available in most modern CPUs.
A second phase of the JIT compilation may start after the

native machine code has been executed a configurable
amount of time. The JIT compiler 110 may use result from
the profiler 408 to identify hot sections, i.e. code sections
that have been frequently executed, and compiles these hot
sections again. In this second compilation phase the JIT
compiler 110 spend more time on optimizing the hot sec
tions and the values from the performance counters 104 may
be used to make as efficient decisions as possible of which
native machine code to generate.
The reason that the current processor 120, 122 is impor

tant to select the native machine code Snippet, is because the
different processors 120, 122 may have very different char
acteristics and a native machine code Snippet generated for
one processor 120, 122 might not execute optimally on
another processor 120, 122 in a heterogeneous multi-pro
cessor system 100,300. An augmented JIT compiler 110 for
a heterogeneous multi-processor system 300 will now be
described with reference to FIG. 3. In the exemplified
embodiment, a heterogeneous multi-processor system 300
with at least two processor clusters 401 and 402 is shown.
The number of processor clusters 401, 402 in the heteroge
neous multi-processor system 300 is not important. In this
example the processor cluster 401 contains two powerful
processors 120 delivering high performance. These are
paired with two smaller power efficient, but slower, proces
sors 122 located in the processor cluster 402. Both processor
clusters 401, 402 are connected to an on chip interconnect
403. As shown in FIG. 4, there is also a Graphic Processing
Unit, GPU 416, and a main memory 415 connected to the on

10

15

25

30

35

40

45

50

55

60

65

10
chip interconnect 403. A parser 405 takes the input code and
performs syntactic analysis into its component parts and
create a form of internal representation. The internal repre
sentation could for example be an Abstract Syntax Tree,
AST. In the exemplified embodiment Hardware IP-X 417 is
used to show that there may also be several other IP blocks
connected to the main interconnect. SBAG 419 is a traffic
spying and statistic reporting block for the on-chip bus 403.
The SBAG may measure among other things bus latency
and bandwidth measurements. A shared memory buffer 410
for SBAG interconnect bandwidth load measurements is
further comprised for sharing data between the SBAG, a
Processing Unit 420 and a Code Generator 407 being
associated with the Processing Unit 420. The system is
power efficient due to for example shorter executing time,
possibility to output binary snippets with better utilization of
on-chip memory Such as registers, caches and TLBS and
during run-time selecting the binary Snippets that are most
well suited for characteristics of the system for a certain
point in time compared to conventional methods for com
piling and executing code in the JIT-compiler 110.

Both processor clusters comprises Performance Counter
Units 404 and 414, which stores the hardware performance
counters 104 of the processor. Example of hardware perfor
mance counters 104 are, instruction cache misses, data cache
misses, Translation Lookaside Buffer, TLB, misses, pipeline
stalls, number of taken branches, number of mispredicted
branches, number of executed instructions, total number of
processor cycles elapsed and number of stalled cycles. The
values from the performance counter unit 404 is read and
stored in a performance counter First In First Out, FIFO
buffer. These performance counter values are then stored in
a “Shared memory buffer for performance counters' 409
where the Code Generator 407 and the Processing Unit 420
in the JIT compiler 110 may read them and use them to
generate as efficient code as possible in Subsequent compi
lation of hot sections. As an example if the performance
counters 104 show higher cache miss ratio than usual, the
JIT may try to use narrower instructions when generating the
native machine code. For example on an ARM processor the
16 bit thumb instructions may be used instead of the usual
32 bit ARM instructions.
The JIT compiler 110 will tag the different binary snippets

generated by the code generator with properties that contain
information about which processor 120, 122 in the hetero
geneous multi-processor system the native machine code
Snippet is generated for, and if the native machine code
Snippet is regarded as extra sensitive for high bandwidth
load on the memory. When the JIT compiler 110 generates
several native machine code Snippets for the same high-level
code it will patch the native machine code by a few
additional native machine code instructions which read the
current processor ID and bandwidth load and branches to the
correct native machine code Snippet. The native machine
code is saved in a code cache 406 where it is executed by one
of the processors 120, 122 in the heterogeneous multi
processor System.

Turning now to FIG. 5, a sequence chart is shown
illustrating an exemplary embodiment. A processor ID is
read in action 501. In action 502, it is checked if native
machine code snippet does exist for the processor ID. If the
answer is NO, in action 503 default native machine code
Snippet is used, and schedule compilation of new native
machine code Snippet is performed when cycle budget for
the JIT compiler permits this. If the answer is YES, it is
checked in action 504 if there are native machine code
snippets adapted for different Bus bandwidth loads for this

US 9,645,837 B2
11

Processor-ID. If not, there is only one native machine code
Snippet for this processor ID, so this native machine code
snippet is used in 505. If there are, bandwidth load is read
in action 506. It is checked if bus bandwidth load over limit
is defined as high in action 507. If the answer is YES, native
machine code Snippet for high bus bandwidth load is used in
action 508. If the answer is NO, native machine code snippet
for low bus bandwidth is used in action 509. Native machine
code is executed in a code cache. Improved performance for
JIT compiled code running in a virtual machine, which could
mean that Android applications, or any other system using a
JIT compiler 110, run faster on ST-Ericsson platforms. If
applied to the JavaScript engine in a web browser also web
applications running in the browser may run more effi
ciently. Better power efficiency is achieved since, among
other advantages, more optimal binary code is executed in
the virtual machine.

Although the description above contains many specifics,
they should not be construed as limiting but as merely
providing illustrations of some presently preferred embodi
ments. The technology fully encompasses other embodi
ments which may become apparent to those skilled in the art.
Reference to an element in the singular is not intended to
mean “one and only one' unless explicitly so stated, but
rather “one or more.” All structural and functional equiva
lents to the elements of the above-described embodiments
that are known to those of ordinary skill in the art are
expressly incorporated herein by reference and are intended
to be encompassed hereby. Moreover, it is not necessary for
a device or method to address each and every problem
sought to be solved by the described technology for it to be
encompassed hereby.
When using the word “comprise' or “comprising it shall

be interpreted as non-limiting, in the meaning of consist at
least of
When using the word action/actions it shall be interpreted

broadly and not to imply that the actions have to be carried
out in the order mentioned. Instead, the actions may be
carried out in any suitable order other than the order men
tioned. Further, Some action/actions may be optional.

The embodiments herein are not limited to the above
described examples. Various alternatives, modifications and
equivalents may be used. Therefore, this disclosure should
not be limited to the specific form set forth herein. This
disclosure is limited only by the appended claims and other
embodiments than the mentioned above are equally possible
within the scope of the claims.

The invention claimed is:
1. A method in a heterogeneous multiprocessor system

comprising a Just-In-Time, JIT compiler for compiling
code, and comprising a plurality of processors for executing
code, the method comprising:

compiling one Snippet of input code to generate one or
more alternative compiled code Snippets, wherein each
of the one or more compiled code Snippets corresponds
to the one Snippet of input code,

tagging the one or more alternative compiled code Snip
pets with respective one or more Snippet specific char
acteristics, wherein a first of the one or more alternative
complied code Snippets is tagged for a low bandwidth
load on a bus of the heterogeneous multiprocessor
system and a second of the one or more alternative
complied code Snippets is tagged for a high bandwidth
load on the bus;

determining a bandwidth load on the bus;
selecting the first or second of the one or more alternative

compiled code Snippets from the one or more alterna

10

15

25

30

35

40

45

50

55

60

65

12
tive compiled code Snippets based on said Snippet
specific characteristics and the determined bandwidth
load on the bus, and

executing at least the selected one of the first or second
alternative compiled code Snippets on one or more of
the plurality of processors; while executing the selected
one of the first or second alternative compiled code
Snippets, gathering run-time data, the gathered run-time
data is tagged for which processor in the heterogeneous
multiprocessor System it is related to.

2. Method according to claim 1, further comprising:
further tagging the selected one of the first or second

alternative compiled code Snippets with the gathered
run-time data,

re-compiling the selected one of the first or second
alternative compiled code Snippets based on the tagging
or further tagging, and the runtime data to generate at
least two alternative re-compiled code Snippets,

re-selecting one or more of the at least two alternative
re-compiled code Snippets based on said Snippet spe
cific characteristics and on said gathered run-time data,
and

re-executing the one or more of the re-selected at least two
alternative compiled code Snippets on one or more of
said plurality of processors.

3. Method according to claim 1, in the action executing,
further comprising: identifying one or more code sections
executed a plurality of times.

4. Method according to claim 1, wherein, in any of the
selection actions, selection is further based on which pro
cessor the code currently executes on.

5. A method in a Just-In-Time, JIT compiler for compil
ing code for a heterogeneous multiprocessor system com
prising a plurality of processors, the JIT compiler being
associated with the heterogeneous multiprocessor System,
the method comprising:

compiling one Snippet of input code to generate one or
more alternative compiled code Snippets are generated
for the Snippet of input code, and wherein each respec
tive of the one or more compiled code Snippets corre
sponds to the one Snippet of input code,

tagging the one or more alternative compiled code Snip
pets with respective one or more Snippet specific char
acteristics, wherein a first of the one or more alternative
complied code Snippets is tagged for a low bandwidth
load on a bus of the heterogeneous multiprocessor
system and a second of the one or more alternative
complied code Snippets is tagged for a high bandwidth
load on the bus;

determining a bandwidth load on the bus; and
selecting the first or second of the one or more alternative

compiled code Snippets to be executed from the one or
more alternative compiled code Snippets, based on said
Snippet specific characteristics and the determined
bandwidth load on the bus,

wherein while the selected one of the first or second
alternative complied code Snippets is executing run
time data is gathered, and the gathered run-time data is
tagged for which processor in the heterogeneous mul
tiprocessor System it is related to.

6. Method according to claim 5, further comprising:
further tagging the selected one of the first or second

alternative compiled code Snippets with gathered run
time data after the code has been executed on one of the
processors,

re-compiling the selected one of the first or second
alternative compiled code Snippets compiled code Snip

US 9,645,837 B2
13

pets based on the tagging or further tagging to generate
at least two alternative re-compiled code Snippets, and

re-selecting one or more of the at least two alternative
re-compiled code Snippets to be executed based on said
Snippet specific characteristics and on said gathered
run-time data.

7. Method according to claim 5, wherein, in any of the
selection actions, selection is further based on which pro
cessor the code currently executes on.

8. A non-transitory computer readable storage medium
comprising a Just-In-Time, JIT compiler compiling code for
a heterogeneous multiprocessor System, the JIT compiler is
associated with the heterogeneous multiprocessor System
comprising a plurality of processors, wherein when the JIT
compiler is executed the JIT compiler:

compiles one Snippet of input code to generate one or
more alternative compiled code Snippets, wherein each
of the one or more compiled code Snippets corresponds
to the one Snippet of input code,

tags the one or more alternative compiled code Snippets
with one or more Snippet specific characteristics,
wherein a first of the one or more alternative complied
code Snippets is tagged for a low bandwidth load on a
bus of the heterogeneous multiprocessor system and a
second of the one or more alternative complied code
Snippets is tagged for a high bandwidth load on the bus;

determining a bandwidth load on the bus;
selects the first or second of the one or more alternative

compiled code Snippets from the one or more alterna
tive compiled code Snippets based on said Snippet
specific characteristics and the determined bandwidth
load on the bus, and

executes at least the selected one of the first or second
alternative compiled code Snippets on one or more of
the plurality of processors; while executing the selected
one of the first or second alternative compiled code
Snippets, gathering run-time data, where the gathered
run-time data is tagged for which processor in the
heterogeneous multiprocessor system it is related to.

9. Non-transitory computer readable storage medium
according to claim 8, wherein when the JIT compiler is
executed the JIT compiler:

further tags the selected one of the first or second alter
native compiled code Snippets with the gathered run
time data,

re-compiles the selected one of the first or second alter
native compiled code Snippets based on the tagging, the
further tagging, and the runtime data by use of one or
more hardware performance counters that count hard
ware architecture events to generate at least two alter
native re-compiled code Snippets,

selects one or more of the at least two alternative re
compiled code Snippets based on said Snippet specific
characteristics and on said gathered run-time data, and

re-executes the one or more of the re-selected at least two
alternative compiled code Snippets on one or more of
said plurality of processors.

10. Non-transitory computer readable storage medium
according to claim 8, wherein when the JIT compiler is
executed the JIT compiler tags each of the identified one or
more code sections executed a plurality of times with a
respective identity identifying which one out of the plurality
of processors it is generated for.

11. Non-transitory computer readable storage medium
according to claim 8, wherein when the JIT compiler is
executed the JIT compiler selects code snippet based on
which processor that the code currently executes on.

5

10

15

25

30

35

40

45

50

55

60

65

14
12. A heterogeneous multiprocessor System comprising a

Just-In-Time, JIT compiler for compiling code, and com
prising a plurality of processors, the system being adapted
tO:

compile one Snippet of input code to generate one or more
alternative compiled code Snippets, wherein each of the
one or more compiled code Snippets corresponds to the
one snippet of input code,

tag the one or more alternative compiled code Snippets
with one or more Snippet specific characteristics,
wherein a first of the one or more alternative complied
code Snippets is tagged for a low bandwidth load on a
bus of the heterogeneous multiprocessor system and a
second of the one or more alternative complied code
Snippets is tagged for a high bandwidth load on the bus;

determining a bandwidth load on the bus;
select the first or second of the one or more alternative

compiled code Snippets from the one or more alterna
tive compiled code Snippets, based on said Snippet
specific characteristics and the determined bandwidth
load on the bus, and

execute at least the selected one of the first or second
alternative compiled code Snippets on one or more of
the plurality of processors; while executing the selected
one of the first or second alternative compiled code
Snippets, gathering run-time data, wherein the gathered
run-time data is tagged for which processor in the
heterogeneous multiprocessor system it is related to,

wherein the system further comprises one or more hard
ware performance counters that count hardware archi
tecture events, and wherein the system is further
adapted to gather run-time data using the one or more
hardware performance counters.

13. Heterogeneous multiprocessor system according to
claim 12, further adapted to:

further tag the selected one of the first or second alterna
tive executed compiled code Snippets with the gathered
run-time data,

re-compile the selected one of the first or second alter
native compiled code Snippets based on the tagging, the
further tagging, and the runtime data to generate at least
two alternative re-compiled code Snippets,

re-select one or more of the at least two alternative
re-compiled code Snippets based on said Snippet spe
cific characteristics and on said gathered run-time data,
and

re-execute the one or more of the re-selected at least two
alternative compiled code Snippets on one or more of
said plurality of processors.

14. Heterogeneous multiprocessor system according to
claim 12, further adapted to tag each of the identified one or
more code sections executed a plurality of times with a
respective identity identifying which one out of the plurality
of processors it is generated for.

15. Heterogeneous multiprocessor system according to
claim 12, further adapted to select code Snippet based on
which processor that the code currently executes on.

16. Method according to claim 1, wherein the run-time
data is gathered at least using one or more performance
counters that count hardware architecture events, which are
at least one of instruction cache misses, data cache misses,
Translation Lookaside Buffer, TLB, misses, pipeline stalls,
number of taken branches, number of mispredicted
branches, number of executed instructions, total number of
processor cycles elapsed, and number of stalled cycles.

17. Method according to claim 5, wherein the run-time
data is gathered at least using one or more performance

US 9,645,837 B2
15

counters that count hardware architecture events, which are
at least one of instruction cache misses, data cache misses,
Translation Lookaside Buffer, TLB, misses, pipeline stalls,
number of taken branches, number of mispredicted
branches, number of executed instructions, total number of 5
processor cycles elapsed, and number of stalled cycles.

18. Non-transitory computer readable storage medium
according to claim 8, wherein the run-time data is gathered
at least using one or more performance counters that count
hardware architecture events, which are at least one of 10
instruction cache misses, data cache misses, Translation
Lookaside Buffer, TLB, misses, pipeline stalls, number of
taken branches, number of mispredicted branches, number
of executed instructions, total number of processor cycles
elapsed, and number of Stalled cycles. 15

19. Heterogeneous multiprocessor system according to
claim 12, wherein the run-time data is gathered at least using
one or more performance counters that count hardware
architecture events, which are at least one of instruction
cache misses, data cache misses, Translation Lookaside 20
Buffer, TLB, misses, pipeline stalls, number of taken
branches, number of mispredicted branches, number of
executed instructions, total number of processor cycles
elapsed, and number of Stalled cycles.

k k k k k 25

