
(12) United States Patent
Nolan et al.

USOO962O169B1

US 9,620,169 B1
Apr. 11, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(60)

(51)

(52)

(58)

SYSTEMIS AND METHODS FOR CREATING
A PROCESSED VIDEO OUTPUT

Applicant: Dreamtek, Inc., San Francisco, CA
(US)

Inventors: Tim Nolan, San Francisco, CA (US);
Dan Isaacs, Methuen, MA (US)

Assignee: DREAMTEK, INC., San Francisco,
CA (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 112 days.

Appl. No.: 14/341,522

Filed: Jul. 25, 2014

Related U.S. Application Data
Provisional application No. 61/859,063, filed on Jul.
26, 2013.

Int. C.
GIB 27/03 (2006.01)
GIB 27/038 (2006.01)
GIIB 27/ (2006.01)
H04N 5/265 (2006.01)
U.S. C.
CPC GIIB 27/031 (2013.01); GIIB 277038

(2013.01); GIIB 27/10 (2013.01); H04N
5/265 (2013.01)

Field of Classification Search
CPC. H04N 9/8211; G11B 27/031: G11B 27/034;

G11B 27/34: G 11B 27/24: G10H 1/368
USPC 386/230, 263, 278. 290; 715/716, 723,

715/725, 727; 381/106, 119, 700/94
See application file for complete search history.

Computing evice

iiseript evices

Processor

Metors

Severs

Neiwerks

(56) References Cited

U.S. PATENT DOCUMENTS

7.917.007 B2 * 3/2011 Friedman G11B 27,031
386,281

8,326,444 B1* 12/2012 Classen HO3G 3,3005
381 (106

2005/0066279 A1* 3, 2005 LeBarton GO6T 13.00
71.5/723

2005/0201723 A1* 9, 2005 Islam G11B 27,031
386.232

2006/0122842 A1* 6/2006 Herberger G1OH 1,368
704/278

2007/00 14422 A1 1/2007 Wesemann HO4H 6004
381,119

2007/01 18801 A1* 5/2007 Harshbarger G11B 27,031
715,730

2008. O190271 A1* 8, 2008 Taub G1OH 1,0058
84,645

(Continued)
Primary Examiner — Thai Tran
Assistant Examiner — Stephen Smith
(74) Attorney, Agent, or Firm — McAndrews, Held &
Malloy, Ltd.

(57) ABSTRACT

Certain embodiments provide systems and method for cre
ating a processed video stream. A method for creating a
processed video stream includes receiving project instruc
tions and media at a computing device executing a socially
interactive application. The project instructions can include
a project type. The method also includes uploading the
project instructions and media to a server connected to the
computing device. The method includes creating a project
Script based on the project type at a processor of the server.
The method includes encoding, at the processor, a video
stream based on the project Script. The method also includes
sharing the video stream at the Socially interactive applica
tion.

17 Claims, 35 Drawing Sheets

13

Coalpitting Device

US 9,620,169 B1
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2010/0183280 A1* 7/2010 Beauregard G11B 27,034
386.285

2010/0226620 A1* 9, 2010 Sim G11B 27,034
386.285

2012/0054611 A1 3f2012 Perrodin G11B 27.34
715,716

2013/006 1144 A1* 3/2013 Eppolito G06F 3/04847
715,716

2013/0163963 A1* 6, 2013 Crosland.............. HO4N 9,8211
386.285

2014/0096002 A1* 4/2014 Dey G06F 3.0488
71.5/723

2014/O126751 A1* 5, 2014 Yiaho HO4R 3,00
381,122

2014/0180762 A1* 6, 2014 Gilbert GO6F 17,30752
705/729

2014/0219637 A1* 8, 2014 McIntosh G11B 27.105
386.282

* cited by examiner

U.S. Patent Apr. 11, 2017 Sheet 1 of 35 US 9,620,169 B1

Server is

Niwks

Memory . Nienessy

FIG. 1

U.S. Patent

2OO

Apr. 11, 2017 Sheet 2 of 35

2O2
User Selects
ProjectType

2O3

User adds Photos, Videos,
Music, and arranges as they
like. Canset Clip Option like
adding Titles or can Trim

Videos

2O4.
User Sets Event Title and
Date and other Project

Options like Video, Audio,
and Color Filters, if they wish

Project instructions created
and sent to Cloud

All Media Uploaded
to Cloud Storage

208
Project Oueued for

Processing

FIG. 2

US 9,620,169 B1

U.S. Patent Apr. 11, 2017 Sheet 3 Of 35 US 9,620,169 B1

Project picked up from Oueue for
Processing

303
All Media Files downloaded from

Cloud Storage to Processing
Server(s) or Network Storage

3O4
Re-Order Media

Clips?

3O5

Re-Order Media Clips based on
ProjectType

306
Project Scripts setup based on

3O8

Create Original Picture and Video
file thumbnails

Has new

Album files?

309
Video Engine begins encoding

process (see Video Engine diagrams)

310
Output thumbnails generated

311
Compilation output information

created and persisted

312
Project stats and output URLs set,
Compilation added to Timeline

FIG. 3

U.S. Patent Apr. 11, 2017 Sheet 4 of 35 US 9,620,169 B1

402

Generate Script Header

403

Generate Script Body
(See specific ProjectTypes, like MultiClip)

404

Generate Script Footer
(Filters and Audio)

FIG. 4

U.S. Patent Apr. 11, 2017 Sheet 5 Of 35

5O2
Set Audio File

503
Generate Title Pause List

504
Generate Main
Function Call

505

Generate Beat Tap Effect
Function Call

506
Generate Beat Zoom Effect

Function Call

507
Generate Beat Rotate Effect

Function Call

508
Generate Audio Dub

Function Call

FIG. 5

US 9,620,169 B1

U.S. Patent Apr. 11, 2017 Sheet 6 of 35 US 9,620,169 B1

6O2
Generate Title Line

603
Loop through Images & Video Clips

Generate image Stack Function call Lines with Trims &
Title

FIG. 6

U.S. Patent

700

Apr. 11, 2017 Sheet 7 Of 35

7O2

Initialize MultiClip Screen
Types Array and Shuffle

7O3
Get Random Main Title

Screen Type

7O4

Generate Title Screen Script
Line

ain Title Scree
has images with
itles or Videos in

7O7
Loop through remaining
Images & Video Clips

708
Get Random Next Screen

Type

7O9
Generate Screen Line

without Titles

Screen has images
ith Titles or Video

712

Continue / Finish Loop

713
Generate Remaining Single

Clip Screens, if any

714.
Generate Main Function Call

FIG. 7

7O6

Generate Single Clip Screens
with Image(s) and Titles, and

Video(s) with or without
Titles

711

Generate Single Clip Screens
with Image(s) and Titles, and

Video(s) with or without
Titles

US 9,620,169 B1

U.S. Patent Apr. 11, 2017 Sheet 8 Of 35

8O2

Generate Title Screen Script Line

8O3
Loop through Images & Video Clips

804

Generate Screen Line with/without
Title

805

Continue/Finish Loop

806
Generate Main Function Call

FIG. 8

US 9,620,169 B1

U.S. Patent Apr. 11, 2017 Sheet 9 Of 35 US 9,620,169 B1

9 OO

902
X264 encodes our Project Scripts to

output MP4 video

903
Project has Audio

or VideoP

904
WAVI Extracts WAV from Project

Script

905
NeroAACenC Encodes WAV to M4A

906
MP4Box Muxes M4A with MP4

907

END (Final Video
Output Created)

FIG. 9

U.S. Patent Apr. 11, 2017 Sheet 10 Of 35 US 9,620,169 B1

1OOO Load Defaults, Set Options

OO3
Parse Filename, determine

filetype

1OOS
Load image

OO7
Load MPEG

7 1009
{Skip Dimensional

Conforms?

O10

Resize to Target Width &
Height

1 1011
Skip frame rate

onforming?

1012
Conform video frame rate to

NTSC standard

1013
Convert video

stream to Y V12 colorspace

1014
Apply Signal Limiting
To video stream

- 1O15

Custom Audio
Settings?

1O16

Convert audio to 48 kHz / 16
bit stereo

101.7

Convert audio to specified
sample rate and word length

FIG. 10

U.S. Patent Apr. 11, 2017 Sheet 11 of 35

11OO

11O2
Begin Loop through
List of input Sources

1108
Return Index List Yes Defer Rendering

1109
Render and Encode
Cache Media Files

1110

Return as Clip?

1111
Load Rendered

Cache media file(s)

FIG. 11

US 9,620,169 B1

1103
Increment Global

Index

1104
Invoke Cache

Enabled Function,
which generates a

Add Index to List

U.S. Patent

12OO

204
Generate Script for each

Step

Apr. 11, 2017

201
STAR

2O2

Does Script for index
N already exist? 1

No

2O3
intereaved?

No

205
Segmented?

Generate Script

Sheet 12 Of 35

Yes

US 9,620,169 B1

Generate Script for each
Segment

S

U.S. Patent Apr. 11, 2017 Sheet 13 Of 35 US 9,620,169 B1

1300a

1302a

Do AVI Files already exist
for All Input Indexes?

1303a
Call Rendering and
Encoding Engine

Yes

1304a

Index All Output Files
using FFIndex

FIG. 13A

U.S. Patent Apr. 11, 2017 Sheet 14 of 35 US 9,620,169 B1

1302b
Begin Loop through

Input Indexes

1303b
Resolve Script

File Path from Index
1300b

13O4b
Add Next

Script to Queue

No

Complete?

Yes

1306b
Begin Loop through

Script Queue

1307b
Get Next Script
From Oueue

1309b
Wait for Available

Thread

1308b.
Thread
Available

131Ob
Render and Encode
Cache Video Clip

No

Yes

FIG. 13B

U.S. Patent Apr. 11, 2017 Sheet 15 Of 35 US 9,620,169 B1

1400a

1402a
1403a Interleaved?

Call Cache Loader Interleaved

1405a 1404a

Call Cache Loader Segments N Segmented?

1406a
Call Cache Loader

FIG. 14A

U.S. Patent Apr. 11, 2017 Sheet 16 of 35 US 9,620,169 B1

1402b
Start Loop through

Indexes

1403b
Call Cache Loader

1404b
Loop Complete? 1405b

Interleave Video Clips

1407b
Load Audio File

1408b
Dub Audio to Video

FIG. 14B

U.S. Patent Apr. 11, 2017 Sheet 17 Of 35 US 9,620,169 B1

1402C

Start Loop through indexes
(skip first index)

1403C
Call Cache Loader

1404C
Loop Complete?

1405C
Concatenate
Video Clips

1406C
Load Audio from First Index

using Cache Loader

14O7C
Dub Audio
to Video

FIG. 14C

U.S. Patent Apr. 11, 2017 Sheet 18 Of 35

14OOd

1403d
ls input an
integer?

1402d
ls input a
Filename?

Yes Yes

AOSd
Resolve Fiename
from integer

1406d
index input File as

needed

14O7
LoadWideo Stream
from input File using

FFVideoSource

1408d
C is Video Mjpeg? X

141Od
Attempt to

Ya include Audio
Ya Stream 21

Does input File
NContain Audio? 1. Yes

1412d
Load Audio Stream
from input File using

FFAudioSource

1413d
Dub Audio to

Wideo

Yes

FIG. 14D

US 9,620,169 B1

14O9d
Adjust Video
Color Range

U.S. Patent

15OO

59

Append Another instance of Basic
image Sequence

1510
Re-Time Sequence to Match Beats

or Partia Beats

Yes

159
Apply Wisual Effects

Apr. 11, 2017

5.
SAR

502
Load Defaults, Set Options

1503
load Basic Sequence

1504
Generate ities

SOS
load Music

506
Perform Beat Detection on witusic

507
Begin Re-Tinning of image Sequence

508
is Music longer than

image Seq2

No

1Apply Rhythmic
NVisual Effects to
YVideo?

No

52O
Dub Music to Video

FIG. 15

Yes

Sheet 19 Of 35

1511 N
Sequence
pmpletg

1517
Apply titling

1512
Get Next

Sea. Frame

US 9,620,169 B1

SA
Extend

duration of
fbeat or
partia beat

No

Has a pause or title
been specified for

this frame? a

15S
Extend duration
to fill specified
number of beats

No

1515
/ Has titling been
Nspecified for this
Ya frame?

Yes

U.S. Patent Apr. 11, 2017 Sheet 20 Of 35 US 9,620,169 B1

1602a
Load Defaults, Options

16O.3a
Loop through Sources, create

Image Stack Single script for each
SOUC

1600a

16O4a
Use Cache Oueue to batch

render/encode scripts to 32-bit
(RGBA) cache media clip files

1605a
Loop through indexes of cache
media clips, and flatten each

Source

1606a

Batch render/encode scripts to
24-bit (RGB) cache media clip

files

No
Create Outro Clip

16O73
Loopable?

1608a
Unstack?

161Oa
Y

S Create intro Clip
Yes

1611a

Concatenate all clips

1612a
N END -

FIG. 16A

U.S. Patent Apr. 11, 2017 Sheet 21 Of 35 US 9,620,169 B1

16O2b
Load Defaults, Set Options,

load Source
16OOB

1606b
load Background Frame image
that best fits output aspect

ratio

1605)N
g is Title C
NQnly21

16O4b.
Loop image to specified

Duration
Yes

Load Background Frame image
that best fits Sources Aspect

Ratic

16O7b
Super impose Titling Text

1609
Crop Source to Best-Fitting

Aspect Ratio

1611b.
Yes Super impose Titling Text over

Bottom of Background Frame

1612b
Super impose Source over

Background Frame

1613b
Select Randon
Transonations

1614
Apply Freeze-Frame to

start and end of
Transformations

1615b
Apply Animation

FIG. 16B

US 9,620,169 B1 Sheet 22 Of 35 Apr. 11, 2017 U.S. Patent

2009T

U.S. Patent Apr. 11, 2017 Sheet 23 Of 35 US 9,620,169 B1

1702
Load Defaults, Options

1700

1704

Determine Master Track Cut Timings

1705

Determine Slave Track Timings

17O6

Build Track(s) calling Swivel
Track

1708
Track Layering

1709
Create Background Clip

1710
Superimpose Track Clip(s)

over background

1711

Concatenate Output

FIG. 17

U.S. Patent Apr. 11, 2017 Sheet 24 of 35 US 9,620,169 B1

1801 1802
START S. Load Defaults, Set Options

1803

Loop through Sources, Generate Swive
FX/Flipboard FX Scripts via Cache Scripts

18OO

1804

Render and Encode Cache Video Clips via
Cache Oueue

1805
Loop through Cache Indexes, Load Cache

Video Clip via Cache Loader

1806
Concatenate Clips

1807
END

FIG. 18

U.S. Patent Apr. 11, 2017 Sheet 25 Of 35 US 9,620,169 B1

1904
Generate Titling
Background

Yes

1905
Superimpose Titling Text

1906
Conform Duration

1908
is Source Stil Treat Video as Still

Image?

1910
Mute Audio

1913
Superimpose Titling Text

1915
Apply Radius to Corners

Pad Sides of Video

1917
Apply Animated Swivel/

Flipboard effects

FIG. 19

U.S. Patent

2OOO

Apr. 11, 2017 Sheet 26 of 35

2002

Load Defaults, Options

2003
Main Title
Text?

2005

Start Source Loop

2006

Get Next Screen Type

2007

Generate Screen Script via Cache
Scripts

No

2008
Loop Complete?

Yes

2009

Render/encode Screen Scripts via
Cache Oueue

2010
Loop through Cache Indexes

Loading each cache video clip via
Cache Loader

2011

Concatenate Output

FIG. 20

2004
Use Main Title Text + First Two
Sources, Generate Screen Script

via Cache Scripts

US 9,620,169 B1

U.S. Patent Apr. 11, 2017 Sheet 27 Of 35 US 9,620,169 B1

2O2
Load Defaults, Set Options

2O5
2O3 Scree we Choose Appropriate Screen woe Check Screen type and Sources List iype pprop - ype,

runcate Sources list

26
Load Each Source

2O7
Set Animation Directions for Each Source

21OO

2109
Crop / Scale Animate

Each Source Clip

28
is Sources List

Double?

23
Yes Render Main Title Text Yes

2110 214
Combine Pairs of is Single

Source Clips Yideo Clip

25

Mute audio, Conform. Duration

26
211 Crop f Scalef Animate Each

Apply in + Out Source Clip
transitions

2.8
Superimpose Titling Text on

Source Clips

Apply in + Out
Transitions

220
Arrange Clip Titles, Build Screen

Cip

221
Conform Output

FIG. 21

U.S. Patent Apr. 11, 2017 Sheet 28 Of 35 US 9,620,169 B1

22O2

load Defaults, Set
Options

22O3 22O4.

Start Loader Loop Load next Music Clip

226
Normalize wusic
clip's Volume

225
Normalize?

22OO

227
Fade in and/or out Music, No
depending on Options

22O3
Append main Audio clip with

current Audio clip

12210 Y
is Music clip

Loop Audio until Longer than
Video clip

222
Trim Audio clip to
Wideo Duration

2214
Mix Video's audio track
and Music, Dub to Video

2215
Perform Audio

Ducking
223

Do Ducking?

226
Conform Audio

FIG. 22

U.S. Patent Apr. 11, 2017 Sheet 29 Of 35 US 9,620,169 B1

232 2303
load Defaults, Set Options Export Output Video's Audio Track to WAV file

1 2308
S. Only one onset in 2304

s l s Perform Onsets Detection or WAV file, Generate Onset Cnsetist
23OO s List

Nics

2309
Start Onset List loop

230
Compare Current and Next Onset

305
load Onsets list

23O7
Dub Music to Wideo

2312 33N
Subtract duration from is intervai SN

next Onset append Dif. To duration x
points list Y2)?

23.
Mix Video's Audio Track
and Music, Dub to Wideo

231
Start Points List loop

(index i. O) Empty?

238
Fade in Music at
Current Point

239
Fade Out Music
at Current Point

2317 N
index Odda

2321
increment index

2322
Conform Audio

FIG. 23

U.S. Patent Apr. 11, 2017 Sheet 30 Of 35 US 9,620,169 B1

24O2

Load Defaults, Set
Options

2403
ls Music

Parameter a
String?

2400
2404

Load Music from File

24O6
Mix Video's Audio Track

and Music, Dub to
Video

2405
Do Audio
Ducking?

24O7

Perform Audio Ducking

24.08
Conform Audio?

FIG. 24

U.S. Patent Apr. 11, 2017 Sheet 31 Of 35 US 9,620,169 B1

25O2
Load Defaults, Set Options

2504
Decimate Frame Rate

2SOs
Colorize Video with Specified color for

sepia effects, black and white, etc
Coorize
Video?

25OO

2507 Y 2508
Do Film Dirt Apply Overlay of Film Dirt (custom or

Effect 21 stock video clip)

2509
Do Vignette
NEffect?/

25C
Appy Vignette Overlay

252
Apply Film Grain Effect Using Add

Grain Plugin (3rd Party)

/ 2513
Fickr

Effect

254
Apply Lighting f Darkening to each

pair of adjacent Video frames

256
Restore Original input Frame Rate

259
Covert Framerate to 29.97 FPS

252
Convert Dimensions to match Preset

(1280x720 or 640x480)

Does input
Wideo have

Nan Audio
Yrack

258
Convert Video to YW12 Colorspace Video and

Audio

252.
Convert Audio Stream
to 48Khz, 16-bit Stereo

2523
Cal Old Film Audio

FIG.25

U.S. Patent Apr. 11, 2017 Sheet 32 Of 35 US 9,620,169 B1

26O2
Load Defaults, Set Options

26OO

2503
Apply Brightness and Contrast

adjustments as specified

Colorize

2306 26O7
265 x w

None Colorize Sepia Technicolor
a Apply Sepia Effect Apply Technicolor effect color Clip Using color specified by color nic parameter Using Color Specified by color channel specified by channel

parameter parameter (default red) RGB

Conrovide 2609
Ya and Audio? Convert Video Colorspace to YVR

26

Convert Framerate to 29.97fps

2611
Convert Dimensions to match Preset

(1280x720 or 640x480)

2612

Convert Audio to 48khz, 16-bit
Stered

FIG. 26

US 9,620,169 B1 Sheet 33 Of 35 Apr. 11, 2017 U.S. Patent

ZZ "SOI

quedod

00/ ?.

U.S. Patent Apr. 11, 2017 Sheet 34 of 35 US 9,620,169 B1

2803
Set Additional Options based

on profile parameter

28O2
Load Defaults, Set Options

1 2805 N.
Do Crackle

Effect

2804
Create Silent 18-second Audio

clip (48Khz, 32 bit, Stereo),
store in memory as n all

variable

2809
Load Dust Noise. WAV file

2810
Mix Dust noise inton all clip at

level specified by dust
parameter

2806
Load Crackle. WAV file

28Of

Mix Crackle inton all clip at
level specified by Crackle

parameter
2803
Do Dust

Noise Effect?
Yes

282
Load Clicks.WAV

2813
Mix Clicks inton all at level
Specified by click parameter

2314 2815
Do Mechanica Yes Load Mechanical Noise. WAV

fe oise Effect?

2816
Mix Mechanical Noise into

in all clip at level Specified by
mechanical parameter

2818
Apply Midrange Fred, Boost to
input audio at level Specified
by ed Strength parameter

289
Loop in all clip to match input

audio duration

282O
Mix n all clip into input audio

2821
28OO Normalize audio levels

2822
2823 Conform Audio to 48Khz, 16
Eric

s bit Stereo

FIG. 28

U.S. Patent Apr. 11, 2017 Sheet 35 of 35 US 9,620,169 B1

29OO

2902

Load Defaults, Set Options

2903

Loop Noise to Match input Video's
Duration

2904

Mix Noise Clip and input Audio at
specified level (Default is 25% noise)

2.905
Dub Mixed Audio to Video

FIG. 29

US 9,620,169 B1
1.

SYSTEMIS AND METHODS FOR CREATING
A PROCESSED VIDEO OUTPUT

CROSS-REFERENCE TO RELATED
APPLICATIONS/INCORPORATION BY

REFERENCE

The present application claims priority under 35 U.S.C.
S119(e) to provisional application Ser. No. 61/859,063, filed
on Jul. 26, 2013. The above referenced provisional applica
tion is hereby incorporated herein by reference in its entirety.

FEDERALLY SPONSORED RESEARCH OR
DEVELOPMENT

Not Applicable

MICROFICHEACOPYRIGHT REFERENCE

Not Applicable

BACKGROUND OF THE INVENTION

The present invention relates to systems and methods
Supporting access to an application for users to input,
process, and share media. More specifically, certain embodi
ments of the present invention relate to systems and methods
that provide a socially interactive application for inputting,
processing, compiling, and sharing video streams compris
ing images, video clips, and/or audio clips.

Phones, cameras, and video cameras are commonly used
to capture memories. Typically, when returning from a major
event, like a vacation or birthday party, photographs may be
shared as an online album with friends and family, or
uploaded to a social media site like Facebook. A problem
with standalone photographs of an event is that the story
associated with the images may not be apparent from the
photograph stills alone. In order to tell a story, video editing
Software can be used to bring pictures, videos, and music to
life. Existing consumer video editing Software is expensive
and complicated to use because it comes from roots in
professional video editing Software. For example, existing
Video editing software commonly uses separate, parallel
lanes (also called tracked or Swim lanes) for video and image
clips, Subtitles, audio tracks, transitions between clips, and
the like. Although the separate, parallel lanes enable pro
fessional video editors to have complete control of the video
editing process, even the most computer savvy consumers
can find the process of editing video to be complicated,
tedious, and time consuming. As such, even after a user
Successfully creates an edited video stream using existing
video editing software, the user may put off and/or be
reluctant to create edited video streams in the future due to
the time and energy needed to create edited video streams
using existing video editing Software.
Some existing video editing Software has attempted to

simplify the video editing process. However, these simpli
fied existing video editing software solutions do not provide
users with control over the appearance of the output. For
example, typical simplified video editing Software merely
allows for user selection of a project template that is used to
automatically create the video stream. Users of typical
simplified video editing software may not be able to control
the order pictures or videos are displayed and what parts of
Videos are used. Further, existing simplified video editing
Software does not allow for audio ducking and does not
provide tools for filtering video, audio, or colors.

10

15

25

30

35

40

45

50

55

60

65

2
Further limitations and disadvantages of conventional and

traditional approaches will become apparent to one of skill
in the art, through comparison of Such systems with some
aspects of the present invention as set forth in the remainder
of the present application.

SUMMARY OF THE INVENTION

A system and/or method that provides a socially interac
tive application for inputting, processing, compiling, and
sharing video streams comprising images, video clips, and/
or audio clips, Substantially as shown in and/or described in
connection with at least one of the figures, as set forth more
completely in the claims.

These and other advantages, aspects and novel features of
the present invention, as well as details of an illustrated
embodiment thereof, will be more fully understood from the
following description and drawings.

BRIEF DESCRIPTION OF THE DRAWING(S)

FIG. 1 is a block diagram of an exemplary system in
which a representative embodiment of the present invention
may be practiced.

FIG. 2 is a flowchart illustrating an exemplary method for
specifying a video editing project, in accordance with a
representative embodiment of the present invention.

FIG. 3 is a flowchart illustrating an exemplary method for
performing a video editing project, in accordance with a
representative embodiment of the present invention.

FIG. 4 is a flowchart illustrating an exemplary method for
generating video engine project instructions, in accordance
with a representative embodiment of the present invention.

FIG. 5 is a flowchart illustrating an exemplary method for
generating video engine project instructions for a beat
sequence video editing project, in accordance with a repre
sentative embodiment of the present invention.

FIG. 6 is a flowchart illustrating an exemplary method for
generating video engine project instructions for an image
stack video editing project, in accordance with a represen
tative embodiment of the present invention.

FIG. 7 is a flowchart illustrating an exemplary method for
generating video engine project instructions for a multi-clip
sequence video editing project, in accordance with a repre
sentative embodiment of the present invention.

FIG. 8 is a flowchart illustrating an exemplary method for
generating video engine project instructions for a single clip
sequence video editing project, in accordance with a repre
sentative embodiment of the present invention.

FIG. 9 is a flowchart illustrating an exemplary method for
encoding video, in accordance with a representative embodi
ment of the present invention.

FIG. 10 is a flowchart illustrating an exemplary method
for loading and conforming images and video clips, in
accordance with a representative embodiment of the present
invention.

FIG. 11 is a flowchart illustrating an exemplary method
for queued caching to generate pre-processed video clips, in
accordance with a representative embodiment of the present
invention.

FIG. 12 is a flowchart illustrating an exemplary method
for generating a script, in accordance with a representative
embodiment of the present invention.

FIG. 13A is a flowchart illustrating an exemplary method
for interfacing with a rendering and encoding engine, in
accordance with a representative embodiment of the present
invention.

US 9,620,169 B1
3

FIG. 13B is a flowchart illustrating an exemplary method
for rendering and encoding scripts, in accordance with a
representative embodiment of the present invention.

FIG. 14A is a flowchart illustrating an exemplary method
for generating a single video clip, in accordance with a 5
representative embodiment of the present invention.

FIG. 14B is a flowchart illustrating an exemplary method
for interleaving a series of cache media files to generate a
single video clip, in accordance with a representative
embodiment of the present invention.

FIG. 14C is a flowchart illustrating an exemplary method
for segmenting a series of cache media files to generate a
single video clip, in accordance with a representative
embodiment of the present invention.

FIG. 14D is a flowchart illustrating an exemplary method
for generating a single video clip, in accordance with a
representative embodiment of the present invention.

FIG. 15 is a flowchart illustrating an exemplary method
for processing video for a beat sequence video editing 20
project, in accordance with a representative embodiment of
the present invention.

FIG. 16A is a flowchart illustrating an exemplary method
for processing video for an image stack video editing
project, in accordance with a representative embodiment of 25
the present invention.

FIG. 16B is a flowchart illustrating an exemplary method
for creating an image stack single script for each source, in
accordance with a representative embodiment of the present
invention
FIG.16C is a flowchart illustrating an exemplary method

for flattening each Source, in accordance with a representa
tive embodiment of the present invention.

FIG. 17 is a flowchart illustrating an exemplary method is
for processing video for a Swivel or flip multi-clip sequence
Video editing project, in accordance with a representative
embodiment of the present invention.

FIG. 18 is a flowchart illustrating an exemplary method
for creating one or more track video clips in the method of 40
FIG. 17, in accordance with a representative embodiment of
the present invention.

FIG. 19 is a flowchart illustrating an exemplary method
for processing one or two media Sources to generate a video
clip in the methods of FIGS. 17-18, in accordance with a
representative embodiment of the present invention.

FIG. 20 is a flowchart illustrating an exemplary method
for processing video for a slide multi-clip sequence video
editing project, in accordance with a representative embodi
ment of the present invention.

FIG. 21 is a flowchart illustrating an exemplary method
for processing main title text and/or media sources to
generate a video clip in the method of FIG. 20, in accordance
with a representative embodiment of the present invention.

FIG. 22 is a flowchart illustrating an exemplary method
for editing and mixing one or more music files with a video
output, in accordance with a representative embodiment of
the present invention.

FIG. 23 is a flowchart illustrating an exemplary method 60
for audio ducking in the method of FIGS. 22 and/or 24, in
accordance with a representative embodiment of the present
invention.

FIG. 24 is a flowchart illustrating an exemplary method
for editing and mixing a music file with a video output, in 65
accordance with a representative embodiment of the present
invention.

10

15

30

45

50

55

4
FIG. 25 is a flowchart illustrating an exemplary method

for filtering and providing an overlay to a video output, in
accordance with a representative embodiment of the present
invention.

FIG. 26 is a flowchart illustrating an exemplary method
for color filtering a video output, in accordance with a
representative embodiment of the present invention.

FIG. 27 is a flowchart illustrating an exemplary method
for color filtering a video output, in accordance with a
representative embodiment of the present invention.

FIG. 28 is a flowchart illustrating an exemplary method
for applying a vinyl noise audio filter to a video output, in
accordance with a representative embodiment of the present
invention.

FIG. 29 is a flowchart illustrating an exemplary method
for applying a projector noise audio filter to a video output,
in accordance with a representative embodiment of the
present invention.
The foregoing Summary, as well as the following detailed

description of embodiments of the present invention, will be
better understood when read in conjunction with the
appended drawings. For the purpose of illustrating the
invention, certain embodiments are shown in the drawings.
It should be understood, however, that the present invention
is not limited to the arrangements and instrumentality shown
in the attached drawings.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT(S)

Aspects of the present invention are related to systems
and methods supporting access to an application for users to
input, process, and share media. More specifically, certain
embodiments of the present invention relate to systems and
methods that provide a socially interactive application for
inputting, processing, compiling, and sharing Video streams
comprising images, video clips, and/or audio clips.
A representative embodiment of the present invention aids

users of internet-connected desktop, laptop, and/or mobile
devices with creating and sharing video streams.
As utilized herein, the terms “exemplary' or “example'

means serving as a non-limiting example, instance, or illus
tration. As utilized herein, the term “e.g. introduces a list of
one or more non-limiting examples, instances, or illustra
tions

FIG. 1 is a block diagram of an exemplary system 10 in
which a representative embodiment of the present invention
may be practiced. As illustrated in FIG. 1, the system 10
includes one or more servers 11. The server(s) 11 may
include, for example, cloud server(s), web server(s), data
base server(s), application server(s), and the like. The
server(s) 11 may be interconnected, and may singly or as a
group be connected to a network 12. Such as the Internet, for
example, via any suitable combination of wired or wireless
data communication linkS. Certain embodiments provide
that server(s) comprise one or more processing components
and/or engines such as central processing units, micropro
cessors, microcontrollers, and/or the like. The processing
components and/or engines may be integrated components,
or may be distributed across various locations, for example.
The processing components and/or engines may be capable
of executing Software applications, receiving media and
other input information from one or more computing devices
13, processing the media and other input information, com
piling the media and other input information, and outputting
processed video streams to computing devices 13, among
other things. The processing components and/or engines

US 9,620,169 B1
5

may be capable of executing any of the method(s) and/or
set(s) of instructions discussed below in accordance with the
present invention, for example. In certain embodiments, the
processing components and/or engines may execute one or
more video editing applications in response to media and
other input information received from computing device(s)
13, for example.

FIG. 1 includes one or more computing devices 13, which
are connected to the network 12 by any suitable combination
of wired or wireless data communication links. Computing
device(s) 13 may be any of for example, a desktop com
puter, a laptop computer, a notebook computer, a netbook
computer, a tablet computer, a mobile phone, a wearable
mobile device like glasses, or any other electronic device
having capabilities suitable for accessing the network 12. In
various embodiments, the computing device(s) 13 includes
user input device(s) 14, a display 15, a processor 16, and
memory 17, among other things. Components of the com
puting device(s) 13 may be implemented in Software, hard
ware, firmware, and/or the like. The various components of
the computing device(s) 13 may be communicatively linked.
Components of the computing device(s) 13 may be imple
mented separately and/or integrated in various forms. For
example, the display 15 and the user input device(s) 14 may
be integrated as a touchscreen display.

The user input device(s) 14 may include any device(s)
capable of communicating information from a user and/or at
the direction of the user to the processor 16 of the computing
device 13, for example. The user input device(s) 14 may
include button(s), a touchscreen, motion tracking, voice
recognition, a mousing device, keyboard, camera and/or any
other device capable of receiving a user directive. In certain
embodiments, one or more of the user input devices 14 may
be integrated into other components, such as the display 15,
for example.
The display 15 may be any device capable of communi

cating visual information to a user. For example, a display 15
may include a liquid crystal display, a light emitting diode
display, and/or any suitable display. The display 15 can be
operable to display information from a video editing appli
cation, or any Suitable information. In various embodiments,
the display 15 may display information provided by the
processor 16, for example.
The processor 16 may be one or more central processing

units, microprocessors, microcontrollers, and/or the like.
The processor 16 may be an integrated component, or may
be distributed across various locations, for example. The
processor 16 may be capable of executing software appli
cations, receiving input information from user input
device(s) 14, and generating an output displayable by a
display 15, among other things. The processor 16 may be
capable of executing any of the method(s) and/or set(s) of
instructions discussed below in accordance with the present
invention, for example. In certain embodiments, the proces
Sor 16 may execute one or more video editing applications
available at server(s) 11 and/or stored at the computing
device(s) 13 in response to user inputs received from user
input device(s) 14, for example.

In various embodiments, the information provided by the
user input device(s) 14 to the processor 16 may be processed
by the processor 16 to control one or more applications for
media uploading, media processing, media compiling, and
Video sharing, for example. As an example, button depres
sions, touchscreen selections, mousing inputs, keyboard
inputs, and/or voice commands, among other things, may be
received from the user input device(s) 14 and processed by

10

15

25

30

35

40

45

50

55

60

65

6
the processor 16 to input media, process media, compile
media, and/or share video streams, for example.
The memory 17 may be one or more computer-readable

memories, for example, such as a hard disk, floppy disk, CD,
CD-ROM, DVD, compact storage, flash memory, random
access memory, read-only memory, electrically erasable and
programmable read-only memory and/or any Suitable
memory. The memory 17 may include databases, libraries,
sets of information, or other storage accessed by and/or
incorporated with the processor 16, for example. The
memory 17 may be able to store data temporarily or per
manently, for example. The memory 17 may be capable of
storing data generated by the processor 16 and/or instruc
tions readable by the processor 16, among other things. In
various embodiments, the memory 17 stores one or more
Software applications.

FIG. 2 is a flowchart illustrating an exemplary method
200 for specifying a video editing project, in accordance
with a representative embodiment of the present invention.
The actions of the method 200 of FIG. 2 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11, network(s) 12, and/or computing
device(s) 13 comprising user input device(s) 14, a display
15, a processor 16, and/or a memory 17. The system 10 may
be arranged to support a creation application specifying a
Video editing project, for example. Certain embodiments of
the present invention may omit one or more of actions,
and/or perform the actions in a different order than the order
listed, and/or combine certain of the actions discussed
below. For example, Some actions may not be performed in
certain embodiments of the present invention. As a further
example, certain actions may be performed in a different
temporal order, including simultaneously, than listed below.
The method 200 for specifying the video editing project

may be a Windows application, Mac application, web based
application, mobile device (e.g., iOS, Android), or any
Suitable application for arranging and uploading pictures,
videos, and music. The method 200 of FIG. 2 illustrates how
the end user may organize media clips, add clip options like
Subtitles or trimming clips, and add main project options like
the main event title and filters such as video and audio filters,
for example. In various embodiments, the end user may use
computing device 13 to upload the media to server(s) 11,
which may include cloud storage, for example.
At step 201, the method of FIG. 2 is started. At step 202,

a user may select a project type. Such as beat sequence, flip,
Swivel, or slide sequence, image stack, or any Suitable
project type. In various embodiments, the project type
selection may drive what a user can add or select during the
process.
At step 203, a user may add and arrange media and set clip

options, such as by adding titles or trimming video clips. For
example, a user can add photos, videos, music, and/or the
like. In various embodiments, media may be added by
dragging and dropping, by clicking the "+” button and using
a standard file dialog to find the media, or using any Suitable
selection mechanism. In certain embodiments, a user can
arrange the media as desired with a user input device 14 Such
as a mousing device, or by selecting the item and using
arrow buttons displayed on the display 15, for example.
Video clips can be trimmed (removing the start and/or end
of a video clip to shorten it). If a video clip is present, a trim
link may be displayed. When selected, the trim link can
display a trim popup that displays the video clip, and start
and end sliders that can be color coded (e.g., green and red)
so the user can easily distinguish between what is being kept
and what is being trimmed.

US 9,620,169 B1
7

At step 204, a user sets the event title and selects (or sets)
an event date. The user may optionally select other projec
tion options, such as adding video, audio, and/or color
filters, among other things. For example, the user may select
a video filter, such as old film (makes it look like 60/70s
Video), among other things. The user can optionally select a
color filter (color grading). Such as Super8, sepia, new film,
or any Suitable color filter. The color grading filters change
vibrancy up or down, add grain, sharpen, and even slow
down frame rate, for example. The user may optionally
select an audio filter, such as vinyl noise or projector, for
example. The user can optionally select convert to black and
white, which will make the entire output grayscale black and
white. Combining a black and white color filter with some
thing like an old film video filter may take it from looking
like 60/70s content, to looking like 1920's content, for
example.

At step 205, a user may select to upload the project to the
server 11. In response to the upload selection, project
instructions are created, including a user authentication
token, clip metadata, clip options like title, trim information,
and overall project information like event title, event date,
selected filters, and the like. The project instructions can be
sent to server 11, such as via REST request, and parameters
(e.g., cloud storage parameters) may be returned to the
client. In various embodiments, the server 11 checks to see
if the user has already uploaded any of the files, and returns
only the remaining files needed to complete the upload.

At step 206, the media files related to the project can be
uploaded to cloud storage or any suitable storage, for
example. At step 207, after the project instructions and
media are uploaded at steps 205 and 206, the project is
queued for processing. At step 208, the method of FIG. 2
ends.

FIG. 3 is a flowchart illustrating an exemplary method
300 for performing a video editing project, in accordance
with a representative embodiment of the present invention.
The actions of the method 300 of FIG.3 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support performing a video editing project, for example.
Certain embodiments of the present invention may omit one
or more of the actions, and/or perform the actions in a
different order than the order listed, and/or combine certain
of the actions discussed below. For example, Some actions
may not be performed in certain embodiments of the present
invention. As a further example, certain actions may be
performed in a different temporal order, including simulta
neously, than listed below.

Referring to FIG. 3, the method 300 for performing the
Video editing project is the high level process of service
methods that take projects from the queue, set up the
projects for processing, and call the main video engine as
described below in connection with FIGS. 9-21, for
example. In various embodiments, the method 300 for
performing the video editing project is responsible for
project setup, calling the video engine (which compiles the
media based on the project type and uploaded instructions),
creating the final video output, creating metadata about
projects, creating compilation entity data after the video
engine completes, and creating thumbnails, among other
things, for example.

The method begins at step 301. At step 302, a next
available “ready for processing project is picked up from
the queue and its status is set to locking, then processing, for
example. At step 303, the media clips are downloaded from
storage. Such as cloud storage, to processing server(s) or

10

15

25

30

35

40

45

50

55

60

65

8
network storage. In certain embodiments, if a user had
selected files that were already uploaded, and the files were
skipped during the upload process (so the file is stored once
and the upload process speed is increased), these files may
still be download during this step. At step 304, the process
ing server determines whether clips should be re-ordered
and/or re-numbered based on the project type (e.g., a beat
sequence project type). At step 305, if the processing server
determines that the clips should be re-ordered and/or re
numbered, the re-ordering/re-numbering operation is per
formed.
At step 306, project scripts may be setup based on the

project type. For example, a main encoding script can be
created based on the project type as described below in
connection with FIG. 4 (main script) and FIGS. 5-8 (exem
plary project type scripts). At step 307, the processing server
determines whether the project has a new album (new files
that have not been uploaded before). Albums are created for
new media files uploaded. In many cases, files will be new,
but there may be a few media files that the user already
uploaded, that would be a part of an old album, for example.
Typically, there will be a new album because at least some
files will be new. As discussed in more detail below at step
8, thumbnails are created for new clips when a new album
is being created, for example.
At step 308, the processing server creates large and

normal sized thumbnails of the original picture and video
files if the project has a new album. In various embodiments,
the created thumbnails may be used for a picture viewer, and
for album selection and album content detail in a cloud
mixer. For example, the thumbnails may be used so a user
can later select and work with their uploaded media. As
another example, large thumbnails can be used so that the
output shared by a user may be viewed as a picture slide
show with the picture viewer.
At step 309, the video engine begins encoding the media

based on the created project script as illustrated in FIGS.
9-21 and discussed in more detail below. At step 309, the
final video output that may be uploaded to, for example,
cloud storage and viewed by end users is created. After
encoding is complete at step 309, standard sized thumbnails
may be created for the main video thumbnails, for example,
and Small and spliced Small thumbnails can be created for
main wall image rain, for example, at step 310. After
Successful project completion, a compilation entity is cre
ated and persisted in a data repository at step 311. The
compilation entity may comprise, for example, a compila
tion title, date, thumbnail URLs, video URLs, user full
name, and other metadata about the compilation.
At step 312, project and compilation output metadata,

Such as file total bytes, total processing time, and/or any
Suitable stats, are stored with the project and compilations
entities, and persisted. In various embodiments, the compi
lation entity can then be added to a user timeline and, if
public, to a main video wall of the socially interactive
application. The method 300 ends at step 313.

FIG. 4 is a flowchart illustrating an exemplary method
400 for generating video engine project instructions, in
accordance with a representative embodiment of the present
invention. In various embodiments, method 400 may be
performed at step 306 of FIG. 3. The actions of the method
of FIG. 4 may be performed using elements of the system 10
of FIG. 1 including, for example, the server(s) 11. The
system 10 may be arranged to support the generation of
Video engine project instructions such as Scripts, for
example. Certain embodiments of the present invention may
omit one or more of actions, and/or perform the actions in

US 9,620,169 B1

a different order than the order listed, and/or combine certain
of the actions discussed below. For example, Some actions
may not be performed in certain embodiments of the present
invention. As a further example, certain actions may be
performed in a different temporal order, including simulta
neously, than listed below.
The method 400 begins at step 401. At step 402, a script

header is generated. The Script header comprises a preset,
which may be the theme, font, and/or caching and multi
threading core count instructions, for example. These set
tings can be used by Subsequent video engine function calls,
for example, as described in detail below.

At step 403, a main script body is generated based on a
project type. Examples of project types can include a multi
clip project (as described in FIG. 7), single clip project (as
described in FIG. 8), image stack project (as described in
FIG. 6), and the like.
At step 404, a script footer is generated. Script footers

may comprise references to video filters (e.g., FIG. 25),
color filters (grading) (e.g., FIGS. 26-27), audio filters (e.g.,
FIGS. 28-29), and setting to black and white, among other
things. If music has been added, the music may be mixed
with the compilation, ducking with video audio, as well as
fading in and out (e.g., FIGS. 22-24), among other things.
Below are examples of filters, backgrounds, and music, for
example:
A grayscale function call may be added to the Script footer

if a black and white filter was selected.
A color filter function call, as illustrated in FIGS. 26-27

and described below, may be added to the script footer if a
color filter, such as Super 8, Technicolor, etc., was selected.
A video filter function call, as illustrated in FIG. 25 and

described below, may be added to the script footer if a video
filter, such as old film, among other things, was selected.
An audio mixer function call, as illustrated in FIGS. 22-24

and described below, may be added to the script footer if
music was added to the project and the project type does not
have special audio settings, such as the beat sequence or
silent movie project types described below. For example, the
audio mixer may mix the music with the video output,
"ducking when video audio is present, repeating music
clips to match video output length, or trimming music audio
to match video output length. The audio mixer can also fade
music audio in and out at the beginning and end of video
output, between different music clips and before and after
audio ducking when video audio is present, for example. The
audio mixer may seamlessly mix music audio with video
output. In various embodiments, music is handled differently
for specific projects types, such as beat sequence and silent
movie project types, for example.
An audio filter function call, as illustrated in FIGS. 28-29

and described below, may be added to the script footer if an
audio filter, like vinyl noise or projector, was selected.

The method 400 ends at step 405.
FIG. 5 is a flowchart illustrating an exemplary method

500 for generating video engine project instructions for a
beat sequence video editing project, in accordance with a
representative embodiment of the present invention. A beat
sequence video editing project may, for example, add special
effects to the images or video of a clip based at least in part
on the beat or tempo of music in the clip as described below.
The actions of the method of FIG.5 may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
the generation of beat sequence video editing project
instructions that may be included in the main script body
discussed above with regard to FIG. 4, for example. Certain

10

15

25

30

35

40

45

50

55

60

65

10
embodiments of the present invention may omit one or more
of actions, and/or perform the actions in a different order
than the order listed, and/or combine certain of the actions
discussed below. For example, Some actions may not be
performed in certain embodiments of the present invention.
As a further example, certain actions may be performed in
a different temporal order, including simultaneously, than
listed below.
The method 500 begins at step 501. At step 502, an audio

filename input line may be set. At step 503, a title pause list
may be generated. For example, an image title can be
matched with image filenames that may be specifically
generated for the beat sequence project, and a numeric pause
list may be generated based on an image filename number,
along with the title. In various embodiments, although clips
usually move quickly to the tempo of the music, titles are
paused so the clip title can be read, for example. When a clip
is paused, beat effects that move to the music are maintained
for the clip. A next clip is transitioned to once the pause
duration has been met, for example. In various embodi
ments, the pause duration, such as 4 seconds, is configu
rable.
At step 504, a main beat sequence function call may be

generated as illustrated in FIG. 15 and described below. At
step 505, a function call for a beat tap effect may be added.
The beat tap effect can be based on an audio track, for
example. The beat tap effect symbolizes the beat of the
music, making the clip look like it has been "tapped' or hit
with a drum stick to symbolize the beat, for example. In
various embodiments, the clip may be indented, revealing a
border around it, and then Snap back.
At step 506, a function call for a beat Zoom effect may be

added. The beat Zoom effect can be based on an audio track,
for example. The beat Zoom effect can Zoom into or out of
an image to the beat of the music. In contrast to the beat tap
effect, the clip may not be indented to reveal the border.
Instead, the beat Zoom effect may Zoom into and out of the
clip, for example. At step 507, a function call for a beat
rotate effect may be added. The beat rotate effect can be
based on an audio track, for example. The beat rotate effect
rotates the clip left or right to the beat of the music. At step
508, an audio dub function call may be added. The audio dub
function can dub music over a compilation, for example. The
method 500 ends at step 509.

FIG. 6 is a flowchart illustrating an exemplary method
600 for generating video engine project instructions for an
image stack video editing project, in accordance with a
representative embodiment of the present invention. The
actions of the method 600 of FIG. 6 may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
the generation of image Stack video editing project instruc
tions that may be included in the main script body discussed
above with regard to FIG. 4, for example. Certain embodi
ments of the present invention may omit one or more of
actions, and/or perform the actions in a different order than
the order listed, and/or combine certain of the actions
discussed below. For example, Some actions may not be
performed in certain embodiments of the present invention.
As a further example, certain actions may be performed in
a different temporal order, including simultaneously, than
listed below.
The method 600 for generating video engine project

instructions for an image stack video editing project begins
at step 601. At step 602, a title line (e.g., an event title and
date) can be generated for later use in a main function call.
The title may be placed on a blank Stack card, for example,

US 9,620,169 B1
11

Such that the project event title is placed at the beginning of
the output video. At step 603, the processing server may loop
through images and video clips, generating image stack
function calls for every n clips (image or video file), where
n is a configurable number, Such as 8, for example. The
processing server can add titles, which may be drawn on the
bottom of a stack card in marker font, and video trims (if
they exist), for example. The method 600 ends at step 604.

FIG. 7 is a flowchart illustrating an exemplary method
700 for generating video engine project instructions for a
multi-clip sequence video editing project, in accordance
with a representative embodiment of the present invention.
The actions of the method 700 of FIG.7 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support the generation of multi-clip sequence video
editing project instructions that may be included in the main
script body discussed above with regard to FIG. 4, for
example. Certain embodiments of the present invention may
omit one or more of actions, and/or perform the actions in
a different order than the order listed, and/or combine certain
of the actions discussed below. For example, Some actions
may not be performed in certain embodiments of the present
invention. As a further example, certain actions may be
performed in a different temporal order, including simulta
neously, than listed below.

Referring to FIG. 7, the method 700 for generating video
engine project instructions for a multi-clip sequence video
editing project may be used for projects with multi-clip
screens, such as a slide sequence as illustrated in FIG. 20 and
described below, a flip sequence as illustrated in FIG. 17 and
described below, and a swivel sequence as illustrated in FIG.
17 and described below, for example. The multi-clip
sequence video editing project types can have screens that
have multiple (e.g., 2-5) image and/or video clips on the
screen at once, as well as single clip Screens for images with
titles or videos, for example. In various embodiments,
images with titles or videos may be a part of a multi-clip
screen, but can be displayed after the multi-clip Screen on a
single screen so the title can be displayed, or the video can
be played in its entirety, for example.

The method 700 begins at step 701. At step 702, an array
of flip/swivel multi-clip source lists or slide multi-clip
Source lists may be initialized. In various embodiments, the
multi-clip Source lists have how many clips are in the
multi-clip Screen (such as 3, 4, or 5, for example), and what
position each of the clips is in on the screen. The arrays may
then be shuffled so that when subsequent multi-clip screens
are taken, the screens are randomized so that even if the
same content is re-processed, the output is different. For
example, the order of the users clips may not change from
a per screen perspective, but the selection of how many clips
are on a multi-clip Screen and where the clips are placed on
the screen is random Such that even if the same clips are
used, each output is different.

At step 703, a random main title screen type may be
selected. For example, a next random multi-clip source list
shuffled in above at step 702 can be selected based on a
remaining clip count. If there are no remaining multi-clip
Source lists, the array can be re-initialized, shuffled, and one
of the array can be selected. At step 704, a title screen script
line is generated. The title Screen script line can be an event
title and date line generated with two clips (images or
videos), for example. In various embodiments, if either of
the two clips, for example, has subtitles, the subtitles are not
displayed on this main title Screen, but are displayed at step
706 as described below.

5

10

15

25

30

35

40

45

50

55

60

65

12
At step 705, a processing server can determine whether

the clips in the main title screen have an image with a
subtitle, or a video. At step 706, if the main title screen has
images with Subtitles, or videos in the title, a single screen
for each image with a subtitle and video is generated, which
allows an “important clip to be seen in its entirety on a
single screen instead of on a multi-clip Screen, for example.
In various embodiments, the generation of the single clip
screens may include generating trim line if the video was
trimmed.
At steps 707-712, a loop of the remaining images and

video clips is performed. At step 708, a multi-clip source list
is retrieved based on remaining clip count. If there are no
remaining multi-clip source lists, the multi-clip Source lists
array is re-initialize and the next random multi-clip Source
list is retrieved. At step 709, a multi-clip screen without clip
subtitles is generated. The subtitles are generated when the
clip is displayed on a single Screen as described below at
step 711. At step 710, a processing server may determine
whether the generated multi-clip Screen has images with
subtitles, or videos in the title. At step 711, if the screen has
images with Subtitles, or videos in the title, a single screen
for each image with a subtitle and video is generated, which
allows an “important clip to be seen in its entirety on a
single screen instead of on a multi-clip Screen, for example.
This may also include generating trim line if the video was
trimmed. At step 712, the loop 707-711 is repeated for any
remaining images or videos.
At step 713, if there are remaining clips that cannot make

up the next multi-clip Screen (e.g., if at least three clips are
needed but there are only two clips left), single clip lines can
be generated to display the last clips. In various embodi
ments, titles (Subtitles) and trim lines may be added as
discussed above, for example. At step 714, a main function
call (e.g., a slide sequence as illustrated in FIG. 20 and
described below, a flip sequence as illustrated in FIG. 17 and
described below, or a swivel sequence as illustrated in FIG.
17 and described below) with the above main title, multi
clip, and single screen lines is generated. The method 700
ends at step 715.

FIG. 8 is a flowchart illustrating an exemplary method
800 for generating video engine project instructions for a
single clip sequence video editing project, in accordance
with a representative embodiment of the present invention.
The actions of the method 800 of FIG.8 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support the generation of single clip sequence video
editing project instructions that may be included in the main
script body discussed above with regard to FIG. 4, for
example. Certain embodiments of the present invention may
omit one or more of actions, and/or perform the actions in
a different order than the order listed, and/or combine certain
of the actions discussed below. For example, Some actions
may not be performed in certain embodiments of the present
invention. As a further example, certain actions may be
performed in a different temporal order, including simulta
neously, than listed below.

Referring to FIG. 8, a method 800 for generating video
engine project instructions for a single clip sequence video
editing project may be used for projects with single clip
screens, such as a focus and silent movie projects, for
example. In various embodiments, the single clip Screens
can have a title (subtitle) and the videos can be trimmed. The
method 800 begins at step 801. At step 802, a title screen
Script line that may include an event title and date, for
example, is generated for later use.

US 9,620,169 B1
13

At steps 803-805, a loop of the images and video clips is
performed. At step 804, a single clip Screen is generated. The
single clip Screen may comprise a Subtitle if the clip included
a title. The single clip Screen can comprise a video trim line
if the clip is a video that was trimmed. At step 805, the loop
803-805 is repeated for any remaining images or videos.

At step 806, a main function call is generated with the
above main title and single screen lines. For example, a main
function call for a focus project, silent movie project, or any
suitable project can be generated. The method 800 ends at
step 807.

FIGS. 9-21 below illustrate main video engine workflows
and descriptions. At a high level, the main video engine
comprises the executables and script code described below.
The video engine may comprise external function calls and
executables. In various embodiments, the project Scripts
described above may call video engine external functions. A
preset header function call may comprise parameters to set
if caching should be used, and how many threads should be
used. For example, a preset header may tell the Subsequent
functions (e.g., image stack, etc.) to use the cache and
threads executables described below. Once the project
Scripts are created, an encoding tool. Such as X264.exe, may
be called with the project script. The encoding tool can
generate the output, such as an MPEG4 output. If audio is
present (either from video clips or from music files), the
audio may be multiplexed with the MPEG4 for the final
video output that is viewed at the socially interactive appli
cation, for example.

FIG. 9 is a flowchart illustrating an exemplary method
900 for encoding video, in accordance with a representative
embodiment of the present invention. The actions of the
method 900 of FIG.9 may be performed using elements of
the system 10 of FIG. 1 including, for example, the server(s)
11. The system 10 may be arranged to support video
encoding, for example. Certain embodiments of the present
invention may omit one or more of actions, and/or perform
the actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.
The method 900 for encoding video begins at step 901. At

step 902, a processing server calls an encoding tool. Such as
X264.exe, with a project Script. The encoding tool generates
an output file, which can be a MPEG4 output file, for
example. The execution of the project Script may initiate the
functions and the video engine calls, for example. At step
903, the processing server determines whether the project
has music audio or video audio. At step 904, audio in
uncompressed WAV format is extracted using a tool Such as
WAVI.exe, for example. At step 905, the WAV file is
encoded to M4A using a tool such as NeroAcenc.exe, for
example, so that internet based media players can decode the
audio. At step 906, the M4A and MP4 from step 902 above
are multiplexed (combined) using a tool such as MP4Box,
for example, to create the final output MP4 that can be
viewed at the Socially interactive application, or any Suitable
application/service. The video encoding method 900 ends at
step 907. The final video output that end users consume has
been created.

FIG. 10 is a flowchart illustrating an exemplary method
1000 for loading and conforming images and video clips, in
accordance with a representative embodiment of the present
invention. The actions of the method 1000 of FIG. 10 may
be performed using elements of the system 10 of FIG. 1

10

15

25

30

35

40

45

50

55

60

65

14
including, for example, the server(s) 11. The system 10 may
be arranged to Support loading and conforming images and
video clips, for example. Certain embodiments of the pres
ent invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, Some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 10, the method 1000 for loading and
conforming images and video clips opens images and video
clips that can be in a variety of different formats, and allows
for simplified handling of source clips. The method 1000
allows the processing server to treat media as a generic clip,
instead of having to account for specific media format. The
method 1000 for loading and conforming images and video
clips begins at step 1001. At step 1002, defaults are loaded
according to a selected preset. In various embodiments,
defaults can be overridden by options selected by a user or
administrator, for example. At step 1003, an input source
string is parsed and a file type is determined by a file
extension.
At step 1004, a file loader is chosen based on the file type.

In various embodiments, various types of media are handled
automatically, based on an assumed file type. At step 1005,
digital still image formats are loaded. At step 1006, AVI
audio/video files may be opened with FFMpegSource, or
any suitable tool. For example, if unable to open the AVI
audio/video file using FFMpegSource, DirectShowSource
filter, or any suitable mechanism may be attempted. If AVI
audio/video file cannot be opened, an error is returned. At
step 1007, transport streams, such as MPEG2 and H.264
transport streams, are opened using MpegAutoIndexSource,
or any suitable mechanism. At step 1008, QuicktimeTM
MOV files are loaded by QtSource, or any suitable mecha
nism.
At step 1009, by default, video is conformed to consistent

dimensions at step 1010, depending on the selected preset.
In various embodiments, defaults can be overridden by
options such that video dimension conforming is skipped
and the method 1000 proceeds to step 1011. If video
dimension conforming is not skipped, video is resized to a
target width and height. For example, the video may be
conformed to pixel dimensions of either 1280x720 or 640x
480, for example, depending on the selected preset at step
1010. By default, video is letterboxed or pillar-boxed as
needed to fill the target width and height. The background
color may be determined by preset. Optionally, the video can
be cropped to fit the target frame size instead.
At step 1011, by default, frame rate conforming is per

formed at step 1012. In various embodiments, defaults can
be overridden by options such that frame rate conforming is
skipped and the method 1000 proceeds to step 1013. If frame
rate conforming is not skipped, the video frame rate is
conformed to the NTSC standard at step 1012. More spe
cifically, the video stream is conformed to 30000/1001
(29.97 frames-per-second). In certain embodiments, a high
quality frame rate conversion option can be chosen to
improve Smoothness at expense of processing time and some
risk of artifacts. If frame rate conforming is skipped at Step
1011, the method 1000 proceeds to step 1013, where video
is converted to YUV colorspace with YV12 Chroma sub
sampling, for example. After the video is converted at step
1013, signal limiting may be applied to the video stream at

US 9,620,169 B1
15

step 2014. For example, a video luminance range may be
limited to 16-235 and chrominance can be limited to 16-240
for CCIR-601 compliance.

At step 1015, options can be set for custom audio sample
rate and word length. At step 1016, by default, audio is
converted to 48 kHz, 16-bit. In various embodiments,
defaults can be overridden by options. For example, at step
1017, audio may be converted to a specific sample rate and
word length specified by a user or system administrator.
After converting the audio at step 1016 or 1017, multichan
nel audio is mixed to stereo and monaural signals are
replicated to 2-channel. Blank audio matching the default or
custom audio settings can be inserted on media that lack an
audio stream. The method 1000 for loading and conforming
images and video clips ends at step 1018.

FIG. 11 is a flowchart illustrating an exemplary method
1100 for queued caching to generate pre-processed video
clips, in accordance with a representative embodiment of the
present invention. The actions of the method 1100 of FIG. 11
may be performed using elements of the system 10 of FIG.
1 including, for example, the server(s) 11. The system 10
may be arranged to Support queued caching to generate
pre-processed video clips, for example. Certain embodi
ments of the present invention may omit one or more of
actions, and/or perform the actions in a different order than
the order listed, and/or combine certain of the actions
discussed below. For example, Some actions may not be
performed in certain embodiments of the present invention.
As a further example, certain actions may be performed in
a different temporal order, including simultaneously, than
listed below.
The method 1100 for queued caching to generate pre

processed video clips is one by which cache-enabled custom
functions can replicate the parameters needed to create their
output. The cache-enabled custom functions are written
to .avs scripts. The cache .avs Scripts can then be queued for
multi-threaded rendering, as illustrated in FIGS. 13 A-B and
as described below, using a variety of options, including
interleaved and segmented processing. The rendered output
is encoded to files, referred to herein as cache media files.
The method 1100 provides some unique advantages. For
example, method 1100 allows the output of multiple func
tions to be processed concurrently in a multithreaded envi
ronment. As another example, the method 1100 allows an
output of a single function to be multithreaded by assigning
portions of the output to different threads, when interleaved
or segmented processing is used. As another example, once
the output of function is cached to disk, the cache media files
can be loaded by the system and used in place of the output
of the functions to avoid reprocessing, which saves time and
computer processing unit (CPU) resources.

In various embodiments, interleaved processing generates
several Scripts for a given sequence. Each script may process
every Nth frame of the output. For example, if 4 threads are
used for interleaved processing of a sequence, 4 Scripts can
be generated. More specifically, a first Script may process
frames 0, 4, 8, etc. A second Script may process frames 1, 5.
9, etc. A third script may process frames 2, 6, 10, etc. A
fourth script may process frames 3, 7, 11, etc. Once the
cache media files for these scripts are rendered and encoded,
the files can be loaded and recombined by a process known
as interleaving, as described below with regard to FIG. 14B,
for example.

In certain embodiments, segmented processing may gen
erate several scripts for a given sequence. Each Script may
process a range of frames from the output of the function.
For example, if the output of a given source file and function

10

15

25

30

35

40

45

50

55

60

65

16
is 300 frames, and 4 threads are used for segmented pro
cessing, 4 Scripts may be generated. More specifically, a first
Script may process frames 0-74. A second script may process
frames 75-149. A third script may process frames 150-224.
A fourth script may process frames 225-299. Once the cache
media files for these scripts are rendered and encoded, they
can be loaded and recombined, as described below with
regard to FIG. 14C, for example.
At step 1101, a list of sources is received as an input. In

various embodiments, the list of sources may be paths to
media files or plain text used for specifying on-screen titling
text, for example. At step 1102, each item in the list of
Sources is processed in a loop, for example. At step 1103, as
each source is processed, a global variable is incremented so
that a unique index can be used to identify and reference
each cached media file. At step 1104, a cached-enabled
function is invoked, which generates an avs Script via the
method 1200 for generating a script illustrated in FIG. 12
and described below. Cache-enabled functions can replicate
the parameters used to create the function output. The
cache-enabled functions may be written to .avs scripts so
that the functions can be rendered by other threads, for
example. At step 1105, a cache identifier associated with the
Source being processed may be added to an index of a queue
identification list. The queue identification list may be sent
to the rendering method 1300A illustrated in FIG. 13A and
described below, or can be preserved for future rendering,
for example. At step 1106, the processing server determines
whether each item in the list of sources has been processed.
If items remain for processing, the method 1100 returns to
step 1103. Otherwise, the method 1100 proceeds to step
1107.
At step 1107, the processing server determines whether

rendering and encoding is being deferred, in which case the
queue identification list is returned at step 1108. If rendering
and encoding are not being deferred, the method proceeds to
step 1109, where the cache media files are rendered and
encoded by method 1300A illustrated in FIG. 13A and
described below, for example. At step 1110, if there is only
a single source in the input sources list, the encoded cache
media file can be read and returned as a clip and the method
proceeds to step 1111. If multiple sources are used, however,
the queue identification list may be returned instead at Step
1108. Other functions and processes can load pre-rendered
output from the output of method 1100, for example. At step
1111, rendered cache media files are loaded via the method
1400a illustrated in FIG. 14A and described below, for
example. If there is only a single source in the input sources
list, the encoded cache media file can be read and returned
as a clip. The method 1100 ends at step 1112 where either the
queue identification list or the clip is returned.

FIG. 12 is a flowchart illustrating an exemplary method
1200 for generating a script, in accordance with a represen
tative embodiment of the present invention. The actions of
the method 1200 of FIG. 12 may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
Script generation, for example. Certain embodiments of the
present invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, Some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.
The method 1200 for generating a script is called by

custom cache-enabled functions. The method 1200 repli

US 9,620,169 B1
17

cates the parameters and logic required to create the output
of the parent function and writes these to a script, so that the
Script can be loaded, rendered, and encoded by an external
process and/or at a later time as described below. At step
1201, the method 1200 for generating a script is initiated
when an input is received that comprises a list of parameter
names and values corresponding to those of the parent
function. The global cache identifier variable that uniquely
identifies the script and its output is also input. At step 1202,
the processing server determines whether an avS Script for
the cache identifier index exists. The cache identifier index
value is resolved to an actual file path pointing to the
target.avs script. If the script does not exist at step 1202, it
is generated. At step 1203, the processing server determines
whether interleaved processing has been specified. At step
1204, if interleaving has been specified, a separate Script is
generated for each interleaving step. If interleaving has not
been specified, the method proceeds to step 1205 where the
processing server determines whether segment processing
has been specified. At step 1206, if segment processing has
been specified, a separate Script is generated for each seg
ment. At step 1207, if neither interleaved nor segmented
processing is used, a single .avs script is generated. The
method 1200 ends at step 1208.

FIG. 13A is a flowchart illustrating an exemplary method
1300a for interfacing with a rendering and encoding engine,
in accordance with a representative embodiment of the
present invention. The actions of the method 1300a of FIG.
13 may be performed using elements of the system 10 of
FIG. 1 including, for example, the server(s) 11. The system
10 may be arranged to Support interfacing with a rendering
and encoding engine, for example. Certain embodiments of
the present invention may omit one or more of actions,
and/or perform the actions in a different order than the order
listed, and/or combine certain of the actions discussed
below. For example, some actions may not be performed in
certain embodiments of the present invention. As a further
example, certain actions may be performed in a different
temporal order, including simultaneously, than listed below.

The method 1300a for interfacing with a rendering and
encoding engine allows a list of indexes, representing the
cache identifiers of previously generated Scripts, for
example, to be passed to a rendering and encoding engine so
that the Scripts may be processed and stored as cache media
files. At step 1301a, the method 1300a for interfacing with
a rendering and encoding engine takes as input a list of
indexes representing the cache.avs scripts and the respective
outputs cache media files). At step 1302a, the processing
server checks whether output for all the indexes has already
been completed. If so, the method 1300a terminates. At step
1303a, the processing server sends the list of indexes to the
rendering an encoding engine. At step 1304a, cache media
files are indexed using FFIndex, or any Suitable indexing
mechanism. The method 1300a ends at step 1305a.

FIG. 13B is a flowchart illustrating an exemplary method
1300b for rendering and encoding scripts, in accordance
with a representative embodiment of the present invention.
The actions of the method 1300b of FIG. 13 may be
performed using elements of the system 10 of FIG. 1
including, for example, the server(s) 11. The system 10 may
be arranged to Support rendering and encoding a script to a
file, for example. Certain embodiments of the present inven
tion may omit one or more of actions, and/or perform the
actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,

5

10

15

25

30

35

40

45

50

55

60

65

18
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.
The method 1300b for rendering and encoding scripts

takes a list of cache indexes and assigns rendering of the .avs
Script that corresponds with each index to a thread. In
various embodiments, a maximum number of concurrent
threads can be set. The output of each thread is a cache
media file. At step 1301b, the method 1300b for rendering
and encoding scripts takes as input a list of indexes repre
senting the cache .avs scripts and respective outputs (cache
media files). At step 1302b, each index from the input list is
processed in a loop. At step 1303b, a file path referencing an
.avs script is determined by the index. At step 1304b, the avs
script file path determined at step 1303b is added to a queue.
At step 1305b, the processing server determines whether
each script file path from the input list has been processed.
If...avs script files remain for processing, the method 1300b
returns to step 1304b. Otherwise, the method 1300b pro
ceeds to step 1306b.
At step 1306b, each script from the queue is processed in

a loop. At step 1307b, the next script from the scripts queue
is retrieved. At step 1308b, the processing server determines
whether any threads are available for processing. If all
threads are busy (assigned), the processing server waits for
the next available thread at step 1309b. At step 1310b, a
cache media file is generated for each script if the cache
media file does not already exist. In various embodiments,
special encoding options can be included in the script. At
step 1311b, the processing server determines whether all
queued scripts have been processed. If scripts remain for
processing in the queue, the method returns to step 1307b.
Otherwise, the method 1300b ends at step 1312b.

FIG. 14A is a flowchart illustrating an exemplary method
1400a for generating a single video clip, in accordance with
a representative embodiment of the present invention. The
actions of the method 1400a of FIG. 14A may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support generation of a single video clip, for example.
Certain embodiments of the present invention may omit one
or more of actions, and/or perform the actions in a different
order than the order listed, and/or combine certain of the
actions discussed below. For example, some actions may not
be performed in certain embodiments of the present inven
tion. As a further example, certain actions may be performed
in a different temporal order, including simultaneously, than
listed below.
At step 1401a, the method 1400a for generating a single

Video clip from one or more cache media files takes as input
an index referring to a specific cache media file. At step
1402a, the processing server determines whether the speci
fied index refers to a series of interleaved cache media files.
If so, the method proceeds to step 1403a where the cache
media files are loaded and interleaved such that a clip is
returned by the method 1400b illustrated in FIG. 14B and
described below. If the specified index does not refer to a
series of interleaved cache media files, the method proceeds
to step 1404a, where the processing server determines
whether the specified index refers to a series of segmented
cache media files. If so, the method proceeds to step 1405a
where the cache media files are loaded and concatenated
such that a clip is returned by the method 1400c illustrated
in FIG. 14C and described below. If the specified index does
not refer to a series of segmented cache media files, the
method proceeds to step 1406a, where the cache media files
are loaded and a clip is returned by the method 1400d

US 9,620,169 B1
19

illustrated in FIG. 14D and described below. The method
1400a for generating a single video clip ends at step 1407a.

FIG. 14B is a flowchart illustrating an exemplary method
1400b for interleaving a series of cache media files to
generate a single video clip, in accordance with a represen
tative embodiment of the present invention. The actions of
the method 1400b of FIG. 14B may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
interleaving a series of cache media files to generate a single
video clip, for example. Certain embodiments of the present
invention may omit one or more of actions, and/or perform
the actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

At step 1401b, the method 1400b for interleaving a series
of cache media files to generate a single video clip takes as
input an integer index referring to a specific cache media
file. In various embodiments, a number of interleaving steps
may also be specified. Based on the input, remaining indexes
may be determined. For example, an index value of 24 with
8 steps may use indexes 24.25.26.27.28.29.30.31. At step
1402b, each of the indexes is processed in a loop. At step
1403b, a cache media file associated with each index is
loaded and a clip is returned by the method 1400d illustrated
in FIG. 14D and described below. At step 1404b, the
processing server determines whether all indexes have been
processed. If indexes remain for processing, the method
returns to step 1403b. Otherwise, the method 1400b pro
ceeds to step 1405b, where the clips derived from the cache
media files are interleaved to recreate the original output of
a custom cache-enabled function.

At step 1406b, the processing server determines whether
a companion audio file exists for the interleaved cache
media files. If this audio file exists, the method proceeds to
step 1407b, where the audio file is loaded and returned as an
audio clip. At step 1408b, the audio clip is dubbed to the
video clip. The method 1400b for interleaving a series of
cache media files to generate a single video clip ends at step
1409b, where a clip object comprising a video stream and
optionally, an audio stream, is returned.

FIG. 14C is a flowchart illustrating an exemplary method
1400c for segmenting a series of cache media files to
generate a single video clip, in accordance with a represen
tative embodiment of the present invention. The actions of
the method 1400c of FIG. 14 may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
segmenting a series of cache media files to generate a single
video clip, for example. Certain embodiments of the present
invention may omit one or more of actions, and/or perform
the actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

At step 1401c, the method 1400c for using a segmented
series of cache media files to generate a single video clip
takes as input an integer index referring to a specific cache
media file. In various embodiments, a number of segments
may also be specified. Based on the input, remaining indexes
may be determined. For example, an index value of 24 with
8 segments may use indexes 24.25.26.27.28.29.30.31. The

5

10

15

25

30

35

40

45

50

55

60

65

20
first segment in the index list may be different from the other
segments, for example, in that the first segment may only
include an audio track. At step 1402c, a first index in the list
is skipped and each of the remaining indexes is processed in
a loop. At step 1403c, a cache media file associated with
each index is loaded and a clip is returned by the method
1400d illustrated in FIG. 14D and described below. At step
1404c., the processing server determines whether all indexes
have been processed. If indexes remain for processing, the
method returns to step 1403c. Otherwise, the method 1400c
proceeds to step 1405c, where the clips are concatenated to
recreate an original output.
At step 1406c, the audio file corresponding with the first

index is loaded and returned as an audio clip. At step 1407c,
the audio clip is dubbed to the video clip. The method 1400c
for using a segmented series of cache media files to generate
a single video clip ends at step 1408c, where a clip object
comprising video and audio streams is returned.

FIG. 14D is a flowchart illustrating an exemplary method
1400d for generating a single video clip, in accordance with
a representative embodiment of the present invention. The
actions of the method 1400d of FIG. 14D may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support generation of a single video clip, for example.
Certain embodiments of the present invention may omit one
or more of actions, and/or perform the actions in a different
order than the order listed, and/or combine certain of the
actions discussed below. For example, some actions may not
be performed in certain embodiments of the present inven
tion. As a further example, certain actions may be performed
in a different temporal order, including simultaneously, than
listed below.
At step 1401d, the method 1400d for generating a single

Video clip takes as input an integer index referring to a
specific cache media file and/or a string including the file
path, for example. At step 1402d, the processing server
determines whether the input is a filename. At step 1403d.
the processing server determines whether the input is an
integer index. If the processing server determines that the
input is not an integer or path String, or the path is invalid,
the method 1400d may terminate with an error.
At step 1405d, if the input is an integer, the actual file path

the .avs script referenced by the index is determined. At step
1406d. if the input is a filename, the input file is indexed as
needed. For example, a third party plugin, Such as FFindex,
or any suitable indexing mechanism, may be run on the input
file if an index file does not exist. At step 1407d, a video
stream from the input file is loaded using FFVideoSource or
any suitable mechanism for loading and returning the video
stream as a clip.
At step 1408d, the processing server determines whether

the cache media file was encoded in MJPEG format. At step
1409d, if encoded in MJPEG format, the video color range
is adjusted. For example, MJPEG files may be stored using
a different luminance range and step 1409d may restore the
standard levels. At step 1410d, the processing server deter
mines whether to attempt to include an audio stream. By
default, audio is included if the cache media file includes
audio. In various embodiments, the default may be overrid
den, for example. At step 1411d, the processing server
determines whether the cache media file contains an audio
track. If so, the method proceeds to step 1412d where the
audio stream is loaded from the input file and returned as an
audio clip. For example, FFAudioSource, or any suitable
mechanism, may load the file and return the audio stream as
a clip. At step 1413d, the audio clip is dubbed to the video

US 9,620,169 B1
21

clip. The method 1400d for generating a single video clip
ends at step 1414d, where a clip object comprising a video
stream and optionally, an audio stream, is returned.

FIG. 15 is a flowchart illustrating an exemplary method
1500 for processing video for a beat sequence video editing
project, in accordance with a representative embodiment of
the present invention. The actions of the method 1500 of
FIG. 15 may be performed using elements of the system 10
of FIG. 1 including, for example, the server(s) 11. The
system 10 may be arranged to support beat sequence video
processing, for example. Certain embodiments of the present
invention may omit one or more of actions, and/or perform
the actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 15, the method 1500 for processing
Video for a beat sequence video editing project loops and
synchronizes a series of user-uploaded images over a user
uploaded music track. The images are timed to appear
rhythmically, to match the beat of the music. The tempo of
the music is tracked throughout, so that the appearance of
images speeds up or slows down with the beat of the music.
Visual effects such as tap, Zoom, and rotate can be applied
to the image sequence on particular beats, which further
correlates the resulting video to the underlying music.
The method 1500 for processing video for a beat sequence

video editing project begins at step 1501. At step 1502,
defaults are loaded according to a selected preset. In various
embodiments, defaults can be overridden by options. At step
1503, the system parses a list of input sources and returns a
Video clip. The list of input sources may include paths to
user-supplied images or video files, for example. The indi
vidual images and/or video frames of the sequence are
loaded as individual frames comprising an NTSC frame-rate
(29.97 frames per second) video stream. If video files are
specified, individual frames from each video may be chosen
at intervals so that a shortened time-lapse version of the
Video clip is converted to a series of images, which may be
inserted between other images or videos in an input list to
form the sequence, for example. In various embodiments,
the frames of the sequence are resized and may be letter
boxed or pillar-boxed to fill the target width and height. The
background color can be determined by the selected preset
or option, for example. At step 1504, titles may be generated
for one or more of the individual frames. For example,
overlay titles (as specified in the input parameters) for
specific frames are rendered to contiguous frames in a 32-bit
RGBA 29.97 frames per second video stream. At step 1505,
a digital music file is loaded. At step 1506, beat detection is
performed on the digital music file. For example, the music
file may be analyzed to determine the temporal location of
musical beats (quarter-notes) in order set the timing of cuts
and effects.

At step 1507, the function re-times the image sequence to
match the tempo of the music. By default, images appear for
the duration of a music quarter-note, eighth-note, or six
teenth-note depending on the average tempo (quarter-note
beats per second). The automatic beat Subdividing can be
disabled by specifying a particular note-length or pattern of
note-lengths. Images for which pauses or titles have been
specified are extended to fill multiple beats, the number of
which can either be specified or automatically determined
according to the tempo.

5

10

15

25

30

35

40

45

50

55

60

65

22
At step 1508, if the re-timed sequence is of shorter

duration than the music, the method proceeds to step 1509
where the re-timed sequence is looped to fill the duration.
More specifically, at step 1509, the basic image sequence
(duplicates of what was created in step 1503) is repeatedly
appended to the video stream until the video stream is at
least as long as the audio stream. At step 1510, the additional
instances of the image sequence are matched the tempo of
the music. By default, images appear for the duration of a
music quarter-note, eighth-note, or sixteenth-note depending
on the average tempo (quarter-note beats per second). The
automatic beat Subdividing can be disabled by a specifying
a particular note-length or pattern of note-lengths. After
re-timing the image sequence at Step 1507, the processing
server determines whether the sequence is complete at step
1511. If there are no more frames remaining in the basic
image sequence, the method continues to step 1508 as
described above.

If the processing server determines that there are more
frames for the image sequence at step 1511, the method
proceeds to step 1512 where the next frame of the image
sequence is isolated and prepared for further processing. At
step 1513, the processing server determines whether the user
has specified a pause or a title for the current frame (image).
By default, images appear for the duration of a music
quarter-note, eighth-note, or sixteenth-note depending on the
average tempo (quarter-note beats per second). If a pause or
title is not specified for the current frame, the method
proceeds to step 1514 where the duration of the fill beat or
partial beat may be extended. The automatic beat subdivid
ing can be disabled by a specifying a particular note-length
or pattern of note-lengths. If a pause or title is specified for
the current frame, the method proceeds to step 1515 where
the current frame is looped to fill multiple beats. The
duration (in beats) can either be specified or automatically
determined according to the tempo. At step 1516, the
processing server determines whether titling has been speci
fied for the current frame. If titling was specified, the titling
is applied by, for example, Superimposing a rendered title
overlay over the image at step 1517.

If the processing server determines that the re-timed
sequence is not of shorter duration than the music at step
1508, the method proceeds to step 1518, where the process
ing server determines whether visual effects were selected
for application to the video. For example, the user can select
various effects (e.g., Zoom, rotate, stretch, tap) that are
applied at musical intervals according to the tempo and
various options. If visual effects were selected at step 1518,
Zoom, rotate, stretch, and/or tap effects may be applied at
musical intervals according to the tempo and various options
at step 1519. At step 1520, the audio (music) and video
(images) streams are synchronized and multiplexed. At step
1521 the video is output. The method 1500 ends at step
1522.

FIG. 16A is a flowchart illustrating an exemplary method
1600a for processing video for an image Stack video editing
project, in accordance with a representative embodiment of
the present invention. The actions of the method 1600a of
FIG. 16A may be performed using elements of the system 10
of FIG. 1 including, for example, the server(s) 11. The
system 10 may be arranged to Support image Stack Video
processing, for example. Certain embodiments of the present
invention may omit one or more of actions, and/or perform
the actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, Some actions may not be performed in certain
embodiments of the present invention. As a further example,

US 9,620,169 B1
23

certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 16A, an image stack video editing
project animates stacks of images that have a solid-colored
border and may have a thicker bottom border that allow for
their titles to be written on them, when such titling is
specified. In various embodiments, titles can be added in a
permanent marker font, to look hand written, for example, or
any Suitable font. Stacks of eight images may animate in to
look, for example, like a random pile of images was dropped
onto a table. If a video is present, it may play within the
walls of the image frame and look similar to image coun
terparts, just with video.

At step 1601a, input sources are provided as paths to
media files, which may be video clips (with or without
audio) or still images. Titling text can also be specified for
each Source—or titling text can appear alone as a “main
title without a video clip or still image source behind it. At
step 1602a, defaults of the function are loaded and overrid
den as needed by user-set options. At step 1603a, the
function loops through the sources list and, using the method
1200 for generating a script, as illustrated in FIG. 12 and
discussed above, creates avs scripts for each Source and/or
titling text string as illustrated in FIG. 16B and described
below.

At step 1604a, the scripts generated in step 1603a are
batch processed with the method 1300b for threading to
concurrently render and encode multiple Scripts, as illus
trated in FIG. 13B and discussed above, resulting in 32-bit
(RGB+transparency) cache media clips rendered and
encoded as AVI files. In various embodiments, the cache
identifiers of these cache media clip files are stored in
memory so that they can be later read and processed more
efficiently. Depending on the “unstack option, the sequence
may either begin with all images stacked on top of each
other, which then are peeled-off one-by-one, revealing the
background, or begin with the background onto which the
images are Successively stacked.

At step 1605a, each 32-bit cache media clip created at
step 1604a is loaded and each is used as a source in another
series of .avs scripts generated by the method 1200 for
generating a script, as illustrated in FIG. 12 and discussed
above. Each script applies a flatten process, as illustrated in
FIG. 16C and described below, to the source.
At step 1606a, the scripts generated at step 1605a are

batch processed with the method 1300b for threading to
concurrently render and encode multiple Scripts, as illus
trated in FIG. 13B and discussed above, resulting in 24-bit
RGB cache media clips rendered and encoded as AVI files,
for example. In various embodiments, the cache identifiers
of these cache media clip files are stored in memory so that
they can be later used efficiently to contribute to the final
output video/audio streams.

At step 1607a, if a loopable sequence has been specified,
the method proceeds to step 1608a where the processing
server determines whether the final loopable output contains
an additional stacking or unstacking animation to achieve
seamless looping. The loopable option ensures that the final
sequence starts and ends with either a solid background
color or background image, if specified by the user. If the
output includes an additional unstacking animation, an intro
duction (“intro’) cached media clip is generated at step
1610a. More specifically, the first 10 frames (which may
include an “in” transition animation applied to a freeze
frame of the source's first frame) of each flattened source
may be shown in rapid succession; then frame-blended and
frame-decimated to give the appearance of fast motion. In

10

15

25

30

35

40

45

50

55

60

65

24
various embodiments, the “intro’ clip begins with either
background color or background image, as specified by the
user. If the output includes an additional stacking animation,
a conclusion ("outro') cached media clip is generated at step
1609a. More specifically, the final 10 frames (which may
include an 'out' transition animation applied to a freeze
frame of the source's last frame) of each flattened source
may be shown in rapid succession; then frame-blended and
frame-decimated to give the appearance of fast motion. In
various embodiments, the “outro' clip ends with either
background color or background image, as specified by the
user. The intro or outro cached media clip allows the
multiple image stack video editing project sequences to be
concatenated seamlessly.
At step 1611a, the cached source clips with animation and

any titling applied and any intro or outro clips are added
sequentially to the main output video/audio stream. The
clips are then converted to YV12 colorspace and audio is
converted to 48 kHz/16-bit stereo. At step 1612a, a single
video clip with audio is returned.

FIG. 16B is a flowchart illustrating an exemplary method
1600b for creating an image stack single Script for each
source at step 1603a of the method of FIG. 16A, for
example, in accordance with a representative embodiment of
the present invention. The actions of the method 1600b of
FIG. 16B may be performed using elements of the system 10
of FIG. 1 including, for example, the server(s) 11. The
system 10 may be arranged to Support image stack single
Script creation, for example. Certain embodiments of the
present invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, Some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.
At step 1601b, a single source path to a media file (to a

digital video file or still image file) is provided as input—
along with optional titling text. If titling text is provided
without a source path, a main title will be generated. At step
1602b, function defaults are loaded and overridden as
needed by user-set options. At step 1603b, if a media file is
provided as input, it is loaded and the processing server
determines whether the input source is a still image. At step
1604b, still images are looped to fill the default or user
specified duration. At step 1605b, the processing server
determines whether a media file has been specified as input.
If not, the title text is rendered by itself as a “main title'.
At step 1606b, depending on the intended output dimen

sions, either a 16:9 or 4:3 background frame image is loaded
into memory. In various embodiments, the function Supports
images of 16:9, 4:3, 3:2, 1:1, 2:3 or 3:4 aspect ratios (ratio
of width to height). At step 1607b, on main titles, the text is
rendered at a larger, bolder size and placed in the center of
the background frame image. At step 1608b, source dimen
sions are analyzed and the background frame that most
closely matches its aspect ratio is loaded into memory. In
various embodiments, the function Supports images of 16:9.
4:3, 3:2, 1:1, 2:3 or 3:4 aspect ratios (ratio of width to
height). At step 1609b, the source is cropped to fit within the
background frame, separated by a margin. Depending on
whether titling text has been specified, the bottom margin
may be extended to allow room for the text to appear on the
background frame.
At step 1610b, the processing server determines whether

titling text has been specified for the source. If so, the titling
text is superimposed over the bottom of the background

US 9,620,169 B1
25

frame at step 1611b. At step 1612b, the cropped source clip
is Superimposed over the background frame, leaving mar
gins on the sides. In various embodiments, the bottom
margin's height is larger if titling text has been specified. At
step 1613b, each clip transitions in an out. The direction of
the animation and rotation angle is cycled to give the
appearance of randomness, such as what would result when
someone tossed a bunch of photographs into a pile. At step
1614b, the first frame of the processed input is held for an
additional 10 frames. The last frame is held for an additional
10 frames. These additional frames are used so that the
in/out animations do not subtract from the natural length of
the clip. At step 1615b, the in and out transitions (sliding and
rotating with simulated motion blur) are applied to the
composite source/titling/background-frame input. At step
1616b, a single 32-bit RGB+transparency video clip (with or
without audio) is returned.
FIG.16C is a flowchart illustrating an exemplary method

1600c for flattening each source at step 1605a of the method
of FIG. 16A, for example, in accordance with a represen
tative embodiment of the present invention. The actions of
the method 1600c of FIG. 16C may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
Source flattening, for example. Certain embodiments of the
present invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

At step 1601c, the flatten process 1600c takes a cache
media identifier as input. Optionally, a background image
can be specified. At step 1602c, function defaults are loaded
and overridden as needed by user-set options. At step 1603c.
the AVI file corresponding to the input cache identifier is
loaded into memory as a video clip (with or without audio).
At step 1604c., the processing server determines whether the
user has specified a background image to be used. If so, the
processing server determines whether the specified back
ground image has been cached at step 1605c. At step 1606c.
the background image is conformed to 24-bit RGB and
scaled and/or cropped as needed to fill the intended output
dimensions, for example. At step 1607c, the method 1200
for generating a script as illustrated in FIG. 12 and discussed
above, is used to generate an avs script and store the
resulting cache video clip as an AVI to improve performance
on Subsequent instances of the flatten process.

At Step 1608c, when no background image is specified, a
blank clip will be used as the background. The background
color is determined by preset and can be overridden by user
option. At step 1609c, the cached version of the background
image is loaded into memory as a video clip. At step 1610c,
the input media clip is Superimposed over the background.
At step 1611c, a single 24-bit RGB video clip (with or
without audio) is returned.

FIG. 17 is a flowchart illustrating an exemplary method
1700 for processing video for a swivel or flip multi-clip
sequence video editing project, in accordance with a repre
sentative embodiment of the present invention. The actions
of the method 1700 of FIG. 17 may be performed using
elements of the system 10 of FIG. 1 including, for example,
the server(s) 11. The system 10 may be arranged to support
multi-clip sequence video processing, for example. Certain
embodiments of the present invention may omit one or more
of actions, and/or perform the actions in a different order

5

10

15

25

30

35

40

45

50

55

60

65

26
than the order listed, and/or combine certain of the actions
discussed below. For example, Some actions may not be
performed in certain embodiments of the present invention.
As a further example, certain actions may be performed in
a different temporal order, including simultaneously, than
listed below.

Referring to FIG. 17, swivel sequence and flip sequence
projects have multi-clip Screens, where 2-5 images and
Videos, for example, appear on the screen at once, and the
individual clips flip or Swivel in to show new images and
Videos. If images have titles, or there are videos present in
the multi-clip Screen, they are also displayed on their own
after their multi-clip screen in their entirety.
At step 1701, both the swivel sequence and flip sequence

projects take lists of paths to digital video or still images files
as input. Titling text can be specified for any source—or
without a source, resulting in a main title. Each list can
create a different “track.” In various embodiments, up to 4
tracks can be specified. The multiple tracks are tiled and play
simultaneously in the final output, which can be either
640x480 or 1280x720 pixels in size, for example. In various
embodiments, the Swivel sequence project animates each
Source around a central axis, either vertically or horizontally.
In various embodiments, the flip sequence project simulates
a folding effect along a central horizontal axis. Since the flip
sequence project is designed to simulate different images
appearing on each side of a board, it operates on adjacent
pairs of sources. At step 1702, function defaults are loaded
and overridden as needed by user-set options.
At step 1703, the processing server determines whether

there are multiple tracks. For example, up to 4 tracks can be
specified. The multiple tracks may be tiled and play simul
taneously in the final output. At step 1704, if the processing
server determines multiple tracks are present at step 1703,
the first track becomes the master track. In various embodi
ments, only the master track can also have audio. In certain
embodiments, videos played on the master track maintain
their original duration (unless trimming is specified), while
the video on slave tracks are treated similarly to still images
(trimmed to a common duration, audio muted). At step 1704,
the timing of each cut on the master track may be predicted.
At step 1705, the total time of the master track is used to
determine how long each video or still image appears in the
slave tracks. Since each track can have a different number of
Sources (and the master track can have long-playing videos),
this is done to ensure that all tracks have the same duration.
At step 1706, one or more track video clips are created as

illustrated in FIG. 18 and described below. The multiple
tracks are tiled and play simultaneously in the final output.
The dimensions of the tracks depend on intended output size
and the number of tracks. For example, if there is one track,
a single track is generated. If there are two tracks, two tracks
having identical dimensions may be generated. If there are
three tracks, one larger track and two smaller tracks can be
generated. If there are four tracks, four tracks of identical
dimensions may be generated.
At step 1707, the processing server determines whether

multiple tracks are specified. At step 1708, in multi-track
output, the tracks are placed side by side, and/or above and
below each other depending on the number of tracks. Since
the effects applied to the Sources simulate motion and
perspective, the tracks are cut and layered and recombined
so that the currently animating track appears on top of Static
tracks. The track timings are used to determine sequencing
of the layering order. In various embodiments, track layering
is performed once for 2- or 3-track layouts. Track layering
may be performed twice for 4-track layouts since there is an

US 9,620,169 B1
27

additional possibility of the Swivel animations overlapping.
Track layering operates in different ways, depending on
whether a horizontal or vertical swivel axis has been speci
fied.

At step 1709, solid-colored background may be created.
At step 1710, the track (or multi-track) output is superim
posed over the background. For example, if there is one
track, a single track tile is generated. If there are two tracks,
two tracks having identical dimensions may be positioned
side-by-side and, optionally, separated by a border. If there
are three tracks, two smaller track tiles can be arranged
vertically and, optionally, separated by a border. The two
tiles may then be positioned to the left or right of a larger
track tile and, optionally, separated by a border. If there are
four tracks, each of the four tracks tiles can have identical
dimensions and, optionally, be separated by a border. In
various embodiments, the combined tiles are then centered
on background and, optionally, separated by a larger border.
The borders can reveal the background color.

At step 1711, the video output is converted to YV12
colorspace, for example. Audio is conformed to 48 kHz/16
bit stereo, for example. At step 1712, a single YV12 video
clip with audio is returned.

FIG. 18 is a flowchart illustrating an exemplary method
1800 for creating one or more track video clips at step 1706
in the method of FIG. 17, for example, in accordance with
a representative embodiment of the present invention. The
actions of the method 1800 of FIG. 18 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support track video clip creation, for example. Certain
embodiments of the present invention may omit one or more
of actions, and/or perform the actions in a different order
than the order listed, and/or combine certain of the actions
discussed below. For example, Some actions may not be
performed in certain embodiments of the present invention.
As a further example, certain actions may be performed in
a different temporal order, including simultaneously, than
listed below.

At step 1801, a list of paths to media files (still images or
video) is received as an input. At step 1802, function defaults
are loaded and overridden as needed by user-set options. At
step 1803, a swivel sequence effects script is generated for
each source, which will later be rendered and encoded as
cached video clip AVI files, as illustrated in FIG. 19 and
described below. For Swivel sequence project operations,
each source is individually passed to the method 1900
illustrated in FIG. 19 and described below. For flip sequence
project operations, adjacent pairs of sources are passed to the
method 1900 illustrated in FIG. 19 and described below.

At step 1804, the swivel sequence effects scripts are
batch-encoded to cache video clip AVI files using the
method 1300b for threading to concurrently render and
encode multiple scripts, as illustrated in FIG. 13B and
described above. At step 1805, the cached AVI file output of
the Swivel sequence effects Scripts is loaded using the
method 1400a for generating a single video clip, as illus
trated in FIG. 14A and described above. At step 1806, the
Video clips are concatenated to form a continuous video
track comprised of the sources. At step 1807, a single 32-bit
(RGB+transparency) video clip with 48 kHz audio is
returned, for example.

FIG. 19 is a flowchart illustrating an exemplary method
1900 for processing one or two media sources to generate a
video clip at step 1706 of the method of FIG. 17 and step
1803 of the method of FIG. 18, for example, in accordance
with a representative embodiment of the present invention.

10

15

25

30

35

40

45

50

55

60

65

28
The actions of the method 1900 of FIG. 19 may be per
formed using elements of the system 10 of FIG. 1 including,
for example, the server(s) 11. The system 10 may be
arranged to Support video clip generation, for example.
Certain embodiments of the present invention may omit one
or more of actions, and/or perform the actions in a different
order than the order listed, and/or combine certain of the
actions discussed below. For example, some actions may not
be performed in certain embodiments of the present inven
tion. As a further example, certain actions may be performed
in a different temporal order, including simultaneously, than
listed below.
At step 1901, either a single source, for swivel sequence

project operations, or adjacent pairs of Sources, for flip
sequence project operations, is received. At step 1902,
function defaults are loaded and overridden as needed by
user-set options.
At step 1903, the processing server determines whether a

media file has been specified as input. If not, the title text is
rendered by itself as a “main title' and the method proceeds
to step 1904. If the media file was specified as the input, the
method skips to step 1907. At step 1904, a solid color
(different than the main background color) is specified for
main title backgrounds. At step 1905, the main titling is
rendered and Superimposed over the Solid background gen
erated at step 1904. At step 1906, the duration of the main
title is matched to the duration specified for still images.
At step 1907, if the media file was specified as the input

at step 1903, the source media is loaded and returned as a
Video clip, with or without audio depending on the source
file itself. At step 1908, the processing server determines
whether the source file is a still image or video file. At step
1909, if the source file is a video file, the processing server
determines whether the video clip is to be treated as a still
image. This may be specified by the user, for example. In
various embodiments, videos appearing on slave tracks of
multi-track output are treated as still images. At step 1910,
if the video clip is being treated as a still image, audio
attached to the video clip, if any, is removed. At step 1911,
the duration of the video clip is matched to the duration
specified for still images.
At step 1912, the processing server determines whether

titling text has been specified for the source. At step 1913,
if titling text was specified, the titling text is rendered and
Superimposed on the source clip. At step 1914, the process
ing server determines whether the corners of the clip were
specified to be rounded. If so, a user-specified corner radius
may be applied to the edges of the clip and the edges can be
made transparent at step 1915.
At step 1916, extra (transparent) pixels are added to the

edges of the resulting clip to allow room for the simulated
perspective when the clip is “swiveled in step 1917, for
example. At step 1917, quadrilateral transformations are
applied the source to simulate its spinning toward or away
from the viewer, either horizontally or vertically, clockwise
or counterclockwise. Simulated motion blur may also be
applied for greater realism. In the case of a flip sequence
project, the effects are applied to two sources at once (except
for the first and last clips on the track) to simulate revealing
source B on the flip side of source A. In various embodi
ments, the flip sequence project may include brightness
adjustments during the animation to give the illusion of light
hitting a shiny surface. The swivel effects are applied to
beginning and end of the clip; leaving it static for most if its
duration: (Swivel In->Static->Swivel Out). At step 1918, a
single 32-bit (RGB+transparency) video clip (with or with
out audio) is returned.

US 9,620,169 B1
29

FIG. 20 is a flowchart illustrating an exemplary method
2000 for processing video for a slide multi-clip sequence
Video editing project, in accordance with a representative
embodiment of the present invention. The actions of the
method 2000 of FIG. 20 may be performed using elements
of the system 10 of FIG. 1 including, for example, the
server(s) 11. The system 10 may be arranged to support slide
multi-clip sequence video processing, for example. Certain
embodiments of the present invention may omit one or more
of actions, and/or perform the actions in a different order
than the order listed, and/or combine certain of the actions
discussed below. For example, Some actions may not be
performed in certain embodiments of the present invention.
As a further example, certain actions may be performed in
a different temporal order, including simultaneously, than
listed below.

Referring to FIG. 20, a slide sequence project has multi
clip Screens, where 2-5 images and/or videos, for example,
appear on the screen at once, and the individual clips slide
on and off the screen to show new images and/or videos. In
various embodiments, if images have titles, or there are
Videos present in the multi-clip Screen, they are also dis
played on their own after their multi-clip screen in their
entirety.

At step 2001, a list of paths to media files (still images or
video) is input to the method 2000 for processing video for
a slide multi-clip sequence video editing project. A list of
screen types may also be input. The screen type determines
how many sources appear on Screen simultaneously and the
geometric arrangement. In various embodiments, there may
be nine possible screen types (numbered 0-8). At step 2002,
function defaults are loaded and overridden as needed by
user-set options.

At step 2003, the processing server determines if main
title text has been specified by the user. If main title text was
specified, the method proceeds to step 2004 where a slide
sequence screen script is generated based on the main title
text and additional sources. More specifically, main titles
may call for 2 additional sources. The Source paths and title
text are passed to a method 2100 for processing main title
text and/or media sources, as illustrated in FIG. 21 and
described below, and rendered as a 3-tile screen where one
title is occupied by the rendered main title text and the other
two by the media clips.

At step 2005, the function loops though the user-supplied
Sources and Screen type lists. In various embodiments, each
given screen type expects a particular number of sources and
each creates a different geometric arrangement of the Source
clips, for example:

screen type=0: 1 source 1 tile
Screen type 1.2: 4 sources 2 tiles
screen type=3,4,5,6: 6 sources 3 tiles
screen type-7,8: 8 sources 4 tiles
Screens may also be used with half of the above number

of sources (so that type 3 may take 4 sources, type 7 may
take 4 sources, etc.), for example, in the event that there are
not enough sources available. Such as at the end of the
sources list. Note that screen type=0 is special in that it uses
one source clip.

At step 2006, the next screen type is extracted from the
list. The Source paths that correspond to the screen type are
extracted from the sources list. The number of sources
consumed per loop depends on the value of this screen type.
If there are no more screen types in the list but sources still
remain, screen types are chosen automatically for the
remaining sources.

10

15

25

30

35

40

45

50

55

60

65

30
At step 2007, the current screen type and corresponding

Sources are used to generate a slide sequence Screen Script,
as illustrated in FIG. 21 and described below, via the method
1200 for generating a script, as illustrated in FIG. 12 and
described above. The cache identifier of the script is stored
so that it can be later rendered and encoded to the cache
video clip AVI file. At step 2008, the processing server
determines whether all sources have been exhausted. If not,
the method loops back to step 2006.
At step 2009, the slide sequence screen scripts are batch

encoded to cache video clip AVI files using the method
1300b for threading to concurrently render and encode
multiple scripts, as illustrated in FIG. 13B and described
above. At step 2010, the cached video clip file corresponding
to each slide sequence screen script is loaded via the method
1400a for generating a single video clip, as illustrated in
FIG. 14A and described above, and returned as a video clip.
At step 2011, the video clips are spliced end-to-end, result
ing in single media clip. At step 2012, a single media clip
with YV12-colorspace video and 48 kHz/16-bit stereo audio
is returned, for example, which can then be further edited,
processed and/or encoded.

FIG. 21 is a flowchart illustrating an exemplary method
2100 for processing main title text and/or media sources to
generate a video clip at step 2007 in the method 2000 of FIG.
20, in accordance with a representative embodiment of the
present invention. The actions of the method 2100 of FIG.
21 may be performed using elements of the system 10 of
FIG. 1 including, for example, the server(s) 11. The system
10 may be arranged to Support main title text and media clip
processing, for example. Certain embodiments of the present
invention may omit one or more of actions, and/or perform
the actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, Some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.
At step 2101, a single screen type argument and a list of

Source media paths is received as an input. At step 2102.
function defaults are loaded and overridden as needed by
user-set options. At step 2103, each of the possible screen
type arguments expects a particular number of Sources and
creates a single clip composed of the sources, arranged
geometrically, for example:

screen type=0: 1 source 1 tile
screen type=1.2: 4 sources 2 tiles
screen type=3,4,5,6: 6 sources 3 tiles
screen type=7,8: 8 sources 4 tiles
However, other variations are possible, such as, for

example:
screen type=1.2: 2 sources 2 tiles
screen type=3,4,5,6: 3 sources 3 tiles
screen type=7,8: 4 sources 4 tiles
If too many sources are provided for the specified screen

type, the additional ones are ignored. If too few are provided
for optimal usage (upper table), various embodiments pro
vide attempting to use half the optimal number (lower table),
for example.
At step 2104, the processing server determines if the

number of Supplied sources is adequate for the specified
screen type. If the number of sources is not compatible with
the screen type, a more appropriate screen type is chosen
automatically at step 2105. In certain embodiments, addi
tional sources are discarded (such as when 5 Sources are
Supplied for screen type-2, etc.). At step 2106, each Source
is loaded by one of several source filters, depending on file

US 9,620,169 B1
31

type, and returned as a video clip, with or without audio. At
step 2107, each source is assigned an animation direction
(left, right, up or down) that is used for transitions. Also, the
panning animation direction alternates for each source.

At step 2108, the processing server determines whether
the number of sources is optimal: “double the requirement.
This is true when 4 sources have been specified for a 2-tile
screen type, 8 sources for a 4-tile screen type, etc. If the
number of Sources is optimal, each source is scaled to fit the
geometry of one of the screen tiles at step 2109. In cases
where the aspect ratio of the source does not match the target
tile, cropping is animated, resulting in panning across the
image or video. At step 2110, for “double' lists, sources are
paired together so that, given sources 1,2,3,4 for a 2-tile
screen, Sources 1+3 will appear in one tile and 2+4 in the
other, for example. The paired clips play in Succession,
overlapped by a sliding transition of varying direction. At
step 2111, in and out sliding transitions are applied to the
resulting clip(s).

If the number of sources determined at step 2108 is not
optimal, the processing server determines whether main
titling text has been supplied at step 2112. At step 2113, if
main titling text was Supplied, the main title text is rendered
to a 32-bit (RGB+transparency) video clip, for example. At
step 2114, if main titling text was not Supplied, the process
ing server determines whether screen type=0 has been
specified and if the clip's source was a digital video file. At
step 2115, for any case where screen type =0, video clips
are treated as still images and conformed to common dura
tion, without audio. At step 2116, each source is scaled to fit
the geometry of one of the screen tiles. In cases where the
aspect ratio of the source does not match the target tile,
cropping is animated, resulting in panning across the image
or video.

At step 2117, the processing server determines whether
titling text has been specified for each source. At step 2118,
if titling text has been Supplied for any source clips, that text
string is rendered and Superimposed over the corresponding
Source clip. At step 2119, in and out sliding transitions are
applied to the resulting clip(s).

At step 2120, the resulting tiles from steps 2111 and/or
2119 are arranged geometrically to fill the screen; optionally
separated from each other by an inner border and from the
edges of the resulting “screen” by a larger outer border, for
example. In various embodiments, borders may reveal the
background color, which is determined by preset and can be
overridden by user option. At step 2121, the resulting video
is converted to YV12-colorspace and audio is conformed to
48 kHz/16-bit stereo, for example. At step 2122, a single
media clip with YV12-colorspace video and 48 kHz/16-bit
stereo audio is returned, which can then be further edited,
processed and/or encoded.

FIGS. 22-24 and the corresponding descriptions below
relate to music mixing and ducking workflows, which are
called from footer methods/functions as discussed above
with regard to step 404 of FIG. 4, for example. The mixing
and ducking workflows are described below as being applied
to the output video as a whole; however, the mixing and
ducking workflows may be applied per video clip, for
example.

FIG. 22 is a flowchart illustrating an exemplary method
2200 for editing and mixing one or more music files with a
Video output, in accordance with a representative embodi
ment of the present invention. The actions of the method
2200 of FIG. 22 may be performed using elements of the
system 10 of FIG. 1 including, for example, the server(s) 11.
The system 10 may be arranged to Support editing and

10

15

25

30

35

40

45

50

55

60

65

32
mixing one or more music files with a video output, for
example. Certain embodiments of the present invention may
omit one or more of actions, and/or perform the actions in
a different order than the order listed, and/or combine certain
of the actions discussed below. For example, Some actions
may not be performed in certain embodiments of the present
invention. As a further example, certain actions may be
performed in a different temporal order, including simulta
neously, than listed below.

Referring to FIG. 22, the method 2200 may be used to
match a music file, or music files (can be many) length with
video length. For example, if the music file is longer than the
Video, it is trimmed to match. As another example, if the
music file is shorter than the video, it is looped (with some
logic to only do so if X seconds are remaining) to match the
video length. The method 2200 can be used to fade in and
out between tracks and loop if necessary to match video
length if there are multiple music files. The method 2200
may be used to fade in and fade out music file(s) with the
video. The method 2200 can be used to call audio ducking
functionality to seamlessly fade the music audio in and out
around video audio so that the music and video audio do not
interfere with each other. In various embodiments, the
above-mentioned exemplary functions of method 2200 are
performed automatically such that a user does not have to
perform the extremely difficult and tedious tasks, for
example.
The method 2200 begins at step 2201. At step 2202,

function defaults are loaded and overridden as needed by
user-set options. At step 2203, a loader loop is started such
that a next music clip is loaded at step 2204. At step 2205,
the processing server determines whether to normalize a
Volume of the music clip. If the processing server determines
normalization is needed, the normalization is performed at
step 2206.
At step 2207, the processing server may fade in and/or out

of the music based on selected options. At step 2208, a main
audio clip is appended with the current audio clip. At step
2209, if all music clips have not been loaded, the method
2200 returns to step 2204. After all music clips have been
appended to the main audio clip, the method proceeds to step
2210, where the processing server determines whether the
music clip is longer than the video clip. If the music clip is
longer, the method proceeds to step 2211 where the audio is
looped until audio is longer than the video clip. At step 2212,
the audio clip is trimmed to the video duration.
At step 2213, the processing server determines whether to

perform audio ducking. If audio ducking was selected, the
method proceeds to step 2215 where the method 2300 for
audio ducking is performed as illustrated in FIG. 23 and
described below. Otherwise, the method proceeds to step
2214, where the audio track of the video and the audio track
of the music are mixed. The resulting audio clip is dubbed
to the video by synchronizing and multiplexing the audio
(music) and video (images) streams. At step 2216, the audio
is conformed to the sample rate and word length as specified
in the options (or the default of 48 kHz, 16 bit). The method
ends at step 2217.

FIG. 23 is a flowchart illustrating an exemplary method
2300 for audio ducking at, for example, step 2215 of the
method 2200 of FIG. 22 and/or at step 2407 of the method
2400 of FIG. 24, in accordance with a representative
embodiment of the present invention. The actions of the
method 2300 of FIG. 23 may be performed using elements
of the system 10 of FIG. 1 including, for example, the
server(s) 11. The system 10 may be arranged to support
audio ducking, for example. Certain embodiments of the

US 9,620,169 B1
33

present invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 23, audio ducking is a complex function
that maps points in an audio stream of a video clip where
silence changes to noise or noise changes to silence, and
then Smoothly mutes or reduces or increases the Volume of
the music audio (e.g., with fade in and fade out) so the music
audio and the video audio do not collide. As an example, if
there is music playing over images, and then a video with a
corresponding audio Soundtrack appears, the music
smoothly fade outs while that video is playing so that the
soundtrack of the video is more clearly audible, and then
fades back in once the video has completed.

The method 2300 begins at step 2301. At step 2302,
function defaults are loaded and overridden as needed by
user-set options. At step 2303, the audio track of the video
is written to a WAV file so that it can be analyzed and
changes between noise and silence can be detected and
logged to a file. At step 2304, noise gating is applied to the
WAV by a noise gating tool such as those available within
SOX.exe, or any suitable noise gating tool, for example. The
processing server may log “onsets” (representing point in
time at which the Soundtrack changes from silence to noise
or from noise to silence) to an output file using a tool Such
as Sonic Annotator or any suitable tool, for example. The
processing server can convert the decimal seconds into
frame numbers at 29.97 frames per second (fps), for
example, using a tool such as onsets.exe or any suitable tool.

At step 2305, the onsets file is loaded. The onsets file
includes a list of the temporal location of onsets in integer
frames at 29.97 frames per second (fps). The first onset is the
first point at which silence changes to noise (or 0, repre
senting the very beginning, in cases where the audio does
not begin with silence). The music is faded-out at the silence
(noise onsets) and faded-in at the noise (silence onsets). For
example, if the audio includes 5 seconds of a subject
speaking, then 5 seconds of silence, followed by 5 seconds
of conversation, the onsets List would be: 0, 150, 300. As
another example, if the audio consists of 5 seconds of silence
followed by 10 seconds of noise, followed by 10 seconds of
silence, the onsets list will be: 150, 450.
At step 2306, the processing server determines whether

the onset list is empty. An empty onsets list indicates that the
entire video-audio track is silent. No fade-in or fade-out
occurs in these cases, and the music is dubbed to the video,
replacing the audio track of the video at step 2307. At step
2308, if the onset list includes one onset, there is no silence
in the audio track of the video. If there is no silence in the
audio track of the video, the music audio is mixed with the
video audio at a reduced (fade-out) volume. If the onset list
includes more than one onset, the method proceeds to step
2309 and the list of onsets is looped through so that fade-in
and fade-out events can be triggered on the music track at
the corresponding video frame numbers.

At step 2310, the value of a current onset is compared to
the value of the next onset to determine an interval. At step
2311, the duration of the interval is compared to the fade
in/out duration to avoid fading out on very short silences. If
the duration of the interval is greater than twice the fade
in/out duration, for example, the method may proceed to

10

15

25

30

35

40

45

50

55

60

65

34
step 2312. Otherwise, the method may skip to step 2313
such that the short silence is filtered out and not added to the
points list described below.
At step 2312, the fade duration is subtracted from the next

onset, so that the fade is completed by the point specified by
the value of the onset. The computed difference is added to
a points list, which includes the points in time at which the
music is faded in and out. After the processing server
determines that all onsets were compared at step 2313, the
method proceeds to step 2314 where the processing server
determines if the points list is empty. An empty points list
may indicate that all silences were too short to be considered
significant and were filtered out. If the points list is empty,
the method proceeds to step 2315, where the audio track of
the video and the audio track of the music are mixed at levels
specified by the options, such as a reduced (fade-out)
volume, for example. The resulting audio clip is dubbed to
the video by synchronizing and multiplexing the audio
(music) and video (images) streams.
At step 2316, if the points list is not empty, the processing

server begins looping through the points list. The first point
in the list is 0 (zero-based indexing). At step 2317, the
processing server determines whether the index is an odd
number. For example, since indexing on the loop is Zero
based and the first event represents a silence to noise
transition, an odd-numbered index triggers a music fade-in
event, while and even-numbered index is a fade-out. At step
2318, the music is faded in at the current point if the
processing server determines that the index is an odd num
ber at step 2317. The length of the transition may be
determined by the duration option (or default of 30 frames/
one second). At step 2319, the music is faded out at the
current point if the processing server determines that the
index is an even number at step 2317. The length of the
transition is determined by the duration option (or default of
30 frames/one second).
At step 2320, the processing server determines whether

the points list has been completed. If not, the index of the
points list is incremented and the method returns to step
2317. Once the processing server determines that the points
list is completed, the method proceeds to step 2315, where
the audio track of the video and the audio track of the music
(which may have been modified to include more or one of
fade-in out fade-out effects) are mixed. The resulting audio
clip is dubbed to the video by synchronizing and multiplex
ing the audio (music) and video (images) streams. At step
2322, the audio is conformed to the sample rate and word
length as specified in the options (or the default of 48 kHz,
16 bit). At step 2323, the video and processed audio are
returned from the function as a clip object. For example, the
clip object can be returned to step 2215 of FIG. 22 as
described above and/or step 2407 of FIG. 24 as described
below.

FIG. 24 is a flowchart illustrating an exemplary method
2400 for editing and mixing a music file with a video output,
in accordance with a representative embodiment of the
present invention. The actions of the method 2400 of FIG.
24 may be performed using elements of the system 10 of
FIG. 1 including, for example, the server(s) 11. The system
10 may be arranged to Support editing and mixing a music
file with a video output, for example. Certain embodiments
of the present invention may omit one or more of actions,
and/or perform the actions in a different order than the order
listed, and/or combine certain of the actions discussed
below. For example, Some actions may not be performed in
certain embodiments of the present invention. As a further

US 9,620,169 B1
35

example, certain actions may be performed in a different
temporal order, including simultaneously, than listed below.

Referring to FIG. 24, the method 2400 for editing and
mixing a music file with a video output is a variation of the
method 2200 that may be used, for example, when handling
one input music file. The method 2400 begins at step 2401.
At step 2402, function defaults are loaded and overridden as
needed by user-set options. At step 2403, if the music
parameter is a string, the music track is loaded at step 2404.
At step 2405, the processing server determines whether to
perform audio ducking. If audio ducking was selected, the
method proceeds to step 2407 where the method 2300 for
audio ducking is performed as illustrated in FIG. 23 and
described above. Otherwise, the method proceeds to step
2406, where the audio track of the video and the audio track
of the music are mixed. The resulting audio clip is dubbed
to the video by synchronizing and multiplexing the audio
(music) and video (images) streams. At step 2408, the audio
is conformed to the sample rate and word length as specified
in the options (or the default of 48 kHz, 16 bit). The method
ends at step 2409.

FIGS. 25-27 and the corresponding description below
relate to video and/or color filters that apply color grading,
lighting effects, and overlays, such as old film (which adds
film grain looking like an old film projector), for example.

FIG. 25 is a flowchart illustrating an exemplary method
2500 for filtering and providing an overlay to a video output,
in accordance with a representative embodiment of the
present invention. The actions of the method 2500 of FIG.
25 may be performed using elements of the system 10 of
FIG. 1 including, for example, the server(s) 11. The system
10 may be arranged to support video filtering and overlay
ing, for example. Certain embodiments of the present inven
tion may omit one or more of actions, and/or perform the
actions in a different order than the order listed, and/or
combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 25, the method 2500 for filtering and
providing an overlay to a video output applies filters to video
and overlays custom or stock film grain over the video to
provide an old film look. In various embodiment, if applied
by itself, the output resembles 60/70s footage, and if
applied with black and white, the output resembles 1950s or
1920s footage, for example. The method 2500 begins at
step 2501. At step 2502, function defaults are loaded and
overridden as needed by user-set options. At step 2503, the
processing server determines whether to decimate the frame
rate. At step 2504, the frame rate may be decimated based on
the determination at step 2503.

The processing server determines whether to provide
various effects such as colorized video (at step 2505), film
dirt effect (at step 2507), vignette effect (at step 2509), film
grain (at step 2511), and/or flicker effect (at step 2513),
among other things. Based on the determination at step
2505, the processing server may colorize the video with
specified colors at step 2506. For example, the specified
colors may provide sepia effects, black and white, or any
suitable selected effect. If the processing server determines
to provide film dirt effects at step 2507, the method proceeds
to step 2508 where an overlay corresponding with film dirt
is applied to the video clip. At step 2510, a vignette overlay
may be applied based on the determination of the processing
server at step 2509. Based on the determination at step 2511,
a film grain effect may be applied at step 2512. In various

10

15

25

30

35

40

45

50

55

60

65

36
embodiments, a third party plugin may be used to provide
one or more of the effects, for example. If the processing
server determines to provide flicker effect at step 2513,
lighting and darkening may be applied respectively to each
pair of adjacent video frames, for example to provide the
flicker effect at step 2514.
At step 2515, if the frame rate was decimated at step 2504,

the original input frame rate may be restored by duplicating
frames at step 2516. At step 2517, the processing server
determines whether to conform the video and audio. If video
and audio conformance was selected and/or specified, the
method proceeds to step 2518 where the video output is
converted to YV12 colorspace, for example. At step 2519,
the video output is converted to the NTSC-standard frame
rate of 29.97 frames per second, for example. At step 2520,
the video output may be conformed to pixel dimensions of
either 1280x720 or 640x480, for example, depending on a
selected preset, among other things. At step 2521, the audio
is conformed to 48 kHz/16-bit stereo, for example.

If video and audio conformance was not selected and/or
specified, the method proceeds to step 2522 where the
processing server determines whether the input video
includes an audio track. If so, an old film audio filter as
described in the method 2900 of FIG. 29 may be applied at
step 2523. The method 2500 ends at step 2524.

FIG. 26 is a flowchart illustrating an exemplary method
2600 for color filtering a video output, in accordance with a
representative embodiment of the present invention. The
actions of the method 2600 of FIG. 26 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to support color filtering, for example. Certain embodiments
of the present invention may omit one or more of actions,
and/or perform the actions in a different order than the order
listed, and/or combine certain of the actions discussed
below. For example, Some actions may not be performed in
certain embodiments of the present invention. As a further
example, certain actions may be performed in a different
temporal order, including simultaneously, than listed below.
The method 2600 for color filtering a video output begins

at step 2601. At step 2602, function defaults are loaded and
overridden as needed by user-set options. At step 2603, the
processing server applies user-specified or default brightness
and contrast adjustments to a video clip. At Step 2604, the
processing server determines whether any color filter effects
are enabled. For example, the processing server may color
ize a video clip using a user-specified or default color
parameter at step 2605. At step 2606, the processing server
can apply a sepia effect based on a user-specified or default
color parameter. As another example, the processing server
may apply a Technicolor effect color channel specified by a
channel parameter or a default, such as red, among other
things, at step 2607.
At step 2608, the processing server determines whether to

conform the video and audio. If video and audio confor
mance was selected and/or specified, the method proceeds to
step 2609 where the video output is converted to YV12
colorspace, for example. At step 2610, the video output is
converted to the NTSC-standard frame rate of 29.97 frames
per second, for example. At step 2611, the video output may
be conformed to pixel dimensions of either 1280x720 or
640x480, for example, depending on a selected preset. At
step 2612, the audio is conformed to 48 kHz/16-bit stereo,
for example. The method 2600 ends at step 2613.

FIG. 27 is a flowchart illustrating an exemplary method
2700 for color filtering a video output, in accordance with a
representative embodiment of the present invention. The

US 9,620,169 B1
37

actions of the method 2700 of FIG. 27 may be performed
using elements of the system 10 of FIG. 1 including, for
example, the server(s) 11. The system 10 may be arranged
to Support color filtering, for example. Certain embodiments
of the present invention may omit one or more of actions,
and/or perform the actions in a different order than the order
listed, and/or combine certain of the actions discussed
below. For example, some actions may not be performed in
certain embodiments of the present invention. As a further
example, certain actions may be performed in a different
temporal order, including simultaneously, than listed below.

Referring to FIG. 27, the method 2700 for color filtering
a video output may be the function called in the footer of the
project, as illustrated in step 404 of FIG. 4, for example, if
the user has selected a color filter. Color filters such as sepia,
new film, and the like are applied to the entire video output
or individual video clips, for example. The method 2700 for
color filtering a video output begins at step 2701. At step
2702, the processing server determines whether a color filter
preset was specified.

If the processing server determines that a Super 8 filter
was selected at step 2702, a video frame rate is converted to
15.985 frames per second at step 2703. At step 2704, a
strong film grain effect is added to the video. At step 2705,
a brightness of the video may be decreased by, for example,
33% while a contrast of the video is increased by 33%. At
step 2706, a vibrancy of the video may be reduced by 75%
and a saturation of the video can be increased by 300%, for
example. At step 2707, a flicker effect may be applied by, for
example, respectively lighting and darkening each pair of
adjacent video frames. At step 2708, the video frame rate
may be converted to 29.97 frames per second.
At step 2709, if the processing server determined that an

old film filter was selected, a strong film grain effect can be
added to the video. At step 2710, a brightness of the video
may be decreased by, for example, 33% while a contrast of
the video is increased by 33%. At step 2711, a vibrancy of
the video may be reduced by 75% and its saturation can be
increased by 300%, for example. At step 2712, a Gaussian
blur effect may be applied to soften color channels.

If the processing server determines that a new film filter
was selected at step 2702, a brightness of the video may be
decreased by, for example, 33% and a contrast of the video
can be increased by 50% at step 2713. At step 2714, a
vibrancy of the video may be increased by 75% and a
saturation of the video can be reduced by 25%, for example.
At step 2715, moderate sharpening can be applied to a
luminance channel of the video. At step 2716, a mild film
grain effect may be added to the video.

At step 2717, if the processing server determined that a
Technicolor filter was selected, the processing server may
apply a Technicolor effect color channel specified by a
channel parameter or a default, such as red, among other
things. At step 2718, if the processing server determined that
a sepia filter was selected, the processing server may apply
a sepia effect based on a user-specified or default color
parameter. If the processing server determines that a vibrant
filter was selected at step 2702, a vibrancy of the video may
be increased by 100% and its saturation can be reduced by
33%, for example, at step 2719. At step 2720, if the
processing server determined that a mellow filter was
selected, the processing server may increase a vibrancy of
the video by 300% and decrease its saturation by 75%, for
example. At step 2721, if the processing server determined
that a spot color filter was selected, the processing server
may provide an extreme vibrancy increase and an extreme
saturation decrease, for example.

5

10

15

25

30

35

40

45

50

55

60

65

38
If the processing server determines that a pop art filter was

selected at step 2702, a video gamma may be decreased and
a contrast can be mildly increased, for example, at step 2722.
At step 2723, the processing server may reduce a vibrancy
of the video by 38% and increase its saturation by 400%, for
example. At step. 2724, a mild softening may be applied to
the video. At step 2725, a strong sharpening may be applied
to the video. The method 2700 for color filtering a video
output ends at step 2726.

FIGS. 28-29 relate to audio filters that apply audio over
lays and effects to individual video clips or a video output as
a whole. The audio filters may be applied in the footer
process described above with regard to step 404 of FIG. 4,
for example.

FIG. 28 is a flowchart illustrating an exemplary method
2800 for applying a vinyl noise audio filter to a video output,
in accordance with a representative embodiment of the
present invention. The actions of the method 2800 of FIG.
28 may be performed using elements of the system 10 of
FIG. 1 including, for example, the server(s) 11. The system
10 may be arranged to Support applying audio filters to a
video output, for example. Certain embodiments of the
present invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, Some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 28, the vinyl noise filter adds old
phonograph record style noise to audio. In various embodi
ments, the old phonograph record style noise may be over
laid over an entire video output, which may have video
audio and music audio, for example. In certain embodi
ments, a user can specify vinyl noise strength, like normal,
heavy, or extreme, for example. The method 2800 for
applying a vinyl noise audio filter to a video output begins
at step 2801. At step 2802, function defaults are loaded and
overridden as needed by user-set options. At step 2803,
additional options are set based on a profile parameter. At
step 2804, a silent audio clip, such as a silent 18 second 48
kHz/16-bit stereo audio clip, is created and stored in
memory. At step 2805, if the processing server determines
that a crackle effect was selected, a crackle WAV file is
loaded at step 2806 and mixed with the silent audio clip at
a level specified by a user-selected or default crackle param
eter.

At step 2808, if the processing server determines that a
dust noise effect was selected, a dust noise WAV file is
loaded at step 2809 and mixed with the output audio from
step 2807 at step 2810. At step 2811, if the processing server
determines that a click effect was selected, a click WAV file
is loaded at step 2812 and mixed with the output audio from
step 2810 at step 2813. At step 2814, if the processing server
determines that a mechanical noise effect was selected, a
mechanical noise WAV file is loaded at step 2815 and mixed
with the output audio from step 2813 at step 2816. At step
2817, if the processing server determines that an equalizer
effect was selected, a midrange frequency boost may be
applied to the input audio at a level specified by an equal
ization strength parameter specified by a user or default.
At step 2819, the output audio from step 2816 is looped

to match the input audio duration. The output audio from
step 2819 is mixed into the input audio at step 2820, the
audio levels are normalized at step 2821, and the audio is

US 9,620,169 B1
39

conformed to 48 kHz/16-bit Stereo. The method 2800 for
applying a vinyl noise audio filter to a video output ends at
step 2823.

FIG. 29 is a flowchart illustrating an exemplary method
2900 for applying a projector noise audio filter to a video
output, in accordance with a representative embodiment of
the present invention. The actions of the method 2900 of
FIG. 29 may be performed using elements of the system 10
of FIG. 1 including, for example, the server(s) 11. The
system 10 may be arranged to Support applying audio filters
to a video output, for example. Certain embodiments of the
present invention may omit one or more of actions, and/or
perform the actions in a different order than the order listed,
and/or combine certain of the actions discussed below. For
example, some actions may not be performed in certain
embodiments of the present invention. As a further example,
certain actions may be performed in a different temporal
order, including simultaneously, than listed below.

Referring to FIG. 29, an old film audio filter adds old
projector style audio noise and effects to audio. For example,
an end user may add the old film audio filter as projector
noise from the audio filters. In various embodiments, the
projector style audio noise and effects are overlaid over the
entire video output, which may have video audio and music
audio, for example. The method 2900 for applying a pro
jector noise audio filter to a video output begins at step 2901.
At step 2902, function defaults are loaded and overridden as
needed by user-set options. At step 2903, a noise clip is
looped to match the duration of the input video. The noise
clip may be a stock audio clip of noise from an old-fashioned
film projector, for example. At step 2904, the noise clip is
mixed with the input audio at a specified level. The specified
level may be user-specified or a default, such as 25% noise,
for example. At step 2905, the resulting mixed audio clip is
dubbed to the video by synchronizing and multiplexing the
audio and video streams. The method 2900 for applying a
projector noise audio filter to a video output ends at Step
2906.
The present invention may be embedded in a computer

program product, which comprises all the features enabling
the implementation of the methods described herein, and
which when loaded in a computer system is able to carry out
these methods. Computer program in the present context
means any expression, in any language, code or notation, of
a set of instructions intended to cause a system having an
information processing capability to perform a particular
function either directly or after either or both of the follow
ing: a) conversion to another language, code or notation; b)
reproduction in a different material form.

Accordingly, the present invention may be realized in
hardware, Software, or a combination of hardware and
Software. The present invention may be realized in a cen
tralized fashion in at least one computer system, or in a
distributed fashion where different elements are spread
across several interconnected computer systems. Any kind
of computer system or other apparatus adapted for carrying
out the methods described herein is suited.

Although devices, methods, and systems according to the
present invention may have been described in connection
with a preferred embodiment, it is not intended to be limited
to the specific form set forth herein, but on the contrary, it
is intended to cover Such alternative, modifications, and
equivalents, as can be reasonably included within the scope
of the invention as defined by this disclosure and appended
diagrams.

While the present invention has been described with
reference to certain embodiments, it will be understood by

5

10

15

25

30

35

40

45

50

55

60

65

40
those skilled in the art that various changes may be made and
equivalents may be substituted without departing from the
Scope of the present invention. In addition, many modifica
tions may be made to adapt a particular situation or material
to the teachings of the present invention without departing
from its scope. Therefore, it is intended that the present
invention not be limited to the particular embodiment dis
closed, but that the present invention will include all
embodiments falling within the scope of the appended
claims.
What is claimed is:
1. A method for editing and mixing one or more music

audio clips with a video audio track and an entire video
output, the method comprising:

creating, by at least one processing server, a main audio
clip from the one or more music audio clips;

comparing, by the at least one processing server, a main
audio duration of the main audio clip to a video
duration of the entire video output;

extending the main audio duration by looping, by the at
least one processing server, the main audio clip until the
main audio duration is longer than the video duration of
the entire video output if the main audio duration is
shorter than the video duration;

trimming, by the at least one processing server, the main
audio clip to the video duration;

identifying, by the at least one processing server, one or
more onsets in the video audio track corresponding
with silence-to-noise transitions and noise-to-silence
transitions;

identifying, by the at least one processing server, points
corresponding to when the main audio clip is one or
more of faded-in or faded-out in relation to the video
audio track based on a fade duration setting and the one
or more onsets;

editing, by the at least one processing server, the main
audio clip to insert one of a fade-in event or a fade-out
event at each of the identified points;

mixing, by the at least one processing server, the main
audio clip and the video audio track; and

synchronizing and multiplexing, by the at least one pro
cessing server, the mixed audio and the entire video
output.

2. The method according to claim 1, wherein creating the
main audio clip comprises normalizing a Volume of the one
or more music audio clips.

3. The method according to claim 1, wherein creating the
main audio clip comprises one or more of fading-in and
fading-out of the one or more music audio clips.

4. The method according to claim 1, wherein the one or
more music audio clips is a plurality of music audio clips
appended together to form the main audio clip.

5. The method according to claim 1, comprising conform
ing the mixed audio to a sample rate and word length
specified in a selectable option.

6. The method according to claim 5, wherein the sample
rate and word length is 48 kHz, 16 bit.

7. A system for editing and mixing one or more music
audio clips with a video audio track and an entire video
output, the system comprising:

at least one processing server configured to:
create a main audio clip from the one or more music

audio clips;
compare a main audio duration of the main audio clip

to a video duration of the entire video output;
extend the main audio duration by looping the main

audio clip until the main audio duration is longer

US 9,620,169 B1
41

than the video duration of the entire video output if
the main audio duration is shorter than the video
duration;

trim the main audio clip to the video duration;
identify one or more onsets in the video audio track

corresponding with silence-to-noise transitions and
noise-to-silence transitions;

identify points corresponding to when the main audio
clip is one or more of faded-in or faded-out in
relation to the video audio track based on a fade
duration setting and the one or more onsets;

edit the main audio clip to insert one of a fade-in event
or a fade-out event at each of the identified points;

mix the main audio clip and the video audio track; and
synchronize and multiplex the mixed audio and the

entire video output.
8. The system according to claim 7, wherein creating the

main audio clip comprises normalizing a volume of the one
or more music audio clips.

9. The system according to claim 7, wherein creating the
main audio clip comprises one or more of fading-in and
fading-out of the one or more music audio clips.

10. The system according to claim 7, wherein the one or
more music audio clips is a plurality of music audio clips
appended together to form the main audio clip.

11. The system according to claim 7, wherein the at least
one processing server is configured to conform the mixed
audio to a sample rate and word length specified in a
selectable option, the selectable option comprising a 48 kHz
sample rate and 16 bit word length option.

12. A non-transitory computer readable medium having
stored thereon, a computer program having at least one code
section, the at least one code section being executable by a
machine for causing the machine to perform steps compris
ing:

creating a main audio clip from the one or more music
audio clips;

comparing a main audio duration of the main audio clip
to a video duration of an entire video output;

5

10

15

25

30

35

42
extending the main audio duration by looping the main

audio clip until the main audio duration is longer than
the video duration of the entire video output if the main
audio duration is shorter than the video duration;

trimming the main audio clip to the video duration;
identifying one or more onsets in the video audio track

corresponding with silence-to-noise transitions and
noise-to-silence transitions;

identifying points corresponding to when the main audio
clip is one or more of faded-in or faded-out in relation
to the video audio track based on a fade duration setting
and the one or more onsets;

editing the main audio clip to insert one of a fade-in event
or a fade-out event at each of the identified points;

mixing the main audio clip and the video audio track; and
synchronizing and multiplexing the mixed audio and the

entire video output.
13. The non-transitory computer readable medium

according to claim 12, wherein creating the main audio clip
comprises normalizing a Volume of the one or more music
audio clips.

14. The non-transitory computer readable medium
according to claim 12, wherein creating the main audio clip
comprises one or more of fading-in and fading-out of the one
or more music audio clips.

15. The non-transitory computer readable medium
according to claim 12, wherein the one or more music audio
clips is a plurality of music audio clips appended together to
form the main audio clip.

16. The non-transitory computer readable medium
according to claim 12, comprising conforming the mixed
audio to a sample rate and word length specified in a
selectable option.

17. The non-transitory computer readable medium
according to claim 16, wherein the sample rate and word
length is 48 kHz, 16 bit.

k k k k k

