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MANAGING VIRTUAL BOUNDARESTO 
ENABLE LOCK-FREE CONCURRENT 
REGION OPTIMIZATION OF AN 

INTEGRATED CIRCUIT 

BACKGROUND 

The present disclosure is generally related to data pro 
cessing, or, more specifically, methods, apparatuses, and 
products for managing virtual boundaries to enable lock-free 
concurrent region optimization of an integrated circuit. 

DESCRIPTION OF RELATED ART 

The problem of design closure of Very Large Scale 
Integrated (VLSI) chips or integrated circuits involves the 
combination of logic synthesis algorithms with placement 
and routing algorithms in order to meet timing, area and 
other design objectives for the chip. Logic synthesis algo 
rithms change the type and connectivity of circuits used to 
implement the functionality of the chip. Placement algo 
rithms alter the physical locations of the circuits on the chip. 
Routing algorithms modify the wire type and path of the 
connections between the circuits. As the size of the VLSI 
chips grows, the problem of design closure increases cor 
respondingly at a geometric rate. Enabling parallel optimi 
Zation in this environment is thus, highly desirable. 
The frequency of a chip is limited by the transmission 

delay through the longest path of circuits on the chip. The act 
of timing closure is the manipulation of logical, placement, 
and routing attributes to achieve the desired chip frequency. 
This optimization of the timing model is a global problem, 
as is the use of the placement and routing resources. The 
global nature of chip design closure presents unique chal 
lenges to the use of parallelism in the optimization environ 
ment. 

SUMMARY 

Methods, apparatuses, and products for managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion, including: receiving a model of an integrated circuit 
(IC); dividing the model into a plurality of regions, 
wherein none of the regions overlap with another region; 
assigning each of the plurality of regions to a thread of 
execution, wherein each thread of execution utilizes a shared 
memory space; and optimizing, by each thread in parallel, 
the assigned region. 

The foregoing and other objects, features and advantages 
described herein will be apparent from the following more 
particular descriptions of example embodiments as illus 
trated in the accompanying drawings wherein like reference 
numbers generally represent like parts of example embodi 
mentS. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 sets forth a block diagram of an integrated circuit 
that may be broken up into a plurality of regions according 
to embodiments described herein. 

FIG. 2 sets forth a block diagram of automated computing 
machinery comprising an example computer useful in man 
aging virtual boundaries to enable lock-free concurrent 
region optimization of an integrated circuit according to 
embodiments described herein. 

FIG. 3 sets forth a flow chart illustrating an example 
method for managing virtual boundaries to enable lock-free 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
concurrent region optimization of an integrated circuit 
according to embodiments described herein. 

FIG. 4 sets forth a flow chart illustrating an additional 
example method for managing virtual boundaries to enable 
lock-free concurrent region optimization of an integrated 
circuit according to embodiments described herein. 

FIG. 5 sets forth a flow chart illustrating an additional 
example method for managing virtual boundaries to enable 
lock-free concurrent region optimization of an integrated 
circuit according to embodiments described herein. 

FIG. 6 sets forth a flow chart illustrating an additional 
example method for managing virtual boundaries to enable 
lock-free concurrent region optimization of an integrated 
circuit according to embodiments described herein. 

FIG. 7 sets forth a flow chart illustrating an additional 
example method for managing virtual boundaries to enable 
lock-free concurrent region optimization of an integrated 
circuit according to embodiments described herein. 

DETAILED DESCRIPTION OF EXAMPLE 
EMBODIMENTS 

Example methods, apparatuses, and products for manag 
ing virtual boundaries to enable lock-free concurrent region 
optimization of an integrated circuit in accordance with 
embodiments described herein are described with reference 
to the accompanying drawings, beginning with FIG. 1. FIG. 
1 sets forth a block diagram of an integrated circuit (102) 
that may be broken up into a plurality of regions (104,118). 
The integrated circuit (102) of FIG. 1 may be embodied 

as is a set of electronic circuits on a small plate or chip of 
semiconductor material such as silicon. The integrated cir 
cuit (102) depicted in FIG. 1 includes a plurality of objects 
(106, 108, 110, 112, 114, 116, 120, 122, 124, 126). Each 
object (106, 108, 110, 112, 114, 116, 120, 122, 124, 126) 
may be embodied, for example, as an electric circuit con 
figured to carry out a logic function, as a cell from a cell 
library, as a grouping of electrical components such as 
transistors, and so on. Each object (106, 108, 110, 112, 114, 
116, 120, 122, 124, 126) in FIG. 1 may be coupled by one 
or more interconnect structures such that each object (106. 
108, 110, 112, 114, 116, 120, 122, 124, 126) can receive a 
signal over an input pin, each object (106, 108, 110, 112, 
114, 116, 120, 122, 124, 126) can output a signal via an 
output pin, and so on. 
The integrated circuit (102) of FIG. 1 is broken up into a 

plurality of regions (104. 118). Each region (104. 118) 
represents a subset of the entire integrated circuit (102) and 
can include one or more objects (106, 108, 110, 112, 114, 
116, 120, 122, 124, 126). By breaking the integrated circuit 
(102) into a plurality of regions (104. 118), optimizing the 
physical layout of an entire integrated circuit (102) can 
effectively be broken down into smaller tasks of optimizing 
the physical layout of a particular region (104. 118), where 
each region (104. 118) may be optimized concurrently. In 
such an example, each region (104. 118) is defined by a set 
of virtual boundaries that designate where one region (104. 
118) ends and another begins. 
Managing virtual boundaries to enable lock-free concur 

rent region optimization of an integrated circuit according to 
embodiments described herein is generally implemented 
with computers, that is, with automated computing machin 
ery. For further explanation, therefore, FIG. 2 sets forth a 
block diagram of automated computing machinery compris 
ing an example computer (152) useful in managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion of an integrated circuit according to embodiments 



US 9,639,654 B2 
3 

described herein. The computer (152) of FIG. 2 includes at 
least one computer processor (156) or CPU as well as 
random access memory (168) (RAM) which is connected 
through a high speed memory bus (166) and bus adapter 
(158) to processor (156) and to other components of the 
computer (152). Readers will appreciate that although not 
illustrated in FIG. 2, computers useful in managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion of an integrated circuit according to embodiments 
described herein my include multiple processors, each of 
which may be concurrently executing different threads of 
execution. 

Stored in RAM (168) is a region optimization manager 
(128), a module of computer program instructions for man 
aging virtual boundaries to enable lock-free concurrent 
region optimization of an integrated circuit according to 
embodiments described herein. The region optimization 
manager (128) may be configured to manage virtual bound 
aries to enable lock-free concurrent region optimization of 
an integrated circuit by receiving a model of an integrated 
circuit. The model of the integrated circuit may be embod 
ied, for example, as a data structure that includes informa 
tion describing the component parts that form the integrated 
circuit. The model of the integrated circuit may also include 
information describing how the component parts are con 
nected, details regarding the structures used to connect each 
component part, and so on. Such a model may be embodied, 
for example, as a netlist contained in an Electronic Design 
Interchange Format (EDIF) file. 
The region optimization manager (128) may be further 

configured to manage virtual boundaries to enable lock-free 
concurrent region optimization of an integrated circuit by 
dividing the model into a plurality of regions. Dividing the 
model into a plurality of regions may be carried out by 
assigning each object (e.g., circuits designed to carry out 
specific logic functions) in the integrated circuit to a single 
region Such that all objects within an integrated circuit are 
assigned to one and only one region. Each object may be 
assigned to a region, for example, based on predetermined 
assignment rules. Example of Such predetermined assign 
ment rules can include rules which specify that each region 
is to include a predetermined number of objects, rules which 
specify that the first region includes the first predetermined 
number of objects specified in a netlist, rules which specify 
that the second region includes the second predetermined 
number of objects specified in a netlist, and so on. Likewise, 
the predetermined assignment rule may specify that the 
integrated circuit is to be broken up into a predetermined 
number of sections, the predetermined assignment rule may 
specify each object in a particular region must be directly 
coupled to all other objects in the region, and so on. Readers 
will appreciate that additional assignment rules may also be 
utilized to divide the model into a plurality of regions. 

The region optimization manager (128) may be further 
configured to manage virtual boundaries to enable lock-free 
concurrent region optimization of an integrated circuit by 
assigning each of the plurality of regions to a thread of 
execution. Each thread of execution represents the Smallest 
sequence of programmed instructions that can be managed 
independently by a scheduler that may be included as part of 
an operating system. Each thread of execution can exist 
within a single process and may share resources. In fact, 
each thread of execution can utilize a shared memory space. 
Readers will appreciate that because each thread of execu 
tion utilizes a shared memory space, concurrent region 
optimization of an integrated circuit may occur more effi 
ciently as the threads do not need to send data between each 
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4 
other when each thread optimizes a particular region, as 
would occur if the threads did not share a memory space. 

Assigning each of the plurality of regions to a thread of 
execution may be carried out by assigning the regions 
sequentially using the thread identifiers of each thread. Such 
that a first region is assigned to a first thread, a second region 
is assigned to a second thread, and so on. Alternatively, 
assigning each of the plurality of regions to a thread of 
execution may be carried out more intelligently by assigning 
threads in dependence upon a set of assignment rules. 
The region optimization manager (128) may be further 

configured to manage virtual boundaries to enable lock-free 
concurrent region optimization of an integrated circuit by 
having each thread of execution optimize its assigned 
region. Each thread of execution can optimize its assigned 
region in parallel. Each thread of execution may optimize its 
assigned region, for example, by executing one or more 
design closure processes where a design of a particular 
region is modified from its initial description to meet a list 
of design constraints and objectives. Such design closure 
processes may include, for example, functional verification 
processes where a design is verified to perform a certain 
function, placement processes where elements in each 
region are assigned to physical locations within the region, 
routing process where communications pathways between 
the elements in the region are inserted, design for manufac 
turability processes where the design of each region is 
modified to make each region as easy as possible to produce, 
and so on. 

Also stored in RAM (168) is an operating system (154). 
Operating systems useful for managing virtual boundaries to 
enable lock-free concurrent region optimization of an inte 
grated circuit according to embodiments described herein 
include UNIXTM LinuxTM Microsoft XPTM AIXTM IBMS 
i5/OSTM and others as will occur to those of skill in the art. 
The operating system (154) and the region optimization 
manager (128) in the example of FIG. 2 are shown in RAM 
(168), but many components of such software typically are 
stored in non-volatile memory also, such as, for example, on 
a disk drive (170). 
The computer (152) of FIG. 2 includes disk drive adapter 

(172) coupled through expansion bus (160) and bus adapter 
(158) to processor (156) and other components of the 
computer (152). Disk drive adapter (172) connects non 
volatile data storage to the computer (152) in the form of 
disk drive (170). Disk drive adapters useful in computers for 
managing virtual boundaries to enable lock-free concurrent 
region optimization of an integrated circuit according to 
embodiments described herein include Integrated Drive 
Electronics (IDE) adapters, Small Computer System Inter 
face (SCSI) adapters, and others as will occur to those of 
skill in the art. Non-volatile computer memory also may be 
implemented for as an optical disk drive, electrically eras 
able programmable read-only memory (so-called 
EEPROM or “Flash memory), RAM drives, and so on, as 
will occur to those of skill in the art. 
The example computer (152) of FIG. 2 includes one or 

more input/output (I/O) adapters (178). I/O adapters 
implement user-oriented input/output through, for example, 
software drivers and computer hardware for controlling 
output to display devices such as computer display Screens, 
as well as user input from user input devices (181) such as 
keyboards and mice. The example computer (152) of FIG. 2 
includes a video adapter (209), which is an example of an 
I/O adapter specially designed for graphic output to a 
display device (180) Such as a display Screen or computer 
monitor. Video adapter (209) is connected to processor (156) 
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through a high speed video bus (164), bus adapter (158), and 
the front side bus (162), which is also a high speed bus. 

The example computer (152) of FIG. 2 includes a com 
munications adapter (167) for data communications with 
other computers (182) and for data communications with a 
data communications network (100). Such data communi 
cations may be carried out serially through RS-232 connec 
tions, through external buses such as a Universal Serial Bus 
(USB), through data communications networks such as IP 
data communications networks, and in other ways as will 
occur to those of skill in the art. Communications adapters 
implement the hardware level of data communications 
through which one computer sends data communications to 
another computer, directly or through a data communica 
tions network. Examples of communications adapters useful 
for managing virtual boundaries to enable lock-free concur 
rent region optimization of an integrated circuit according to 
embodiments described herein include modems for wired 
dial-up communications, Ethernet (IEEE 802.3) adapters for 
wired data communications network communications, and 
802.11 adapters for wireless data communications network 
communications. 

For further explanation, FIG. 3 sets forth a flow chart 
illustrating an example method for managing virtual bound 
aries to enable lock-free concurrent region optimization of 
an integrated circuit according to embodiments described 
herein. In the example method depicted in FIG. 3, the 
integrated circuit may be embodied as a set of electronic 
circuits on a chip of semiconductor material Such as silicon. 
Region optimization of an integrated circuit can involve 
partitioning the integrated circuits into a plurality of regions 
and optimizing the physical layout of each region. In such a 
way, optimizing the physical layout of an entire integrated 
circuit can effectively be broken down into smaller tasks of 
optimizing the physical layout of a particular region, where 
each region may be optimized concurrently. In Such an 
example, each region is defined by a set of virtual bound 
aries that designate where one region ends and another 
begins. 

The example method depicted in FIG. 3 includes receiv 
ing (304) a model (302) of an integrated circuit. The model 
(302) of the integrated circuit may be embodied, for 
example, as a data structure that includes information 
describing the component parts that form the integrated 
circuit. The model (302) of the integrated circuit may also 
include information describing how the component parts are 
connected, details regarding the structures used to connect 
each component part, and so on. Such a model (302) may be 
embodied, for example, as a netlist contained in an EDIF 
file. 
The example method depicted in FIG. 3 also includes 

dividing (306) the model (302) into a plurality of regions 
(308). In the example method depicted in FIG. 3, dividing 
(306) the model (302) into a plurality of regions (308) may 
be carried out by assigning each object (e.g., circuits 
designed to carry out specific logic functions) in the inte 
grated circuit to a single region Such that all objects within 
an integrated circuit are assigned to one and only one region. 
Each object may be assigned, for example, to a region based 
on predetermined assignment rules. Examples of Such pre 
determined assignment rules can include a predetermined 
assignment rule specifying that each region is to include a 
predetermined number of objects, a predetermined assign 
ment rule specifying that the first region includes the first 
predetermined number of objects specified in a netlist, a 
predetermined assignment rule specifying that the second 
region includes the second predetermined number of objects 
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6 
specified in a netlist, and so on. Likewise, the predetermined 
assignment rule may specify that the integrated circuit is to 
be broken up into a predetermined number of sections, the 
predetermined assignment rule may specify each object in a 
particular region must be directly coupled to all other objects 
in the region, and so on. 
The example method depicted in FIG. 3 also includes 

assigning (310) each of the plurality of regions (308) to a 
thread (316, 318) of execution. Each thread (316, 318) of 
execution represents the Smallest sequence of programmed 
instructions that can be managed independently by a sched 
uler that may be included as part of an operating system. 
Each thread (316, 318) of execution can exist within a single 
process and may share resources. In fact, each thread (316. 
318) of execution depicted in FIG. 3 utilizes a shared 
memory space (324). Readers will appreciate that because 
each thread (316, 318) of execution depicted in FIG. 3 
utilizes a shared memory space (324), the threads (316, 318) 
may concurrently optimize an integrated circuit more effi 
ciently as the threads (316, 318) will not need to exchange 
messages as each thread (316, 318) optimizes a particular 
region, as would be required if the threads (316, 318) did not 
share a memory space (324). More specifically, a design of 
an integrated circuit that is being optimized may be loaded 
into the shared memory space (324) and as various regions 
are optimized, each thread (316,318) can access the updated 
design without exchanging messages in view of the fact that 
each thread (316, 318) can access the shared memory space 
(324) that contains the updated design. 

In the example method depicted in FIG.3, assigning (310) 
each of the plurality of regions (308) to a thread (316, 318) 
of execution may be carried out by assigning the regions 
sequentially using the thread identifiers of each thread. Such 
that a first region (312) is assigned (310) to a first thread 
(316), a second region (314) is assigned (310) to a second 
thread (318), and so on. Alternatively, assigning (310) each 
of the plurality of regions (308) to a thread (316, 318) of 
execution may be carried out more intelligently by assigning 
threads in dependence upon a set of assignment rules. 
The example method depicted in FIG. 3 also includes 

each thread (316, 318) of execution optimizing (320, 322) 
the assigned region (312. 314). In the example method 
depicted in FIG. 3, each thread (316, 318) of execution 
optimizes (320, 322) its assigned region (312. 314) in 
parallel. Each thread (316, 318) of execution may optimize 
(320, 322) its assigned region (312,314), for example, by 
executing one or more design closure processes where a 
design of a particular region (312,314) is modified from its 
initial description to meet a list of design constraints and 
objectives. Such design closure processes may include, for 
example, functional verification processes where a design is 
verified to perform a certain function, placement processes 
where elements in each region are assigned to physical 
locations within the region, routing process where commu 
nications pathways between the elements in the region are 
inserted, design for manufacturability processes where the 
design of each region is modified to make each region as 
easy as possible to produce, and so on. 

For further explanation, FIG. 4 sets forth a flow chart 
illustrating a further example method for managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion of an integrated circuit according to embodiments 
described herein. The example method depicted in FIG. 4 is 
similar to the example method depicted in FIG. 3, as the 
example method depicted in FIG. 4 also includes receiving 
(304) a model (302) of an integrated circuit, dividing (306) 
the model (302) into a plurality of regions (308), assigning 
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(310) each of the plurality of regions (308) to a thread (316. 
318) of execution, and each thread (316, 318) of execution 
optimizing (320, 322) the assigned region (312, 314). 

In the example method depicted in FIG. 4, dividing (306) 
the model (302) into a plurality of regions (308) can include 
selecting (402) objects to place in a particular region. Such 
objects can include, for example, electrical circuits such as 
logic circuits that carry out a specified logic circuit, cells 
from a standard cell library, interconnect structures that 
connect two or more circuits, and so on. Selecting (402) 
objects to place in a particular region may be carried out, for 
example, by selecting all objects that perform a particular 
function, by selecting a predetermined number of objects to 
include in a particular region, and so on. 

In the example method depicted in FIG. 4, dividing (306) 
the model (302) into a plurality of regions (308) can also 
include identifying (404) boundary objects that isolate the 
particular region from all other objects in the integrated 
circuit. The boundary objects that isolate the particular 
region from all other objects in the integrated circuit may 
include, for example, input pins to logic circuits in the 
particular region that receive signals via connections to 
objects in other regions of the integrated circuit, output pins 
from logic circuits in the particular region that output signals 
via connections to objects in other regions of the integrated 
circuit, and so on. Identifying (404) boundary objects that 
isolate the particular region from all other objects in the 
integrated circuit may therefore be carried out, for example, 
by determining whether the input pins or output pins for 
each object in the particular region are electrically coupled 
to objects that are external to the particular region. 

In the example method depicted in FIG.4, dividing (306) 
the model (302) into a plurality of regions (308) can also 
include freezing (406) data on the boundary objects that are 
visible to all other regions. Freezing (406) data on the 
boundary objects that are visible to all other regions may be 
carried out, for example, by freezing the values of input 
signals to the boundary objects and also freezing the values 
of output signals from the boundary objects. Such that the 
values of input signals to the boundary objects and the 
values of output signals from the boundary objects remain 
constant during an optimization process. 

In the example method depicted in FIG. 4, optimizing 
(320, 322) the assigned region (312, 314) can include 
preventing (408, 410) traversal of the boundary objects. 
Preventing (408, 410) traversal of the boundary objects in a 
particular region (312,314) may be carried out, for example, 
by blocking any data traversal operation in a thread (316) 
optimizing a particular region (312) from accessing any 
object in another region (314) that is connected to a bound 
ary object. For example, any data iterators operating on a 
boundary object and used in a thread (316) optimizing one 
region (312) may be modified to prevent them from return 
ing objects belonging to any other regions (314). In Such a 
way, the objects within a particular region are effectively 
isolated from other regions and the impact of optimization 
operations that are being carried out on other regions in the 
integrated circuit. Readers will appreciate that the benefits of 
blocking traversal in this way is that modifying the actual 
optimization functions is not required, and therefore allows 
reuse of many such functions already written and in use in 
non-region-based optimization. 

Furthermore, preventing (408, 410) traversal of the 
boundary objects in a particular region (312,314) can also 
include blocking the propagation of analysis data (e.g., 
signal arrival times, signal slews, signal required arrival 
times, signal noise levels, etc.) through boundary objects 
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such that the view of the data seen by threads optimizing 
other regions does not change during its optimization of that 
other region. Blocking propagation of analysis information 
can be done by modifying the analysis function to recognize 
and honor boundary objects, or by making use of iterators in 
the analysis function which themselves have been modified 
not to return objects belonging to other regions. 
The example method depicted in FIG. 4 also includes 

unfreezing (412) the data on the boundary objects. Unfreez 
ing (412) the data on the boundary objects may be carried 
out, for example, by propagating analysis data (e.g., signal 
arrival times, signal slews, signal required arrival times, 
signal noise levels, etc.) through boundary objects allowing 
and effectively allowing data that had previously been 
locked to flow across regions. In Such a way, the objects 
within a particular region are no longer isolated from other 
regions in the integrated circuit. 
The example method depicted in FIG. 4 also includes 

propagating (416) changes to the data on the boundary 
objects. In the example method depicted in FIG. 4, propa 
gating (416) changes to the data on the boundary objects 
may be carried out, for example, by updating the values for 
the data on the boundary objects in a centralized repository 
that is accessible to all of the threads of execution, by one 
thread sending a message to all other threads that includes 
updated values for the data on the boundary objects, and so 
O. 

Readers will appreciate that in the example method 
depicted in FIG. 4, unfreezing (412) the data on the bound 
ary objects and propagating (416) changes to the data on the 
boundary objects will occur after each region (312,314) is 
dissolved. Such dissolution occurs when control of the 
region (312,314) is passed back to the main thread and after 
the worker threads (316, 318) have completed the desired 
optimization operations described above with reference to 
steps 320 and 322. Such dissolution occurs when control of 
the region (312,314) is passed back to the main thread and 
after the worker threads (316, 318) have completed the 
desired optimization operations in order to limit the inter 
action between the worker threads (316, 318) as much as 
possible to ensure lock-free operation. 

For further explanation, FIG. 5 sets forth a flow chart 
illustrating a further example method for managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion of an integrated circuit according to embodiments 
described herein. The example method depicted in FIG. 5 is 
similar to the example method depicted in FIG. 3, as the 
example method depicted in FIG. 5 also includes receiving 
(304) a model (302) of an integrated circuit, dividing (306) 
the model (302) into a plurality of regions (308), assigning 
(310) each of the plurality of regions (308) to a thread (316. 
318) of execution, and each thread (316, 318) of execution 
optimizing (320, 322) the assigned region (312,314). The 
method depicted in FIG. 5 is also similar to the example 
method depicted in FIG. 4, as dividing (306) the model (302) 
into a plurality of regions (308) also includes selecting (402) 
objects to place in a particular region, identifying (404) 
boundary objects that isolate the particular region from all 
other objects in the integrated circuit, and freezing (406) 
data on the boundary objects that are visible to all other 
regions. 

In the example method depicted in FIG. 5, optimizing 
(320, 322) the assigned region (312, 314) can include 
optimizing (502, 504) all portions of the assigned region 
(312,314) other than the boundary objects. Referring to the 
example depicted in FIG. 1, optimizing (502, 504) all 
portions of the assigned region (312, 314) other than the 
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boundary objects could be carried out by optimizing the 
portion of the first region (104 of FIG. 1) that includes 
non-boundary objects (108, 110, 112 of FIG. 1) and also 
optimizing the portion of the second region (118 of FIG. 1) 
that includes non-boundary objects (122, 124 of FIG. 1). In 
Such an example, the portions of the integrated circuit (102 
of FIG. 1) that include the boundary objects (106, 114, 116 
of FIG. 1) of the first region (104 of FIG. 1) and the 
boundary objects (120, 126 of FIG. 1) of the second region 
(118 of FIG. 1) would not be optimized. 
The example method depicted in FIG. 5 also includes 

creating (508) a new region (510) that includes objects 
previously included in two or more of the plurality of 
regions (312,314). Creating (508) the new region (510) that 
includes objects previously included in two or more of the 
plurality of regions (312, 314) may be carried out, for 
example, by combining the two or more of the plurality of 
regions (312, 314). In such an example, at least one of the 
boundary objects from each of the previously existing 
regions (312, 314) is a non-boundary object in the new 
region (510). Referring again to the example depicted in 
FIG. 1, combining the two or more of the regions (104. 118 
of FIG. 1) could result in the creation of a new region where 
objects (114, 116, 120 of FIG. 1) that were previously 
boundary objects would become non-boundary objects of 
the newly created region. 

Readers will appreciate that in the example method 
depicted in FIG. 5, creating (508) a new region (510) that 
includes objects previously included in two or more of the 
plurality of regions (312, 314) will occur only after each 
region (312,314) is dissolved. Such dissolution occurs when 
control of the region (312,314) is passed back to the main 
thread and after the worker threads (316, 318) have com 
pleted the desired optimization operations described above 
with reference to steps 320 and 322. Such dissolution occurs 
when control of the region (312,314) is passed back to the 
main thread and after the worker threads (316, 318) have 
completed the desired optimization operations in order to 
limit the interaction between the worker threads (316, 318) 
as much as possible to ensure lock-free operation. 
The example method depicted in FIG. 5 also includes 

optimizing (512) the new region (510). In the example 
method depicted in FIG. 5, a newly created thread (506) may 
optimize (512) the new region (510), for example, by 
executing one or more design closure processes where a 
design of the new region (510) is modified from its initial 
description to meet a list of design constraints and objec 
tives. Such design closure processes may include, for 
example, functional verification processes where a design is 
verified to perform a certain function, placement processes 
where elements in each region are assigned to physical 
locations within the region, routing process where commu 
nications pathways between the elements in the region are 
inserted, design for manufacturability processes where the 
design of each region is modified to make each region as 
easy as possible to produce, and so on. 

For further explanation, FIG. 6 sets forth a flow chart 
illustrating a further example method for managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion of an integrated circuit according to embodiments 
described herein. The example method depicted in FIG. 6 is 
similar to the example method depicted in FIG. 3, as the 
example method depicted in FIG. 6 also includes receiving 
(304) a model (302) of an integrated circuit, dividing (306) 
the model (302) into a plurality of regions (308), assigning 
(310) each of the plurality of regions (308) to a thread (618, 
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620) of execution, and each thread (618, 620) of execution 
optimizing (320, 322) the assigned region (312, 314). 

In the example method depicted in FIG. 6, assigning (310) 
each of the plurality of regions (308) to a thread (618, 620) 
of execution can include adding (602), by a manager thread 
(622), each of the plurality of regions (312, 214) to a work 
queue (606). In the example method depicted in FIG. 6, the 
work queue (606) may be embodied as a data structure 
configured to contain information describing one or more 
regions (312,314) that are to be optimized. The work queue 
(606) may include a plurality of slots where each slot is 
configured to hold information describing a single region 
that is to be optimized. The work queue (606) may be 
embodied, for example, as a first-in-first-out (FIFO) queue 
were entries are removed from the work queue (606) in the 
same order as which they were received, as a last-in-first-out 
(LIFO") queue were entries are removed from the work 
queue (606) in the opposite order as which they were 
received, and so on. In the example method depicted in FIG. 
6, a manager thread (622) is responsible for adding (602) 
each of the plurality of regions (312, 214) to a work queue 
(606). The manager thread (622) of FIG.6 may be embodied 
as a thread that is configured to manage the creation of 
regions (312,314), the distribution of regions (312,314) to 
other threads (618, 620) for optimization, and the dissolution 
of regions (312,314). 

In the example method depicted in FIG. 6, adding (602) 
each of the plurality of regions (312, 214) to the work queue 
(606) can include determining (630) an estimated optimiza 
tion effort for each of the plurality of regions (312. 314). 
Determining (630) an estimated optimization effort for each 
of the plurality of regions (312,314) may be carried out, for 
example, by identifying the number of objects in a particular 
region (312,314) to be optimized, by identifying the types 
of objects in a particular region (312,314) to be optimized, 
by identifying the optimization processes to be carried out in 
a particular region (312,314) to be optimized, and so on. In 
view of the fact that more complicated regions may take 
longer to optimize and that certain types of objects may take 
longer to optimize when certain optimization processes are 
being performed, the amount of computational resources 
that must be dedicated to optimizing a particular region 
(312,314) may be different. In such a way, the estimated 
optimization effort for each of the plurality of regions (312, 
314) can be used as a relative measure of the amount of 
computational resources that must be dedicated to optimiz 
ing each particular region (312,314). 

In the example method depicted in FIG. 6, adding (602) 
each of the plurality of regions (312, 214) to the work queue 
(606) can also include ordering (632) the work queue (606) 
in dependence upon the estimated optimization effort for 
each region (312, 314). The work queue (606) may be 
ordered (632) in dependence upon the estimated optimiza 
tion effort for each region (312,314), for example, such that 
the regions (312,314) with the largest estimated optimiza 
tion effort are placed at the beginning of the queue. In Such 
a way, optimization of the regions (312,314) with the largest 
estimated optimization effort may begin first as these regions 
will be pulled from the work queue (606) first. Readers will 
appreciate that by beginning the optimization of the regions 
(312, 314) with the largest estimated optimization effort 
first, the worker threads (618, 620) may be more efficiently 
utilized—rather than creating a situation where the optimi 
Zation of a region with a relatively large estimated optimi 
zation effort begins when the work queue (606) is relatively 
empty and some worker threads have no regions that are in 
need of optimizing. 
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In the example method depicted in FIG. 6, optimizing 
(320, 322) the assigned region (312, 314) can include 
removing (610, 612), by a worker thread (618, 620), a region 
(312, 314) in the first slot of the work queue (606). The 
worker threads (618, 620) of FIG. 6 may be embodied as 
threads that are configured to carry out optimization pro 
cesses of regions (312,314), with little or no responsibility 
for creating the regions (312,314) and dissolving the regions 
(312,314). Readers will appreciate that while the example 
method depicted in FIG. 6 describes the worker threads 
(618, 620) removing (610, 612) a region (312, 314) in the 
first slot of the work queue (606), the slot that is designated 
as the first slot will depend on the nature of the work queue 
(606). For example, in implementations where the work 
queue (606) is embodied as a linked list, the first slot may 
be designated by a pointer that moves as entries are removed 
from the work queue (606) or added to the work queue 
(606). 

In the example method depicted in FIG. 6, optimizing 
(320, 322) the assigned region (312,314) can also include 
adding (614, 616), by the worker thread (618, 620), the 
removed region (312, 314) to the done queue (608). The 
done queue (608) depicted in FIG. 6 may be embodied, for 
example, as a data structure for storing information describ 
ing regions (312. 314) that have been optimized by one of 
the worker threads (618, 620). 

The example method depicted in FIG. 6 also includes 
removing (604), by the manager thread (622), the first region 
from the done queue (608). In the example method depicted 
in FIG. 6, the manager thread (622) may dissolve a particular 
region in response to removing (604) the region (312,314) 
from the done queue (608). In such an example, dissolving 
a particular region may be carried out by unfreezing data on 
boundary objects contained in the region, propagating 
changes made to the region, making the objects contained in 
the region available for inclusion in another region that is to 
be optimized, and so on. 

For further explanation, FIG. 7 sets forth a flow chart 
illustrating a further example method for managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion of an integrated circuit according to embodiments 
described herein. The example method depicted in FIG. 7 is 
similar to the example method depicted in FIG. 3, as the 
example method depicted in FIG. 7 also includes receiving 
(304) a model (302) of an integrated circuit, dividing (306) 
the model (302) into a plurality of regions (308), assigning 
(310) each of the plurality of regions (308) to a thread (618, 
620) of execution, and each thread (618, 620) of execution 
optimizing (320, 322) the assigned region (312, 314). 

In the example method depicted in FIG. 7, dividing (306) 
the model (302) into a plurality of regions (308) can include 
identifying (702) each timing route through the integrated 
circuit. In the example method depicted in FIG. 7, one 
design constraint may specify the frequency at which the 
integrated circuit should operate at. For example, a design 
constraint may specify that an integrated circuit should 
operate at 50 MHz, and as such, a signal must be able to 
complete a hop from one object in signal path to another 
object in the signal path within a period of time that is equal 
to one clock cycle of a clock operating at a clock speed of 
50 MHZ. 

Such design constraints may also specify an allowable 
slack time. The slack associated with each connection is the 
difference between the required time and the arrival time. A 
positive slack of value X at a node implies that circuit will 
operate at the desired frequency if the arrival time at that 
node is increased by X. Conversely, negative slack implies 
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12 
that a path is too slow, and the path must be sped up (or the 
capturing clock signal delayed) if the whole circuit is to 
work at the desired speed. 

Reader will appreciate, however, that multiple routes 
through the integrated circuit (102 of FIG. 1) exist. For 
example, a first route can include a signal passing through a 
first series of objects (106, 108, 110, 112, 114, 120, 122, 124, 
126 of FIG. 1) while a second route can include a signal 
passing through a second series of objects (106, 108, 110. 
112, 116, 120, 122, 124, 126 of FIG. 1). In such an example, 
each route represents a distinct timing route as the signal 
must be able to pass through each route in accordance with 
the frequency at which the integrated circuit should operate 
at, as specified in a design constraint. As such, as part of the 
design closure process, the objects and signal paths that form 
each timing route must be optimized so as to satisfy the 
design constraints. 

In the example method depicted in FIG. 7, dividing (306) 
the model (302) into a plurality of regions (308) can also 
include dividing (704) the model (302) such that each timing 
route resides in a maximum of two regions (312,314). By 
dividing (704) the model (302) such that each timing route 
resides in a maximum of two regions (312,314), the slack 
time may be easily apportioned and a thread processing each 
region can avoid receiving Stale timing data, Such that 
integrated circuit may be optimized to adhere to the timing 
constraints that are placed on the entire integrated circuit. 
Continuing with the example described above where the 
design constraint specified that the integrated circuit should 
operate at a frequency of 50 MHz frequency with a prede 
termined allowable amount of slack. In such an example, 
given that each timing route is broken up into no more than 
two regions, the first region may be given an acceptable 
slack time that is one-half of the total slack time for the 
integrated circuit while the second region may also be given 
an acceptable slack time that is one-half of the total slack 
time for the integrated circuit, such that even if each region 
consumes its maximum allowable slack, total slack for the 
integrated circuit is within the guidelines specified in the 
design constraints. 

Embodiments described herein may be a system, a 
method, and/or a computer program product. The computer 
program product may include a computer readable storage 
medium (or media) having computer readable program 
instructions thereon for causing a processor to carry out 
aspects of embodiments described herein. 
The computer readable storage medium can be a tangible 

device that can retain and store instructions for use by an 
instruction execution device. The computer readable storage 
medium may be, for example, but is not limited to, an 
electronic storage device, a magnetic storage device, an 
optical storage device, an electromagnetic storage device, a 
semiconductor storage device, or any suitable combination 
of the foregoing. A non-exhaustive list of more specific 
examples of the computer readable storage medium includes 
the following: a portable computer diskette, a hard disk, a 
random access memory (RAM), a read-only memory 
(ROM), an erasable programmable read-only memory 
(EPROM or Flash memory), a static random access memory 
(SRAM), a portable compact disc read-only memory (CD 
ROM), a digital versatile disk (DVD), a memory stick, a 
floppy disk, a mechanically encoded device such as punch 
cards or raised structures in a groove having instructions 
recorded thereon, and any suitable combination of the fore 
going. A computer readable storage medium, as used herein, 
is not to be construed as being transitory signals perse. Such 
as radio waves or other freely propagating electromagnetic 
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waves, electromagnetic waves propagating through a wave 
guide or other transmission media (e.g., light pulses passing 
through a fiber-optic cable), or electrical signals transmitted 
through a wire. 

Computer readable program instructions described herein 
can be downloaded to respective computing/processing 
devices from a computer readable storage medium or to an 
external computer or external storage device via a network, 
for example, the Internet, a local area network, a wide area 
network and/or a wireless network. The network may com 
prise copper transmission cables, optical transmission fibers, 
wireless transmission, routers, firewalls, Switches, gateway 
computers and/or edge servers. A network adapter card or 
network interface in each computing/processing device 
receives computer readable program instructions from the 
network and forwards the computer readable program 
instructions for storage in a computer readable storage 
medium within the respective computing/processing device. 

Computer readable program instructions for carrying out 
operations described herein may be assembler instructions, 
instruction-set-architecture (ISA) instructions, machine 
instructions, machine dependent instructions, microcode, 
firmware instructions, state-setting data, or either source 
code or object code written in any combination of one or 
more programming languages, including an object oriented 
programming language such as Smalltalk, C++ or the like, 
and conventional procedural programming languages, such 
as the “C” programming language or similar programming 
languages. The computer readable program instructions may 
execute entirely on the user's computer, partly on the user's 
computer, as a stand-alone software package, partly on the 
user's computer and partly on a remote computer or entirely 
on the remote computer or server. In the latter scenario, the 
remote computer may be connected to the user's computer 
through any type of network, including a local area network 
(LAN) or a wide area network (WAN), or the connection 
may be made to an external computer (for example, through 
the Internet using an Internet Service Provider). In some 
embodiments, electronic circuitry including, for example, 
programmable logic circuitry, field-programmable gate 
arrays (FPGA), or programmable logic arrays (PLA) may 
execute the computer readable program instructions by 
utilizing state information of the computer readable program 
instructions to personalize the electronic circuitry, in order to 
perform aspects of embodiments described herein. 

Aspects of embodiments described herein are described 
with reference to flowchart illustrations and/or block dia 
grams of methods, apparatus (systems), and computer pro 
gram products. It will be understood that each block of the 
flowchart illustrations and/or block diagrams, and combina 
tions of blocks in the flowchart illustrations and/or block 
diagrams, can be implemented by computer readable pro 
gram instructions. 

These computer readable program instructions may be 
provided to a processor of a general purpose computer, 
special purpose computer, or other programmable data pro 
cessing apparatus to produce a machine, Such that the 
instructions, which execute via the processor of the com 
puter or other programmable data processing apparatus, 
create means for implementing the functions/acts specified 
in the flowchart and/or block diagram block or blocks. These 
computer readable program instructions may also be stored 
in a computer readable storage medium that can direct a 
computer, a programmable data processing apparatus, and/ 
or other devices to function in a particular manner, Such that 
the computer readable storage medium having instructions 
stored therein comprises an article of manufacture including 
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instructions which implement aspects of the function/act 
specified in the flowchart and/or block diagram block or 
blocks. 
The computer readable program instructions may also be 

loaded onto a computer, other programmable data process 
ing apparatus, or other device to cause a series of operational 
steps to be performed on the computer, other programmable 
apparatus or other device to produce a computer imple 
mented process, such that the instructions which execute on 
the computer, other programmable apparatus, or other 
device implement the functions/acts specified in the flow 
chart and/or block diagram block or blocks. 
The flowchart and block diagrams in the Figures illustrate 

the architecture, functionality, and operation of possible 
implementations of systems, methods, and computer pro 
gram products according to various embodiments described 
herein. In this regard, each block in the flowchart or block 
diagrams may represent a module, segment, or portion of 
instructions, which comprises one or more executable 
instructions for implementing the specified logical 
function(s). In some alternative implementations, the func 
tions noted in the block may occur out of the order noted in 
the figures. For example, two blocks shown in Succession 
may, in fact, be executed Substantially concurrently, or the 
blocks may sometimes be executed in the reverse order, 
depending upon the functionality involved. It will also be 
noted that each block of the block diagrams and/or flowchart 
illustration, and combinations of blocks in the block dia 
grams and/or flowchart illustration, can be implemented by 
special purpose hardware-based systems that perform the 
specified functions or acts or carry out combinations of 
special purpose hardware and computer instructions. 

It will be understood from the foregoing description that 
modifications and changes may be made in various embodi 
ments without departing from its true spirit. The descriptions 
in this specification are for purposes of illustration only and 
are not to be construed in a limiting sense. The scope of the 
present disclosure is limited only by the language of the 
following claims. 
What is claimed is: 
1. A method of managing virtual boundaries to enable 

lock-free concurrent region optimization, the method com 
prising: 

receiving a model of an integrated circuit (IC); 
dividing the model into a plurality of regions, wherein 

none of the plurality of regions overlap with another 
region, including: 
Selecting objects to place in a particular region; 
identifying boundary objects that isolate the particular 

region from all other objects in the integrated circuit; 
and 

freezing data on the boundary objects that are visible to 
all other regions including freezing values of input 
signals to the boundary objects and output signals 
from the boundary objects, wherein the values of the 
input signals to the boundary objects and the output 
signals from the boundary objects remain constant 
during the optimization; 

assigning each of the plurality of regions to a thread of 
execution, wherein each thread of execution utilizes a 
shared memory space; 

optimizing, by each thread in parallel and without locking 
any of the objects in any of the regions, the assigned 
region, including optimizing all portions of the 
assigned region other than the boundary objects; 

creating a new region that includes objects previously 
included in two or more of the plurality of regions, 
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wherein at least one of the boundary objects in each of 
the two or more of the plurality of regions become 
non-boundary objects in the new region, including 
unfreezing data on the boundary objects that become 
non-boundary objects; and 

optimizing the new region. 
2. The method of claim 1 wherein optimizing, by each 

thread in parallel, the assigned region further comprises 
preventing traversal of the boundary objects, the method 
further comprising: 

unfreezing the data on the boundary objects; and 
propagating changes to the data on the boundary objects. 
3. The method of claim 1 wherein: 
assigning each of the plurality of regions to the thread of 

execution further comprises adding, by a manager 
thread, each of the plurality of regions to a work queue; 
and 

optimizing the assigned region further comprises: 
removing, by a worker thread, a region in the first slot 

of the work queue; and 
adding, by the worker thread, the removed region to the 

done queue; and 
the method further comprising removing, by the manager 

thread, the first region from the done queue. 
4. The method of claim 3 wherein adding, by the manager 

thread, each of the plurality of regions to the work queue 
further comprises: 

determining an estimated optimization effort for each of 
the plurality of regions by identifying a number of 
objects, types of the objects, and optimization pro 
cesses to be carried out in each region of the plurality 
of regions; and 

ordering the work queue in dependence upon the esti 
mated optimization effort for each region. 

5. The method of claim 1 wherein dividing the model into 
a plurality of regions further comprises: 

identifying each timing route through the integrated cir 
cuit; and 

dividing the model Such that each timing route resides in 
a maximum of two regions. 

6. Apparatus for managing virtual boundaries to enable 
lock-free concurrent region optimization, the apparatus 
comprising a computer processor, a computer memory 
operatively coupled to the computer processor, the computer 
memory having disposed within it computer program 
instructions that, when executed by the computer processor, 
cause the apparatus to carry out the steps of: 

receiving a model of an integrated circuit (IC); 
dividing the model into a plurality of regions, wherein 

none of the plurality of regions overlap with another 
region, including: 
Selecting objects to place in a particular region; 
identifying boundary objects that isolate the particular 

region from all other objects in the integrated circuit; 
and 

freezing data on the boundary objects that are visible to 
all other regions including freezing values of input 
signals to the boundary objects and output signals 
from the boundary objects, wherein the values of the 
input signals to the boundary objects and the output 
signals from the boundary objects remain constant 
during the optimization; 

assigning each of the plurality of regions to a thread of 
execution, wherein each thread of execution utilizes a 
shared memory space; 

optimizing, by each thread in parallel and without locking 
any of the objects in any of the regions, the assigned 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
region, including optimizing all portions of the 
assigned region other than the boundary objects; 

creating a new region that includes objects previously 
included in two or more of the plurality of regions, 
wherein at least one of the boundary objects in each of 
the two or more of the plurality of regions become 
non-boundary objects in the new region, including 
unfreezing data on the boundary objects that become 
non-boundary objects; and 

optimizing the new region. 
7. The apparatus of claim 6 wherein optimizing, by each 

thread in parallel, the assigned region further comprises 
preventing traversal of the boundary objects, the method 
further comprising: 

unfreezing the data on the boundary objects; and 
propagating changes to the data on the boundary objects. 
8. The apparatus of claim 6 wherein: 
assigning each of the plurality of regions to the thread of 

execution further comprises adding, by a manager 
thread, each of the plurality of regions to a work queue; 
and 

optimizing the assigned region further comprises: 
removing, by a worker thread, a region in the first slot 

of the work queue; and 
adding, by the worker thread, the removed region to the 

done queue; and 
the apparatus further comprising computer program 

instructions that, when executed by the computer pro 
cessor, cause the apparatus to carry out the step of 
removing, by the manager thread, the first region from 
the done queue. 

9. The apparatus of claim 8 wherein adding, by the 
manager thread, each of the plurality of regions to the work 
queue further comprises: 

determining an estimated optimization effort for each of 
the plurality of regions by identifying a number of 
objects, types of the objects, and optimization pro 
cesses to be carried out in each region of the plurality 
of regions; and 

ordering the work queue in dependence upon the esti 
mated optimization effort for each region. 

10. The apparatus of claim 6 wherein dividing the model 
into a plurality of regions further comprises: 

identifying each timing route through the integrated cir 
cuit; and 

dividing the model Such that each timing route resides in 
a maximum of two regions. 

11. A computer program product for managing virtual 
boundaries to enable lock-free concurrent region optimiza 
tion, the computer program product disposed upon a 
machine-readable non-transitory storage device, the com 
puter program product comprising computer program 
instructions that, when executed by a machine, cause the 
machine to carry out the steps of 

receiving a model of an integrated circuit (IC); 
dividing the model into a plurality of regions, wherein 

none of the plurality of regions overlap with another 
region, including: 
Selecting objects to place in a particular region; 
identifying boundary objects that isolate the particular 

region from all other objects in the integrated circuit; 
and 

freezing data on the boundary objects that are visible to 
all other regions including freezing values of input 
signals to the boundary objects and output signals 
from the boundary objects, wherein the values of the 
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input signals to the boundary objects and the output 
signals from the boundary objects remain constant 
during the optimization; 

assigning each of the plurality of regions to a thread of 
execution, wherein each thread of execution utilizes a 5 
shared memory space; 

optimizing, by each thread in parallel and without locking 
any of the objects in any of the regions, the assigned 
region, including optimizing all portions of the 
assigned region other than the boundary objects; 

creating a new region that includes objects previously 
included in two or more of the plurality of regions, 
wherein at least one of the boundary objects in each of 
the two or more of the plurality of regions become 
non-boundary objects in the new region, including 
unfreezing data on the boundary objects that become 
non-boundary objects; and 

optimizing the new region. 
12. The computer program product of claim 11 wherein 

optimizing, by each thread in parallel, the assigned region 
further comprises preventing traversal of the boundary 
objects, the method further comprising: 

unfreezing the data on the boundary objects; and 
propagating changes to the data on the boundary objects. 
13. The computer program product of claim 11 wherein: 
assigning each of the plurality of regions to the thread of 25 

execution further comprises adding, by a manager 
thread, each of the plurality of regions to a work queue; 
and 
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optimizing the assigned region further comprises: 

removing, by a worker thread, a region in the first slot 
of the work queue; and 

adding, by the worker thread, the removed region to the 
done queue; and 

the apparatus further comprising computer program 
instructions that, when executed by the machine, cause 
the machine to carry out the step of removing, by the 
manager thread, the first region from the done queue. 

14. The computer program product of claim 13 wherein 
adding, by the manager thread, each of the plurality of 
regions to the work queue further comprises: 

determining an estimated optimization effort for each of 
the plurality of regions by identifying a number of 
objects, types of the objects, and optimization pro 
cesses to be carried out in each region of the plurality 
of regions; and 

ordering the work queue in dependence upon the esti 
mated optimization effort for each region. 

15. The computer program product of claim 11 wherein 
dividing the model into a plurality of regions further com 
prises: 

identifying each timing route through the integrated cir 
cuit; and 

dividing the model Such that each timing route resides in 
a maximum of two regions. 
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