
(12) United States Patent
Chen et al.

USOO9639654B2

US 9,639,654 B2
May 2, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(51)

(52)

(58)

MANAGING VIRTUAL BOUNDARESTO
ENABLE LOCK-FREE CONCURRENT
REGION OPTIMIZATION OF AN
INTEGRATED CIRCUIT

Applicant: International Business Machines
Corporation, Armonk, NY (US)

Inventors: Bijian Chen, Austin, TX (US); David
J. Hathaway, Underhill, VT (US);
Nathaniel D. Hieter, Clinton Corners,
NY (US); Kerim Kalafala, Rhinebeck,
NY (US); Jeffrey S. Piaget, Red Hook,
NY (US); Alexander J. Suess,
Hopewell Junction, NY (US)

International Business Machines
Corporation, Armonk, NY (US)

Assignee:

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 14/567.569

Filed: Dec. 11, 2014

Prior Publication Data

US 2016/0171147 A1 Jun. 16, 2016

Int. C.
G06F 7/50
U.S. C.
CPC G06F 17/5081 (2013.01); G06F 17/505

(2013.01)

(2006.01)

Field of Classification Search
CPC. G06F 17/5022; G06F 17/5031: G06F 17/505
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

5,495.419 A 2f1996 Rostoker et al.
5,859,782 A 1/1999 Scepanovic et al.
5,877.965 A 3, 1999 Hieter et al.
6,080.204 A * 6/2000 Mendel GO6F 17,5054

T16,103
6,449,756 B1 9, 2002 Malik et al.
6,557,145 B2 4/2003 Boyle et al.
6,823,294 B1 * 1 1/2004 Guthrie GO6F 17/50

TOOf 182
7,178,120 B2 2/2007 Hieter et al.
7,322,018 B2 1/2008 Rast et al.

2001/0010090 A1* 7/2001 Boyle GO6F 17,505
T16, 105

(Continued)

OTHER PUBLICATIONS

Alpert et al., “Recent Directions in Netlist Partitioning: A Survey',
Integration, the VLSI Journal, vol. 19, Issue 1-2, Aug. 1995, pp.
1-81, Elsevier Science Publishers B. V. Amsterdam, The Nether
lands, The Netherlands.

Primary Examiner — Eric Lee
Assistant Examiner — Aric Lin
(74) Attorney, Agent, or Firm — Brandon C. Kennedy:
Steven Meyers; Kennedy Lenart Spraggins LLP

(57) ABSTRACT

Managing virtual boundaries to enable lock-free concurrent
region optimization, including: receiving a model of an
integrated circuit (IC); dividing the model into a plurality
of regions, wherein none of the plurality of regions overlap
with another region; assigning each of the plurality of
regions to a thread of execution, wherein each thread of
execution utilizes a shared memory space; and optimizing,
by each thread in parallel, the assigned region.

15 Claims, 7 Drawing Sheets

(cle 302 Receive A Model Oi An Integrated Circuit 304

Divide he certo A Plurality Of Regions 308

Select Objects to Place in AParticular Region 492

identity Boundary objects That Isolate The Particular Region from Al. Other Otjects in the
integrated Circuit 404

Freeze Data On the Boundary Objects that Are Wisible to AllOther Regions 406

Regions 303

Assign. Each Of The Plurality of Regions. To A Thread Of Execution, Wherein. Eachhead of Execution
Utilizes A Shared Memory Space 31C

Ehreak 316 head 318 e3C 38

OptiTze The Assigned Region 320 Optimize the Assigned Region 322
Optimize AIFortions Of The Assigned
Region other than the Boundary

Otjects SO2

Optimize A Portions Of The Assigned
Region. Other than The Bounciary

Objects 504

Create A New Region that Includes Objects
Previously included in Two Or More Of The
Plurality Of Regions, Wherein The Boundary

Regions Are Non-bounday Obsects 508
Objects Of the Two Or More Of the Plurality Of

Region
510

Threai S06

Optimize The New
Region 512

New

US 9,639,654 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2002/0073257 A1* 6/2002 Beukema HO4L 12,4633
T10/105

2005, 0108665 A1* 5, 2005 Neves GO6F 17,505
T16,113

2006, O136855 A1* 6, 2006 Hoff GO6F 17,5045
T16, 112

2006/0184350 A1* 8/2006 Huang GO6F 17,5027
TO3/26

2009/O119630 A1* 5, 2009 Binder GO6F 17/5031
T16,113

2014/0282300 A1* 9/2014 Katakamsetty GO6F 17,5081
716.53

2015,0033197 A1* 1/2015 Borah GO6F 17,5072
T16,113

* cited by examiner

U.S. Patent May 2, 2017 Sheet 1 of 7 US 9,639,654 B2

Integrated Circuit 102

sci---
Object 106

U.S. Patent May 2, 2017 Sheet 2 of 7 US 9,639,654 B2

Display
80

Computer
152

Region Optimization Manager 128
Processor

Front Video Bus
Side 64 Memory

162 Bus 66

Expansion Bus 60

Bus Operating System 154

User input
Devices

Computer
182

FG.2

U.S. Patent May 2, 2017 Sheet 3 of 7 US 9,639,654 B2

Mode 3 O 2

Receive A Model Of An integrated Circuit 304

Divide The Model into A Plurality Of Regions 306

Regions 308

Assign. Each Of The Plurality Of Regions To A Thread Of Execution, Wherein. Each Thread Of Execution
Utilizes A Shared Memory Space 30

Region 32 Region 34

--
head 36 38

Optimize The Assigned Region 320 Optimize The Assigned Region 322

U.S. Patent May 2, 2017 Sheet 4 of 7 US 9,639,654 B2

Receive A Model Of An integrated
Mode 302 Circuit 304

Divide The Model into A Plurality Of Regions 306

Select Objects to Place in A Particular Region 402

identify Boundary Objects That isolate The Particular Region From AH Other Objects in The
Integrated Circuit 404

Freeze Data On The Boundary Objects That Are Visible to Ali Other Regions 406

Regions 308 Shared Memory Space 324

Assign. Each Of The Plurality Of Regions To A Thread Of Execution, Wherein. Each Thread Of Execution
Utilizes A Shared Memory Space 310

Region 312 Region 34

Thread 38
Optimize The Assigned Region 320 Optimize The Assigned Region 322
Prevent Traversal Of The Boundary Prevent Traversal Of The Boundary

Objects 408 Objects 410

Unfreeze The Data On The Boundary Objects 412

Propagate Changes To The Data On The Boundary Objects 416

FIG. 4

U.S. Patent May 2, 2017 Sheet S of 7 US 9,639,654 B2

Model 302 Receive A Model Of An integrated Circuit 304

Divide The Model into A Plurality Of Regions 306

Select Objects To Place in A Particular Region 402

identify Boundary Objects That isolate The Particular Region From All Other Objects in The
integrated Circuit 404

Freeze Data On The Boundary Objects That Are Visible To All Other Regions 406

as a -a as a Aa a as a s

s Shared Memory
Regions 308 Space 324

- - - - - - - - - - - -

Assign. Each Of The Plurality Of Regions To A Thread Of Execution, Wherein Each Thread Of Execution
Utilizes A Shared Memory Space 310

Region 312 Region 34

Optimize Ali Portions Of The Assigned
Region. Other Than The Boundary

Objects 502

Optimize All Portions Of The Assigned
Region. Other Than The Boundary

Objects 504

Create A New Region That includes Objects
Previously included in Two Or More Of The New
Plurality Of Regions, Wherein The Boundary Region

Objects Of The Two Or More Of The Plurality Of 50
Regions Afe Non-boundary Objects 508

FIG. 5

U.S. Patent May 2, 2017 Sheet 6 of 7 US 9,639,654 B2

Model 302 Receive A Model Of An integrated Circuit 304

Divide The Model into A Plurality Of Regions 306

Shared Memory Space 324 Regions 308

ls s as a s as ss was a sa as as as s vs. s is a

Manager Thread 622

Assign. Each Of The Plurality Of Regions To A thread Of Execution, Wherein. Each thread Of
Execution Utilizes A Shared Memory Space 310

Add Each Of The Plurality Of Regions to A Work Queue 602
Determine An Estimated Optimization Effort For Each Of The Plurality Of Regions 630

Order The Work Queue in Dependence Upon The Estimated Optimization Effort For Each
Region 632

-- / Region 314 A
- / Region 312 A

Work Queue 606

Worker Thread 618 Worker Thread 620
Optimize The Assigned Region 320 Optimize The Assigned Region 322

Remove A Region in The First Slot Of
The Work Queue 62

Remove A Region in The First Slot Of
The Work Queue 60

Add The Removed Region. To The Add The Removed Region To The
Done Queue 614 Done Queue 616

FIG. 6

U.S. Patent May 2, 2017 Sheet 7 Of 7 US 9,639,654 B2

Mode 3 O 2 Receive AModel Of An integrated
Circuit 304

Divide The Model into A Plurality Of Regions 306

identifying Each Timing Route Through The Integrated Circuit 702

Divide The Model Such That Each Timing Route Resides in A Maximum Of Two Regions 704

Regions 308

Assign. Each Of The Plurality Of Regions To A Thread Of Execution, Wherein. Each Thread Of Execution
Utilizes A Shared Memory Space 310

Region 312 Region 34

T--
Thread 316

Optimize The Assigned Region 320

Thread 38

Optimize The Assigned Region 322

US 9,639,654 B2
1.

MANAGING VIRTUAL BOUNDARESTO
ENABLE LOCK-FREE CONCURRENT
REGION OPTIMIZATION OF AN

INTEGRATED CIRCUIT

BACKGROUND

The present disclosure is generally related to data pro
cessing, or, more specifically, methods, apparatuses, and
products for managing virtual boundaries to enable lock-free
concurrent region optimization of an integrated circuit.

DESCRIPTION OF RELATED ART

The problem of design closure of Very Large Scale
Integrated (VLSI) chips or integrated circuits involves the
combination of logic synthesis algorithms with placement
and routing algorithms in order to meet timing, area and
other design objectives for the chip. Logic synthesis algo
rithms change the type and connectivity of circuits used to
implement the functionality of the chip. Placement algo
rithms alter the physical locations of the circuits on the chip.
Routing algorithms modify the wire type and path of the
connections between the circuits. As the size of the VLSI
chips grows, the problem of design closure increases cor
respondingly at a geometric rate. Enabling parallel optimi
Zation in this environment is thus, highly desirable.
The frequency of a chip is limited by the transmission

delay through the longest path of circuits on the chip. The act
of timing closure is the manipulation of logical, placement,
and routing attributes to achieve the desired chip frequency.
This optimization of the timing model is a global problem,
as is the use of the placement and routing resources. The
global nature of chip design closure presents unique chal
lenges to the use of parallelism in the optimization environ
ment.

SUMMARY

Methods, apparatuses, and products for managing virtual
boundaries to enable lock-free concurrent region optimiza
tion, including: receiving a model of an integrated circuit
(IC); dividing the model into a plurality of regions,
wherein none of the regions overlap with another region;
assigning each of the plurality of regions to a thread of
execution, wherein each thread of execution utilizes a shared
memory space; and optimizing, by each thread in parallel,
the assigned region.

The foregoing and other objects, features and advantages
described herein will be apparent from the following more
particular descriptions of example embodiments as illus
trated in the accompanying drawings wherein like reference
numbers generally represent like parts of example embodi
mentS.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 sets forth a block diagram of an integrated circuit
that may be broken up into a plurality of regions according
to embodiments described herein.

FIG. 2 sets forth a block diagram of automated computing
machinery comprising an example computer useful in man
aging virtual boundaries to enable lock-free concurrent
region optimization of an integrated circuit according to
embodiments described herein.

FIG. 3 sets forth a flow chart illustrating an example
method for managing virtual boundaries to enable lock-free

10

15

25

30

35

40

45

50

55

60

65

2
concurrent region optimization of an integrated circuit
according to embodiments described herein.

FIG. 4 sets forth a flow chart illustrating an additional
example method for managing virtual boundaries to enable
lock-free concurrent region optimization of an integrated
circuit according to embodiments described herein.

FIG. 5 sets forth a flow chart illustrating an additional
example method for managing virtual boundaries to enable
lock-free concurrent region optimization of an integrated
circuit according to embodiments described herein.

FIG. 6 sets forth a flow chart illustrating an additional
example method for managing virtual boundaries to enable
lock-free concurrent region optimization of an integrated
circuit according to embodiments described herein.

FIG. 7 sets forth a flow chart illustrating an additional
example method for managing virtual boundaries to enable
lock-free concurrent region optimization of an integrated
circuit according to embodiments described herein.

DETAILED DESCRIPTION OF EXAMPLE
EMBODIMENTS

Example methods, apparatuses, and products for manag
ing virtual boundaries to enable lock-free concurrent region
optimization of an integrated circuit in accordance with
embodiments described herein are described with reference
to the accompanying drawings, beginning with FIG. 1. FIG.
1 sets forth a block diagram of an integrated circuit (102)
that may be broken up into a plurality of regions (104,118).
The integrated circuit (102) of FIG. 1 may be embodied

as is a set of electronic circuits on a small plate or chip of
semiconductor material such as silicon. The integrated cir
cuit (102) depicted in FIG. 1 includes a plurality of objects
(106, 108, 110, 112, 114, 116, 120, 122, 124, 126). Each
object (106, 108, 110, 112, 114, 116, 120, 122, 124, 126)
may be embodied, for example, as an electric circuit con
figured to carry out a logic function, as a cell from a cell
library, as a grouping of electrical components such as
transistors, and so on. Each object (106, 108, 110, 112, 114,
116, 120, 122, 124, 126) in FIG. 1 may be coupled by one
or more interconnect structures such that each object (106.
108, 110, 112, 114, 116, 120, 122, 124, 126) can receive a
signal over an input pin, each object (106, 108, 110, 112,
114, 116, 120, 122, 124, 126) can output a signal via an
output pin, and so on.
The integrated circuit (102) of FIG. 1 is broken up into a

plurality of regions (104. 118). Each region (104. 118)
represents a subset of the entire integrated circuit (102) and
can include one or more objects (106, 108, 110, 112, 114,
116, 120, 122, 124, 126). By breaking the integrated circuit
(102) into a plurality of regions (104. 118), optimizing the
physical layout of an entire integrated circuit (102) can
effectively be broken down into smaller tasks of optimizing
the physical layout of a particular region (104. 118), where
each region (104. 118) may be optimized concurrently. In
such an example, each region (104. 118) is defined by a set
of virtual boundaries that designate where one region (104.
118) ends and another begins.
Managing virtual boundaries to enable lock-free concur

rent region optimization of an integrated circuit according to
embodiments described herein is generally implemented
with computers, that is, with automated computing machin
ery. For further explanation, therefore, FIG. 2 sets forth a
block diagram of automated computing machinery compris
ing an example computer (152) useful in managing virtual
boundaries to enable lock-free concurrent region optimiza
tion of an integrated circuit according to embodiments

US 9,639,654 B2
3

described herein. The computer (152) of FIG. 2 includes at
least one computer processor (156) or CPU as well as
random access memory (168) (RAM) which is connected
through a high speed memory bus (166) and bus adapter
(158) to processor (156) and to other components of the
computer (152). Readers will appreciate that although not
illustrated in FIG. 2, computers useful in managing virtual
boundaries to enable lock-free concurrent region optimiza
tion of an integrated circuit according to embodiments
described herein my include multiple processors, each of
which may be concurrently executing different threads of
execution.

Stored in RAM (168) is a region optimization manager
(128), a module of computer program instructions for man
aging virtual boundaries to enable lock-free concurrent
region optimization of an integrated circuit according to
embodiments described herein. The region optimization
manager (128) may be configured to manage virtual bound
aries to enable lock-free concurrent region optimization of
an integrated circuit by receiving a model of an integrated
circuit. The model of the integrated circuit may be embod
ied, for example, as a data structure that includes informa
tion describing the component parts that form the integrated
circuit. The model of the integrated circuit may also include
information describing how the component parts are con
nected, details regarding the structures used to connect each
component part, and so on. Such a model may be embodied,
for example, as a netlist contained in an Electronic Design
Interchange Format (EDIF) file.
The region optimization manager (128) may be further

configured to manage virtual boundaries to enable lock-free
concurrent region optimization of an integrated circuit by
dividing the model into a plurality of regions. Dividing the
model into a plurality of regions may be carried out by
assigning each object (e.g., circuits designed to carry out
specific logic functions) in the integrated circuit to a single
region Such that all objects within an integrated circuit are
assigned to one and only one region. Each object may be
assigned to a region, for example, based on predetermined
assignment rules. Example of Such predetermined assign
ment rules can include rules which specify that each region
is to include a predetermined number of objects, rules which
specify that the first region includes the first predetermined
number of objects specified in a netlist, rules which specify
that the second region includes the second predetermined
number of objects specified in a netlist, and so on. Likewise,
the predetermined assignment rule may specify that the
integrated circuit is to be broken up into a predetermined
number of sections, the predetermined assignment rule may
specify each object in a particular region must be directly
coupled to all other objects in the region, and so on. Readers
will appreciate that additional assignment rules may also be
utilized to divide the model into a plurality of regions.

The region optimization manager (128) may be further
configured to manage virtual boundaries to enable lock-free
concurrent region optimization of an integrated circuit by
assigning each of the plurality of regions to a thread of
execution. Each thread of execution represents the Smallest
sequence of programmed instructions that can be managed
independently by a scheduler that may be included as part of
an operating system. Each thread of execution can exist
within a single process and may share resources. In fact,
each thread of execution can utilize a shared memory space.
Readers will appreciate that because each thread of execu
tion utilizes a shared memory space, concurrent region
optimization of an integrated circuit may occur more effi
ciently as the threads do not need to send data between each

5

10

15

25

30

35

40

45

50

55

60

65

4
other when each thread optimizes a particular region, as
would occur if the threads did not share a memory space.

Assigning each of the plurality of regions to a thread of
execution may be carried out by assigning the regions
sequentially using the thread identifiers of each thread. Such
that a first region is assigned to a first thread, a second region
is assigned to a second thread, and so on. Alternatively,
assigning each of the plurality of regions to a thread of
execution may be carried out more intelligently by assigning
threads in dependence upon a set of assignment rules.
The region optimization manager (128) may be further

configured to manage virtual boundaries to enable lock-free
concurrent region optimization of an integrated circuit by
having each thread of execution optimize its assigned
region. Each thread of execution can optimize its assigned
region in parallel. Each thread of execution may optimize its
assigned region, for example, by executing one or more
design closure processes where a design of a particular
region is modified from its initial description to meet a list
of design constraints and objectives. Such design closure
processes may include, for example, functional verification
processes where a design is verified to perform a certain
function, placement processes where elements in each
region are assigned to physical locations within the region,
routing process where communications pathways between
the elements in the region are inserted, design for manufac
turability processes where the design of each region is
modified to make each region as easy as possible to produce,
and so on.

Also stored in RAM (168) is an operating system (154).
Operating systems useful for managing virtual boundaries to
enable lock-free concurrent region optimization of an inte
grated circuit according to embodiments described herein
include UNIXTM LinuxTM Microsoft XPTM AIXTM IBMS
i5/OSTM and others as will occur to those of skill in the art.
The operating system (154) and the region optimization
manager (128) in the example of FIG. 2 are shown in RAM
(168), but many components of such software typically are
stored in non-volatile memory also, such as, for example, on
a disk drive (170).
The computer (152) of FIG. 2 includes disk drive adapter

(172) coupled through expansion bus (160) and bus adapter
(158) to processor (156) and other components of the
computer (152). Disk drive adapter (172) connects non
volatile data storage to the computer (152) in the form of
disk drive (170). Disk drive adapters useful in computers for
managing virtual boundaries to enable lock-free concurrent
region optimization of an integrated circuit according to
embodiments described herein include Integrated Drive
Electronics (IDE) adapters, Small Computer System Inter
face (SCSI) adapters, and others as will occur to those of
skill in the art. Non-volatile computer memory also may be
implemented for as an optical disk drive, electrically eras
able programmable read-only memory (so-called
EEPROM or “Flash memory), RAM drives, and so on, as
will occur to those of skill in the art.
The example computer (152) of FIG. 2 includes one or

more input/output (I/O) adapters (178). I/O adapters
implement user-oriented input/output through, for example,
software drivers and computer hardware for controlling
output to display devices such as computer display Screens,
as well as user input from user input devices (181) such as
keyboards and mice. The example computer (152) of FIG. 2
includes a video adapter (209), which is an example of an
I/O adapter specially designed for graphic output to a
display device (180) Such as a display Screen or computer
monitor. Video adapter (209) is connected to processor (156)

US 9,639,654 B2
5

through a high speed video bus (164), bus adapter (158), and
the front side bus (162), which is also a high speed bus.

The example computer (152) of FIG. 2 includes a com
munications adapter (167) for data communications with
other computers (182) and for data communications with a
data communications network (100). Such data communi
cations may be carried out serially through RS-232 connec
tions, through external buses such as a Universal Serial Bus
(USB), through data communications networks such as IP
data communications networks, and in other ways as will
occur to those of skill in the art. Communications adapters
implement the hardware level of data communications
through which one computer sends data communications to
another computer, directly or through a data communica
tions network. Examples of communications adapters useful
for managing virtual boundaries to enable lock-free concur
rent region optimization of an integrated circuit according to
embodiments described herein include modems for wired
dial-up communications, Ethernet (IEEE 802.3) adapters for
wired data communications network communications, and
802.11 adapters for wireless data communications network
communications.

For further explanation, FIG. 3 sets forth a flow chart
illustrating an example method for managing virtual bound
aries to enable lock-free concurrent region optimization of
an integrated circuit according to embodiments described
herein. In the example method depicted in FIG. 3, the
integrated circuit may be embodied as a set of electronic
circuits on a chip of semiconductor material Such as silicon.
Region optimization of an integrated circuit can involve
partitioning the integrated circuits into a plurality of regions
and optimizing the physical layout of each region. In such a
way, optimizing the physical layout of an entire integrated
circuit can effectively be broken down into smaller tasks of
optimizing the physical layout of a particular region, where
each region may be optimized concurrently. In Such an
example, each region is defined by a set of virtual bound
aries that designate where one region ends and another
begins.

The example method depicted in FIG. 3 includes receiv
ing (304) a model (302) of an integrated circuit. The model
(302) of the integrated circuit may be embodied, for
example, as a data structure that includes information
describing the component parts that form the integrated
circuit. The model (302) of the integrated circuit may also
include information describing how the component parts are
connected, details regarding the structures used to connect
each component part, and so on. Such a model (302) may be
embodied, for example, as a netlist contained in an EDIF
file.
The example method depicted in FIG. 3 also includes

dividing (306) the model (302) into a plurality of regions
(308). In the example method depicted in FIG. 3, dividing
(306) the model (302) into a plurality of regions (308) may
be carried out by assigning each object (e.g., circuits
designed to carry out specific logic functions) in the inte
grated circuit to a single region Such that all objects within
an integrated circuit are assigned to one and only one region.
Each object may be assigned, for example, to a region based
on predetermined assignment rules. Examples of Such pre
determined assignment rules can include a predetermined
assignment rule specifying that each region is to include a
predetermined number of objects, a predetermined assign
ment rule specifying that the first region includes the first
predetermined number of objects specified in a netlist, a
predetermined assignment rule specifying that the second
region includes the second predetermined number of objects

10

15

25

30

35

40

45

50

55

60

65

6
specified in a netlist, and so on. Likewise, the predetermined
assignment rule may specify that the integrated circuit is to
be broken up into a predetermined number of sections, the
predetermined assignment rule may specify each object in a
particular region must be directly coupled to all other objects
in the region, and so on.
The example method depicted in FIG. 3 also includes

assigning (310) each of the plurality of regions (308) to a
thread (316, 318) of execution. Each thread (316, 318) of
execution represents the Smallest sequence of programmed
instructions that can be managed independently by a sched
uler that may be included as part of an operating system.
Each thread (316, 318) of execution can exist within a single
process and may share resources. In fact, each thread (316.
318) of execution depicted in FIG. 3 utilizes a shared
memory space (324). Readers will appreciate that because
each thread (316, 318) of execution depicted in FIG. 3
utilizes a shared memory space (324), the threads (316, 318)
may concurrently optimize an integrated circuit more effi
ciently as the threads (316, 318) will not need to exchange
messages as each thread (316, 318) optimizes a particular
region, as would be required if the threads (316, 318) did not
share a memory space (324). More specifically, a design of
an integrated circuit that is being optimized may be loaded
into the shared memory space (324) and as various regions
are optimized, each thread (316,318) can access the updated
design without exchanging messages in view of the fact that
each thread (316, 318) can access the shared memory space
(324) that contains the updated design.

In the example method depicted in FIG.3, assigning (310)
each of the plurality of regions (308) to a thread (316, 318)
of execution may be carried out by assigning the regions
sequentially using the thread identifiers of each thread. Such
that a first region (312) is assigned (310) to a first thread
(316), a second region (314) is assigned (310) to a second
thread (318), and so on. Alternatively, assigning (310) each
of the plurality of regions (308) to a thread (316, 318) of
execution may be carried out more intelligently by assigning
threads in dependence upon a set of assignment rules.
The example method depicted in FIG. 3 also includes

each thread (316, 318) of execution optimizing (320, 322)
the assigned region (312. 314). In the example method
depicted in FIG. 3, each thread (316, 318) of execution
optimizes (320, 322) its assigned region (312. 314) in
parallel. Each thread (316, 318) of execution may optimize
(320, 322) its assigned region (312,314), for example, by
executing one or more design closure processes where a
design of a particular region (312,314) is modified from its
initial description to meet a list of design constraints and
objectives. Such design closure processes may include, for
example, functional verification processes where a design is
verified to perform a certain function, placement processes
where elements in each region are assigned to physical
locations within the region, routing process where commu
nications pathways between the elements in the region are
inserted, design for manufacturability processes where the
design of each region is modified to make each region as
easy as possible to produce, and so on.

For further explanation, FIG. 4 sets forth a flow chart
illustrating a further example method for managing virtual
boundaries to enable lock-free concurrent region optimiza
tion of an integrated circuit according to embodiments
described herein. The example method depicted in FIG. 4 is
similar to the example method depicted in FIG. 3, as the
example method depicted in FIG. 4 also includes receiving
(304) a model (302) of an integrated circuit, dividing (306)
the model (302) into a plurality of regions (308), assigning

US 9,639,654 B2
7

(310) each of the plurality of regions (308) to a thread (316.
318) of execution, and each thread (316, 318) of execution
optimizing (320, 322) the assigned region (312, 314).

In the example method depicted in FIG. 4, dividing (306)
the model (302) into a plurality of regions (308) can include
selecting (402) objects to place in a particular region. Such
objects can include, for example, electrical circuits such as
logic circuits that carry out a specified logic circuit, cells
from a standard cell library, interconnect structures that
connect two or more circuits, and so on. Selecting (402)
objects to place in a particular region may be carried out, for
example, by selecting all objects that perform a particular
function, by selecting a predetermined number of objects to
include in a particular region, and so on.

In the example method depicted in FIG. 4, dividing (306)
the model (302) into a plurality of regions (308) can also
include identifying (404) boundary objects that isolate the
particular region from all other objects in the integrated
circuit. The boundary objects that isolate the particular
region from all other objects in the integrated circuit may
include, for example, input pins to logic circuits in the
particular region that receive signals via connections to
objects in other regions of the integrated circuit, output pins
from logic circuits in the particular region that output signals
via connections to objects in other regions of the integrated
circuit, and so on. Identifying (404) boundary objects that
isolate the particular region from all other objects in the
integrated circuit may therefore be carried out, for example,
by determining whether the input pins or output pins for
each object in the particular region are electrically coupled
to objects that are external to the particular region.

In the example method depicted in FIG.4, dividing (306)
the model (302) into a plurality of regions (308) can also
include freezing (406) data on the boundary objects that are
visible to all other regions. Freezing (406) data on the
boundary objects that are visible to all other regions may be
carried out, for example, by freezing the values of input
signals to the boundary objects and also freezing the values
of output signals from the boundary objects. Such that the
values of input signals to the boundary objects and the
values of output signals from the boundary objects remain
constant during an optimization process.

In the example method depicted in FIG. 4, optimizing
(320, 322) the assigned region (312, 314) can include
preventing (408, 410) traversal of the boundary objects.
Preventing (408, 410) traversal of the boundary objects in a
particular region (312,314) may be carried out, for example,
by blocking any data traversal operation in a thread (316)
optimizing a particular region (312) from accessing any
object in another region (314) that is connected to a bound
ary object. For example, any data iterators operating on a
boundary object and used in a thread (316) optimizing one
region (312) may be modified to prevent them from return
ing objects belonging to any other regions (314). In Such a
way, the objects within a particular region are effectively
isolated from other regions and the impact of optimization
operations that are being carried out on other regions in the
integrated circuit. Readers will appreciate that the benefits of
blocking traversal in this way is that modifying the actual
optimization functions is not required, and therefore allows
reuse of many such functions already written and in use in
non-region-based optimization.

Furthermore, preventing (408, 410) traversal of the
boundary objects in a particular region (312,314) can also
include blocking the propagation of analysis data (e.g.,
signal arrival times, signal slews, signal required arrival
times, signal noise levels, etc.) through boundary objects

10

15

25

30

35

40

45

50

55

60

65

8
such that the view of the data seen by threads optimizing
other regions does not change during its optimization of that
other region. Blocking propagation of analysis information
can be done by modifying the analysis function to recognize
and honor boundary objects, or by making use of iterators in
the analysis function which themselves have been modified
not to return objects belonging to other regions.
The example method depicted in FIG. 4 also includes

unfreezing (412) the data on the boundary objects. Unfreez
ing (412) the data on the boundary objects may be carried
out, for example, by propagating analysis data (e.g., signal
arrival times, signal slews, signal required arrival times,
signal noise levels, etc.) through boundary objects allowing
and effectively allowing data that had previously been
locked to flow across regions. In Such a way, the objects
within a particular region are no longer isolated from other
regions in the integrated circuit.
The example method depicted in FIG. 4 also includes

propagating (416) changes to the data on the boundary
objects. In the example method depicted in FIG. 4, propa
gating (416) changes to the data on the boundary objects
may be carried out, for example, by updating the values for
the data on the boundary objects in a centralized repository
that is accessible to all of the threads of execution, by one
thread sending a message to all other threads that includes
updated values for the data on the boundary objects, and so
O.

Readers will appreciate that in the example method
depicted in FIG. 4, unfreezing (412) the data on the bound
ary objects and propagating (416) changes to the data on the
boundary objects will occur after each region (312,314) is
dissolved. Such dissolution occurs when control of the
region (312,314) is passed back to the main thread and after
the worker threads (316, 318) have completed the desired
optimization operations described above with reference to
steps 320 and 322. Such dissolution occurs when control of
the region (312,314) is passed back to the main thread and
after the worker threads (316, 318) have completed the
desired optimization operations in order to limit the inter
action between the worker threads (316, 318) as much as
possible to ensure lock-free operation.

For further explanation, FIG. 5 sets forth a flow chart
illustrating a further example method for managing virtual
boundaries to enable lock-free concurrent region optimiza
tion of an integrated circuit according to embodiments
described herein. The example method depicted in FIG. 5 is
similar to the example method depicted in FIG. 3, as the
example method depicted in FIG. 5 also includes receiving
(304) a model (302) of an integrated circuit, dividing (306)
the model (302) into a plurality of regions (308), assigning
(310) each of the plurality of regions (308) to a thread (316.
318) of execution, and each thread (316, 318) of execution
optimizing (320, 322) the assigned region (312,314). The
method depicted in FIG. 5 is also similar to the example
method depicted in FIG. 4, as dividing (306) the model (302)
into a plurality of regions (308) also includes selecting (402)
objects to place in a particular region, identifying (404)
boundary objects that isolate the particular region from all
other objects in the integrated circuit, and freezing (406)
data on the boundary objects that are visible to all other
regions.

In the example method depicted in FIG. 5, optimizing
(320, 322) the assigned region (312, 314) can include
optimizing (502, 504) all portions of the assigned region
(312,314) other than the boundary objects. Referring to the
example depicted in FIG. 1, optimizing (502, 504) all
portions of the assigned region (312, 314) other than the

US 9,639,654 B2
9

boundary objects could be carried out by optimizing the
portion of the first region (104 of FIG. 1) that includes
non-boundary objects (108, 110, 112 of FIG. 1) and also
optimizing the portion of the second region (118 of FIG. 1)
that includes non-boundary objects (122, 124 of FIG. 1). In
Such an example, the portions of the integrated circuit (102
of FIG. 1) that include the boundary objects (106, 114, 116
of FIG. 1) of the first region (104 of FIG. 1) and the
boundary objects (120, 126 of FIG. 1) of the second region
(118 of FIG. 1) would not be optimized.
The example method depicted in FIG. 5 also includes

creating (508) a new region (510) that includes objects
previously included in two or more of the plurality of
regions (312,314). Creating (508) the new region (510) that
includes objects previously included in two or more of the
plurality of regions (312, 314) may be carried out, for
example, by combining the two or more of the plurality of
regions (312, 314). In such an example, at least one of the
boundary objects from each of the previously existing
regions (312, 314) is a non-boundary object in the new
region (510). Referring again to the example depicted in
FIG. 1, combining the two or more of the regions (104. 118
of FIG. 1) could result in the creation of a new region where
objects (114, 116, 120 of FIG. 1) that were previously
boundary objects would become non-boundary objects of
the newly created region.

Readers will appreciate that in the example method
depicted in FIG. 5, creating (508) a new region (510) that
includes objects previously included in two or more of the
plurality of regions (312, 314) will occur only after each
region (312,314) is dissolved. Such dissolution occurs when
control of the region (312,314) is passed back to the main
thread and after the worker threads (316, 318) have com
pleted the desired optimization operations described above
with reference to steps 320 and 322. Such dissolution occurs
when control of the region (312,314) is passed back to the
main thread and after the worker threads (316, 318) have
completed the desired optimization operations in order to
limit the interaction between the worker threads (316, 318)
as much as possible to ensure lock-free operation.
The example method depicted in FIG. 5 also includes

optimizing (512) the new region (510). In the example
method depicted in FIG. 5, a newly created thread (506) may
optimize (512) the new region (510), for example, by
executing one or more design closure processes where a
design of the new region (510) is modified from its initial
description to meet a list of design constraints and objec
tives. Such design closure processes may include, for
example, functional verification processes where a design is
verified to perform a certain function, placement processes
where elements in each region are assigned to physical
locations within the region, routing process where commu
nications pathways between the elements in the region are
inserted, design for manufacturability processes where the
design of each region is modified to make each region as
easy as possible to produce, and so on.

For further explanation, FIG. 6 sets forth a flow chart
illustrating a further example method for managing virtual
boundaries to enable lock-free concurrent region optimiza
tion of an integrated circuit according to embodiments
described herein. The example method depicted in FIG. 6 is
similar to the example method depicted in FIG. 3, as the
example method depicted in FIG. 6 also includes receiving
(304) a model (302) of an integrated circuit, dividing (306)
the model (302) into a plurality of regions (308), assigning
(310) each of the plurality of regions (308) to a thread (618,

5

10

15

25

30

35

40

45

50

55

60

65

10
620) of execution, and each thread (618, 620) of execution
optimizing (320, 322) the assigned region (312, 314).

In the example method depicted in FIG. 6, assigning (310)
each of the plurality of regions (308) to a thread (618, 620)
of execution can include adding (602), by a manager thread
(622), each of the plurality of regions (312, 214) to a work
queue (606). In the example method depicted in FIG. 6, the
work queue (606) may be embodied as a data structure
configured to contain information describing one or more
regions (312,314) that are to be optimized. The work queue
(606) may include a plurality of slots where each slot is
configured to hold information describing a single region
that is to be optimized. The work queue (606) may be
embodied, for example, as a first-in-first-out (FIFO) queue
were entries are removed from the work queue (606) in the
same order as which they were received, as a last-in-first-out
(LIFO") queue were entries are removed from the work
queue (606) in the opposite order as which they were
received, and so on. In the example method depicted in FIG.
6, a manager thread (622) is responsible for adding (602)
each of the plurality of regions (312, 214) to a work queue
(606). The manager thread (622) of FIG.6 may be embodied
as a thread that is configured to manage the creation of
regions (312,314), the distribution of regions (312,314) to
other threads (618, 620) for optimization, and the dissolution
of regions (312,314).

In the example method depicted in FIG. 6, adding (602)
each of the plurality of regions (312, 214) to the work queue
(606) can include determining (630) an estimated optimiza
tion effort for each of the plurality of regions (312. 314).
Determining (630) an estimated optimization effort for each
of the plurality of regions (312,314) may be carried out, for
example, by identifying the number of objects in a particular
region (312,314) to be optimized, by identifying the types
of objects in a particular region (312,314) to be optimized,
by identifying the optimization processes to be carried out in
a particular region (312,314) to be optimized, and so on. In
view of the fact that more complicated regions may take
longer to optimize and that certain types of objects may take
longer to optimize when certain optimization processes are
being performed, the amount of computational resources
that must be dedicated to optimizing a particular region
(312,314) may be different. In such a way, the estimated
optimization effort for each of the plurality of regions (312,
314) can be used as a relative measure of the amount of
computational resources that must be dedicated to optimiz
ing each particular region (312,314).

In the example method depicted in FIG. 6, adding (602)
each of the plurality of regions (312, 214) to the work queue
(606) can also include ordering (632) the work queue (606)
in dependence upon the estimated optimization effort for
each region (312, 314). The work queue (606) may be
ordered (632) in dependence upon the estimated optimiza
tion effort for each region (312,314), for example, such that
the regions (312,314) with the largest estimated optimiza
tion effort are placed at the beginning of the queue. In Such
a way, optimization of the regions (312,314) with the largest
estimated optimization effort may begin first as these regions
will be pulled from the work queue (606) first. Readers will
appreciate that by beginning the optimization of the regions
(312, 314) with the largest estimated optimization effort
first, the worker threads (618, 620) may be more efficiently
utilized—rather than creating a situation where the optimi
Zation of a region with a relatively large estimated optimi
zation effort begins when the work queue (606) is relatively
empty and some worker threads have no regions that are in
need of optimizing.

US 9,639,654 B2
11

In the example method depicted in FIG. 6, optimizing
(320, 322) the assigned region (312, 314) can include
removing (610, 612), by a worker thread (618, 620), a region
(312, 314) in the first slot of the work queue (606). The
worker threads (618, 620) of FIG. 6 may be embodied as
threads that are configured to carry out optimization pro
cesses of regions (312,314), with little or no responsibility
for creating the regions (312,314) and dissolving the regions
(312,314). Readers will appreciate that while the example
method depicted in FIG. 6 describes the worker threads
(618, 620) removing (610, 612) a region (312, 314) in the
first slot of the work queue (606), the slot that is designated
as the first slot will depend on the nature of the work queue
(606). For example, in implementations where the work
queue (606) is embodied as a linked list, the first slot may
be designated by a pointer that moves as entries are removed
from the work queue (606) or added to the work queue
(606).

In the example method depicted in FIG. 6, optimizing
(320, 322) the assigned region (312,314) can also include
adding (614, 616), by the worker thread (618, 620), the
removed region (312, 314) to the done queue (608). The
done queue (608) depicted in FIG. 6 may be embodied, for
example, as a data structure for storing information describ
ing regions (312. 314) that have been optimized by one of
the worker threads (618, 620).

The example method depicted in FIG. 6 also includes
removing (604), by the manager thread (622), the first region
from the done queue (608). In the example method depicted
in FIG. 6, the manager thread (622) may dissolve a particular
region in response to removing (604) the region (312,314)
from the done queue (608). In such an example, dissolving
a particular region may be carried out by unfreezing data on
boundary objects contained in the region, propagating
changes made to the region, making the objects contained in
the region available for inclusion in another region that is to
be optimized, and so on.

For further explanation, FIG. 7 sets forth a flow chart
illustrating a further example method for managing virtual
boundaries to enable lock-free concurrent region optimiza
tion of an integrated circuit according to embodiments
described herein. The example method depicted in FIG. 7 is
similar to the example method depicted in FIG. 3, as the
example method depicted in FIG. 7 also includes receiving
(304) a model (302) of an integrated circuit, dividing (306)
the model (302) into a plurality of regions (308), assigning
(310) each of the plurality of regions (308) to a thread (618,
620) of execution, and each thread (618, 620) of execution
optimizing (320, 322) the assigned region (312, 314).

In the example method depicted in FIG. 7, dividing (306)
the model (302) into a plurality of regions (308) can include
identifying (702) each timing route through the integrated
circuit. In the example method depicted in FIG. 7, one
design constraint may specify the frequency at which the
integrated circuit should operate at. For example, a design
constraint may specify that an integrated circuit should
operate at 50 MHz, and as such, a signal must be able to
complete a hop from one object in signal path to another
object in the signal path within a period of time that is equal
to one clock cycle of a clock operating at a clock speed of
50 MHZ.

Such design constraints may also specify an allowable
slack time. The slack associated with each connection is the
difference between the required time and the arrival time. A
positive slack of value X at a node implies that circuit will
operate at the desired frequency if the arrival time at that
node is increased by X. Conversely, negative slack implies

10

15

25

30

35

40

45

50

55

60

65

12
that a path is too slow, and the path must be sped up (or the
capturing clock signal delayed) if the whole circuit is to
work at the desired speed.

Reader will appreciate, however, that multiple routes
through the integrated circuit (102 of FIG. 1) exist. For
example, a first route can include a signal passing through a
first series of objects (106, 108, 110, 112, 114, 120, 122, 124,
126 of FIG. 1) while a second route can include a signal
passing through a second series of objects (106, 108, 110.
112, 116, 120, 122, 124, 126 of FIG. 1). In such an example,
each route represents a distinct timing route as the signal
must be able to pass through each route in accordance with
the frequency at which the integrated circuit should operate
at, as specified in a design constraint. As such, as part of the
design closure process, the objects and signal paths that form
each timing route must be optimized so as to satisfy the
design constraints.

In the example method depicted in FIG. 7, dividing (306)
the model (302) into a plurality of regions (308) can also
include dividing (704) the model (302) such that each timing
route resides in a maximum of two regions (312,314). By
dividing (704) the model (302) such that each timing route
resides in a maximum of two regions (312,314), the slack
time may be easily apportioned and a thread processing each
region can avoid receiving Stale timing data, Such that
integrated circuit may be optimized to adhere to the timing
constraints that are placed on the entire integrated circuit.
Continuing with the example described above where the
design constraint specified that the integrated circuit should
operate at a frequency of 50 MHz frequency with a prede
termined allowable amount of slack. In such an example,
given that each timing route is broken up into no more than
two regions, the first region may be given an acceptable
slack time that is one-half of the total slack time for the
integrated circuit while the second region may also be given
an acceptable slack time that is one-half of the total slack
time for the integrated circuit, such that even if each region
consumes its maximum allowable slack, total slack for the
integrated circuit is within the guidelines specified in the
design constraints.

Embodiments described herein may be a system, a
method, and/or a computer program product. The computer
program product may include a computer readable storage
medium (or media) having computer readable program
instructions thereon for causing a processor to carry out
aspects of embodiments described herein.
The computer readable storage medium can be a tangible

device that can retain and store instructions for use by an
instruction execution device. The computer readable storage
medium may be, for example, but is not limited to, an
electronic storage device, a magnetic storage device, an
optical storage device, an electromagnetic storage device, a
semiconductor storage device, or any suitable combination
of the foregoing. A non-exhaustive list of more specific
examples of the computer readable storage medium includes
the following: a portable computer diskette, a hard disk, a
random access memory (RAM), a read-only memory
(ROM), an erasable programmable read-only memory
(EPROM or Flash memory), a static random access memory
(SRAM), a portable compact disc read-only memory (CD
ROM), a digital versatile disk (DVD), a memory stick, a
floppy disk, a mechanically encoded device such as punch
cards or raised structures in a groove having instructions
recorded thereon, and any suitable combination of the fore
going. A computer readable storage medium, as used herein,
is not to be construed as being transitory signals perse. Such
as radio waves or other freely propagating electromagnetic

US 9,639,654 B2
13

waves, electromagnetic waves propagating through a wave
guide or other transmission media (e.g., light pulses passing
through a fiber-optic cable), or electrical signals transmitted
through a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, Switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions for carrying out
operations described herein may be assembler instructions,
instruction-set-architecture (ISA) instructions, machine
instructions, machine dependent instructions, microcode,
firmware instructions, state-setting data, or either source
code or object code written in any combination of one or
more programming languages, including an object oriented
programming language such as Smalltalk, C++ or the like,
and conventional procedural programming languages, such
as the “C” programming language or similar programming
languages. The computer readable program instructions may
execute entirely on the user's computer, partly on the user's
computer, as a stand-alone software package, partly on the
user's computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user's computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection
may be made to an external computer (for example, through
the Internet using an Internet Service Provider). In some
embodiments, electronic circuitry including, for example,
programmable logic circuitry, field-programmable gate
arrays (FPGA), or programmable logic arrays (PLA) may
execute the computer readable program instructions by
utilizing state information of the computer readable program
instructions to personalize the electronic circuitry, in order to
perform aspects of embodiments described herein.

Aspects of embodiments described herein are described
with reference to flowchart illustrations and/or block dia
grams of methods, apparatus (systems), and computer pro
gram products. It will be understood that each block of the
flowchart illustrations and/or block diagrams, and combina
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer readable pro
gram instructions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro
cessing apparatus to produce a machine, Such that the
instructions, which execute via the processor of the com
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, Such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including

10

15

25

30

35

40

45

50

55

60

65

14
instructions which implement aspects of the function/act
specified in the flowchart and/or block diagram block or
blocks.
The computer readable program instructions may also be

loaded onto a computer, other programmable data process
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple
mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow
chart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro
gram products according to various embodiments described
herein. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
instructions, which comprises one or more executable
instructions for implementing the specified logical
function(s). In some alternative implementations, the func
tions noted in the block may occur out of the order noted in
the figures. For example, two blocks shown in Succession
may, in fact, be executed Substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block dia
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions.

It will be understood from the foregoing description that
modifications and changes may be made in various embodi
ments without departing from its true spirit. The descriptions
in this specification are for purposes of illustration only and
are not to be construed in a limiting sense. The scope of the
present disclosure is limited only by the language of the
following claims.
What is claimed is:
1. A method of managing virtual boundaries to enable

lock-free concurrent region optimization, the method com
prising:

receiving a model of an integrated circuit (IC);
dividing the model into a plurality of regions, wherein

none of the plurality of regions overlap with another
region, including:
Selecting objects to place in a particular region;
identifying boundary objects that isolate the particular

region from all other objects in the integrated circuit;
and

freezing data on the boundary objects that are visible to
all other regions including freezing values of input
signals to the boundary objects and output signals
from the boundary objects, wherein the values of the
input signals to the boundary objects and the output
signals from the boundary objects remain constant
during the optimization;

assigning each of the plurality of regions to a thread of
execution, wherein each thread of execution utilizes a
shared memory space;

optimizing, by each thread in parallel and without locking
any of the objects in any of the regions, the assigned
region, including optimizing all portions of the
assigned region other than the boundary objects;

creating a new region that includes objects previously
included in two or more of the plurality of regions,

US 9,639,654 B2
15

wherein at least one of the boundary objects in each of
the two or more of the plurality of regions become
non-boundary objects in the new region, including
unfreezing data on the boundary objects that become
non-boundary objects; and

optimizing the new region.
2. The method of claim 1 wherein optimizing, by each

thread in parallel, the assigned region further comprises
preventing traversal of the boundary objects, the method
further comprising:

unfreezing the data on the boundary objects; and
propagating changes to the data on the boundary objects.
3. The method of claim 1 wherein:
assigning each of the plurality of regions to the thread of

execution further comprises adding, by a manager
thread, each of the plurality of regions to a work queue;
and

optimizing the assigned region further comprises:
removing, by a worker thread, a region in the first slot

of the work queue; and
adding, by the worker thread, the removed region to the

done queue; and
the method further comprising removing, by the manager

thread, the first region from the done queue.
4. The method of claim 3 wherein adding, by the manager

thread, each of the plurality of regions to the work queue
further comprises:

determining an estimated optimization effort for each of
the plurality of regions by identifying a number of
objects, types of the objects, and optimization pro
cesses to be carried out in each region of the plurality
of regions; and

ordering the work queue in dependence upon the esti
mated optimization effort for each region.

5. The method of claim 1 wherein dividing the model into
a plurality of regions further comprises:

identifying each timing route through the integrated cir
cuit; and

dividing the model Such that each timing route resides in
a maximum of two regions.

6. Apparatus for managing virtual boundaries to enable
lock-free concurrent region optimization, the apparatus
comprising a computer processor, a computer memory
operatively coupled to the computer processor, the computer
memory having disposed within it computer program
instructions that, when executed by the computer processor,
cause the apparatus to carry out the steps of:

receiving a model of an integrated circuit (IC);
dividing the model into a plurality of regions, wherein

none of the plurality of regions overlap with another
region, including:
Selecting objects to place in a particular region;
identifying boundary objects that isolate the particular

region from all other objects in the integrated circuit;
and

freezing data on the boundary objects that are visible to
all other regions including freezing values of input
signals to the boundary objects and output signals
from the boundary objects, wherein the values of the
input signals to the boundary objects and the output
signals from the boundary objects remain constant
during the optimization;

assigning each of the plurality of regions to a thread of
execution, wherein each thread of execution utilizes a
shared memory space;

optimizing, by each thread in parallel and without locking
any of the objects in any of the regions, the assigned

10

15

25

30

35

40

45

50

55

60

65

16
region, including optimizing all portions of the
assigned region other than the boundary objects;

creating a new region that includes objects previously
included in two or more of the plurality of regions,
wherein at least one of the boundary objects in each of
the two or more of the plurality of regions become
non-boundary objects in the new region, including
unfreezing data on the boundary objects that become
non-boundary objects; and

optimizing the new region.
7. The apparatus of claim 6 wherein optimizing, by each

thread in parallel, the assigned region further comprises
preventing traversal of the boundary objects, the method
further comprising:

unfreezing the data on the boundary objects; and
propagating changes to the data on the boundary objects.
8. The apparatus of claim 6 wherein:
assigning each of the plurality of regions to the thread of

execution further comprises adding, by a manager
thread, each of the plurality of regions to a work queue;
and

optimizing the assigned region further comprises:
removing, by a worker thread, a region in the first slot

of the work queue; and
adding, by the worker thread, the removed region to the

done queue; and
the apparatus further comprising computer program

instructions that, when executed by the computer pro
cessor, cause the apparatus to carry out the step of
removing, by the manager thread, the first region from
the done queue.

9. The apparatus of claim 8 wherein adding, by the
manager thread, each of the plurality of regions to the work
queue further comprises:

determining an estimated optimization effort for each of
the plurality of regions by identifying a number of
objects, types of the objects, and optimization pro
cesses to be carried out in each region of the plurality
of regions; and

ordering the work queue in dependence upon the esti
mated optimization effort for each region.

10. The apparatus of claim 6 wherein dividing the model
into a plurality of regions further comprises:

identifying each timing route through the integrated cir
cuit; and

dividing the model Such that each timing route resides in
a maximum of two regions.

11. A computer program product for managing virtual
boundaries to enable lock-free concurrent region optimiza
tion, the computer program product disposed upon a
machine-readable non-transitory storage device, the com
puter program product comprising computer program
instructions that, when executed by a machine, cause the
machine to carry out the steps of

receiving a model of an integrated circuit (IC);
dividing the model into a plurality of regions, wherein

none of the plurality of regions overlap with another
region, including:
Selecting objects to place in a particular region;
identifying boundary objects that isolate the particular

region from all other objects in the integrated circuit;
and

freezing data on the boundary objects that are visible to
all other regions including freezing values of input
signals to the boundary objects and output signals
from the boundary objects, wherein the values of the

US 9,639,654 B2
17

input signals to the boundary objects and the output
signals from the boundary objects remain constant
during the optimization;

assigning each of the plurality of regions to a thread of
execution, wherein each thread of execution utilizes a 5
shared memory space;

optimizing, by each thread in parallel and without locking
any of the objects in any of the regions, the assigned
region, including optimizing all portions of the
assigned region other than the boundary objects;

creating a new region that includes objects previously
included in two or more of the plurality of regions,
wherein at least one of the boundary objects in each of
the two or more of the plurality of regions become
non-boundary objects in the new region, including
unfreezing data on the boundary objects that become
non-boundary objects; and

optimizing the new region.
12. The computer program product of claim 11 wherein

optimizing, by each thread in parallel, the assigned region
further comprises preventing traversal of the boundary
objects, the method further comprising:

unfreezing the data on the boundary objects; and
propagating changes to the data on the boundary objects.
13. The computer program product of claim 11 wherein:
assigning each of the plurality of regions to the thread of 25

execution further comprises adding, by a manager
thread, each of the plurality of regions to a work queue;
and

10

15

18
optimizing the assigned region further comprises:

removing, by a worker thread, a region in the first slot
of the work queue; and

adding, by the worker thread, the removed region to the
done queue; and

the apparatus further comprising computer program
instructions that, when executed by the machine, cause
the machine to carry out the step of removing, by the
manager thread, the first region from the done queue.

14. The computer program product of claim 13 wherein
adding, by the manager thread, each of the plurality of
regions to the work queue further comprises:

determining an estimated optimization effort for each of
the plurality of regions by identifying a number of
objects, types of the objects, and optimization pro
cesses to be carried out in each region of the plurality
of regions; and

ordering the work queue in dependence upon the esti
mated optimization effort for each region.

15. The computer program product of claim 11 wherein
dividing the model into a plurality of regions further com
prises:

identifying each timing route through the integrated cir
cuit; and

dividing the model Such that each timing route resides in
a maximum of two regions.

k k k k k

