
US009632947B2

(12) United States Patent (10) Patent No.: US 9,632,947 B2
AVudaiyappan et al. (45) Date of Patent: Apr. 25, 2017

(54) SYSTEMS AND METHODS FOR ACQUIRING (56) References Cited
DATA FOR LOADS AT DIFFERENT ACCESS
TIMES FROM HERARCHICAL SOURCES U.S. PATENT DOCUMENTS

USING A LOAD QUEUE AS A TEMPORARY
STORAGE BUFFER AND COMPLETING 15. A 1999 et al.
THE LOAD EARLY 5,301,287 A 4, 1994. Herrell et al.

5,513,344 A 4/1996 Nakamura
(71) Applicant: Intel Corporation, Santa Clara, CA 5,603,010 A 2f1997 Dodd et al.

(US) 5,767.856 A * 6/1998 Peterson GO6T 1/20
345,422

ck
(72) Inventors: Karthikeyan AVudaiyappan, 5,920,889 A 7/1999 Petrick G06F le:

Sunnyvale, CA (US); Paul G. Chan, 5,983,332 A 11/1999 Watkins
Oakland, CA (US) 6,021,485. A * 2/2000 Feiste G06F 9,3816

T12/216
(73) Assignee: Intel Corporation, Santa Clara, CA 6,041,387 A * 3/2000 Fleck GO6F9,30032

(US) T11 100
6,141,747 A * 10/2000 Witt G06F 9,3826

(*) Notice: Subject to any disclaimer, the term of this 6.215,497 B1 4/2001 Leung T11 138
patent is extended or adjusted under 35 6,366,984 B1* 42002 Carmean. G06F 12/0804
U.S.C. 154(b) by 109 days. 710, 52

Continued (21) Appl. No.: 13/970,277 (Continued)

(22) Filed: Aug. 19, 2013 Primary Examiner — Sheng-Jen Tsai
(74) Attorney, Agent, or Firm — Nicholson, De Vos,

(65) Prior Publication Data Webster & Elliot, LLP

US 2015/OO523O3 A1 Feb. 19, 2015
(57) ABSTRACT

51) Int. C. (51) In A method for acquiring cache line data associated with a G06F 12/00 (2006.01) Cu1r1ng
G06F 3/00 (2006.01) load from respective hierarchical cache data storage com
G06F 3/28 (2006.015 ponents. As a part of the method, a store queue is accessed
G06F 2/0897 (2016.015 for one or more portions of a cache line associated with a
G06F 2/0855 (201 6,015 load, and, if the one or more portions of the cache line is held

(52) U.S. Cl in the store queue, the one or more portions of the cache line
CPC G06F 12/0897 (2013.01); G06F 12/0859 is stored in a load queue location associated with the load.

- - - - - - • u. fs (2013.01) The load is completed if the one or more portions of the
cache line stored in the load queue location includes all

(58) Field of ClassificationaryO897: GO6F 12/0859 portions of the cache line associated with the load.
USPC .. 711/122
See application file for complete search history. 18 Claims, 5 Drawing Sheets

30

33

"
Aydate Axuired is 37

315 - loads complated

US 9,632.947 B2
Page 2

(56) References Cited 2008/0082794 A1* 4, 2008 Yu G06F 9,3824
T12/218

U.S. PATENT DOCUMENTS 2009.008951.0 A1 4/2009 Lee et al.
2009/0150622 A1 6/2009 Allen, Jr. et al.

6,401,192 B1* 6/2002 Schroter GO6F9,383 2010.0011166 A1 1/2010 Yu et al.
711 137 2010/0049952 A1* 2/2010 Eddy G06F 9,3834

6,457,075 B1 9/2002 Koutsoures ck 71.2/223
6,505,277 B1 ck 1, 2003 Arimilli G06F 9,3824 2011/OO40955 A1 2, 2011 Hooker G06F 9,300.43

T11 119 71.2/225
ck 2011/0145513 A1 6/2011 Iyer et al.

6,553,473 B1 * 4/2003 Gaskins G06F .. 2012/0072667 A1 3/2012 Anderson G06F 12fO862
T11,122 ck

6,868,491 B1* 3/2005 Moore Goore, 2013/0212585 A1 8, 2013 Tran GO6F9,30189
T18, 102

7, 177,985 B1* 2/2007 Diefendorff G06F los 2014/0006698 A1* 1/2014 Chappell G06F 12fO842
T11 105

7,334,108 B1 2/2008 Case et al. 2014/00 13027 A1 1/2014 Jannyavula Venkata et al.
7.343,477 B1 3/2008 Thatipelli et al. 2014/0032846 A1* 1/2014 Avudaiyappan ... G06F 12/0895
7,594,079 B2 9/2009 Yu et al. T11,122
9,229,873 B2 * 1/2016 Avudaiyappan ... G06F 12/0895 2014/0032856 A1* 1/2014 Avudaiyappan ... G06F 12/0815

2001 OO13870 A1* 8, 2001 Pentkowski G06F 9,30043 T11 143
345/557 2014/0095784 A1* 4/2014 Tran GO6F 12,1027

2002fO169935 A1* 11, 2002 Krick G06F 12,0831 T11 108
711 167 2014/0173343 A1* 6/2014 Ahmed G06F 11.3648

2003/0005226 A1 1/2003 Hong T14? 30
2003/0018875 A1* 1/2003 Henry G06F 9,3834 2014/0205012 A1* 7, 2014 Lee HO4N 19, 42

T11 203 375,240.16
2003/0056066 A1* 3/2003 Chaudhry ... GO6F 12,0855 2014/0215191 A1* 7/2014 Kanapathipillai ... G06F 9/3834

T11,154 T12/220
2004/O199749 A1* 10, 2004 Golla G06F 9,30043 2014/0317357 A1* 10, 2014 Kaplan G06F 12fO862

T12/218 ck 711 137
2006/003 1641 A1 2/2006 Hataida et al. 2015,0205605 A1* 7, 2015 Abdallah G06F 2.

2006/0179284 A1* 8, 2006 Jensen G06F 2597 2016/0041913 A1* 2/2016 Avudaiyappan ... G06F 12/0895
T11/128

2007/0288725 A1* 12/2007 Luick GO6F93828
71.2/225 * cited by examiner

U.S. Patent Apr. 25, 2017 Sheet 1 of 5 US 9,632,947 B2

100
105

103 103b
103a LOad
Store Cache Coalescing
Cache 1O3d

LOad Queue

103e 101
Store Queue 103C

Cache
Controller

1O7a
Store 107

Coalescing L2 Cache
Cache

109
System Interface

111
Main Memory

Figure 1A

US 9,632,947 B2 Sheet 2 of 5 Apr. 25, 2017 U.S. Patent

990|| eneno peoT

EL ?un61-I

US 9,632,947 B2 Sheet 3 of 5 Apr. 25, 2017 U.S. Patent

peoT

OL 9 Infil

ajouu Jo euo

U.S. Patent Apr. 25, 2017 Sheet 4 of 5 US 9,632,947 B2

201
Data Storage Accessing Component

203
Data Storing Component

Figure 2

U.S. Patent Apr. 25, 2017 Sheet S of 5 US 9,632,947 B2

w

(Start)

-301
^

A Load Request is
ACCessed

V 303
Store Oueue is ACCessed
for One Or More Portions of

a Cache Line

u-1 -> 305
u-1s the Entires

< Cache Line Dai---------------------
^ - Yes Acquired

st

v "
Any Data ACQuired is 307

Stored in the Load Queue

t
Next Level CaChe Data 309

—D Storage Component is -/
ACCessed

313 - 311

- - Y.

NO - \ - Is Data Acquired that N < \ Any Data ACQuired is { Completes ACCuisition >
Stored in the Load Gueue N of the Cache Line -

Figure 3

315 Load is Completed x-r

US 9,632,947 B2
1.

SYSTEMS AND METHODS FOR ACQUIRING
DATA FOR LOADS AT DIFFERENT ACCESS
TIMES FROM HERARCHICAL SOURCES
USING A LOAD QUEUE AS A TEMPORARY
STORAGE BUFFER AND COMPLETING

THE LOAD EARLY

A cache in a central processing unit is a data storage
structure that is used by the central processing unit of a
computer to reduce the average time that it takes to access
memory. It is a memory which stores copies of data that is
located in the most frequently used main memory locations.
Moreover, cache memory is memory that is Smaller and that
may be accessed more quickly than main memory. There are
several different types of caches.

Conventional caches can include separate cache compo
nents that have a hierarchical relationship. For example,
conventional cache systems can include level 1, level 2 and
level 3 cache structures. In a shared memory system that
includes separate cache memory components, it is possible
to have many copies of data: one copy in the main memory
and another copy in one or more cache memory components.
However, the copies can be different.
Cache misses occur when a program accesses a memory

location that is not in the cache. Some conventional proces
sors treat an access of a copy of data that only includes some
of the data that is useful to satisfy a load request as a miss.
When a cache miss occurs, the processor has to wait for the
data to be fetched from the next cache level or from main
memory before it can continue to execute. Accordingly,
cache misses can negatively impact the performance of the
processor. In particular, such processors can exhibit an
unsatisfactory latency that is attributable to the delay that is
associated with fetching cache lines from a next cache level
or main memory.

SUMMARY

Some conventional processors exhibit an unsatisfactory
latency that is attributable to the waiting period that is
associated with fetching data from a next level cache or main
memory. A method for acquiring a cache line associated with
a load from respective hierarchical cache data storage com
ponents is disclosed that addresses these shortcomings.
However, the claimed embodiments are not limited to imple
mentations that address any or all of the aforementioned
shortcomings. As a part of the method, a store queue is
accessed for one or more portions of a cache line associated
with a load, and, if the one or more portions of the cache line
is held in the store queue, the one or more portions of the
cache line is stored in a load queue location associated with
the load. The load is enabled to execute and complete if the
one or more portions of the cache line stored in the load
queue location includes all portions of the cache line asso
ciated with the load. If the store queue does not hold all of
the portions of the cache line associated with the load,
respective cache data storage components are additionally
accessed, in Succession, for one or more portions of the
cache line associated with the load. If one or more portions
of the cache line is held in one or more cache data storage
components of the respective cache data storage compo
nents, the one or more portions of the cache line is stored in
the load queue location associated with the load. The load is
enabled to execute if the one or more cache data storage
components of the respective cache data storage components
provide the one or more portions of the cache line, for
storage in the load queue location, and the provision of the

10

15

25

30

35

40

45

50

55

60

65

2
one or more portions, completes an acquisition of all por
tions of the cache line that is associated with the load.
Accordingly, in a processor with multiple hierarchies of
caches and other sources of data for a load, data can be
collected one or more bytes at a time from each Source so
that when data corresponding to a load is fully satisfied, the
data can be returned to the instruction pipeline without
having to wait for the entire cache line to be brought from
either main memory or the next level of cache.

BRIEF DESCRIPTION OF THE DRAWINGS

The invention, together with further advantages thereof,
may best be understood by reference to the following
description taken in conjunction with the accompanying
drawings in which:

FIG. 1A shows an exemplary operating environment of a
system for acquiring data from hierarchical sources and
using a load queue as temporary storage buffer according to
one embodiment.

FIG. 1B illustrates an exemplary operation of the system
of FIG. 1A, with regard to its accessing of respective cache
data storage components in a predetermined order to acquire
bytes of data that enable the execution of a load operation.

FIG. 1C illustrates operations performed by the system of
FIG. 1A, with regard to its accessing of respective cache
data storage components in a predetermined order to acquire
bytes of data that enable the execution of a load operation.

FIG. 2 shows components of a system for acquiring data
from hierarchical sources and using a load queue as tempo
rary storage according to one embodiment according to one
embodiment.

FIG. 3 shows a flowchart of the steps performed in a
method for acquiring data from hierarchical sources and
using a load queue as temporary storage buffer according to
one embodiment.

It should be noted that like reference numbers refer to like
elements in the figures.

DETAILED DESCRIPTION

Although, the present invention has been described in
connection with one embodiment, the invention is not
intended to be limited to the specific forms set forth herein.
On the contrary, it is intended to cover such alternatives,
modifications, and equivalents as can be reasonably
included within the scope of the invention as defined by the
appended claims.

In the following detailed description, numerous specific
details such as specific method orders, structures, elements,
and connections have been set forth. It is to be understood
however that these and other specific details need not be
utilized to practice embodiments of the present invention. In
other circumstances, well-known structures, elements, or
connections have been omitted, or have not been described
in particular detail in order to avoid unnecessarily obscuring
this description.

References within the specification to “one embodiment”
or “an embodiment are intended to indicate that a particular
feature, structure, or characteristic described in connection
with the embodiment is included in at least one embodiment
of the present invention. The appearance of the phrase “in
one embodiment in various places within the specification
are not necessarily all referring to the same embodiment, nor
are separate or alternative embodiments mutually exclusive
of other embodiments. Moreover, various features are
described which may be exhibited by some embodiments

US 9,632,947 B2
3

and not by others. Similarly, various requirements are
described which may be requirements for some embodi
ments but not other embodiments.
Some portions of the detailed descriptions, which follow,

are presented in terms of procedures, steps, logic blocks,
processing, and other symbolic representations of operations
on data bits within a computer memory. These descriptions
and representations are the means used by those skilled in
the data processing arts to most effectively convey the
substance of their work to others skilled in the art. A
procedure, computer executed step, logic block, process,
etc., is here, and generally, conceived to be a self-consistent
sequence of steps or instructions leading to a desired result.
The steps are those requiring physical manipulations of
physical quantities. Usually, though not necessarily, these
quantities take the form of electrical or magnetic signals of
a computer readable storage medium and are capable of
being stored, transferred, combined, compared, and other
wise manipulated in a computer system. It has proven
convenient at times, principally for reasons of common
usage, to refer to these signals as bits, values, elements,
symbols, characters, terms, numbers, or the like.

It should be borne in mind, however, that all of these and
similar terms are to be associated with the appropriate
physical quantities and are merely convenient labels applied
to these quantities. Unless specifically stated otherwise as
apparent from the following discussions, it is appreciated
that throughout the present invention, discussions utilizing
terms such as “accessing or “merging or 'storing or the
like, refer to the action and processes of a computer system,
or similar electronic computing device that manipulates and
transforms data represented as physical (electronic) quanti
ties within the computer system's registers and memories
and other computer readable media into other data similarly
represented as physical quantities within the computer sys
tem memories or registers or other Such information storage,
transmission or display devices.

Exemplary Operating Environment of Systems and
Methods for Acquiring Data for Loads at Different
Access Times from Hierarchical Sources Using a
Load Queue as a Temporary Storage Buffer and
Completing the Load Early According to One

Embodiment

FIG. 1A shows an exemplary operating environment 100
of a system 101 for acquiring data for loads at different times
from hierarchical sources using a load queue as a temporary
storage buffer according to one embodiment. System 101,
responsive to a load request, determines whether respective
cache storage components hold one or more portions (one or
more bytes) of a cache line associated with the load request,
acquires any portion of the cache line that is found in the
respective cache storage components and temporarily stores
it in a load queue placeholder corresponding to the load
request. Moreover, when through this process, portions of
the cache line that are needed to complete the acquisition of
the entire cache line have been acquired (and stored in the
corresponding load queue placeholder), the associated load
can be executed and completed. As such, in a processor with
multiple hierarchies of caches and other sources of data from
which data may be acquired, a cache line can be collected
one or more bytes at a time from one or more of the sources
of data. Furthermore, when the acquisition of data that
constitutes the entire cache line is completed, the data can be
returned back to the pipeline without delaying the load
operation until an entire cache line is brought from either

10

15

25

30

35

40

45

50

55

60

65

4
main memory or the next level of cache, in order to enable
the execution and completion of the load.

FIG. 1A shows system 101, level one (L1) cache 103.
store coalescing cache 103a, load cache 103b, cache con
troller 103c, load queue 103d, store queue 103e, CPU 105,
level two (L2) cache 107, store coalescing cache 107a,
system interface 109 and main memory 111. In the FIG. 1A
embodiment, L1 cache 103 can include store coalescing
cache 103a, load cache 103b, cache controller 103c, store
queue 103e and load queue 103d.

Referring to FIG. 1A, store queue 103e is a queue of
pending store requests. Moreover, in exemplary embodi
ments, store queue 103e is a source of data from which one
or more bytes of data can be acquired as a part of an
acquisition of the cache line that is required to enable the
execution of a load operation. In addition, in one embodi
ment, store queue 103e is the first data source (e.g., cache
data storage component) that is accessed for bytes of data
that are required to enable the execution of a load operation
for which a load request has been made.

Level 1 store coalescing cache 103a and level 2 store
coalescing cache 107 a maintain data that is accessed by
store requests. In one embodiment, level 1 store coalescing
cache 103a is accessed for bytes of data associated with a
load request after the access of store queue 103e. And, level
2 store coalescing cache 107a is accessed for bytes of data
associated with load requests after the access of level 1 store
coalescing cache 103a and before the access of other parts
of L2 cache 107 (which is a secondary cache that is used to
store recently accessed data). In one embodiment, level 2
cache 107 is accessed for bytes of data associated with load
requests after the access of level 2 store coalescing cache
103a and before the access of main memory 111. In one
embodiment, the order in which the cache data storage
components are accessed is: (1) store queue 103e at level 1,
(2) store coalescing cache 103a at level 1, (3) store coalesc
ing cache 107a at level 2, (3) level 2 cache 107 at level 2 and
(4) level 3 cache or main memory 111 at level 3. In other
embodiments, other access orders can be used.
Load queue 103d is a queue of the pending load requests

that are to be executed by CPU 105. In one embodiment,
load queue 103d is used as a temporary storage location for
bytes of data corresponding to a load request that are
retrieved from respective data sources. In one embodiment,
the bytes of data can be deposited in load queue 103d upon
their retrieval from the respective sources at different points
in time. When the retrieval of the bytes of data is complete,
the corresponding load operation can be executed.

Referring to FIG. 1A, system 101, responsive to a load
request, accesses, in Succession, respective cache data Stor
age components for one or more portions of a cache line,
acquires any portion of the cache line found in the respective
cache data storage components and temporarily stores
acquired data in a load queue. In one embodiment, the cache
data storage components are accessed, in a designated order
(as discussed above), until the acquisition of the data that is
needed to execute the corresponding load is complete.

FIG. 1B illustrates an exemplary operation of system 101,
with regard to its accessing of respective cache data storage
components in a predetermined order to acquire bytes of
data to satisfy a load request. In the FIG. 1B example, the
operation of system 101 with regard to a load request
involving 8 bytes of data is illustrated. Referring to FIG. 1B,
as a part of accessing respective cache data storage compo
nents for one or more portions of the 8 bytes of data, system
101 initially accesses store queue 103e at time 0, resulting,
as shown in FIG. 1B, in the acquisition of only one of the

US 9,632,947 B2
5

bytes of data that are required to enable the execution of the
corresponding load. The byte that is provided by store queue
103e is deposited into a load queue placeholder that is
associated with the load request. System 101 then goes on to
access store coalescing cache 107a and L2 cache 107, which
both reside at level 2 of the cache hierarchy. In the FIG. 1B
example, system 101 acquires the remaining 7 bytes that are
required to enable the execution of the corresponding load
from its access of store coalescing cache 107a (and its access
of L2 cache 107 misses).
As shown in FIG. 1B, the 7 bytes of data that are acquired

from store coalescing cache 107a are deposited into the load
queue placeholder that is associated with the load. At this
point, the acquisition of data responsive to the load request
is completed, with the acquisition of data required by the
request being satisfied with the respective accesses of store
queue 103e and store coalescing cache 107a (as all of the 8
bytes needed to complete the acquisition are obtained
thereby). Because the access of the L2 cache 107 missed, in
one embodiment, a cache line fetch request is made to level
3 cache or main memory. However, because the needed data,
at this point, has already been collected, the pending load
operation can be executed, without having to wait for the
cache line fetch to complete. In one embodiment, the cache
line fetch operation can be converted to a prefetch operation
such that the ingress of fresh/new loads into the frontend of
the processor (by freeing the load queue placeholder asso
ciated with the load) is enabled.
As such, in accordance with exemplary embodiments, the

execution of a load operation can be expedited by an early
return of data to the pipeline. In particular, a load can be
executed, while a cache line fetch request initiated by the
load is still pending. In one embodiment, system 101 can be
located in a cache controller 103c. In other embodiments,
system 101 can be separate from cache controller 103c, but
operate cooperatively therewith.

Referring again to FIG. 1A, main memory 111 includes
physical addresses that store information that is copied into
cache memory. In one embodiment, main memory 111 is
accessed for data associated with a load request if accesses
of cache data storage components do not result in the
acquisition of the data that is needed to fully satisfy the load
request. In one embodiment, the version of the data associ
ated with a load request that is acquired from main memory
111 is forwarded directly to load queue 103d. In one
embodiment, the version of the data that is forwarded from
main memory 111 directly to load queue 111 is merged with
portions of a cache line (if any) that have already been
acquired from lower level cache data storage components
and temporarily stored in load queue 103d. Also shown in
FIG. 1A is system interface 109.
Operation

FIG. 1C illustrate operations performed by system 101 for
acquiring data for loads at different times from hierarchical
Sources using a load queue as a temporary storage buffer
according to one embodiment. These operations, which
relate to acquiring data for loads, are only exemplary. It
should be appreciated that other operations not illustrated by
FIG. 1C can be performed in accordance with one embodi
ment.

Referring to FIG. 1C, at A, as a part of a load access, a
load request is received.

At B (e.g., B1-B5), responsive to the load request, system
101 accesses in order (if needed), and at different times, (1)
store queue 103e at level 1, (2) store coalescing cache 103a

10

15

25

30

35

40

45

50

55

60

65

6
at level 1, (3) store coalescing cache 107a at level 2. (4) level
2 cache 107 at level 2 and (5) level 3 cache or main memory
111 at level 3.
At C, data acquired from accesses of the cache data

storage components are temporarily stored in a placeholder
of the load queue.
At D, the acquisition of data from the cache data storage

components is completed.
At E, the data that is stored in the load queue placeholder

is used to execute the requested load operation (load opera
tion is completed).

Components of System for Acquiring Data for
Loads at Different Access Times from Hierarchical

Sources Using a Load Queue as a Temporary
Storage Buffer and Completing the Load Early

According to One Embodiment

FIG. 2 shows components of a system 101 for acquiring
data from hierarchical sources and using a load queue as a
temporary data storage buffer according to one embodiment.
In one embodiment, components of system 101 implement
an algorithm for acquiring data from hierarchical sources at
respective times and using a load queue as a temporary
storage buffer. In the FIG. 2 embodiment, components of
system 101 include data storage accessing component 201
and data storing component 203.

Data storage accessing component 201 accesses cache
data storage components, in a designated order, until the
acquisition of the data that is sought to be loaded is com
plete. Initially, data storage accessing component 201
accesses a store queue for one or more portions of a cache
line associated with a load. If the store queue does not hold
all of the portions of the cache line associated with the load,
data storage accessing component 201 accesses in Succes
Sion, other cache data storage components for the one or
more portions of the cache line to complete a collection of
all portions of the cache line.

Data storing component 203 stores data that is acquired
from accesses of the aforementioned cache data storage
components (e.g., by data storage accessing component 201)
in the load queue. Upon the acquisition of one or more
portions of a cache line from the access of the store queue
by data storage accessing component 201, data storing
component 203 stores one or more portions of the cache line
in a load queue location associated with the load (if the one
or more portions of the cache line is held in the store queue).
In one embodiment, the load is executed if the one or more
portions of the cache line held in the store queue include the
entire cache line associated with the load. Upon the acqui
sition of one or more portions of a cache line from the access
of Subsequent data storage components by data storage
accessing component 201, data storing component 203
stores these portions of the cache line in a load queue
location associated with the load. In one embodiment, the
load can be executed if a respective cache data storage
component of the cache data storage components provides
one or more portions of the cache line that completes the
acquisition of all portions of the cache line associated with
the load (by providing some or all of the required portions
of data).

It should be appreciated that the aforementioned compo
nents of system 101 can be implemented in hardware or
software or in a combination of both. In one embodiment,
components and operations of system 101 can be encom
passed by components and operations of one or more
computer components or programs (e.g., a cache controller

US 9,632,947 B2
7

103c). In another embodiment, components and operations
of system 101 can be separate from the aforementioned one
or more computer components or programs but can operate
cooperatively with components and operations thereof.

Method for Acquiring Data for Loads at Different
Access Times from Hierarchical Sources Using a

Load Queue as a Temporary Storage Buffer
According to One Embodiment

FIG. 3 shows a flowchart 300 of the steps performed in a
method for acquiring data from hierarchical sources and
using a load queue as temporary storage buffer according to
one embodiment. The flowchart includes processes that, in
one embodiment can be carried out by processors and
electrical components under the control of computer-read
able and computer-executable instructions. Although spe
cific steps are disclosed in the flowcharts, such steps are
exemplary. That is the present embodiment is well suited to
performing various other steps or variations of the steps
recited in the flowchart.

Referring to FIG. 3, at 301, a load request is accessed.
At 303, the store queue is accessed for one or more parts

of a cache line associated with the load request.
At 305, it is determined if the entire cache line has been

acquired from the access of the store queue. If the entire
cache line has been acquired control passes to 315 (and the
load is completed). If the entire cache line has not been
acquired control passes to 307.

At 307, any data acquired from the access of the store
queue is temporarily stored in the load queue.

At 309, the next level cache data storage component is
accessed.

At 311, it is determined if data is acquired from the access
of the next level cache data storage component that com
pletes the acquisition of the cache line. If data that completes
the acquisition of the cache line is acquired then control
passes to 315 (and the load is completed). If data that
completes the acquisition of the cache line is not acquired,
then control passes to 313.

At 313, any data that is acquired from the access of the
next level cache data storage component at 309 is stored in
the load queue. Then, control is returned to 309 where the
next level cache data storage component is accessed.

At 315, the load operation is completed using the acquired
data that is stored in the load queue placeholder that is
associated with the load.

With regard to exemplary embodiments thereof, systems
and methods for acquiring data associated with a load from
respective hierarchical cache data storage components. As a
part of the method, a store queue is accessed for one or more
portions of a cache line associated with a load, and, if the one
or more portions of the cache line is held in the store queue,
the one or more portions of the cache line is stored in a load
queue location associated with the load. The load is com
pleted if the one or more portions of the cache line stored in
the load queue location includes all portions of the cache line
associated with the load. If the store queue does not hold all
of the portions of the cache line associated with the load,
respective cache data storage components are accessed, in
Succession, for the one or more portions of the cache line
associated with the load. If the one or more portions of the
cache line is held in one or more cache data storage
components of the respective cache data storage compo
nents, the one or more portions of the cache line is stored in
the load queue location associated with the load. The load is
completed if the one or more cache data storage components

10

15

25

30

35

40

45

50

55

60

65

8
of the respective cache data storage components provides
the one or more portions of the cache line, for storage in the
load queue location, and the provision of the one or more
portions, completes an acquisition of all portions of the
cache line that is associated with the load.

Although many of the components and processes are
described above in the singular for convenience, it will be
appreciated by one of skill in the art that multiple compo
nents and repeated processes can also be used to practice the
techniques of the present invention. Further, while the
invention has been particularly shown and described with
reference to specific embodiments thereof, it will be under
stood by those skilled in the art that changes in the form and
details of the disclosed embodiments may be made without
departing from the spirit or scope of the invention. For
example, embodiments of the present invention may be
employed with a variety of components and should not be
restricted to the ones mentioned above. It is therefore
intended that the invention be interpreted to include all
variations and equivalents that fall within the true spirit and
Scope of the present invention.
We claim:
1. A method for acquiring data associated with a load from

respective hierarchical cache data storage components, the
method comprising:

accessing a store queue for one or more portions of a
cache line associated with a load, and, if said one or
more portions of said cache line is held in said store
queue, storing said one or more portions of said cache
line in a load queue location associated with said load,
wherein said load is completed if said one or more
portions of said cache line stored in said load queue
location comprises all portions of said cache line asso
ciated with said load, and wherein said load queue is
operable to temporarily store one or more bytes of data
corresponding to a load request retrieved from respec
tive data sources, and wherein the one or more bytes of
data are operable to be deposited in said load queue
upon their retrieval from the respective data sources at
different times; and

if said store queue does not hold all of the portions of said
cache line associated with said load, accessing, in
Succession, respective cache data storage components,
for said one or more portions of said cache line asso
ciated with said load, and, if said one or more portions
of said cache line is held in one or more cache data
storage components of said respective cache data stor
age components, storing said one or more portions of
said cache line in said load queue location associated
with said load, wherein said load is completed if said
one or more of said respective cache data storage
components of said cache data storage components
provides said one or more portions of said cache line,
for storage in said load queue location, to complete an
acquisition of all portions of said cache line associated
with said load, wherein said cache data storage com
ponents comprise a level 1 store coalescing cache, a
level 2 store coalescing cache, and a level 2 cache, and
wherein the level 1 store coalescing cache is accessed
for one or more portions of said cache line associated
with said load after the access of the store queue.

2. The method of claim 1 wherein said store queue is
accessed at a different time than other level 1 and level 2
components.

3. The method of claim 1 wherein data is provided to an
instruction pipeline before a version of said cache line is
brought from main memory.

US 9,632,947 B2
9

4. The method of claim 1 wherein said load completes
while a cache line fetch request initiated by the load is still
pending.

5. The method claim 1 wherein said one or more portions
of a cache line comprise one or more bytes of data.

6. The method of claim 1, further comprising converting
a cache line fetch operation to a prefetch operation.

7. A cache system, comprising:
a level two cache; and
a level one cache comprising:
a load queue; and
a cache controller, the cache controller comprising:
a data storage accessing component operable to access

cache data storage components for one or more por
tions of a cache line in a designated order, until the
acquisition of said cache line for loading is complete;
and

a data storing component operable to store data that is
acquired from accesses of the cache data storage com
ponents in the load queue, and wherein said load queue
is operable to temporarily store one or more bytes of
data corresponding to a load request retrieved from
respective data sources, and wherein further said one or
more bytes of data are operable to be deposited in said
load queue upon thereof retrieval from said respective
data sources at different times, wherein said cache data
storage components comprise a level 1 store coalescing
cache, a level 2 store coalescing cache, and a level 2
cache, and wherein the level 1 store coalescing cache is
accessed for one or more portions of said cache line
associated with said load request after the access of the
Store queue.

8. The cache system of claim 7 wherein said data storage
components are each accessed at a different time.

9. The cache system of claim 7 wherein data is provided
to an instruction pipeline before a version of said cache line
is brought from main memory.

10. The cache system of claim 7 wherein said load
completes while a cache line fetch request initiated by the
load is still pending.

11. The cache system of claim 7 wherein said one or more
portions of a cache line comprise one or more bytes of data.

10

15

25

30

35

40

10
12. The cache system of claim 7 wherein a cache line

fetch operation is converted to a prefetch operation.
13. A processor, comprising:
a central processing unit (CPU); and
a cache system, comprising:
a level two cache system; and
a level one cache system comprising:
a load queue; and
a cache controller comprising:
a data storage accessing component operable to access

cache data storage components for one or more por
tions of a cache line to be loaded in a designated order,
until the acquisition of said cache line that is to be
loaded is complete; and

a data storing component operable to store data that is
acquired from accesses of the cache data storage com
ponents in the load queue, and wherein said load queue
is operable to temporarily store one or more bytes of
data corresponding to a load request retrieved from
respective data sources, and wherein said one or more
bytes of data are operable to be deposited in said load
queue upon retrieval thereof from said respective data
Sources at different times, wherein said cache data
storage components comprise a level 1 store coalescing
cache, a level 2 store coalescing cache, and a level 2
cache, and wherein the level 1 store coalescing cache is
accessed for one or more portions of said cache line
associated with said load request after the access of the
store queue.

14. The system of claim 13 wherein said data storage
components are each accessed at a different time.

15. The system of claim 13 wherein data is provided to an
instruction pipeline before a whole version of said cache line
is brought from main memory.

16. The system of claim 13 wherein said load completes
while a cache line fetch request initiated by the load is still
pending.

17. The system of claim 13 wherein said one or more
portions comprise one or more bytes of data.

18. The system of claim 15, wherein said whole version
of said cache line brought in from main memory is for
warded directly to said load queue.

ck ck k k k

