
United States Patent

USOO9633393B2

(12) (10) Patent No.: US 9,633,393 B2
Mast (45) Date of Patent: Apr. 25, 2017

(54) EXTENSIBLE SOFTWARE ARCHITECTURE 6,686,908 B1* 2/2004 Kobayashi 345,173
FOR PROCESSING LEVEL 2 FINANCIAL 2002fOO55899 A1* 5, 2002 Williams 705/37
DATA 2003/001855.0 A1 1/2003 Rotman et al. 705/35

2007/0143198 A1 6/2007 Brandes et al.
2007,0294162 A1 12/2007 Borkovec

(75) Inventor: Jason Mast, Algonquin, IL (US) 2008.01.07272 A1* 5/2008 Carmeli et al. 380,278

(73) Assignee: International Business Machines FOREIGN PATENT DOCUMENTS
Corporation, Armonk, NY (US)

JP 2005202977 A 7/2005

(*) Notice: Subject to any disclaimer, the term of this * cited b
patent is extended or adjusted under 35 c1ted by examiner
U.S.C. 154(b) by 1752 days. Primary Examiner — Jennifer Liu

(21) Appl. No.: 12/774,787 Assistant Examiner — Chia Yi Liu
(74) Attorney, Agent, or Firm — Steven M. Greenberg,

(22) Filed: May 6, 2010 Esq.; CRGO Law

(65) Prior Publication Data (57) ABSTRACT

US 2011 FO2767O7 A1 Nov. 10, 2011 The present invention processes and distributes Level 2
financial data. This invention comprises a constituent com

(51) Int. Cl. ponent that identifies various pieces of information that are
G06O 20/04 (2012.01) contained in Stock feeds. These pieces of information are
G06O 40/04 (2012.01) identified and keys are generated based on the various pieces

(52) U.S. Cl. of information and combinations of pieces of information.
CPC G06O 40/04 (2013.01) The information in the incoming stock feeds can be sorted

(58) Field of Classification Search and processed based on a particular key or keys depending
USPC . 7 05/35 45 on the desires of a particular client. In addition, new keys
See application file for complete search history. can be generated based on the preference of a particular

client. This flexibility to create the various keys to be used
(56) References Cited to process feed information is different from conventional

U.S. PATENT DOCUMENTS methods that use only a standard set of sorting and process
ing criteria for all feeds and for all clients.

4,486,853 A 12, 1984 Parsons 345,418
6,049,391 A * 4/2000 Farrell 358,115 14 Claims, 6 Drawing Sheets

US 9,633,393 B2 Sheet 2 of 6 Apr. 25, 2017 U.S. Patent

;--~~~~~~.~~~~~ ~~~~.~~~~~ ~~~~~~~*~~~~);
*WXXxxxxxWWWWWWWWWWXSaaaaaaaaaaaakawa.

•••••••• • *************************

----------------Ya-YY

~~~~ ~~~~~.~~~~ ~~~~.~~~~ ~~~~************** 

;-(--~~~~~~'+'~~~~*~*~~~~'+'~~~~*********** s's SY'''''S 

¿ž?ž???žž**********************? 
88: 

• × × × × 

xxxx xxx... x X xx xxxx x. 

Sisy Yxxxx 

syssssssssssssssssssssssssssssssssssssssss 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
  

  

  

  

  









U.S. Patent Apr. 25, 2017 Sheet 6 of 6 US 9,633,393 B2 

-- s.r. 

A a a AA a A.A. K. 4x4 www.ww. 

  

  

  

  



US 9,633,393 B2 
1. 

EXTENSIBLE SOFTWARE ARCHITECTURE 
FOR PROCESSING LEVEL 2 FINANCIAL 

DATA 

FIELD OF THE INVENTION 

This invention relates to an architecture for processing 
level 2 financial data and in particular this invention relates 
to a method and system for expanded processing of financial 
data from raw financial data feeds using newly identified 
processing criteria and using newly created processing 
architectures to produce custom sets of processed level 2 
financial as desired by a particular client. The present 
invention further provides architectures that will translate 
the newly processed custom data sets into output formats 
that are compatible with client’s current output devices. 

BACKGROUND OF THE INVENTION 

A nerve center for any financial system is the stock market 
exchange. A stock market exchange is an organized and 
regulated financial market where securities (bonds, notes, 
shares) are bought and sold at prices governed by the forces 
of demand and Supply. Stock exchanges basically serve as 
(1) primary markets where corporations, governments, 
municipalities, and other incorporated bodies can raise capi 
tal by channeling savings of the investors into productive 
ventures; and (2) secondary markets where investors can sell 
their securities to other investors for cash, thus reducing the 
risk of investment and maintaining liquidity in the system. 
Stock exchanges impose stringent rules, listing require 
ments, and statutory requirements that are binding on all 
listed and trading parties. Trades in the older exchanges are 
conducted on the floor (called the trading floor) of the 
exchange itself, by shouting orders and instructions (called 
open outcry system). On modern exchanges, trades are 
conducted over telephone or online. Almost all exchanges 
are auction exchanges where buyers enter competitive bids 
and sellers enter competitive orders through a trading day. 
Some European exchanges, however, use periodic auction 
method in which round-robin calls are made once a trading 
day. The first stock exchange was opened in Amsterdam in 
1602; the three largest exchanges in the world are (in the 
descending order) New York Stock Exchange (NYSE), 
London Stock Exchange (LSE), and the Tokyo Stock 
Exchange (TSE). 

Stock market data is presented at various levels. Level 1 
data is the high-level that typical investors such as individu 
als usually view stock information. FIG. 1 provides a high 
level Snapshot Level 1 data and how a particular security is 
priced. As shown 1a indicates a hid is the price at which one 
can sell. The price shown on the screen is the highest/best 
bid currently available in the market. The offer 1b is the 
price at which you can buy. The price shown on the Screen 
is the lowest/best bid currently available in the market. 1c is 
the name of the particular security. The company code 1d is 
a unique identifier under which a company is traded on the 
London Stock Exchange. Codes for companies will nor 
mally be made up of three or four letters and are generally 
derived from the Security Name. The previous trading 
period's closing price is indicated by 1e. The normal market 
size (NMS) 1faefines the quantity for what a reasonable size 
trade. The last trade price of a security is indicated by 1g. 
The mid-price of the security is 1h. The mid-price is the 
derived median (halfway point) between the bid and offer 
price. The change in price between the last trade and 
previous closing price is indicated by 1i. The percentage 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
change in price between the last trade and previous closing 
price is indicated by 1j. The trade time 1 k is the time the last 
trade was executed. The current trading periods highest 
price is displayed as 11. The current trading period's lowest 
price is displayed as 1m. The total number of shares traded 
in the period is 1n. 1o shows the quantity of stock bought or 
sold in that last trade. The total number of trades or “bar 
gains' that have been executed during the day is indicated by 
1p. The uncrossing price from the last auction is 14. 1r is the 
auction volume, which is the number of shares crossed in the 
last auction. The value of the stock set at the closing of a 
particular day is 1s. 

While Level 1 data gives a good overview of a security, 
it does not provide any detail as to what is underlying this, 
what orders are waiting to be executed or how this might 
influence the next price move. To get a better insight into 
what is really happening in the market one will need access 
to Level 2 Data. 

Level 2 market data provides the most comprehensive and 
in depth set of data available on trading activity. This means 
more informed trading and investing, through high visibility 
of the factors and trends underlying price movements, all 
updated in real time, all the time. With access to Level 2 
market data one can: 

view the orders awaiting execution on the buy and sell 
side of the order book; 

analyze movements in the price of a security; 
monitor fast moving markets; 
identify trading opportunities; 
help identify iceberg orders or other automated trading 

patterns; and 
utilize a variety of market indicators to make informed 

decisions. 
In addition, with the Level 2 market data one can become a 
price maker as opposed to a price taker by deciding at what 
price to buy or sell and placing the order directly with the 
Exchange's order book via Direct Market Access (DMA). 

Processing real-time level 1 financial data (trade infor 
mation and best bid/ask quotes) is a relatively straightfor 
ward exercise in field normalization and storage. Level 2 
data (a.k.a., depth-of-book, order book, full depth, consoli 
dated book) is more complicated in that it is two-dimen 
sional, higher-volume, and the required storage is not fixed. 
To compound that complexity, the available level 2 feeds 
organize and disseminate data very differently, and different 
customer applications sometimes prefer to see this data 
presented to them in very different ways. For example, some 
of the incoming feeds collect all data at a particular price for 
a stock, adding up all of the advertised liquidity at that price 
and sending it out together. Other feeds show individual 
orders, even if they contain the same price, and they use a 
private unique order id as the key (rather than the stock 
name/price). Clients, however, are not concerned with the 
disparity of incoming data formats, and expect IBM's WFO 
Feed Handler product will mask these details (even blend 
different types of data together). Regardless of the incoming 
format, the client may want to see data separated into orders, 
or aggregated together by price, or maybe by price per 
market maker, or in a variety of other ways, and they may 
want to see that data in different wire formats. The excessive 
permutations of incoming and outgoing data formats present 
a challenge to the feed handler developer. 
The earliest solutions to this problem were very ad hoc. 

When a new level 2 feed became available, a custom 
implementation for that feed would be created. When a 
customer wanted to see data a particular way, the product 
would be customized to support that format. Some vendors 



US 9,633,393 B2 
3 

eventually created more generic systems that could accom 
modate some disparity of incoming data, and organize data 
in a one of a small set of predefined ways. Most recently, a 
Skyler has announced a product that is more dynamic and 
configurable than legacy feed handlers that financial insti 
tutions may be running today see (http://www.skylertech 
.com/solutions/c3 liquidity discovery Solution.php). How 
ever, Skyler's solution is confined to a small subset of 
predefined incoming and outgoing data formats, and is not 
fully extensible. Further, its attempt to maintain dynamic 
per-client views could drain performance. 
A better solution would be a streamlined, modular library 

that was fully fluid and extensible, with a well-thought-out 
architecture that would easily accommodate an array of 
different data feeds, with the agility to organize data in as 
many ways as is fathomable, and with Support for an 
expandable array of well-known or proprietary wire formats. 

Although feeds for Level 2 data contain many different 
pieces of information, in convention processing methods, 
only certain pieces of the feed data are processed. The lack 
of processing other data contained in a Level 2 feed wastes 
much of the information and deprives clients of valuable 
information about the activity of the stock market. There 
remains a need for a system and architecture that can process 
multiple pieces of information from a Level 2 data as desired 
by a client. There also remains a need for an architecture and 
interface that can provide newly processed and costumed 
Level 2 data to clients in formats that are compatible with 
conventional customer display architectures. 

SUMMARY OF THE INVENTION 

The present invention processes and distributes Level 2 
financial data Raw stock information from various stock 
feed sources received and processed. Different stock feeds 
can contain different information. In this invention, a con 
stituent component identifies various pieces of information 
that contained in Stock feeds. These pieces of information 
are identified and keys are generated based on the various 
pieces of information and combinations of pieces of infor 
mation. For example, there can be a key generated for stock 
price. There can be another key generated for the combina 
tion of stock price, number of shares and time of sale. The 
information in the incoming feeds can be sorted and pro 
cessed based on a particular key or keys depending on the 
desires of a particular client. In addition, new keys can be 
generated based on the preference of a particular client. This 
flexibility to create the various keys to be used to process 
feed information is different from conventional methods that 
use only a standard set of Sorting and processing criteria for 
all feeds and for all clients. 
Once the information has been processed according to the 

preference of a client, the information is then transmitted to 
the client. The second component of the invention provides 
an interface that will translate and/or convert the information 
to a form that is compatible with the equipment of the client. 
Because the first component will provide information in 
many new forms, there is a need to have a mechanism that 
will present the information to the client in a manner that 
does not require the client to get new or additional equip 
ment in order to receive and view the information. This 
component of the invention will receive the newly processed 
data and convert it to a form that the client can view on the 
client’s current equipment. The processing of this new 
system will be transparent to the client. With the present 
invention, the client will be able to view information in 
many different, but on the client’s current equipment. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
The first component of the Order book Engine API is its 

paradigm of generating dynamic keys based on its order data 
model. The Order book Engine API uses a custom, gener 
alized structure for modeling any Order book data and then 
feeds that structure into a key generator module. From that 
comes a key value that is used to identify an Order book 
constituent in a data table, to which the incoming order 
data is applied. This is Superior to the classic order man 
agement systems, because it does not pigeonhole data orga 
nization into market by price' or market by order. Rather, 
the data can be organized in a vast number of ways depend 
ing on the functionality of the key generator that is used. A 
developer could easily write his or her own key generator 
and plug it in for their own custom data organization. It 
could be loaded in as a shared object library, or one could 
write a dynamic key generator that changes in real time, 
Such as the result of a client request. 
The second component of the Order book Engine API is 

its network of managers and publishers. Managers and 
publishers have a clear, well-defined interface and they can 
be swapped out and plugged in. The different implementa 
tions and arrangement of these components determine how 
the data appears to the client. The manager component is 
just a collection of constituents, grouped as defined by each 
manager's key generator. The publisher component is 
responsible for receiving constituent updates and translating 
to a particular wire format for client consumption. These 
managers and publishers can be strung together as necessary 
to create multiple complex data formats for consumption by 
downstream client applications. This is Superior to the 
existing order book management technologies in that it has 
a very organized structure, it can accommodate multiple 
simultaneous data formats, and it is fully extensible. For 
example, IBM services could quickly develop a proprietary 
publisher for a customer that desires to see order book data 
in its own home-grown format. Further, as they are imple 
mented as separate components with rigid interfaces, the 
components can be spread out across processes, hardware, 
and networks for Scalability purposes. 

DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an illustration of Level 1 security data and the 
buying and selling activity of a particular security. 

FIG. 2 is a block diagram view of a configuration of the 
architecture of the present invention. 

FIG.3 is system view of the elements in the key generator 
component of the present invention. 

FIG. 4 is a table that describes various pieces of infor 
mation contained in a security feed. 

FIG. 5 is an example of field value pairs of Level 2 
publisher output data. 

FIG. 6 is an example of a table view of full grid publisher 
output data. 

FIG. 7 illustrates event record publisher mapping of order 
data to IT record fields. 

FIG. 8 is an example current constituent key generator 
COnStantS. 

FIG. 9 is an example of current book manager flags. 
FIG. 10 is an illustration of current publication type 

constant values. 
FIG. 11 is an illustration of current instrument key gen 

eration values. 

DETAILED DESCRIPTION OF THE 
INVENTION 

LEVEL2 data management adds a degree of complexity 
over LEVEL1 data management. Instead of one-dimen 



US 9,633,393 B2 
5 

sional quote and trade information, LEVEL2 data entails a 
two-dimensional view of the market. What's more, the 
various LEVEL2 data feeds are less consistent in modeling 
their data than their LEVEL1 counterparts. Likewise, down 
stream consumer applications are more diverse and require 5 
that their feed handlers organize the LEVEL2 data in a 
variety of ways, depending on the application. Considering 
these factors, it is important to have toolkit for developing 
LEVEL2 feed handlers that can accommodate the various 
input and output requirements, while maintaining a clean 10 
and intuitive interface. The Order Book Engine API is 
intended to be such a toolkit. 
The Order book Engine API is identified by the mds.it 

Book Manager component of the WFO Platform. It is a 
shared object library with accompanying header files that 15 
can be used within a specific feed handler implementation. 
At the highest level, it uses the notion of a manager and a 
publisher. The manager is responsible for organizing data 
in a normalized fashion, while the publisher facilitates 
dissemination of data to downstream clients in a variety of 20 
formats. Managers and publishers can be constructed in a 
hierarchical fashion, allowing for complex data views that 
can be managed and published simultaneously. 
The present invention is a method and architecture that 

will increase the capability of processing multiple pieces of 25 
Level 2 financial information contained in a Level 2 security 
data feed. FIG. 2 is a high-level illustration of the architec 
ture in the system of the present invention. At its surface, the 
Order book Engine API is a toolkit used to develop the 
LEVEL2 functionality of a feed handler. The Order book 30 
Engine is comprised of a network of Book Managers and 
Book Publishers. A feed handler will read and parse a raw 
feed, normalize the data to the Order book Engine API 
format, and submit it. The data will then flow through the 
Order book Engine to generate output in the desired format. 35 

In FIG. 2, a raw security feed 202 is received into the 
system architecture of the present invention. The raw feed 
goes into feed normalizer. The constituent component will 
analyze the data contained in the feed accounting predefined 
criteria certain information contained in the security feed. 40 
The configuration of FIG. 2 illustrates the constituent com 
ponent as three book managers. Each book manager con 
tains a key generator to help generalize how data is stored 
and accessed. FIG. 3 will further illustrate the functions of 
the key generator. In FIG. 2, the book managers 204, 206 45 
and 208 are configured such that three outputs from the book 
managers are generated, fed to book publisher components 
210, 212 and 214 and then presented to clients 216, 218 and 
220. The book managers are configured in series and parallel 
arrangements. In the series arrangement the information is 50 
feed from one book manager 204 to a second book manager 
206 and then to book publisher 212. In the second series 
arrangement, information is fed from book manager 204 to 
book manager 208 and then to book publisher 214. In the 
third series arrangement, information is fed from book 55 
manager 204 directly to book publisher 210. As shown, 
information from the raw feed enters book manager 204 and 
is processed using at least one generated key. In the first two 
arrangements, the information is processed in the first book 
manager and then transmitted to the second book manager 60 
for additional processing before being sent to the client 216. 
The information from the first book manager can go through 
the second book manager as is or the processed data from the 
first book manager can be further processed in the second 
hook manager. The processing will depend on the desires of 65 
the client requesting the information. The parallel process 
ing capabilities for this invention are evident in the capa 

6 
bility to process three different client requests at one time. 
Another example of parallel capability is ability to process 
information for one client request on two different machines. 
As mentioned each book manager contains a key genera 

tor to help generalize how data is stored and accessed. FIG. 
3 further illustrates the functions of the key generator. The 
Order hook Engine API uses a custom, generalized structure 
for modeling any Order book data and then feeds that 
structure into a key generator module. From that comes a 
key value that is used to identify an Order book constituent 
in a data table, to which the incoming order data is applied. 
The Order book Engine API uses a custom, generalized 
structure for modeling any table data. In terms of what a 
stock market trader considers an order, our notion of an 
order may actually be a sub-section of an order, or it may 
be a collection of orders. This is simply how the feed 
provider decided to arrange their data). 

In an embodiment of the present invention, a C++ class is 
used to collect the following data items for an order: 
Symbol, MMID, Order ID, Market Side, Current Size, Delta 
Size, Price, Timestamp, Sequence Number, Feed ID, Num 
ber of Orders. The feed handler implementation need only 
normalize the incoming level 2 feed into this universal class. 
The order object is then fed into the configured key genera 
tor (see attached diagram: KeyGen Illustration.jpg). From 
that comes a key value that is used to map this order into an 
Order book constituent (a term used to describe a distinct 
entity of Order book data as it is organized by the Order 
book Engine. Data-wise, a constituent is the same as an 
order). The value of the generated key for the incoming 
order maps the order to an arbitrary collection of data. As 
orders come and go that map to that collection, the Order 
book. Engine API merges those incoming orders into the 
stored constituents such that the constituents become sepa 
rate, modular entities of their own. 
The current implementation of the key generator is simply 

as a function. The more appropriate implementation is as a 
class that is derived from the abstract base key generator. 
The derived class then can have its own private data that it 
may use to intelligently produce a usable key from incoming 
order data. Any implementation of the key generator that 
conforms to the interface of the abstract key generator base 
class can be plugged in and used by the Order book engine. 

Referring to FIG. 3, data is received at the Feed normal 
izer 300. After data normalization, block 302 orders the 
normalized objects. These normalized objects are then feed 
into a dynamic key generator 304 which generates keys for 
the data. These generated keys can then be stored in a 
constituent cache 306. An alternate configuration can com 
prise a Feed normalize, an Order Book Engine and Middle 
Wae. 

How the key generator turns an incoming order into a key 
determines how the data is ultimately sorted. If the key 
generator simply uses the feed-Supplied orderidas its output 
key, then the incoming data will map one-to-one with the 
stored constituents (since the originating feed ultimately 
uses the same key for its organization). If the key generator 
creates a complex key based on the order's symbol, feed id, 
market maker code, and price, then the incoming orders will 
ultimately map to a set of buckets, each bucket aggregating 
a set of orders that match this criteria. This is superior to the 
classic order management systems, because it does not 
pigeonhole data organization into market by price' or 
market by order. Rather, the data can be organized in a vast 
number of ways depending on the functionality of the key 
generator that is used. These key generators have a clear 
interface, such that different key generators can be plugged 



US 9,633,393 B2 
7 

into the system at any time. Some common key generators 
have been implemented to satisfy some typical require 
ments, but a developer could easily write their own key 
generator and plug it in for their own custom data organi 
zation. The new key generators can be built into the Order 
book Engine API, or they could be loaded in at runtime as 
a shared object library. Also, a dynamic key generator could 
be developed that changes in real time, such as the result of 
a client request, for on-the-fly data organization. 
The Order instance parameter shown in the table FIG. 4 

is the class responsible for encapsulating a LEVEL2 con 
stituent. The Book Engine as a whole uses this class heavily 
to organize data and pass it between processing layers. In 
Some cases, the Book Engine may maintain a sorted list of 
Order Instances. Specifically, when the Book Engine is 
maintaining its data based on position relative to other 
constituents, a doubly-linked list is used. The Order instance 
inherits from the DLinkElement class so that it can be 
seamlessly inserted into Such a list. In some cases, the Book 
Engine may maintain a sorted list of Order Instances. 
Specifically, when the Book Engine is maintaining its data 
based on position relative to other constituents, a doubly 
linked lists is used. The Order instance inherits from the 
DLinkElement class so that it can be seamlessly inserted 
into Such a list. As shown, this table contains the name of a 
parameter, the data type for that parameter and a description 
of the parameter. In some cases, the Book Engine may 
maintain a sorted list of Order Instances. Specifically, when 
the Book Engine is maintaining its data based on position 
relative to other constituents, a doubly-linked list is used. 
The Order instance inherits from the DLinkElement class so 
that it can be seamlessly inserted into such a list. In some 
cases, the Book Engine may maintain a sorted list of Order 
Instances. Specifically, when the Book Engine is maintain 
ing its databased on position relative to other constituents, 
a doubly-linked list is used. The Order instance inherits from 
the DLinkElement class so that it can be seamlessly inserted 
into such a list. The Order instance object is very common 
and fundamental, and can be created and destroyed quite 
regularly. Due to performance considerations, the applica 
tion programmer should reuse Order instance objects when 
possible. Additionally, each Book Engine maintains a pool 
of unused objects that it pulls from when new instances are 
required. The Order Instance class is derived from ITPool 
item for this reason. The Book Engine stores its Key 
Generator, which must be passed in on construction. That 
Key Generator is paramount in determining how the Book 
Engine will have its data organized. Every Book Engine 
operation will require an Order Instance, which will be 
passed to the Key Generator to map to a stored constituent. 
Book Engines can be set up hierarchically. The most 

common example is when an incoming feed lacks all 
required data in update messages. Fields like symbol and 
price may only be available when orders are initially added, 
and Subsequent updates to those orders may only carry an 
order identifier and the data that is changed. In that case, it 
is necessary to have a Book Engine configured to use a Key 
Generator that requires only Order ID. In that case, when an 
update arrives, the Book Engine will pass the (data deficient) 
Order Instance to the Key Generator, which will create a 
valid key based only on Order ID. That key is used to lookup 
the constituent in the Order Map, which contains all of the 
constituent information as it was received in an earlier add 
event. Once the incoming data has been applied to a con 
stituent, it is that updated Order Instance that is passed on to 
all Book Managers that exist in the managers linked list. In 
the previous example, the second tier Book Manager will 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
have the complete constituent information in every call, at 
which point it is free to use more complex Key Generators. 
For example, the second tier manager in this case can 
reorganize the data by symbol, price, and feed id. 

Second (third, etc.) tier Book Managers can also be used 
to simply maintain multiple views on the same data simul 
taneously for the benefit of the downstream clients. Next-tier 
managers are added to a Book Engine using the addMan 
ager() method, although it is normally done automatically 
through the use of the Book Configure utility. 

Similar to the list of managers to which data can get 
passed off, each Book Engine will maintain a list of pub 
lishers that data can get passed to. A publisher is like a 
termination point: the data that the Book Engine provides 
will be transformed into some publishable data type and sent 
out to all interested clients. The Order Book Engine API can 
Support multiple data formats in a single Book Engine by 
attaching the desired Book Publishers. 
The Book Publisher receives the processed data from the 

Book Manager and prepares the data for transmission to the 
client. Book publishers are added to a Book Engine using the 
addPublisher( ) method. Again, this is normally done 
through the Book Configure utility. 
The Book Publisher is analogous to a leaf of the Book 

Engine. The potential network of Book Managers terminates 
at one or more Book Publishers. The Book Publishers are 
responsible for translating processed constituent data into a 
publishable instrument. A Book Publisher may use any data 
model So long as the proper interface is honored. That 
interface is very similar to that of the Book Manager: add( 
), update(), and remove() methods are required. Those are 
the only three entry points into the Book Publisher. 
The Book Publishers use an instrument Key Generator to 

determine the name of the publishable object to which they 
will apply their data. The Key Generator accepts an Order 
Instance and from it derives a string that represents the 
instruments name from the perspective of the middleware. 
The simplest instrument Key Generator will use the Order 
Instance's symbol field only. In that case, client applica 
tions would make requests using the symbol only. Another 
common instrument Key Generator constructs a name using 
both the symbol and the market maker identifier. This 
facilitates an MMID-centric view of the Order Book, and it 
saves the client the hassle of filtering. There is no limit on 
the number of Book Publishers that can be implemented. 
Initially, Book Publisher implementations were created to 
fully mimic the legacy publish formats of the ITOB. Cur 
rently, there are four distinct Book Publishers available. 

This publishing format requires that price level manage 
ment is enabled in the Book Manager. This publisher uses 
that price level sorting to organize the constituent data into 
a set of predefined ITRecord fields. Since the names and 
definitions of those record fields are static, there must be a 
maximum number of price levels Supported. That maximum 
is a configurable value. FIG. 5 is an example of Field-Value 
Pairs of a level record publisher output. The IT Record is an 
ASCII-only data format, so all of the Order Instance data 
must be appropriately translated within the Level Record 
Publisher. 

Another publisher format for output data is the full grid 
publisher format shown in FIG. 6. This publishing format is 
similar to the Level Record Publisher, with similar fields and 
ASCII data. The dynamic columns of the ITGrid data are 
created to parallel the IT Record fields in the table above. 
However, since the ITGrid has a dynamic list of rows, there 
does not need to be a configured maximum depth to Support. 
Further, the rows of data in the ITGrids are not sorted by 



US 9,633,393 B2 
9 

price, as they are in the Level Record Publisher. It is worth 
noting that the Full Grid Publisher currently tends to be the 
most expensive of the existing publishers processing-wise. 

The Full Grid Publisher, which mimics the legacy ITOB 
ITGrid publishing format, does not contain a column for 
market side. Therefore, in order to distinguish between 
bid side and ‘ask’ side, the instrument Key Generator for 
a Full Grid Publisher must consider the market side of each 
Order Instance. Essentially that means that the instrument 
name format for the Full Grid Publisher will be something 
like IBM BID and IBM ASK, which the client must 
then request separately. 

The Full rid Publisher maintains a complete view of data 
in a single object. If a client application requests an ITGrid 
that is being maintained by the Full Grid Publisher, then the 
underlying ITCL has a complete image sitting in its cache 
that it will forward on to the client. An Event Record 
Publisher on the other hand publishes only the current 
updates as they arrive. In order to maintain a full Order Book 
view in that case, a client application must collect all event 
record updates as they occur and maintain their own data 
structures. The Event Record Publisher performs a simple 
mapping of the incoming Order Instance into a predefined 
set of record fields. This mapping is illustrated in FIG. 7. 
A Native Publisher format uses a custom data type 

specific to the Order Book Engine API to disseminate data. 
It utilizes an ITBook Message class that is derived from the 
ITCL's ITRequest so that it may be serialized and move 
around within WFO middleware. Just like with the Event 
Record Publisher, only the most recent update is stored and 
forwarded to clients. The Native Publisher will send out an 
ITBook Message with the appropriate add/update/remove 
opcode, as well as a price position (if available), and all of 
the Order Instance data. The ITBook Message uses binary 
serialization. 
The feed handler is responsible for parsing incoming data 

and normalizing that data into Order Instances to be passed 
into a Book Engine. Through a complex hierarchy of Book 
Managers, Book Publishers, and Key Generators, that Book 
Engine has the ability to provide client applications with an 
extensive variety of views of that normalized feed data. The 
feed handler does not need to explicitly parse a configuration 
file and attempt to create the hierarchy of elements to create 
the desired data view(s). The BookConfigure class contains 
a set of static methods that can be used for this purpose. 

For the feed handler programmer, obtaining a usable 
Book Engine instance is straightforward and breaks down to 
a single BookConfigure call. This call requires properly 
initialized WFO server platform (mds.itsp) components to 
function. Therefore, the Order book Engine API as a whole 
has a hard dependency on the WFO server platform. 
When creating a Book Manager, the getBook Engine 

method utilizes the ITConfigClass object that is stored in the 
ITBaseFeed and Record Server objects. Using this configu 
ration class, configuration entries are parsed and applied to 
create the desired data view. With this approach, different 
groups of configuration entries can be distinguished by their 
unique names. The following configuration syntax should be 
used to create Book Managers: 
GENERIC ENTRY BOOKMGR CREATE name con 
stituent keygen:flags 
The name component should match the name of the 

Book Manager to be created. That will either be the name 
that is passed into the getBook Engine method or the name 
of a next tier manager, which can be added using a separate 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
entry. FIG. 8 shows current constituent keygen constants 
used to create a book manager. FIG. 9 shows current Book 
Manager flags. 

Referring to FIG. 9, when BOOKMGR OPT UNIQUE 
is set, the Book Engine will log a warning and replace the 
existing order when an add() is called that resolves to a key 
that is already stored in the Book Engine. When this flag is 
NOT set, calls to add( ) with duplicate keys are expected, 
and the number of orders and number of shares will be 
aggregated among all constituents that resolve to the same 
key. The BOOKMGR OPT THREADSAFE should only 
be set when it is necessary for the Book Engine to be 
accessed from separate threads. In our typical server archi 
tecture, only a single port would manage a Book Engine, so 
this flag should not be used, as it degrades performance. The 
BOOKMGR OPT ORDERED will engage the price Man 
ager structure in the Book Engine. In that case, constituents 
are maintained in a price-Sorted list for each symbol in the 
Book Engine's cache. Any operation will then be published 
along with the associated price level of the update constitu 
ent. 

Book Publishers are also created with a specific syntax. 
When creating a Book Publisher, the following configura 
tion syntax should be used: 
GENERIC ENTRY BOOKPUB CREATE name pub 
type const: instrument keygen 
The name component should match the name of a pub 
lisher that has been added to an active Book Manager as 
shown in FIG. 10. FIG. 10 shows current pub type const 
values. FIG. 11 shows current instrument keygen values. 

In order to put the configured Book Managers and Book 
Publishers to work in the manner intended, the relationships 
between these components must be laid out. As described 
above, the getBook Engine method will return the Book 
Engine object based on the name passed into this method 
and the corresponding. BOOKMGR CREATE XXX entry 
to match. The following configuration entry will append an 
additional, next-tier Book Manager to the list that the 
primary Book Engine will dispatch to: 
GENERIC ENTRY BOOKMGR ADDMGR name new 
name 
The name component must match the name passed into 
getBook Engine. Likewise, there should also be a BOOK 
MGR CREATE new name entry that will define the 
operation of this new Book Manager. Using this same 
mechanism iteratively, it is possible to chain different Book 
Managers together in different fashions to achieve the 
desired effect. 

In the same way, the publishers that are configured can be 
appended to any of the created book managers to create an 
endpoint and determine how data will be represented at that 
endpoint. The configuration entry syntax is very similar to 
the entry already shown in the above-described figures. 

It is important to note that while the present invention has 
been described in the context of a fully functioning data 
processing system, those skilled in the art will appreciate 
that the processes of the present invention are capable of 
being distributed in the form of instructions in a computer 
readable storage medium and a variety of other forms, 
regardless of the particular type of medium used to carry out 
the distribution. The method of this invention provides 
significant advantages over the current art. The invention has 
been described in connection with its preferred embodi 
ments. However, it is not limited thereto. Changes, varia 
tions and modification to the basic design may be made 
without departing from the inventive concepts in this inven 
tion. In addition, these changes, variations and modifications 



US 9,633,393 B2 
11 

would be obvious to those skilled in the art having the 
benefit of the foregoing teachings. All such changes, varia 
tions and modifications are intended to be within the scope 
of this invention. 

I claim: 
1. A system for processing level two financial data, the 

System having an extensible software architecture and com 
prising: 

a computing device having computing capabilities and 
capable of executing an extendible software architec 
ture: 

a stock feed normalizer for receiving and processing raw 
stock information; 

an object orderer for receiving a normalized stock infor 
mation in a stock feed; 

a constituent component which will analyze the data 
contained in the feed accounting predefined criteria, 
said constituent component comprising a dynamic key 
generator for creating keys for processing stock infor 
mation according to predetermined criteria of a par 
ticular client; and 

a book publisher for receiving processed data from said 
constituent component and then formatting the 
received processed data for delivery to a client, the data 
being formatted in accordance with parameters prede 
termined by the client. 

2. The system for processing two financial data as 
described in claim 1 wherein said constituent component is 
a book manager. 

3. The system for processing two financial data as 
described in claim 1 further comprising a plurality of 
constituent components. 

4. The system for processing two financial data as 
described in claim 3 wherein said plurality of constituent 
components are arranged in a series configuration such that 
information is sequentially transmitted from one constituent 
component to another constituent component. 

5. The system for processing two financial data as 
described in claim 1 wherein said constituent component 
further comprises a constituent cache for storing generated 
keys. 

6. The system for processing two financial data as 
described in claim 1 further comprising a book configuration 
utility for adding a constituent component or book publisher 
to the software architecture. 

7. A method for processing level two financial data on an 
extensible software architecture comprising the steps of: 

receiving, on a computing device having an extensible 
software architecture, a feed of raw financial data; 

identifying a set of parameters for analyzing the received 
financial data; 

normalizing the raw financial data; generating, at a book 
manager, one or more keys for processing the received 
data based on the set of identified parameters: 

processing the received financial data using the generated 
keys; 

10 

15 

25 

30 

35 

40 

45 

50 

55 

12 
transmitting the processed financial data to a book pub 

lisher component; 
formatting the received processed financial data at the 
book publisher in accordance with predetermined cri 
teria from a client; and 

transmitting the processed and formatted data to the client 
in a format determined by a predetermined set of 
parameters of a particular client. 

8. The method for processing level two financial data as 
described in claim 7 further comprising before said financial 
data receiving step, the step of configuring hierarchical 
Software architecture for processing level two financial data. 

9. The method for processing level two financial data as 
described in claim 8 wherein said step of transmitting 
processed and formatted data to the client further comprises 
simultaneously maintaining multiple views of data for 
downstream clients. 

10. The method for processing level two financial data as 
described in claim 8 further comprising maintaining a list of 
book publishers in the software architecture that can receive 
data. 

11. A computer program product in a computer readable 
storage medium for processing level two financial data 
comprising: 

instructions receiving a feed of raw financial data; 
instructions identifying a set of parameters for analyzing 

the received financial data; 
instructions normalizing the raw financial data; instruc 

tions generating, at a book manager, one or more keys 
for processing the received data based on the set of 
identified parameters of a particular client; 

instructions processing the received financial data using 
the generated keys; 

instructions transmitting the processed financial data to a 
book publisher component; 

instructions formatting the received processed financial 
data at the book publisher in accordance with prede 
termined criteria from a client; and 

instructions transmitting the processed and formatted data 
to the client in a format determined by a predetermined 
set of parameters. 

12. The computer program product for processing level 
two financial data as described in claim 11 further compris 
ing before said financial data receiving instructions, instruc 
tions configuring hierarchical software architecture for pro 
cessing level two financial data. 

13. The computer program product for processing level 
two financial data as described in claim 12 wherein said 
instructions transmitting processed and formatted data to the 
client further comprises instructions simultaneously main 
taining multiple views of data far downstream clients. 

14. The computer program product for processing level 
two financial data as described in claim 12 further compris 
ing instructions maintaining a list of book publishers in the 
software architecture that can receive data. 


