
United States Patent

US00963.9375B2

(12) (10) Patent No.: US 9,639,375 B2
Jones (45) Date of Patent: May 2, 2017

(54) GENERATION OF LANGUAGE BINDINGS 5,889,992 A * 3/1999 Koerber 717/108
FOR LIBRARIES USING DATA FROM 6,066,181 A * 5/2000 DeMaster ... T17,148
COMPLER GENERATED DEBUG 6,083,282 A * 7/2000 Caron et al. T17,101
INFORMATION 6,237,136 B1* 5/2001 Sadahiro ... T17,110

6,314.429 B1 * 1 1/2001 Simser T17,163
6.425,118 B1* 7/2002 Molloy et al. .. T17.136

(75) Inventor: Peter Jones, Arlington, MA (US) 6,438,744 B2 * 8/2002 Toutonghi....... T17/106
7,143,398 B2 * 1 1/2006 Chang et al. 717, 137

(73) Assignee: Red Hat, Inc., Raleigh, NC (US) 7,213,236 B2 * 5/2007 Gibbons T17.136
2003/O120731 A1* 6, 2003 Weinberg et al. 709/205

(*) Notice: Subject to any disclaimer, the term of this 2003/0177187 A1* 9, 2003 Levine Aso8.
patent is extended or adjusted under 35 2004/0103405 A1* 5/2004 Vargas 717/137
U.S.C. 154(b) by 1103 days. 2004/0261065 A1 12/2004 Abrams et al. T17,140

2005, 0071852 A1* 3, 2005 Yoon G06F94428
(21) Appl. No.: 12/200,806 T19,328

2006/0070043 A1* 3/2006 Viega et al. 717/136
(22) Filed: Aug. 28, 2008 2006/0122958 A1* 6/2006 Beisiegel et al. 707/1

9 2009/00 19430 A1* 1/2009 Jaeger et al. T17,141

(65) Prior Publication Data * cited by examiner
US 201O/OO58305 A1 Mar. 4, 2010

Primary Examiner — Lewis A Bullock, Jr.
(51) Int. Cl. Assistant Examiner — Melissa Alfred

G06F 9/45 (2006.01) (74) Attorney, Agent, or Firm — Lowenstein Sandler LLP
G06F 9/44 (2006.01)
G06F 9/54 (2006.01) (57) ABSTRACT

(52) U.S. Cl. Described herein is a method and apparatus for generating
CPC G06F 9/4425 (2013.01); G06F 9/541 automatic language bindings. The method includes receiv

(2013.01) ing a request for a first program module in a first language
(58) Field of Classification Search from a second program module in a second language. A

USPC 7 17/136-161, 162. 167 binding module is created in the second language in
See application file for complete search history. response to the request, where the binding module is gen

erated from debug data of the first program module. The
(56) References Cited binding module is returned to the second program module.

U.S. PATENT DOCUMENTS

5,428,792 A * 6/1995 Conner et al. T17,143
5,872,973 A * 2/1999 Mitchell GO6F9,465

717/108

201

21

213

INTATERUNTIME
ANGUAGE ENVIRONMEN

RUNEXECUTABLE

IMPORTBINDERMODULE

CALOPENBNERLIBRARY
FUNCTION

CREATEBINDINGMODULE

RETURNBINDINGMODULE

The second program module can then access the function
ality of the first program module through use of the functions
of the binding module.

21 Claims, 4 Drawing Sheets

RNTME
LANGUAGE ENVIRONMENT

TOP-LEVEL
PROGRAM

BNDER
ODLE

25

217

219

223

CAL BINDINGMOEFNCTION

BNDN3 MOULE CALS
IBRARY MODULE

IBRARY MODULEXECUTES
ANDRETURNS

BINDINGMODULEREURNS

CONTINUEXECUTION

TOPLEVEL
PROGRA

BINDING
MOUL

BRARY
MOOULE

BNDING
MODULE

OP-LEVEL
PROGRAM

US 9,639,375 B2 Sheet 1 of 4 May 2, 2017 U.S. Patent

U.S. Patent May 2, 2017 Sheet 2 of 4 US 9,639,375 B2

201
INITIATE RUNTIME OS

LANGUAGE ENVIRONMENT

203 RUNTIME
RUNEXECUTABLE LANGUAGE ENVIRONMENT

205 IMPORT BINDER MODULE

TOP-LEVEL
PROGRAM

2O7 CALL OPEN BNDER LIBRARY
FUNCTION

209 OPEN LIBRARY

211 BINDER
CREATE BINDING MODULE MODULE

213 RETURN BINDING MODULE

TOP-LEVEL ''/CALL BINDING MODULE FUNCTION PROGRAM

217 BINDING MODULE CALLS BINDING
LIBRARY MODULE MODULE

219 LIBRARY MODULE EXECUTES LIBRARY
AND RETURNS MODULE

BINDIN 221 BINDING MODULE RETURNS BINEN

TOP-LEVEL
223 CONTINUE EXECUTION PROGRAM

FIG. 2

U.S. Patent May 2, 2017 Sheet 3 of 4 US 9,639,375 B2

301
RECEIVE OPEN LIBRARY CALL

CREATE NEW BINDING
MODULE

CHECKNEXT FUNCTION OR
VARIABLE IN DEBUG INFO

307

PRESENT IN NO ADD TO
NEW BINDING NEWMODULE

311

ALL, DEBUG INFO
TRAVERSED?

YES
RETURN NEW 313

BINDING MODULE

FIG. 3

303

305

309

U.S. Patent May 2, 2017 Sheet 4 of 4 US 9,639,375 B2

-1 400
402 410

PROCESSOR

BNDER 426
MODULE

408
404 412

MAIN MEMORY
-N ALPHA-NUMERC

BNDER 426 INPUT DEVICE
MODULE

406 414

CURSOR
STATIC MEMORY CONTROL

DEVICE

422 416

DATA STORAGE DEVICE
NETWORK
INTERFACE COMPUTER- 424
DEVICE READABLE MEDIUM

Q N

BNDER
MODULE 426

418 420

SIGNAL
GENERATION

DEVICE

FIG. 4

US 9,639,375 B2
1.

GENERATION OF LANGUAGE BINDINGS
FOR LIBRARIES USING DATA FROM
COMPLER GENERATED DEBUG

INFORMATION

TECHNICAL FIELD

Embodiments of the present invention relate to a method
and system for generating language bindings. Specifically,
the embodiments of the present invention relate to a method
and system for automatically generating language bindings
at runtime using data from compiler generated debugging
information.

BACKGROUND

On many platforms such as LinuxOR or Windows(R by
Microsoft Corp of Redmond, Wash. there are many libraries
written in one language, typically C, that need to be used by
programs written in another language, such as Perl, Python,
C# by Microsoft Corp. or JAVAR) by Sun Microsystems of
Santa Clara, Calif. There are two solutions to this problem
that are in use. Both of these solutions provide a compiled
object, specific to the library being utilized, which sits in
between the runtime language environment of the program
requesting access to a library function and the library itself.
One technique uses a system of templates from which code
is generated that is compiled into a special library that can
be loaded directly by a runtime language environment to
access the functionality of the associated library. The gen
erated code is fragile and must be reviewed by a programmer
and often manually modified before compiling, which
requires significant resources to be devoted to the mainte
nance of the special libraries.
The second technique is to write a new special library

based on knowledge of the interfaces of a bound library such
that the new special library can be loaded by a specific
runtime language environment. This can require an even
greater devotion of resources to generating the new special
library. The new special libraries or shim layer generated
using both cases are commonly referred to as “language
bindings,” a specific language binding, such as “Python
bindings,” or just “bindings.”

There are also several libraries or programs that enable
executing programs to make calls to libraries in other
languages on the fly. However, these libraries and programs
require the program making the call to provide function
definitions and related calling conventions to the interme
diate library that then calls the appropriate library or gen
erates the code to call the appropriate library. This requires
prior knowledge of the programmers of the program that
makes the library call to hard code these types of calls.
However, if the libraries are recompiled or altered in any
way Subsequently, then the calls can fail. Examples of these
systems include DllImport in C# runtime by Microsoft
Corp., the libffi library by Red Hat, Inc. of Raleigh, N.C.
and the “ctypes library for Python.

Microsoft's Ci runtime provides a mechanism called
“DllImport', which makes use of code that functions analo
gously to libffi, and generates the calls on the fly from
definitions you manually provide in your C# code. DllIm
port also has to specifically Support the language from which
it is importing Such that it parses the declarations from the
imported language directly.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is illustrated by way of example,
and not by way of limitation, in the figures of the accom

10

15

25

30

35

40

45

50

55

60

65

2
panying drawings in which like references indicate similar
elements. It should be noted that different references to “an
or “one' embodiment in this disclosure are not necessarily
to the same embodiment, and Such references mean at least
OC.

FIG. 1 is a diagram of one embodiment of a system for
automatically generating language bindings.

FIG. 2 is a flowchart of one embodiment of a process for
automatically generating language bindings.

FIG. 3 is a flowchart of one embodiment of a process for
creating a binding module.

FIG. 4 is a diagram of one embodiment of a computer
system for providing the binding module.

DETAILED DESCRIPTION

Described herein is a method and apparatus for generating
automatic language bindings. The method includes receiv
ing a request for a first program module in a first language
from a second program module in a second language. A
binding module is created in the second language in
response to the request, where the binding module is gen
erated from debug data of the first program module. The
binding module is returned to the second program module.
The second program module can then access the function
ality of the first program module through use of the functions
of the binding module.

FIG. 1 is a diagram of one embodiment of a system for
automatically generating language bindings. The system is
provided by a computer system 101. The computer system
101 can be a general purpose computer system such as a
desktop computer, laptop computer, dedicated server, hand
held device, console device, wireless device or similar
system. In another embodiment, the computer system 101 is
a specific purpose computing device that utilizes the auto
mated language bindings. The computer system provides a
software environment 103 and a persistent storage 105.
The persistent storage 105 can be any type of persistent

storage device that is in communication with or a component
of the computer system 101. The persistent storage 105 can
be a set of fixed disks, memory modules or similar devices.
A set, as used herein, can refer to any whole number of
items including one item. A fixed disk device can be a
magnetic, optical or similar storage device. A memory
module can be a static random access memory (RAM)
module, a flash memory module, or similar type of memory
module. The files and modules stored within the persistent
storage 105 can be stored on the same storage device or on
any number of separate persistent storage devices. These
persistent storage devices 105 can be local to or remote from
the physical location of the computer system 101. The
persistent storage system 105 can store a program file 107 in
a first language, a binder module file 109, debug information
111 and similar files and modules. A copy of the library
module 127 file can also be stored within the persistent
storage 105 as well as other components of the software
environment 103. For sake of clarity, these other compo
nents have not been illustrated to avoid obscuring the
relevant aspects of the invention.
The program file 107 is stored program code that is in a

first language. The program file 107 can be code of any
programming language including Python, Perl, C#, Java R or
similar languages. In one embodiment, the languages are
interpreted or non-compiled languages that are interpreted at
run-time. In one embodiment, a binder module 109 can be
coded in the same language as the program file 107. In
another embodiment, the binder module 109 can be coded in

US 9,639,375 B2
3

another language such as C. The binder module file 107 is
loaded to create a binder module 151 and binding module
121.
The debug information 111 for a library is a file or data

structure that is generated by a compiler during the compi
lation of the library. The debug information contains infor
mation about the methods, procedures, functions, variables
and similar information about the library. The debug infor
mation 111 can have any structure or format. Among this
data in the debug information can be the list of functions that
can be called, including their return types and the types of
their parameters (these are referred to as “function proto
types”), and definitions of complex data structures used.
Collectively this data is referred to as “calling conventions.”
In one embodiment, the debug information is in the debug
with arbitrary record format (DWARF). In other embodi
ments, the debug information is in Stabs, common object file
format (COFF), relocatable object module format (OMF) or
similar format.
The software environment 103 is a runtime environment

that is established by a computer system 101 through a
combination of resources including a set of processors or
execution units, system memory, operating system, hard
ware peripherals and similar computer resources. The Soft
ware environment 103 can be provided by a single computer
system 101 or over a distributed system encompassing any
number of discrete computer systems. The software envi
ronment 103 can Support any number of executing modules,
runtime environments and similar components. In one
embodiment, the software environment 103 includes a lan
guage runtime environment 113 for the language of the
program file 107, a debug information access library 123, an
ad hoc function call library 125, a library module 127 and
similar or Supporting components.
The language runtime environment 113 can be a runtime

environment for any programming language including
Python, Perl, C#, Java R or similar languages 113. The
language runtime environment 113 is utilized to execute a
program file 107 written in the corresponding language. Any
number of language runtime environments 113 for different
languages can be provided by the computer system 101. The
language runtime environment 113 loads a program file 107
to execute it. The loaded program file 107 becomes an
executing program module 115.
The executing program 115 can include code that imports

other modules and calls library functions of libraries in other
programming languages. The import commands 117 are
serviced by the language runtime environment 113 by load
ing the corresponding files. In the illustrated example, the
executing program 115 includes an import command 117.
The import command 117 indicates that the binder module
131 is to be loaded. The language runtime environment 113
finds the corresponding file 109 and loads it into the lan
guage runtime environment 113 thereby making the corre
sponding module 131 available in the language runtime
environment 113.

During the import process of a binder module 131, the
binder module 131 creates a binding module 121 for a
specified library 127 and accesses debug information 111 for
the specified library 127 to build a set of functions in the
language of the language runtime environment that corre
spond to the functions 129 of a library module 127. In one
embodiment, the binder module 131 uses a debug informa
tion access library 123 to assist it in accessing and analyzing
the debug information 111. In one example embodiment, the
debug information access library 123 is the libdw of
LINUX. In addition to setting up functions in the binding

5

10

15

25

30

35

40

45

50

55

60

65

4
module 121 that correspond to those of the library module
127, the binder module 131 also generates methods, proce
dures or functions for the binding module 121 that provide
access to variables and data structures of the library module
127.
The illustrated executing program 115 also includes a

function call to library function 119. The library function
call 119 may be in the form of a method, procedure or
similar function call to the binding module 121. The binding
module 121 services this function call by making a call to a
corresponding function 129 of the library module 127.
Similarly, variables and data structures of the library module
127 can be accessed through the binding module 121. In one
embodiment, calls and access to the library module 127 are
made using an ad hoc function call library 125. In one
example embodiment, the ad hoc function call library 125 is
the libfi library by Red Hat.

FIG. 2 is a flowchart of one embodiment of a process for
automatically generating language bindings. In one embodi
ment, the process is initiated by a user or program that
initiates the execution of a program by a language runtime
environment (block 201). The language runtime environ
ment and program can be associated with any programming
language such as Python, Perl, C#, Java R or similar lan
guages. The initiation of the language runtime is performed
by the operating system of a computer system on which it is
run. The operating system provides access to the resources
of the computer system for the language runtime environ
ment.

The language runtime environment then runs the execut
able program that was provided to it by the user or another
program (block 203). The language runtime environment
loads the program file of the indicated program. The method
of the execution of the program file is dependent on the
language implemented by the language runtime environ
ment. The program that is executed is referred to herein for
sake of convenience and clarity as a top-level program. The
program can be any type of program and does not neces
sarily have to reside at any particular level of any hierarchy.
The top-level program includes an import command or

similar command that is to be executed (block 205). The
import command indicates that a particular module or pro
gram that is identified as a parameter of the command is to
be utilized or accessed by the top-level program.

In this example embodiment, the relevant import com
mand is to import the binder module. The runtime language
environment in response to the import binder command
locates and loads the binder module. The import process can
include a call to an open library function of the loaded binder
module (block 207). The open library or open binder
library call initiates a process that analyzes the associated
library debug information to generate a binding module for
that library.
The binder module receives the open library function call

(block 209). The binder module accesses the debug data and
creates the new binding module (block 211) in response to
the open library function call. The binder module iterates
through the debug information of the library and creates
methods, procedures, or similar functions in the new binding
module to allow access to all of the variables, data structures
and functions of the library module identified within the
debug information. The resulting binding module is then
ready for use and can be returned to the calling top-level
program or made accessible in the language runtime envi
rOnment.

The top-level program can then call the functions or
access the variables or data structures of a library that is in

US 9,639,375 B2
5

a different language by calling the functions of the binding
module (block 215). The top-level program calls a function
of the binding module and in response the binding module
calls a corresponding function of the library module (block
217). This process can be assisted by an ad hoc calling
library. The binding module converts data types, adjusts
function parameters and similarly prepares the data or
function request of the top-level program for compatibility
with the library module its language.

The library module receives the call from the binding
module. The library module services the call (block 219) and
returns the results of call to the binding module. The binding
module converts data types, adjusts function parameters and
similarly prepares the data returned from the library module
for compatibility with the top-level program and its lan
guage. The binding module then returns the results to the
top-level program (block 221). The top-level program can
then utilize the requested data and continue with its normal
functionality (block 223). The top-level program can be,
include or be replaced for purposes of this description by any
type of program including a user application, an operating
system component, a networking program, a library, a video
game, a loaded module or other program.

FIG. 3 is a flowchart of one embodiment of a process for
creating a binding module. In one embodiment, the binder
module analyzes the data of the debug information during
the import process. The analysis is initiated in response to
receiving an open library call or similar function call (block
301). In other embodiments, this process is undertaken as a
function or variable is accessed, on an ad hoc basis or at
other times during execution. The binder module generates
a new binding module to which the associated library
functionality will be mapped (block 303). The binder mod
ule can access the debug data through a library that is
designed to access the data format of the debug data.
The binder module starts the analysis by identifying a first

function, variable or data structure in the debug information
(block 305). The binder module checks the binding module
to determine if the accessed function, variable or data
structure already has been added to the binding module
(block 307). If the function, variable or data structure is not
present in the binding module then it is added to the binding
module (block 309). The additional code can be generated as
set code that is modified for the names, addressing and
similar variations of the function, variable or data structure
of the library. The types of data submitted as parameters and
returned may also be converted to accommodate the formats
of the respective languages of the library and program.
Accessor functions can be created for data structures, such
as accessor functions that create an object of a specific type,
set a value in a data structure, or similarly modify, create or
delete data structures or the data in the structures.

If the data is already present in the binding module or has
just been added, then a check is made to determine if all of
the data of the debug information has been traversed (block
311). If all of the data has not been traversed, then the
process continues by accessing the next function, variable or
data structure of the debug information (block 305). The
traversal continues until all of the data has been exhausted.
Once all of the data has been traversed, the modified binding
module is returned to the calling program. The functions,
variables and data structures of the library that have been
added to the binding module are then accessible to the
calling program through the binding module.

FIG. 4 is a diagram of one embodiment of a computer
system for providing the binding module. Within the com
puter system 400 is a set of instructions for causing the

10

15

25

30

35

40

45

50

55

60

65

6
machine to perform any one or more of the methodologies
discussed herein. In alternative embodiments, the machine
may be connected (e.g., networked) to other machines in a
LAN, an intranet, an extranet, or the Internet. The machine
may operate in the capacity of a server or a client machine
(e.g., a client computer executing the top-level program and
the server computer executing the binder module) in a
client-server network environment, or as a peer machine in
a peer-to-peer (or distributed) network environment. The
machine may be a personal computer (PC), a tablet PC, a
console device or set-top box (STB), a Personal Digital
Assistant (PDA), a cellular telephone, a web appliance, a
server, a network router, Switch or bridge, or any machine
capable of executing a set of instructions (sequential or
otherwise) that specify actions to be taken by that machine.
Further, while only a single machine is illustrated, the term
“machine' shall also be taken to include any collection of
machines (e.g., computers) that individually or jointly
execute a set (or multiple sets) of instructions to performany
one or more of the methodologies discussed herein.
The exemplary computer system 400 includes a processor

402, a main memory 404 (e.g., read-only memory (ROM),
flash memory, dynamic random access memory (DRAM)
such as synchronous DRAM (SDRAM) or Rambus DRAM
(RDRAM), etc.), a static memory 406 (e.g., flash memory,
static random access memory (SRAM), etc.), and a second
ary memory 416 (e.g., a data storage device in the form of
a drive unit, which may include fixed or removable com
puter-readable medium), which communicate with each
other via a bus 408.

Processor 402 represents one or more general-purpose
processing devices Such as a microprocessor, central pro
cessing unit, or the like. More particularly, the processor 402
may be a complex instruction set computing (CISC) micro
processor, reduced instruction set computing (RISC) micro
processor, very long instruction word (VLIW) microproces
Sor, processor implementing other instruction sets, or
processors implementing a combination of instruction sets.
Processor 402 may also be one or more special-purpose
processing devices Such as an application specific integrated
circuit (ASIC), a field programmable gate array (FPGA), a
digital signal processor (DSP), network processor, or the
like. Processor 402 is configured to execute the language
binding modules 426 for performing the operations and
steps discussed herein.
The computer system 400 may further include a network

interface device 422. The computer system 400 also may
include a video display unit 410 (e.g., a liquid crystal display
(LCD) or a cathode ray tube (CRT)) connected to the
computer system through a graphics port and graphics
chipset, an alphanumeric input device 412 (e.g., a key
board), a cursor control device 414 (e.g., a mouse), and a
signal generation device 420 (e.g., a speaker).
The secondary memory 416 may include a machine

readable storage medium (or more specifically a computer
readable storage medium) 424 on which is stored one or
more sets of instructions (e.g., the language binding modules
426) embodying any one or more of the methodologies or
functions described herein. The language binding modules
426 may also reside, completely or at least partially, within
the main memory 404 and/or within the processing device
402 during execution thereof by the computer system 400,
the main memory 404 and the processing device 402 also
constituting machine-readable storage media. The language
binding modules 426 may further be transmitted or received
over a network 418 via the network interface device 422.

US 9,639,375 B2
7

The machine-readable storage medium 424 may also be
used to store the language binding modules 426 persistently.
While the machine-readable storage medium 424 is shown
in an exemplary embodiment to be a single medium, the
term “machine-readable storage medium' and also “com
puter-readable medium’ should be taken to include a single
medium or multiple media (e.g., a centralized or distributed
database, and/or associated caches and servers) that store the
one or more sets of instructions. The terms “machine
readable storage medium' and “computer-readable
medium’ shall also be taken to include any medium that is
capable of storing or encoding a set of instructions for
execution by the machine and that cause the machine to
performany one or more of the methodologies of the present
invention. The terms “machine-readable storage medium’
and “computer-readable medium’ shall accordingly be taken
to include, but not be limited to, Solid-state memories, and
optical and magnetic media.

In the above description, numerous details are set forth. It
will be apparent, however, to one skilled in the art, that the
present invention may be practiced without these specific
details. In some instances, well-known structures and
devices are shown in block diagram form, rather than in
detail, in order to avoid obscuring the present invention.
Some portions of the detailed descriptions above are

presented in terms of algorithms and symbolic representa
tions of operations on data bits within a computer memory.
These algorithmic descriptions and representations are the
means used by those skilled in the data processing arts to
most effectively convey the substance of their work to others
skilled in the art. An algorithm is here, and generally,
conceived to be a self-consistent sequence of steps leading
to a desired result. The steps are those requiring physical
manipulations of physical quantities. Usually, though not
necessarily, these quantities take the form of electrical or
magnetic signals capable of being stored, transferred, com
bined, compared and otherwise manipulated. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the above discussion, it is appreciated that
throughout the description, discussions utilizing terms such
as “receiving.” “creating,” “returning,” “iterating,” “add
ing,” “importing,” “calling,” or the like, refer to the actions
and processes of a computer system, or similar electronic
computing device that manipulates and transforms data
represented as physical (electronic) quantities within the
computer system's registers and memories into other data
similarly represented as physical quantities within the com
puter system memories, registers or other Such information
storage, transmission or display devices.
The present invention also relates to an apparatus for

performing the operations herein. This apparatus may be
specially constructed for the required purposes or it may
comprise a general purpose computer selectively activated
or reconfigured by a computer program stored in the com
puter. Such a computer program may be stored in a computer
readable storage medium, Such as, but not limited to, any
type of disk including floppy disks, optical disks, CD-ROMs
and magnetic-optical disks, read-only memories (ROMs),
random access memories (RAMs), EPROMs, EEPROMs,
magnetic or optical cards or any type of media Suitable for

10

15

25

30

35

40

45

50

55

60

65

8
storing electronic instructions, each of which may be
coupled to a computer system bus.
The algorithms and displays presented herein are not

inherently related to any particular computer or other appa
ratus. Various general purpose systems may be used with
programs in accordance with the teachings herein or it may
prove convenient to construct more specialized apparatus to
perform the required method steps. The required structure
for a variety of these systems will appear from the descrip
tion below. In addition, the present invention is not
described with reference to any particular programming
language. It will be appreciated that a variety of program
ming languages may be used to implement the teachings of
the invention as described herein.
A computer readable medium includes any mechanism for

storing information in a form readable by a computer. For
example, a computer readable medium includes read only
memory (“ROM), random access memory (“RAM), mag
netic disk storage media; optical storage media, flash
memory devices or other type of machine-accessible storage
media.

Thus, a method and apparatus for automatically generat
ing language bindings has been described. It is to be
understood that the above description is intended to be
illustrative and not restrictive. Many other embodiments will
be apparent to those of skill in the art upon reading and
understanding the above description. The scope of the
invention should, therefore, be determined with reference to
the appended claims, along with the full scope of equivalents
to which such claims are entitled.
The invention claimed is:
1. A method comprising:
receiving a request to access a first program component

from a second program component at runtime of the
Second program component in a language runtime
environment provided by a processing device wherein
the first program component is in a first language,
wherein the second program component and the lan
guage runtime environment are in a second language,
and wherein the first language is different than the
Second language;

in response to receiving the request,
automatically issuing an import command in the sec
ond program component and automatically import
ing, from a binder component file stored in persistent
storage, a binder component in the second language
into the language runtime environment in response to
an import command in the second program compo
nent,

during the importing of the binder component,
automatically initiating a process to access and ana

lyze debug data of the first program component,
wherein the debug data is stored in the persistent
storage, the debug data is generated by a compiler
for the first language during compilation of the
first program component, and wherein the debug
data comprises calling-convention information for
one or more functions in the first program com
ponent, and

automatically creating, by the binder component in
the language runtime environment, a binding com
ponent in the second language by iterating through
the debug data of the first program component,
wherein creating the binding component com
prises determining, by the binder component, that
a list of functions in the debug data identifies a first
function and, in response, adding, by the binder

US 9,639,375 B2
9

component a second function to the calling-con
vention information of the first function in the
debug data, wherein calling the second function in
the binding component results in calling the first
function in the first program component; and

returning the binding component to the second program
component, wherein the second function in the binding
component is callable by the second program compo
nent at runtime.

2. The method of claim 1, wherein the creating the
binding component comprises automatically creating the
binding component by the binder component without manu
ally providing the calling-convention information for the
functions of the first program component.

3. The method of claim 1, wherein the second function
converts data or function types between the first language
and the second language.

4. The method of claim 1, further comprising:
calling the second function of the binding component to

access the first function of the first program component.
5. The method of claim 1, wherein the first program

component is a library in a C programming language.
6. The method of claim 1, wherein the second program

component is in the Python or C# programming language.
7. The method of claim 1, wherein the debug data is in a

debug with arbitrary record format (DWARF), a stabs debug
format, a common object file format (COFF), or a relocat
able object format (OMF).

8. A non-transitory computer readable storage medium
having instructions stored therein that, when executed by a
processing device, cause the processing device to:

receive a request to access a first program component
from a second program component at runtime of the
Second program component, in a language runtime
environment provided by a processing device, wherein
the first program component is in a first language,
wherein the second program component and the lan
guage runtime environment are in a second language,
and wherein the first language is different than the
Second language;

in response to receiving the request,
automatically issue an import command in the second

program component and automatically import, from
a binder component file stored in persistent storage,
a binder component in the second language into the
language runtime environment in response to an
import command in the second program component,

during the import of the binder component,
automatically initiate a process to access and analyze

debug data of the first program component,
wherein the debug data is stored in the persistent
storage, the debug data is generated by a compiler
for the first language during compilation of the
first program component, and wherein the debug
data comprises calling-convention information for
one or more functions in the first program com
ponent, and

automatically create, by the binder component in the
language runtime environment, a binding compo
nent in the second language by iteration through
the debug data of the first program component,
wherein creating the binding component com
prises determining, by the binder component, that
a list of functions in the debug data identifies a first
function and, in response, adding, by the binder
component a second function to the calling-con
vention information of the first function in the

5

10

15

25

30

35

40

45

50

55

60

65

10
debug data, wherein calling the second function in
the binding component results in calling the first
function in the first program component; and

return the binding component to the second program
component, wherein the second function in the binding
component is callable by the second program compo
nent at runtime.

9. The non-transitory computer readable storage medium
of claim 8, wherein the creation of the binding component
comprises automatic creation of the binding component
without manual provision of the calling-convention infor
mation for the functions of the first program component.

10. The non-transitory computer readable storage medium
of claim 8, wherein the second function converts data or
function types between the first language and the second
language.

11. The non-transitory computer readable storage medium
of claim 8, wherein the processing device is further to:

call the second function of the binding component to
access the first function of the first program component.

12. The non-transitory computer readable storage medium
of claim 8, wherein the first program component is a library
in a C programming language.

13. The non-transitory computer readable storage medium
of claim 8, wherein the second program component is in the
Python or C# programming language.

14. The non-transitory computer readable storage medium
of claim 8, wherein the debug data is in a debug with
arbitrary record format (DWARF), a stabs debug format, a
common object file format (COFF), or a relocatable object
format (OMF).

15. A system comprising:
an interface to receive a request to access a first program

component from a second program component at run
time of the second program component in a language
runtime environment provided by the processing
device, wherein the first program component is in a first
language, wherein the second program component and
the language runtime environment are in a second
language, and wherein the first language is different
than the second language; and

the processing device operatively coupled to the interface
and operatively coupled to a memory, the processing
device to:
in response to receiving the request:

automatically import, from a binder component file
stored in persistent storage, a binder component in
the second language into the language runtime
environment in response to an import command in
the second program component;

initiate a process to access and analyze debug data of
the first program component, wherein the debug
data is stored in the persistent storage, the debug
data is generated by a compiler for the first lan
guage during compilation of the first program
component, and wherein the debug data comprises
calling-convention information for one or more
functions in the first program component;

create a binding component in the second language
by the binder component in the language runtime
environment wherein the binder component iter
ates through the debug data of the first program
component, wherein creating the binding compo
nent comprises determining, by the binder com
ponent, that a list of functions in the debug data
identifies a first function and, in response, adding,
by the binder component a second function to the

US 9,639,375 B2
11

calling-convention information of the first func
tion in the debug data, and wherein calling the
second function in the binding component results
in calling the first function in the first program
component; and

return the binding component to the to the second pro
gram component, wherein the second function in the
binding component is callable by the second program
component at runtime.

16. The system of claim 15, wherein the creation of the
binding component comprises automatic creation of the
binding component by the binder without manual provision
of the calling-convention information for the functions of
the first program component.

17. The system of claim 15, wherein the second function
converts data or function types between the first language
and the second language.

18. The system of claim 15, wherein the processing device
is further to:

call the second function of the binding component to
access the first function of the first program component.

19. The system of claim 15, wherein the first program
component is a library in a C programming language.

20. The system of claim 15, wherein the second program
component is in the Python or C# programming language.

21. The system of claim 15, wherein the debug data is in
a debug with arbitrary record format (DWARF), a stabs
debug format, a common object file format (COFF), or a
relocatable object format (OMF).

k k k k k

10

15

25

30

12

