
(12) United States Patent
Sharma et al.

USOO96263 04B2

US 9,626,304 B2
Apr. 18, 2017

(10) Patent No.:
(45) Date of Patent:

(54) STORAGE MODULE, HOST, AND METHOD
FOR SECURING DATA WITH APPLICATION
INFORMATION

(71) Applicant: SanDisk Technologies Inc., Plano, TX
(US)

(72) Inventors: Aditya Pratap Sharma, Bangalore
(IN); Balasiva Narala, Andhra Pradesh
(IN)

(73) Assignee: SanDisk Technologies LLC, Plano, TX
(US)

Notice: (*) Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 296 days.

(21)

(22)

Appl. No.: 14/560,670

Filed: Dec. 4, 2014

(65) Prior Publication Data

US 2016/011 O297 A1 Apr. 21, 2016

(30) Foreign Application Priority Data

Oct. 21, 2014 (IN) 5266/CHFA2014

(51) Int. Cl.
G06F 2/14
G06F2L/79
G06F2L/44
U.S. C.
CPC G06F 12/1458 (2013.01); G06F 12/1408

(2013.01); G06F 2 1/44 (2013.01); G06F
21/79 (2013.01); G06F 2212/1052 (2013.01)

Field of Classification Search
CPC G06F 12/1458; G06F 21/79; G06F 21/44;

G06F 12/1408; G06F 2212/1052
See application file for complete search history.

(2006.01)
(2013.01)
(2013.01)

(52)

(58)

(56) References Cited

U.S. PATENT DOCUMENTS

6,075,862 A * 6/2000 Yoshida G06F 21,121
38O,277

2002/0176575 A1 * 1 1/2002 Qawami G06F 21 10
380,201

2003/0037237 A1* 2/2003 Abgrall GO6F 21/53
T13,166

2004/0010701 A1* 1/2004 Umebayashi GO6F 21/6227
T13, 193

2004/0O25035 A1 2/2004 Jean-Claude GO6K 7,0008
T13, 189

2004/O193739 A1* 9, 2004 Shimizu GO6F 21.78
T10/1

2005/0278543 A1* 12/2005 TSuda G06F 21,6281
T13, 182

2006/0174334 A1* 8, 2006 Perlin G06F 21,6218
726/9

2008/0010685 A1 1/2008 Holtzman G06F 12,1483
726/27

(Continued)

Primary Examiner — Darren B Schwartz
(74) Attorney, Agent, or Firm — Brinks Gilson & Lione

(57) ABSTRACT

A storage module, host, and method for securing data with
application information are disclosed. In one embodiment, a
storage module is provided comprising a memory and a
controller. The controller is configured to store data and
information about an application that generated the data and
allow the data to be read only if information about an
application attempting to read the data matches the infor
mation about the application that generated the data. Other
embodiments are possible, and each of the embodiments can
be used alone or together in combination.

28 Claims, 7 Drawing Sheets

Storage Module

50 O 120
Security Mogue hemory

| SOO
Request for App D /
(Plus Opt. Sec. info)

s
Request for App ID /
(Pius Opt. Sec. info)

520
App D -

Plus Opt. Sec. info)
530 App D /

Plus Opt. Sec. Info)
540

- EP.P., 4 - (Pius Opt. Sec. info)
:

US 9,626,304 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2008/008.6614 A1* 4/2008 Canis G06F 21,121
T11 163

2010/0186068 A1* 7/2010 Okuyama GO6F 21,554
T26/4

2011/0314534 A1* 12/2011 James GO6F 21,53
7269

2012/0221725 A1* 8/2012 Schroeder, Jr. G06F 9/468
709,225

2012/0284702 A1* 11/2012 Ganapathy G06F 9/468
717/174

2014/0258734 A1* 9, 2014 Kim G06F 21,6209
T13, 190

2014/0281495 A1 9, 2014 Um G06F 21f44
713,155

2014/0344877 A1* 11/2014 Ohmata HO4H 60.14
725/110

2014/0344899 A1* 11/2014 Kwon G06F 21/62
T26/4

2015,0113272 A1* 4, 2015 Han G06F 21 OO
T13,168

2015,0256537 A1* 9, 2015 Chew G06F 21.30
726/7

* cited by examiner

U.S. Patent Apr. 18, 2017 Sheet 1 of 7 US 9,626,304 B2

File System
160

Drivers

Security App

Security Module
110

Storage Module

Figure 1A

U.S. Patent Apr. 18, 2017 Sheet 2 of 7 US 9,626,304 B2

File System

Security App

Security Module

Storage Module 100'

Figure 1B

US 9,626,304 B2 Sheet 3 of 7 Apr. 18, 2017 U.S. Patent

ÁuouualA] eundeS-uoN ZZZ
ÁuolueW eunoes

Z ?un61–

98€.082
Î ---- No.

U.S. Patent Apr. 18, 2017 Sheet 4 of 7 US 9,626,304 B2

Controller

Security App
320

Figure 3

U.S. Patent Apr. 18, 2017 Sheet S of 7 US 9,626,304 B2

41 O

1

Receive Application
identifier of Application

Storing Data

420

1

Write Application
identifier and Data

Figure 4

US 9,626,304 B2 Sheet 6 of 7 Apr. 18, 2017 U.S. Patent

ZC]] ddwff
079

G ?un61– -->C]] ddy
099

_^ GI ddw Joy Isenbe,

009

09
?

×

U.S. Patent Apr. 18, 2017 Sheet 7 Of 7 US 9,626,304 B2

610
Receive Application

ldentifier of Application -1
Attempting to Read

Data

Compare Application 62O
Identifier Stored with -1
Data with Application
Identifier of Reading

Application

640

Deny
Request

e
650

AllOW Data to Be
Read by Application

Figure 6

US 9,626,304 B2
1.

STORAGE MODULE, HOST, AND METHOD
FOR SECURING DATA WITH APPLICATION

INFORMATION

PRIORITY

This application claims priority to India Patent Applica
tion No. 5266/CHF/2014, filed on Oct. 21, 2014, entitled
“Storage Module, Host, and Method for Securing Data with
Application Information, the entire disclosure of which is
hereby incorporated by reference.

BACKGROUND

Storage modules, such as removable memory cards and
USB devices, are often connected to a host so that an
application on the host can store data in the storage module.
A user can then remove the storage module from that host
and connect it to another host, so an application on that other
host can read the data. To prevent the data from being
accessed by an unauthorized entity, the host can encrypt the
data before the data is sent to the storage module for storage.
That way, if an unauthorized entity somehow gains access to
the data, the unauthorized entity will not be able to read the
data since it is encrypted. Instead of the host encrypting the
data, the storage module can encrypt the data. Also, the
storage module can store encrypted or unencrypted data in
a secure (private) memory area that can only be accessed by
an entity that authenticates to the storage module.

OVERVIEW

Embodiments of the present invention are defined by the
claims, and nothing in this section should be taken as a
limitation on those claims.
By way of introduction, the below embodiments relate to

a storage module, host, and method for securing data with
application information. In one embodiment, a storage mod
ule is provided comprising a memory and a controller. The
controller is configured to store data and information about
an application that generated the data and allow the data to
be read only if information about an application attempting
to read the data matches the information about the applica
tion that generated the data.

In another embodiment, a method is provided in which a
storage module obtains data and an application identifier of
an application that generated the data. The storage module
tags the data with the application identifier and stores the
tagged data in the memory. The stored data can be read from
the memory only if an application attempting to read the data
has an application identifier that matches the application
identifier with which the data was tagged.

In yet another embodiment, a host device is provided
comprising a memory configured to store a user application
and a security application and a controller configured to
execute the user application and the Security application.
When executed by the controller, the user application is
configured to generate data and send the data to a storage
module for storage, and the security application is config
ured to receive an application identifier of the application
and send the application identifier to the storage module to
associate the application identifier with the data from the
application.

Other embodiments are possible, and each of the embodi
ments can be used alone or together in combination. Accord

10

15

25

30

35

40

45

50

55

60

65

2
ingly, various embodiments will now be described with
reference to the attached drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1A is a block diagram of a storage module of an
embodiment removably connected to a host, where the
storage module and host are separable, removable devices.

FIG. 1B is a block diagram of a host of an embodiment,
where a storage module is embedded in the host.

FIG. 2 is a block diagram of a storage module of an
embodiment.

FIG. 3 is a block diagram of a host of an embodiment.
FIG. 4 is a flow chart of a method of an embodiment for

securing data with application information.
FIG. 5 is a timing diagram of an embodiment for securing

data with application information.
FIG. 6 is a flow chart of an embodiment for reading data

secured with application information.

DETAILED DESCRIPTION OF THE
PRESENTLY PREFERRED EMBODIMENTS

As mentioned above, storage modules are often used to
transfer data from one host to another. A problem can occur
if the data contains a virus or other malware, and the virus
would be passed from host to host. While the prior security
approaches discussed above prevent an unauthorized entity
from reading stored data, they do not prevent the spread of
a virus among authorized entities. The following embodi
ments can be used to address this problem. Before turning to
these and other embodiments, the following paragraphs
provide a discussion of exemplary storage modules that can
be used with these embodiments. Of course, these are just
examples, and other Suitable types of storage modules can be
used.

FIG. 1A shows a storage module 100 operatively in
communication with a host 130. As used herein, the phrase
“operatively in communication with could mean directly in
communication with or indirectly in (wired or wireless)
communication with through one or more components,
which may or may not be shown or described herein. The
storage module 100 can take any Suitable form, Such as, but
not limited to, a handheld, removable memory device. Such
as a Secure Digital (SD) memory card, a microSD memory
card, a Compact Flash (CF) memory card, a universal serial
bus (USB) device (with a USB interface to the host), or a
solid-state drive (SSD). The host can also take any suitable
form, such as, but not limited to, a mobile phone, a tablet,
a digital media player, a game device, a personal digital
assistant (PDA), a mobile (e.g., notebook, laptop) personal
computer (PC), or a book reader. The storage module 100
and the host 130 can have respective interfaces for placing
themselves in communication with one another.

In the implementation shown in FIG. 1A, the storage
module 100 is removably connected to the host 130. The
storage module 100 and host 130 have mating physical and
electrical connectors that allow the storage module 100 and
host 130 to be removably connected to each other. Alterna
tively, the storage module 100 and host 130 can have
transmitters/receivers that allow the storage module 100 and
host 130 to wireless communicate with one another. In this
implementation, the storage module 100 and host 130 are
separable, removable devices. Alternatively, as shown in
FIG. 1B, the storage module 100" can be embedded in the
host 130'. In this implementation, a host controller can
control the storage module 100', and the storage module 100'

US 9,626,304 B2
3

can have its own controller to control its internal memory
operations. Also, in general, a host controller can be any
controller capable of interfacing with the storage module
100', be it a controller in monolithic form, an entire con
troller, or a separate functionality module. In this embedded
embodiment, the storage module 100" can take the form of
an iNANDTM eSD/eMMC embedded flash drive by SanDisk
Corporation, or, more generally, any type of Solid state drive
(SSD) (e.g., an enterprise solid-state storage device), a
hybrid storage device (having both a hard disk drive and a
Solid state drive), and a memory caching system. The storage
module 100' and the host 130' can interface with one another
using, for example, an eMMC interface, a UFS interface, an
NVMe interface, a SAS interface, and a SATA interface.
Other interfaces can be used.

Returning to FIG. 1A, a storage module 100 of one
embodiment comprises a security module 110 and a memory
120. The security module 110 can be a hardware component
in the storage module 100 (e.g., a hardware component in
the storage module’s controller). Alternatively. Some or all
of the functionality of the security module 110 can be
implemented as Software or firmware (e.g., executed by the
storage module's controller). The storage module’s control
ler can take any Suitable form, such as, but not limited to, a
microprocessor or processor and a computer-readable
medium that stores computer-readable program code (e.g.,
software or firmware) executable by the (micro)processor,
logic gates, Switches, an application specific integrated
circuit (ASIC), a programmable logic controller, and an
embedded microcontroller, for example. Exemplary func
tions of the security module 110 are discussed below, and the
controller can be configured with hardware and/or software
to perform these (and other) functions, such as the acts
shown in the attached flow charts.
The memory 120 can take any suitable font, such as, for

example, solid-state (e.g., flash) NAND memory, bit cost
Scaling (BiCs) memory, and resistive random-access
memory (Re-RAM). The memory 120 can be implemented
in one or multiple memory dies and can be a two-dimen
sional memory or a three-dimensional memory. Also, the
memory 120 can be one-time programmable, few-time pro
grammable, or many-time programmable and can use
single-level cell (SLC) or multiple-level (e.g., two or more)
cell (MLC) technologies. Additional example implementa
tions of a memory are provided at the end of the detailed
description.

FIG. 2 is a more detailed illustration of one particular
implementation of a storage module 200. It should be
understood that other implementations are possible. As
shown in FIG. 2, the storage module 200 in this embodiment
comprises a controller 210 and a memory 220 having secure
222 and non-secure 224 portions (e.g., partitions or separate
memory units). The controller 210 comprises a security
module 230, a flash controller 235, a flash interface 240, a
host interface 245, ROM 250, RAM 255, and a microcon
troller 260 all connected to a main bus 265, which connects
to a peripheral bus 275 via a bus bridge 270. The peripheral
bus 275 is connected to a timer 280, a Universal Asynchro
nous Receiver/Transmitter (UART) 285, and a general
purpose IO (GPIO) module.

In operation, the micro controller 260 (e.g., a CPU)
controls the general operation of the storage module 200.
The micro controller 260 read boot-up and other instructions
from the ROM 250 and uses the RAM 2.55 to Store instruc
tions and data used in operating the storage module 200
(such as an operating system). The storage module 200
receives data from a host via the host interface 245 and uses

5

10

15

25

30

35

40

45

50

55

60

65

4
the flash controller 235 to store data in the memory 220 via
the flash interface 240. For example, the flash controller 235
can generate specific instructions to the memory 220 to store
data according to its knowledge of the memory geometry,
timing parameters, and required write sequences. The non
secure memory area 224 is a public area that can be openly
read by a host, whereas the secure memory area 222 is a
private area that is only accessible by the storage module
200 and is not visible to a host. The timer 280, UART 285,
and GPIO 290 are used in the general operation of the
storage module 200 to communicate with the various com
ponents. The functions of the security module 230 are
described in detail below.

Turning now to the host, FIG. 1A shows that the host 130
in one embodiment contains a user application 140, a
security application 150, a file system 160, and drivers 170.
The user application 140 is any application that can generate
data for storage in the storage module 100. Such as, but not
limited to, a media player, a game player, and a banking
application. The data generated by an application for storage
in the storage module 100 can take any suitable form, such
as, but not limited to, the last play location of a movie or
Song before it was paused, the last play location in a game
before it was saved, banking transaction information (e.g., a
receipt of a fund transfer, tax information, etc.), and a user's
PIN or password. The file system 160 (e.g., a FAT file system
or an EXT (extended file system) file system) takes the data
generated by the user application 140 and puts it into a file
format, and the drivers 170 generate machine language code
to write the file in the storage module 100. The functions of
the security application 150 will be discussed in detail
below.

FIG. 3 is a more detailed illustration of one particular
implementation of a host 300. It should be understood that
other implementations are possible. As shown in FIG. 3, the
host 300 contains a controller 340 and a memory 310 which
stores computer-readable program code/instructions for a
user application 330 and security application 320, which are
executed by the controller 340. Alternatively, one or more of
these applications 320, 330 can be implemented in hard
Wae.

As mentioned above in conjunction with FIG. 1A, the
storage module 100 has a security module 110 and the host
130 has a security application 150. The security module 110
and security application 150 work together to make sure that
data written by an application on one host can only be read
by the same type of application on another host. Consider,
for example, the situation in which a particular banking
application (e.g., an app from Acme Bank) on one host (e.g.,
a user's work computer) saves banking transaction data to
the storage module 100. With these embodiments, when the
storage module 100 is used with another host (e.g., the user's
home computer), the saved banking transaction data can
only be accessed by the same banking application (e.g., an
app from Acme Bank) on that other host and not by other
applications running on the other host. By restricting which
applications can read the data, not only is the data more
secure, but the restriction also protects the spread of viruses
and other malware by reducing the number of applications
that can possibly read the data and infect the host.

In general, as shown in FIG. 4, the security module 110
receives data and information about the application that
generated the data (e.g., an application identifier of the user
application 140) (act 410) and stores the data and application
identifier in the memory 120 (act 420). (If the application
fails to provide its identifier, the security module 150 can
treat the data as unsecure data and store it in an unsecure

US 9,626,304 B2
5

manner, as usual.) The security module 110 is configured to
allow the data to be read from the memory 120 only if
information about an application attempting to read the data
(e.g., the banking app on the user's home computer) matches
the information about the application that generated the data
(e.g., the banking app on the user's work computer).
The information about the application that generated the

data can take any suitable form, such as an application
identifier that identifies the application, although any other
information can be used. Examples of an application iden
tifier can include, but are not limited to, a serial number,
version number, and model number of the application. It
should be noted that an application identifier is not neces
sarily unique to one particular application but rather to a
class of applications. For example, the same application
identifier can be used for all of Acme Bank apps, so that any
Acme Bank app can access the data. That is, the application
identifier for each instantiation of the Acme Bank app can be
the same (i.e., the application identifier for the Acme Bank
app on the user's work computer can be the same as the
application identifier for the Acme Bank app on the user's
home computer). However, in an alternate embodiment, the
application identifier for each instantiation of the Acme
Bank app is different (so only the Acme Bank app on the
user's work computer (and not the Acme Bank app on the
user's home computer) can access data written by the Acme
Bank app on the users work computer).
The application identifier can be provided to the storage

module 100 in any suitable way. (For simplicity, “applica
tion identifier” will be used for the remainder of this
discussion, although it should be understood that any infor
mation about the application that generated the data can be
used.) For example, in one embodiment, the user application
140 is configured to provide the application identifier with
the generated data as part of its normal operation. However,
as user applications may be written by different parties who
are not aware of the need for sending the application
identifier and to retrofit these embodiments for existing
environments, a security application 150 can be provided to
the host 130 to query the user application 140 for the
application identifier and then provides the information
about the user application 140 to the storage module 100.
For example, as shown in FIG. 1A, the security application
150 can append the application identifier to the packet of
information leaving the drivers 170 for the storage module
100. Alternatively, the security application 150 can commu
nicate the application identifier the file system 160 or
another component in the host 130. The security application
150 can be downloaded to the host 130, or the storage
module 100 can provide the security application 150 to the
host (e.g., when the storage module 100 is connected to the
host 130 for the first time).

The security application 150 can query the user applica
tion 140 for the application identifier on its own or in
response from a request from the storage module 100. FIG.
5 is a timing diagram that shows how the security applica
tion 150 can query the user application 140 for the appli
cation identifier in response from a request from the storage
module 100. As shown in FIG. 5, the security module 110 on
the storage module 100 sends a request for the application
identifier (and optional other security information, which
will be discussed below) to the security application 150 on
the host 130 (act 500). The security application 150 then
queries the user application 140 for the information (act 510)
and gets a response (act 520). The security application 150
then provides the information to the security module 110

10

15

25

30

35

40

45

50

55

60

65

6
(act 530), which then stores the application identifier with
the data in the memory 120 (act 540).
When the storage module 100 receives the application

identifier, the storage module 100 stores the identifier in such
a way that it is associated with the data. For example, in one
embodiment, the storage module 100 stores the application
identifier as part of the data (e.g., the storage module 100
tags that data with the application identifier by Storing the
application identifier in the header or some other location in
the data itself). Alternatively, the application identifier can
be stored in a table or in some other format separate from the
data.
The security application 150 also provides the application

identifier to the storage module 100 when an application is
attempting to read data stored in the storage module 100.
The security module 110 in the storage module 100 com
pares the application identifier of the application attempting
to read the data with the application identifier stored in/with
the data. The storage module 100 allows the data to be read
only if the application identifiers match. As mentioned
above, this secures the data and helps prevent the spread of
viruses and other malware.

This reading process is shown in the flow chart in FIG. 6.
As shown in FIG. 6, the security module 150 receives the
application identifier of the application attempting to read
the data (act 610). The security module 150 then compares
the application identifier stored with the data with the
application identifier of the reading application (act 620) to
see if the application identifiers match (act 630). If the
application identifiers do not match, the read request is
denied (act 640). However, if the application identifiers do
match, the security module 150 allows the data to be readby
the application (act 650).

Additional security measures can be provided. For
example, in addition to the application identifier, the host
130 can provide the storage module 100 with at least one
additional identifier that also needs to be matched before the
stored data can be read from the storage module 100. An
example of an additional identifier is the source of the
application (e.g., identification of the web site that the
application was downloaded from to make Sure the appli
cation isn't from a known hacker's site). This offers a second
level of protection. Additionally, the security module 110
can encrypt the data stored in the storage module 100, so the
data cannot be useful even if somehow hacked from the
memory 120 of the storage module. In one embodiment, the
security application on the host 130 communicates with the
user application 140 to determine its preferred encryption
parameters (e.g., what encryption algorithm to use, what
level of encryption to use, etc.) and sends that information
to the storage module 100 along with the application iden
tifier. As yet another level of protection, the storage module
100 can store data from the user application 140 in a secure
area of the memory 120 to make the data visible only to the
storage module 100. The security application 150 on the host
130 can communicate this “secure area' request to the
security module 110; otherwise, the data can be stored in a
non-secure area of the memory 120.

Other alternatives are possible. For example, if the host
app fails to provide an application identifier, the secure app
on the host can generate the application identifier for that
application and send it to storage media. Also, in addition to
or instead of the examples listed above, the application
identifier can be generated from the version number, the
model, and/or the build time. Additionally, the host secure
app can send three parameters (application id, indicator of
secure or non-secure storage, and kind of encryption type to

US 9,626,304 B2
7

be used), and based on these parameters, data will be stored
on the storage module. Further, the data stored on the storage
media can always be tagged. If it is non-secure area data,
then the data can be read by the host app as usual. But, for
the secure data, it has to be matched properly.

There are several advantages associated with these
embodiments. As mentioned above, in prior systems that
lack application data security at the storage module level.
application data is stored in the memory without proper
authentication and can be read by any application. This is
because prior systems did not contain a security mechanism
built inside the storage module for application data, and
application data security was only handled by the hosts
operating system. This allowed corrupt data or viruses stored
inside a storage module to be easily transferred to another
host, thereby spreading the corrupt data and viruses. With
these embodiments, the application data is stored with
proper authentication on the storage module and avoids the
data being read by unauthorized applications. In this way,
application data security is jointly handled by the host
operating system and the storage module. In contrast, many
prior security systems were host driven, in that the host
partitioned the memory, managed the partition, encrypted
the data, stored/exchanged the keys with the storage module,
and knew the location of the secure data on the storage
module. Again, with these prior systems, if the host got
infected with a virus or malware, there was no way the data
could be protected from malicious access.

These embodiments provide a paradigm shift in that
security is managed by the storage module and not the host.
As discussed above, these embodiments move the complex
ity of application data security from the host operating
system to firmware/secure operating system in the storage
module. This way, the storage module can also act as a
secure storage module for application data and prevent any
unwanted access to secure application data. By using a
security module in the storage module (e.g., hardware in the
controller running a secure light-weight operating system),
the storage module can protect itself from threats, as the
storage module will not allow storing data without a proper
application identifier and also will not allow data to be read
without first authenticating the application identifier of the
reading application. This can be especially useful for today's
mobile systems, many of which lack security hardware and
are not suitable for secure transaction. With these embodi
ments, the storage module is provided with a data storage
security using system that can secure data against an attack.

Finally, as mentioned above, any Suitable type of memory
can be used. Semiconductor memory devices include Vola
tile memory devices, such as dynamic random access
memory (“DRAM) or static random access memory
(“SRAM) devices, non-volatile memory devices, such as
resistive random access memory (“ReRAM), electrically
erasable programmable read only memory (“EEPROM),
flash memory (which can also be considered a subset of
EEPROM), ferroelectric random access memory
(“FRAM), and magnetoresistive random access memory
(“MRAM), and other semiconductor elements capable of
storing information. Each type of memory device may have
different configurations. For example, flash memory devices
may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or

active elements, in any combinations. By way of non
limiting example, passive semiconductor memory elements
include ReRAM device elements, which in some embodi
ments include a resistivity Switching storage element, Such
as an anti-fuse, phase change material, etc., and optionally a

10

15

25

30

35

40

45

50

55

60

65

8
steering element, such as a diode, etc. Further by way of
non-limiting example, active semiconductor memory ele
ments include EEPROM and flash memory device elements,
which in some embodiments include elements containing a
charge storage region, Such as a floating gate, conductive
nanoparticles, or a charge storage dielectric material.

Multiple memory elements may be configured so that they
are connected in series or so that each element is individu
ally accessible. By way of non-limiting example, flash
memory devices in a NAND configuration (NAND
memory) typically contain memory elements connected in
series. ANAND memory array may be configured so that the
array is composed of multiple strings of memory in which a
string is composed of multiple memory elements sharing a
single bit line and accessed as a group. Alternatively,
memory elements may be configured so that each element is
individually accessible, e.g., a NOR memory array. NAND
and NOR memory configurations are exemplary, and
memory elements may be otherwise configured.
The semiconductor memory elements located within and/

or over a Substrate may be arranged in two or three dimen
sions, such as a two dimensional memory structure or a three
dimensional memory structure.

In a two dimensional memory structure, the semiconduc
tor memory elements are arranged in a single plane or a
single memory device level. Typically, in a two dimensional
memory structure, memory elements are arranged in a plane
(e.g., in an X-Z direction plane) which extends Substantially
parallel to a major Surface of a Substrate that Supports the
memory elements. The substrate may be a wafer over or in
which the layer of the memory elements are formed or it
may be a carrier substrate which is attached to the memory
elements after they are formed. As a non-limiting example,
the Substrate may include a semiconductor Such as silicon.
The memory elements may be arranged in the single

memory device level in an ordered array, Such as in a
plurality of rows and/or columns. However, the memory
elements may be arrayed in non-regular or non-orthogonal
configurations. The memory elements may each have two or
more electrodes or contact lines, such as bit lines and word
lines.
A three dimensional memory array is arranged so that

memory elements occupy multiple planes or multiple
memory device levels, thereby forming a structure in three
dimensions (i.e., in the x, y and Z directions, where the y
direction is substantially perpendicular and the X and Z
directions are substantially parallel to the major surface of
the substrate).
As a non-limiting example, a three dimensional memory

structure may be vertically arranged as a stack of multiple
two dimensional memory device levels. As another non
limiting example, a three dimensional memory array may be
arranged as multiple vertical columns (e.g., columns extend
ing Substantially perpendicular to the major Surface of the
Substrate, i.e., in they direction) with each column having
multiple memory elements in each column. The columns
may be arranged in a two dimensional configuration, e.g., in
an X-Z plane, resulting in a three dimensional arrangement of
memory elements with elements on multiple vertically
stacked memory planes. Other configurations of memory
elements in three dimensions can also constitute a three
dimensional memory array.
By way of non-limiting example, in a three dimensional

NAND memory array, the memory elements may be coupled
together to form a NAND string within a single horizontal
(e.g., X-Z) memory device levels. Alternatively, the memory
elements may be coupled together to form a vertical NAND

US 9,626,304 B2
9

string that traverses across multiple horizontal memory
device levels. Other three dimensional configurations can be
envisioned wherein some NAND strings contain memory
elements in a single memory level while other strings
contain memory elements which span through multiple
memory levels. Three dimensional memory arrays may also
be designed in a NOR configuration and in a ReRAM
configuration.

Typically, in a monolithic three dimensional memory
array, one or more memory device levels are formed above
a single Substrate. Optionally, the monolithic three dimen
sional memory array may also have one or more memory
layers at least partially within the single Substrate. As a
non-limiting example, the Substrate may include a semicon
ductor Such as silicon. In a monolithic three dimensional
array, the layers constituting each memory device level of
the array are typically formed on the layers of the underlying
memory device levels of the array. However, layers of
adjacent memory device levels of a monolithic three dimen
sional memory array may be shared or have intervening
layers between memory device levels.

Then again, two dimensional arrays may be formed
separately and then packaged together to form a non
monolithic memory device having multiple layers of
memory. For example, non-monolithic stacked memories
can be constructed by forming memory levels on separate
Substrates and then stacking the memory levels atop each
other. The substrates may be thinned or removed from the
memory device levels before stacking, but as the memory
device levels are initially formed over separate substrates,
the resulting memory arrays are not monolithic three dimen
sional memory arrays. Further, multiple two dimensional
memory arrays or three dimensional memory arrays (mono
lithic or non-monolithic) may be formed on separate chips
and then packaged together to form a stacked-chip memory
device.

Associated circuitry is typically required for operation of
the memory elements and for communication with the
memory elements. As non-limiting examples, memory
devices may have circuitry used for controlling and driving
memory elements to accomplish functions such as program
ming and reading. This associated circuitry may be on the
same Substrate as the memory elements and/or on a separate
substrate. For example, a controller for memory read-write
operations may be located on a separate controller chip
and/or on the same Substrate as the memory elements.
One of skill in the art will recognize that this invention is

not limited to the two dimensional and three dimensional
exemplary structures described but cover all relevant
memory structures within the spirit and scope of the inven
tion as described herein and as understood by one of skill in
the art.

It is intended that the foregoing detailed description be
understood as an illustration of selected forms that the
invention can take and not as a definition of the invention.
It is only the following claims, including all equivalents, that
are intended to define the scope of the claimed invention.
Finally, it should be noted that any aspect of any of the
preferred embodiments described herein can be used alone
or in combination with one another.
What is claimed is:
1. A memory device comprising:
a memory; and
a controller in communication with the memory, wherein

the controller is configured to:
obtain data and information about an application that

generated the data;

5

10

15

25

30

35

40

45

50

55

60

65

10
tag the data with the information;
store the data tagged with the information in the
memory; and

allow the data to be read from the memory only if
information about an application attempting to read
the data matches the information that the data was
tagged with:

wherein the application that generated the data runs on
a host in communication with the memory device,
wherein the host comprises a security application
that queries the application for the information and
provides the information to the memory device, and
wherein the security application is provided to the
host by the memory device.

2. The memory device of claim 1, wherein the controller
is further configured to encrypt the data before storing the
data in the memory.

3. The memory device of claim 1, wherein the controller
is further configured to store the data in a secure area of the
memory.

4. The memory device of claim 1, wherein the controller
is further configured to store the data in a non-secure area of
the memory.

5. The memory device of claim 1, wherein the information
about the application that generated the data is stored as part
of the data.

6. The memory device of claim 1, wherein the security
application queries the application for the information in
response to a request from the controller.

7. The memory device of claim 1, wherein the memory is
a three-dimensional memory.

8. The memory device of claim 1, wherein the memory
device is removably connected to the host.

9. The memory device of claim 1, wherein the memory
device is embedded in the host.

10. A method for securing data, the method comprising:
performing the following in a memory device comprising

a memory:
obtaining data and an application identifier of an appli

cation that generated the data;
tagging the data with the application identifier, and
storing the data tagged with the application identifier in

the memory;
wherein the stored data can be read from the memory

only if an application attempting to read the data has
an application identifier that matches the application
identifier that the data was tagged with:

wherein the application that generated the data is
running on a host in communication with the
memory device, wherein the host comprises a secu
rity application that queries the application for the
application identifier and provides the application
identifier to the memory device, and wherein the
security application is provided to the host by the
memory device.

11. The method of claim 10 further comprising:
receiving encryption parameters; and
encrypting the data tagged with the application identifier

according to the encryption parameters before storing
the data in the memory.

12. The method of claim 10, wherein the data is stored in
a secure area of the memory.

13. The method of claim 10, wherein the data is stored in
a non-secure area of the memory.

14. The method of claim 10, wherein tagging the data with
the application identifier comprises storing the application
identifier in a header of the data.

US 9,626,304 B2
11

15. The method of claim 10, further comprising tagging
the data with at least one additional identifier that also needs
to be matched before the stored data can be read from the
memory.

16. The method of claim 15, wherein the at least one
additional identifier comprises an identification of a source
of the application.

17. The method of claim 10, wherein the security appli
cation queries the application for the application identifier in
response to a request from the memory device.

18. The method of claim 10, wherein the memory is a
three-dimensional memory.

19. The method of claim 10, wherein the memory device
is removably connected to the host.

20. The method of claim 10, wherein the memory device
is embedded in the host.

21. A host device comprising:
a memory configured to store a user application and a

Security application; and
a controller in communication with the memory and

configured to execute the user application and the
security application

wherein the user application, when executed by the con
troller, is configured to generate data; and send the data
to a memory device in communication with the host
device for storage;

wherein the security application, when executed by the
controller, is configured to: receive an application iden
tifier of the user application; and send the application
identifier to the memory device to associate the appli

5

10

15

25

12
cation identifier with the data from the user application;
wherein the security application is provided to the host
device by the memory device; and wherein the stored
data can be read from the memory device only if an
application attempting to read the data has an applica
tion identifier that matches the application identifier
associated with the data.

22. The host device of claim 21, wherein the security
application is further configured to provide the memory
device with encryption parameters to be used by the memory
device to encrypt the data before storing the data.

23. The host device of claim 21, wherein the security
application is further configured to: receive at least one
additional identifier of the user application and provide the
at least one additional identifier to the memory device.

24. The host device of claim 23, wherein the at least one
additional identifier comprises an identification of a source
of the user application. application and provide the at least
one additional identifier to the memory device.

25. The host device of claim 21, wherein the security
application is further to query the user application for the
application identifier in response to a request from the
memory device.

26. The host device of claim 21 wherein the memory
device comprises a three-dimensional memory.

27. The host device of claim 21, wherein the memory
device is removably connected to the host device.

28. The host device of claim 21, wherein the memory
device is embedded in the host device.

