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ABSTRACT

A time-multiplexed field programmable gate array (TM-
FPGA) includes programmable logic circuitry, program-
mable interconnect circuitry, and a plurality of context regis-
ters. A user’s circuit can be mapped to the programmable
logic circuitry, the programmable interconnect circuitry, and
the plurality of context registers without the user’s interven-
tion in mapping the design.
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APPARATUS AND METHODS FOR
TIME-MULTIPLEX
FIELD-PROGRAMMABLE GATE ARRAYS

TECHNICAL FIELD

[0001] The inventive concepts relate generally to program-
mable or configurable circuitry and, more particularly, to
apparatus and methods for time-multiplexed (TM) field-pro-
grammable gate arrays (FPGAs), or TM-FPGAs, and related
design flows and computer-aided design (CAD) methodol-

ogy.
BACKGROUND

[0002] FPGAs allow circuit designers to prototype rela-
tively complex designs before finalizing the design. Com-
pared to application specific integrated circuits (ASICs),
FPGAs provide designers the flexibility of revising or refin-
ing their designs in their laboratories without having a full-
blown fabrication of each iteration or revision to the design.
Because of their flexibility and programmability, however,
typical FPGAs may not contain enough hardware resources
to implement or emulate relatively complex designs.

[0003] TM-FPGAs seek to re-use the FPGA’s hardware.
Thus, they provide the designer with apparent increased hard-
ware resources (in exchange for slower operating speed). As
a result, designers may implement larger designs than ordi-
nary FPGAs would allow. To use conventional TM-FPGAs
advantageously, however, designers should have knowledge
of the time-multiplexed nature of the FPGA. Thus, the user
has involvement in the process of implementing the design in
the TM-FPGAs and often has to make decisions about various
aspects of that process. A need therefore exists for TM-FP-
GAs that allow implementation of a user’s design without the
user’s extensive involvement in that process.

SUMMARY

[0004] The inventive concepts contemplate novel TM-FP-
GAs. One aspect of the invention relates to TM-FPGA appa-
ratus. In one embodiment, a TM-FPGA includes a plurality of
programmable logic circuits and programmable interconnect
circuitry. Each programmable logic circuit has at least one
context register. A user’s circuit can be mapped to the plural-
ity of programmable logic circuits and the programmable
interconnect circuitry without the user’s intervention in map-
ping the circuit to the context register(s).

[0005] In another embodiment, a TM-FPGA includes a
plurality of programmable logic circuits. Each programmable
logic circuit includes a set of r context registers. The context
registers are configured according to rxN bits of configuration
data, where N=r and rz1. Furthermore, r has an average
value of k contexts registers per programmable logic circuit,
where k=N.

[0006] Another aspect of the invention relates to methods
of using TM-FPGAs to realize or implement a desired elec-
tronic circuit. In one embodiment, a method of implementing
an electronic circuit using a TM-FPGA includes obtaining a
design of the electronic circuit design from a user. The
method further includes mapping the electronic circuit to
resources within the TM-FPGA) without the user’s interven-
tion, and programming the TM-FPGA accordingly.

[0007] In another embodiment, a method of processing an
electronic circuit design includes obtaining the electronic
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circuit design from a user, and mapping automatically the
electronic circuit design to resources within a TM-FPGA.
[0008] In a third embodiment, a method of mapping an
electronic circuit to resources in a TM-FPGA includes
obtaining a representation of the electronic circuit from a
user, and automatically partitioning the electronic circuit into
aplurality of clusters. The method further includes automati-
cally assigning each cluster in the plurality of clusters to a
context of the time-multiplexed field programmable gate
array (TM-FPGA).

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] The appended drawings illustrate only exemplary
embodiments of the invention and therefore should not be
considered as limiting its scope. Persons of ordinary skill in
the art who have the benefit of the description of the invention
appreciate that the disclosed inventive concepts lend them-
selves to other equally effective embodiments. In the draw-
ings, the same numeral designators used in more than one
drawing denote the same, similar, or equivalent functionality,
components, or blocks.

[0010] FIG. 1 shows a general block diagram of a TM-
FPGA according to an illustrative embodiment of the inven-
tion.

[0011] FIG. 2 illustrates various software modules that
TM-FPGA CAD software according to illustrative embodi-
ments of the invention uses.

[0012] FIG. 3 depicts a general block diagram representa-
tion of a user’s circuit for implementation in a TM-FPGA
according to the invention.

[0013] FIG. 4 shows an ideally partitioned circuit, parti-
tioned by CAD software according to the invention.

[0014] FIG. 5 illustrates a typical partitioning of a user’s
circuit for implementation in a TM-FPGA according to the
invention.

[0015] FIG. 6 depicts an example of a user’s circuit with
context registers or storage elements added to facilitate par-
titioning of the circuit by the CAD software.

[0016] FIG. 7 shows a simplified flow diagram of a process
that CAD software according to exemplary embodiments of
the invention performs to map a user’s circuit to a TM-FP-
GA’s resources.

[0017] FIG. 8 illustrates an example of a simple circuit for
implementation in a TM-FPGA.

[0018] FIG. 9 depicts the circuit of FIG. 8 partitioned by the
CAD software into clusters.

[0019] FIG. 10 shows the circuit of FIG. 9, as further pro-
cessed by the CAD software.

[0020] FIG. 11 illustrates the circuit of FIG. 10, as further
processed by the CAD software.

[0021] FIG. 12 depicts an illustrative embodiment of a
three-context TM-FPGA used to implement the simple cir-
cuit shown in FIG. 11.

[0022] FIG. 13 shows the functionality realized by the vari-
ous resources within the TM-FPGA during the first context of
the TM-FPGA in FIG. 12.

[0023] FIG. 14 illustrates shows the functionality realized
by the various resources within the TM-FPGA during the
second context of the TM-FPGA in FIG. 12.

[0024] FIG. 15 depicts shows the functionality realized by
the various resources within the TM-FPGA during the third
context of the TM-FPGA in FIG. 12.
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[0025] FIG. 16 shows a block diagram of a configurable or
programmable logic circuit used in TM-FPGAs according to
exemplary embodiments of the invention.

DETAILED DESCRIPTION

[0026] The inventive concepts contemplate apparatus and
associated methods for novel TM-FPGAs and related design
flows and CAD methodology. With the disclosed novel TM-
FPGAs, other than the clocking arrangement, the user need
not target his or her design specifically for a TM-FPGA.
[0027] The disclosed TM-FPGAs provide many advan-
tages over previously proposed TM-FPGAs. First, they are
suitable for general-purpose applications, rather than niche
applications that use re-configurable computing. Second,
with the disclosed TM-FPGAs, design flow, and CAD meth-
odology, the user does not have to intervene in the design
process as is the case with conventional TM-FPGAs. This
property of the disclosed TM-FPGAs makes them suitable for
mainstream use and applications by typical users, rather than
users that have specialized knowledge.

[0028] Third, TM-FPGAs according to the invention pro-
vide more efficient solutions. More specifically, they can
provide die area savings (typically, a factor of two or more)
over conventional FPGAs. Fourth, one may use the disclosed
TM-FPGAs for prototyping structured ASICs. As long as one
matches input/output (I/O) connections between the two
approaches, one may use the time-multiplexed nature of the
TM-FPGAs to prototype structured ASICs. The time-multi-
plexed nature of the TM-FPGA allows prototyping a rela-
tively large structured ASIC product.

[0029] Fifth, because the user need not know about the
time-multiplexed nature of the FPGA, the user may use the
TM-FPGA more easily to implement his or her designs.
Sixth, the disclosed novel TM-FPGAs overcome the glitch
restrictions associated with conventional TM-FPGAs. Other
benefits and advantages of the novel TM-FPGAs become
apparent in to persons of ordinary skill in the art in the rest of
the description.

[0030] FIG. 1 shows a general block diagram of a TM-
FPGA 103 according to an illustrative embodiment of the
invention. TM-FPGA 103 includes configuration circuitry
130, configuration memory 133 (also known as configuration
random-access memory, or CRAM), control circuitry 136,
programmable logic 106, and programmable interconnect
109. In addition, TM-FPGA 103 may include one or more
processors 118, one or more communication circuitry 121,
one or more memories 124, one or more controllers 127, as
desired. The user may implement a design using the various
resources of the TM-FPGA, such as programmable logic 106,
programmable interconnect 109, etc.

[0031] Note that FIG. 1 shows a simplified block diagram
of TM-FPGA 103. Thus, TM-FPGA 103 may include other
blocks and circuitry, as persons of ordinary skill in the art
understand. Examples of such circuitry include clock genera-
tion and distribution circuits, redundancy circuits, test/debug
circuits, and the like. Furthermore, TM-FPGA 103 may
include, analog circuitry, other digital circuitry, and/or
mixed-mode circuitry, as desired.

[0032] Programmable logic 106 includes blocks of config-
urable or programmable logic circuitry, such as look-up
tables (LUTs), product-term logic, multiplexers, logic gates,
registers, memory, and the like. Persons of ordinary skill in
the art may recognize the blocks of configurable or program-
mable logic by various names, such as logic elements (LEs),
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logic cells (LCs), macro-cells (MCs or MCells), adaptive
logic modules (ALLMs) and adaptive look-up tables (ALUTs),
etc. Compared to conventional circuits, the configurable or
programmable logic blocks include additional circuitry to
provide the time-multiplexed feature of the disclosed TM-
FPGAs, as described below in detail.

[0033] Programmable interconnect 109 couples to pro-
grammable logic 106. Programmable interconnect 109 pro-
vides configurable interconnects (coupling mechanisms)
between various blocks within programmable logic 106 and
other circuitry within or outside TM-FPGA 103.

[0034] Configuration memory 133 stores configuration
data for TM-FPGA 103. Configuration memory 133 may
obtain the configuration data from an external source, such as
a storage device, a host, etc. Control circuitry 136 controls
various operations within TM-FPGA 103. Under the super-
vision of control circuitry 136, TM-FPGA configuration cir-
cuitry 130 uses configuration data from configuration
memory 133 to program or configure the functionality of
TM-FPGA 103. The configuration data determine the func-
tionality of TM-FPGA 103 by programming the configurable
resources of TM-FPGA 103, such as programmable logic 106
and programmable interconnect 109, as persons skilled in the
art with the benefit of the description of the invention under-
stand.

[0035] As noted above, TM-FPGA 103 may include one or
more processors 118. Processor 118 may couple to other
blocks and circuits within TM-FPGA 103. Processor 118 may
receive data and information from circuits within or external
to TM-FPGA 103 and process the information in a wide
variety of ways, as persons skilled in the art with the benefit of
the description of the invention appreciate. One or more of
processor(s) 118 may constitute a digital signal processor
(DSP). DSPs allow performing a wide variety of signal pro-
cessing tasks, such as compression, decompression, audio
processing, video processing, filtering, and the like, as
desired.

[0036] TM-FPGA 103 may also include one or more com-
munication circuitry 121. Communication circuitry 121 may
facilitate data and information exchange between various
circuits within TM-FPGA 103 and circuits external to TM-
FPGA 103, as persons of ordinary skill in the art who have the
benefit of the description of the invention understand. As an
example, communication circuitry 121 may provide various
protocol functionality (e.g., Transmission Control Protocol/
Internet Protocol (TCP/IP), User Datagram Protocol (UDP)
etc.), as desired. As another example, communication cir-
cuitry 121 may include network (e.g., Ethernet, token ring,
etc.) or bus interface circuitry, as desired.

[0037] TM-FPGA 103 may further include one or more
memories 124 and one or more controller(s) 127. Memory
124 allows the storage of various data and information (such
as user-data, intermediate results, calculation results, etc.)
within TM-FPGA 103. Memory 124 may have a granular or
block form, as desired. Controller 127 allows interfacing to,
and controlling the operation and various functions of cir-
cuitry outside the TM-FPGA. For example, controller 127
may constitute a memory controller that interfaces to and
controls an external synchronous dynamic random access
memory (SDRAM), as desired.

[0038] The user invokes a CAD system or software to map
adesignto the TM-FPGA and implement the design using the
TM-FPGA’s resources. FIG. 2 depicts various software mod-
ules that TM-FPGA CAD software according to illustrative
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embodiments of the invention uses. The modules include
design-entry module 305; synthesis module 310; partition,
place, and route module 315; and verification module 320.
[0039] Design-entry module 305 allows the integration of
multiple design files. The user may generate the design files
by using design-entry module 305 or by using a variety of
electronic design automation (EDA) or CAD tools (such as
industry-standard EDA tools), as desired. The user may enter
the design in a graphic format, a waveform-based format, a
schematic format, in a text or binary format, or as a combi-
nation of those formats, as desired.

[0040] Synthesis module 310 accepts the output of design-
entry module 305. Based on the user-provided design, syn-
thesis module 310 generates appropriate logic circuitry that
realizes the user’s design. One or more TM-FPGAs (not
shown explicitly) implement the synthesized overall design
or system. Synthesis module 310 may also generate any glue
logic that allows integration and proper operation and inter-
facing of various modules in the user’s designs. For example,
synthesis module 310 provides appropriate hardware so that
an output of one block properly interfaces with an input of
another block. Synthesis module 310 may provide appropri-
ate hardware so as to meet the specifications of each of the
modules in the overall design or system.

[0041] Furthermore, synthesis module 310 may include
algorithms and routines for optimizing the synthesized
design. Through optimization, synthesis module 310 seeks to
more efficiently use the resources of the one or more TM-
FPGAs that implement the overall design or system. Synthe-
sis module 310 provides its output to partition, place, and
route module 315.

[0042] Partition and schedule module 312 uses the design-
er’s timing specifications and the known context capacity of
the TM-FPGA to create sub-circuits, each of which can be
mapped onto the hardware. FPGA partitioning is known to
persons of ordinary skill in the art. One may port the parti-
tioning software to TM-FPGAs by making modifications to
general FPGA partitioning that fall within the knowledge of
persons of ordinary skill in the art who have the benefit of the
description of the invention. Generally, the modifications
relate to stitching one context to other contexts.

[0043] Foranordinary FPGA, any partitioning that satisfies
the capacity constraints of the hardware constitutes a proper
partitioning. TM-FPGAs entail an additional consideration
relating to strictly ordering contexts in sequential order (e.g.,
from 1 to N for an N-context TM-FPGA). This ordering
places a constraint on how the software may achieve parti-
tioning because the outputs of any given partition should be
either user signals (such as inputs, outputs, and registers), or
should be inputs to future or succeeding contexts (with a
larger partition order index).

[0044] Although portioning constitutes an NP-complete
problem, persons of ordinary skill in the art recognize that the
software can find appropriate or approximate solutions (com-
pared to an ideal solution). In practice, the added ordering
constraint on the outputs may make finding a solution more
difficult compared to ordinary FPGA partitioning, thus per-
haps involving longer software running times. As persons of
ordinary skill in the art recognize, however, one may convert
the added constraint to an additional “cost function” for the
partitioning software. Thus, one may use many well-known
partitioning algorithms for TM-FPGA partitioning by using
cost-function modification. The easiest partitioning algo-
rithm that one may adapt to TM-FPGA is perhaps “partition-
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ing by simulated annealing,” an algorithm well known to
persons skilled in the art. The description below provides an
example of a general partitioning and scheduling algorithm
according to the invention in connection with FIGS. 4-6.
[0045] Place and route module 315 is very similar to the
place and route modules of ordinary FPGAs. In fact, in one
embodiment according to the invention, where each FPGA
logic module uses as many context registers as there are
contexts, place and route module 315 virtually needs no
modification.

[0046] In a different embodiment, where the number of
such context registers is fewer on average than the number of
contexts of the TM-FPGA, one may make modifications to
ordinary FPGA place and route algorithms by using “cost
functions.” More specifically, similar to the way partition and
schedule module 312 introduces additional “cost functions,”
the placement may introduce such additional cost functions
that measure the mismatch of the number of context registers
and the user design’s requirements at different locations on
the TM-FPGA. This additional cost guides the placement
algorithm to a successful eventual placement. As noted
above, one may use simulated annealing placement to address
this added complexity with minimal modifications to ordi-
nary FPGA place and route. Note, however, that one may use
other known FPGA place and route algorithms by making
relatively minor modifications, as persons of ordinary skill in
the art who have the benefit of the description of the invention
appreciate.

[0047] By proper use of the TM-FPGA routing resources,
place and route module 315 helps to meet the critical timing
paths of the overall design or system while simultaneously
finding a proper fit to the TM-FPGA’s resources. Place and
route module 315 optimizes the critical timing paths to help
provides timing closure faster in a manner known to persons
of'ordinary skill in the art with the benefit of the description of
the invention. As a result, the overall design or system can
achieve faster performance (i.e., operate at a higher clock rate
or have higher throughput). The description below in connec-
tion with implementing a user’s design in a TM-FPGA pro-
vides more details of the operation of the place route module
315.

[0048] Verification module 320 performs simulation and
verification of the design. The simulation and verification
seek in part to verify that the design complies with the user’s
prescribed specifications. The simulation and verification
also aim at detecting and correcting any design problems
before prototyping the design. Thus, verification module 320
helps the user to reduce the overall cost and time-to-market of
the overall design or system.

[0049] Verification module 320 may support and perform a
variety of verification and simulation options, as desired. The
options may include design-rule checking, functional verifi-
cation, test-bench generation, static timing analysis, timing
simulation, hardware/software simulation, in-system verifi-
cation, board-level timing analysis, signal integrity analysis
and electro-magnetic compatibility (EMC), formal netlist
verification, and power-consumption estimation, as desired.
Note that one may perform other or additional verification
techniques as desired and as persons of ordinary skill in the art
who have the benefit of the description of the invention under-
stand.

[0050] The TM-FPGA CAD software may also include a
module (not shown in FIG. 2) or routine for producing a
bit-stream for programming or configuring the TM-FPGA, as
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desired. The module provides a bit-stream that, when used to
program the TM-FPGA, causes the TM-FPGA to implement
the user’s desired circuit or system according to the pre-
scribed specifications or functionality.

[0051] The following description provides further details
of how a TM-FPGA implements a user’s design. Generally,
one may represent a synchronous logic circuit as a combina-
tion of sequential and combinational logic. FIG. 3 shows a
general block diagram representation of a user’s circuit for
implementation in a TM-FPGA according to the invention.
Generally, the circuit may include combinational logic 405
coupled between the user’s input(s) and the FPGA registers
408. Similarly, more combinatorial logic 411 may exist
between the user’s registers and the user’s output(s). Parts (or
all) of logic 405 and logic 411 may also couple between two
or more registers, as signals 414 and 417 indicate.

[0052] Note that, generally speaking, logic circuit 411 may
receive, and operate on, one or more signals 414 from logic
circuit 405 in addition to the signals received from user reg-
isters. Likewise, logic circuit 405 may receive, and operate
on, one or more signals 417 from logic circuit 411 (i.e., the
circuit may include a feedback signal path).

[0053] As noted, the CAD software partitions the user’s
circuit into several sub-circuits, each of which has a suffi-
ciently small size so as to fit entirely within the TM-FPGA’s
hardware resources. The TM-FPGA operates on each of the
sub-circuits during one of its contexts. By partitioning the
user’s circuit, the CAD software allows the TM-FPGA to
implement a larger circuit than a comparable conventional
FPGA can realize. Furthermore, because the CAD software
performs the partitioning in a transparent manner, the user
need not intervene in the partitioning process. Thus, a typical
FPGA user can readily use a TM-FPGA according to the
invention to implement his or her circuits.

[0054] By exploiting the partitioning process, the
TM-FPGA attempts to re-use the same hardware during vari-
ous contexts, hence the time-multiplexed nature of the FPGA.
To do so, the TM-FPGA uses an internal clock signal with a
frequency that is a multiple of the frequency of the clock
signal of the user’s circuit. In other words, if the TM-FPGA
has N contexts,

fclk, incernal=V: fclk, users

where £ .rorma@0d 1y . represent the frequencies of the
internal clock and of the user’s circuit’s clock signals, respec-
tively. Each cycle of the internal clock corresponds to one of
the contexts.

[0055] Oneach of the cycles of the internal clock signal, the
TP-FPGA operates in one of its contexts (i.e., realizes one
part of the partitioned circuit). Each context provides input(s)
to one or more future or succeeding contexts, together with
any user input, output, and logic signals. In every context (i.e.,
on every cycle of the internal clock signal), the TM-FPGA
generally performs different functions or operations and
stores the results of those operations for use in later contexts,
as appropriate.

[0056] In TM-FPGA, a succeeding context may immedi-
ately consume some outputs of a given context, while other
outputs hold their state idle for a later context. Note that more
than one future or succeeding contexts may use some or all of
the outputs. Partition and schedule module 312 (see FIG. 2)
seeks to minimize the number of outputs needed in more than
one context. As another goal, partition and schedule module
312 also seeks to minimize outputs needed in a context later
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than the one that immediately follows the current context.
Through this minimization, the inventive concepts achieve
significant area savings compared to conventional
approaches that use as many context registers per program-
mable logic circuit (e.g., logic element) as the number of
contexts of the TM-FPGA.

[0057] An ideal partitioning of the user’s circuit would
result in a circuit that does not include signal inter-dependen-
cies between sub-circuits. FIG. 4 shows an ideally partitioned
circuit. Note that such an ideally partitioned circuit is imprac-
tical or impossible to realize in relatively large, realistic TM-
FPGA designs. In practice, users’ circuits almost never lend
themselves to the ideal partitioning described above.

[0058] FIG. 5 shows a typical partitioning of a user’s circuit
for implementation in a TM-FPGA according to the inven-
tion. Similar to the partitioning in FIG. 4, the partitioning in
FIG. 5 includes signals 414 and 417. In addition, it includes
signals 420, 423, and 426. The inclusion of signals 420, 423,
and 426 represents the complexity of general users’ circuits
by taking into account signal flows among the logic circuits
(405A, 405B), etc.

[0059] Asnoted above, any given context of the TM-FPGA
may provide signals to one or more subsequent contexts. To
do so, TM-FPGAs according to the invention use context
registers or storage elements. FIG. 6 shows an illustrative
user’s circuit with context registers or storage elements 430
added to facilitate partitioning of the circuit by the CAD
software. Put another way, each context may communicate
signals and information to another context through the use of
context registers 430 (together with the user’s input, logic
(including registers as part of the user-programmable logic
resources of the TM-FPGA), and output signals). Note that
the internal clock (with frequency f; uierma» described
above) serves as the clock source for context registers 430).
[0060] As described below in more detail, during the pro-
cess of mapping the user’s circuit to the TM-FPGA’s
resources, the CAD software attempts to reduce the number
of'the context registers by merging them with other registers.
By doing so, the CAD software reduces the overhead associ-
ated with the time-multiplexed nature of the FPGA and, thus,
increases overall efficiency of the circuit implementation.

[0061] As described above, the context registers facilitate
information interchange (temporary results) among the N
contexts. Typically, for a given context, say, context j, at least
one other context, for example, context (j+1), uses the tem-
porary results of context j. In general, context (j+k) may use
the temporary results of context j, where 0<k=N. Note that
the case (j+k)>N is permissible, in which case the context
with index (j+k) mod N in the next user clock cycle will use
the output. Note further that more than one context may use
the temporary results from a given context, such as context j.
The context registers allow one context to use the temporary
results from another context.

[0062] As noted above, one may use the following algo-
rithm to implement a relatively compact partitioning and
scheduling of a TM-FPGA. The algorithm partitions the
entire user’s design into N sub-circuits, where N represents
the number of the contexts of the TM-FPGA, and L represents
the number of context registers. The partitioning occurs such
that:

[0063] (1) Each sub-circuit [j] contains fewer resources
(such as LUTs, registers, etc.) than available in one con-
text;
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[0064] (2) Each sub-circuit [j] has O[j] outputs to other
partitions, where O[j]=0;

[0065] (3) Eachsub-circuit [j] has C[j] inputs from previous
contexts that it consumes entirely, where C[j]=0 (in other
words, a future context no longer needs the inputs from
previous contexts);

[0066] (4) No partition [j] may have outputs feeding a par-
tition [i] where i<j (note, however, that outputs may feed a
partition [N+i], where i<j); and

[0067] (5) The numbers O[j] and I[j] defined in steps (2)
and (3) satisfy the inequality:

Lz (Z o=, cm].

i

The partitioning and scheduling algorithm achieves its goal
by simultaneously minimizing the first sum in step (5) above
as well as by maximizing the second sum in step (5).

[0068] Note that the circuits in FIGS. 4-6 help to illustrate
the inventive partitioning concepts with respect to an exem-
plary two-context circuit. As persons of ordinary skill in the
art who have the benefit of the description of the invention
understand, one may apply the disclosed concepts to other
circuits, as desired. Such circuits may generally have more
than two contexts.

[0069] FIG. 7-FIG. 7 shows a simplified flow diagram of a
process that CAD software according to exemplary embodi-
ments of the invention performs to map a user’s circuit to a
TM-FPGA’s resources. Starting with a user’s circuit (ob-
tained by the CAD software, as described above), at 503 the
software selects a maximum cluster size for each of the clus-
ters. Each of the clusters corresponds to one of the N contexts
(i.e., a total of N clusters for an N-context TM-FPGA).
[0070] At 510, the software partitions the circuit into N
clusters, and assigns the clusters to a corresponding context.
The software furthermore schedules the contexts. Put another
way, it determines the order in which the context follow one
another (in time). At 520, the software inserts context regis-
ters (described above) into the circuit. The software also
assigns each of the context, registers to one or more clock
cycles, with the clock cycles ranging from zero to (N-1).
[0071] At 530, the software checks to determine whether
the TM-FPGA includes a sufficient number of context regis-
ters to accommodate the user’s circuit. The size and amount
of hardware resources within the TM-FPGA determines the
number of context registers and, hence, the size of the user’s
circuit that the TM-FPGA can implement.

[0072] Ifthe TM-FPGA does not include a sufficient num-
ber of context registers, the software concludes at 540 that the
TM-FPGA cannot accommodate the user’s circuit. Other-
wise, at 550, the software performs optimization tasks. More
specifically, the software attempts to minimize temporary
information and data used in subsequent contexts, and the
number of context registers (by merging their functionality
with other registers or by re-using them in various contexts).
[0073] Note that FIG. 7 shows merely one possible process
for mapping a user’s circuit to a TM-FPGA’s resources. One
may make a variety of modifications to the embodiment in
FIG. 7, as desired, and as persons of ordinary skill in the art
who have the benefit of the disclosed concepts understand.
For example, one may perform optimization before checking
to determine whether a sufficient number of context registers
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exist (i.e., reverse the order of 530 and 550). Put another way,
one may first perform optimization to reduce the number of
context registers before checking to see whether the TM-
FPGA'’s resources include a sufficient number of context
registers.

[0074] The nature of the information or data stored in the
context registers affects the amount of resources that the
TM-FPGA uses to implement the user’s circuit. Temporary
stored data used in the immediately succeeding context use
relatively little resources. In that scenario, the software can
re-use the context register(s) used to store such data in one or
more other contexts.

[0075] Temporary stored data used in two or more contexts
in the future use more TM-FPGA resources. Here, the data
persist for more than one clock cycle. As a result, the software
cannot re-use the context register(s) in other contexts.
[0076] In some circumstances, a combinational logic cir-
cuit in the TM-FPGA may feed an output pin of a user’s
circuit. An external circuit (i.e., the circuit coupled to the
output pin) may expect the logic value at the output pin held
constant for an entire cycle of the user’s clock signal. In such
a case, the software uses a context register to store the logic
signal for the output pin and to hold its value for one or more
cycles of the user’s clock signal. Note that, in the case of
signals passing through the TM-FPGA without routing
through any sequential logic circuit (e.g., from an input to a
combinational logic circuit to an output), the software does
not use any time-multiplexing for the programmable logic
resources involved in the signal’s path (e.g., LUTs).

[0077] At 560, the software uses appropriate hardware
resources to create N enable signals for routing to appropriate
registers for each clock cycle. Note that, for each clock cycle,
the software does not enable a context register not needed in
the next clock cycle (but needed in subsequent clock cycles).
[0078] Subsequently, the software (more specifically, the
placement algorithm) assigns the context registers to hard-
ware resources within the TM-FPGA.. To do so, the software
takes into account not only the location of the resources, but
also the clock cycle assignments of the context registers.
[0079] FIGS. 8-15 show an example of how one may imple-
ment a simple circuit using an TM-FPGA according to the
invention. FIG. 8 depicts an example of a simple circuit for
implementation in a TM-FPGA. The circuit includes AND
gates 603, 606, 609, and 612 (labeled “I.1” through “L4,”
respectively); OR gate 615 (labeled “L5”); and register 618.
The circuit accepts input signals labeled A-L. and Z. A clock
signal (labeled “CLK”) clocks register 618. Note that the
circuit includes a feedback signal path from the Q output of
register 618 to an input of AND gate 612.

[0080] FIG. 9 shows the circuit of FIG. 8 partitioned by the
CAD software into three clusters, cluster 625, cluster 628,
and cluster 631. Each of clusters 625, 628, and 631 represents
a context (i.e., a three-context TM-FPGA implementation).
[0081] The software also assigns the clusters to respective
cycles of the internal clock signal. For example, the software
may assign the first cluster (cluster 625) to the first cycle of the
TM-FPGA internal clock, and so on. The software also sched-
ules the order of the three contexts. As an example, context
one becomes active during the first clock cycle, and contexts
two and three become active during the two subsequent
respective clock cycles.

[0082] Note that the CAD software has automatically
inserted context registers 640, 643, 646, 649, and 652 (labeled
as “R1” through “R5”). The software assigns context registers
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640 and 643 to the first clock cycle (context one), context
registers 646 and 649 to the second clock cycle (context two),
and context register 652 to the third clock cycle (context
three).

[0083] FIG. 10 illustrates the circuit of FIG. 9, as further
processed by the CAD software. More specifically, here, the
software merges context register 652 with register 618. Put
another way, the software determines that register 652 is
redundant because register 618 already ensures that the out-
put of context three is available to context one. Thus, the
software merges the functionality of context register 652 with
the functionality of register 618 by removing context register
652.

[0084] FIG. 11 illustrates the circuit of FIG. 10, as further
processed by the CAD software. Here, similar to FIG. 10, the
software optimizes the circuit further by re-using context
register 649 in more than one context. More specifically, in
one context, context register 649 can implement its own func-
tionality, and in another context, it can realize the function-
ality of register 618. The re-using of context register 649
makes register 618 redundant. Consequently, the software
removes register 618 and merges its functionality with the
functionality of context register 649.

[0085] FIG.12 shows anillustrative embodiment of a three-
context TM-FPGA used to implement the simple circuit
shown in FIG. 11. The TM-FPGA includes input/output ter-
minals (or pads) 712; four-input LUTs 703 A and 703B; mul-
tiplexers (MUXs) 706A, 7068, 709A, and 709B; clock and
enable circuit 715; and registers 640, 643, 646, and 649. Each
of LUTs 703 A-703B may implement the functionality of one
of'the logic gates (see FIG. 11). Registers 640, 643, 646, and
649 realize, respectively, the functionality of registers R1-R4
(see FIG. 11).

[0086] Clock and enable circuit 715 accepts the input clock
signal (labeled “CLK”), and generates clock and enable sig-
nals for registers 640, 643, 646, and 649. In other words,
MUXs 706A, 706B, 709A, and 709B facilitate the routing of
the clock and enable signals to registers 640, 643, 646, and
649. Bits in the configuration memory drive the select inputs
of MUXs 706A, 706B, 709A, and 709B (configuration
memory and connections not shown explicitly for the sake of
clarity) so as to enable registers 640, 643, 646, and 649, as
appropriate during each context.

[0087] FIG. 13 illustrates the functionality realized by the
various resources within the TM-FPGA during the first con-
text. Notations inside each of LUTs 703A and 703B denote
the functionality of which the LUT implements. For example,
LUT 703A implements the functionality of gate L1 (see FIG.
11).

[0088] Circles 750 denote an active routing coupling or an
active signal. As an example, input A couples to an input of
LUT 703 A. As another example, MUX 706 A and MUX 706B
enable, respectively, registers 640 and 643. Similar to FIG.
13, FIG. 14 and FIG. 15 illustrate, respectively, the function-
ality realized by the various resources within the TM-FPGA
during the second and third contexts.

[0089] The architecture and structure of TM-FPGAs
according to the invention differ in several aspects from con-
ventional TM-FPGAs and FPGAs. The disclosed TM-FP-
GAs use more configuration memory bits to program a given
configurable or programmable element or resource (for
example, a programmable logic element or programmable
interconnect) than do conventional FPGAs. A conventional
FPGA may use a single configuration memory bit to config-
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ure or program a resource, say, a programmable interconnect.
During the configuration process, configuration circuitry 130
(see FIG. 1) stores an appropriate value in that memory bit in
order to configure the programmable interconnect.

[0090] In contrast, TM-FPGAs according to the invention
use one memory bit or location for each context in order to
configure a given resource, for example, the programmable
interconnect mentioned above. Each of the memory bits con-
figures the programmable interconnect for a respective con-
text. Thus, for N contexts, the TM-FPGA uses N memory bits
per configurable or programmable resource. Note that, for
each context, the TM-FPGA may use the configurable or
programmable resources differently than other contexts.

[0091] In embodiments according to the invention, rather
than a single bit of configuration memory, an N-context TM-
FPGA uses a circular N-bit first-in, first-out (FIFO) circuit.
The configuration data values stored successively in the cir-
cular FIFO configure or program the functionality of a given
resource within the TM-FPGA.

[0092] FIG. 16 shows a block diagram of a configurable or
programmable logic circuit (known by various names to per-
sons of ordinary skill in the art, such as LE) used in TM-
FPGAs according to exemplary embodiments of the inven-
tion. The programmable logic circuit includes four-input
LUT 806; CRAM 803; registers 809 and 812; AND gates 815
and 818; and FIFO 821.

[0093] Note that FIG. 16 shows a two-context program-
mable logic circuit, with two registers. One may employ
programmable logic circuits suitable for use with other num-
bers of contexts (generally, N contexts), registers, etc., as
desired. Moreover, persons of ordinary skill in the art who
have the benefit of the description of the invention understand
that FIG. 16 does not explicitly show all components or
circuitry within the programmable logic circuit (for example,
it omits any input and output MUXs, arithmetic and carry
circuits, etc.).

[0094] Depending the values of 16 data bits from CRAM
803, LUT 806 can realize an arbitrary logic function of the
four inputs, A, B, C, and D. Registers 809 and 812 receive at
their D inputs the output signal 830 of LUT 806. The output
signals of LUT 806 and registers 809 and 812 constitute the
output signals of the programmable logic circuit. Clock signal
835 clocks FIFO 821 and registers 809 and 812.

[0095] FIFO 821 helps to generate enable signals for reg-
isters 809 and 812. More specifically, in response to clock
signal 835, FIFO 821 generates an output signal 840 that it
supplies to AND gates 815 and 815. Using signal 840, AND
gates 815 and 818 gate ENABLE signal 845 to generate
enable signals 850 and 853. Enable signals 850 and 853 drive,
respectively, the enable (EN) inputs of registers 809 and 812.
By causing appropriate CRAM data values to load into FIFO
821, one may enable register 809 and register 812 in the
proper context.

[0096] Using FIFO 821 provides an advantage where one
desires to include error-correction circuitry. More specifi-
cally, adding error-correction circuitry in other memory cir-
cuits used (e.g., SRAM circuitry) tends to be expensive, for
example, in terms of circuit complexity, die area, etc. In
contrast, adding error-correction capability to FIFO 821 is
relatively low-cost. Thus, one may add error-correction cir-
cuitry to TM-FPGAs that use FIFOs as described here, with
relatively low circuit complexity and a relatively small
increase in die area, as desired:
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[0097] In the example shown in FIG. 16, FIFO 821 consti-
tutes a 2x2-bit circular FIFO circuit. Persons of ordinary skill
in the art with the benefit of the description of the invention
recognize, however, that the size and configuration of FIFO
821 depends on design and performance specifications for a
given application.

[0098] FIFO 821 generally has a kxN-bit configuration,
where k and N represent the number of registers and the
number of contexts, respectively. In the example shown, k=N
but, generally, k=N. As noted, the inventive concepts provide
the capability to automatically partition and schedule the
user’s design, without any input or intervention from the user,
into an N-context TM-FPGA, where number of context reg-
isters per programmable logic circuit (e.g., logic element) is k
on average (but may be more or less than k), and where k<N.

[0099] The number of registers per programmable logic
circuit need not equal the number of contexts. For example,
two registers per programmable logic circuit on average suf-
fice for a four-context TM-FPGA. The average number of
registers k per programmable logic circuit may be signifi-
cantly less than the number of contexts. As an example, three
registers may suffice for an eight-context TM-FPGA.

[0100] Note that circular FIFOs constitute only one way of
configuring resources within the TM-FPGA. As persons of
ordinary skill in the art who have the benefit of the description
of'the invention understand, depending on the application and
design and performance specifications and goals, one may
user other appropriate circuits, such as a random-access
memory (RAM), as desired.

[0101] Conventional programmable logic circuits use a
single register that multiple contexts can use (for example, a
single register, together with N memory bits, for an N-context
implementation). In contrast, programmable logic circuits
according to the invention (for instance, the two-context ver-
sion in FIG. 16) use multiple registers. The programmable
logic circuits therefore need not include the memory circuits
associated with the conventional single-register approach and
may instead use the FIFO structure (or other desired struc-
ture). Note that different programmable logic circuits in TM-
FPGAs according to the invention need not include the same
number of registers.

[0102] Furthermore, the number of registers per program-
mable logic circuit need not equal the number of contexts. For
example, two registers suffice for a four-context TM-FPGA.
The average number of registers per programmable logic
circuit may be less than the number of contexts. In fact,
depending on the extent of partitioning, placing, and routing
efficiencies and optimization involved, the average number of
registers may be significantly less than the number of con-
texts. As an example, three registers may suffice for an eight-
context TM-FPGA.

[0103] As noted above, the disclosed TM-FPGAs can pro-
vide area efficiencies compared to conventional approaches.
Consider an N-context TM-FPGA, with f context registers.
Assume that the TM-FPGA uses relatively simple context
registers (no synchronous load, clear, reset, etc.). Assume
further that each of the context registers uses about 2% of the
TM-FPGA’s core area. Using those assumptions, one may
express the cost area, C, of the TM-FPGA as:
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N 2 1
c=(3+3+ )

[0104] In the above formula, the fractions Y4s and N/3 rep-
resent respectively the approximate contribution of the flip-
flop area (about 2%) and the area taken up by configuration
bits. The estimate is approximate, based on the empirical
observation that control bits take up approximately one third
ofthe area of an SRAM-based FPGA. The actual value varies
slightly from one process technology to another, as well as
from one implementation to another. As a result, one may
express the die area ratio, R, between the TM-FPGA and a
conventional FPGA as:

N 2 f
. 5+35+3)
5 .
[0105] Accordingly, one may express the area efficiency, E,
as:
Re 3
= 7
5+ taw)

Table 1 below expresses the efficiency, E, for various values
of Nand f.

TABLE 1
N f E
1 0 1.00
2 1 1.48
4 2 1.96
6 3 2.20
8 3 2.36
16 4 2.63
@ log, (=) 3.00

[0106] Generally, note that one may apply the inventive
concepts effectively to various programmable logic circuitry
or ICs known by other names in the art, as desired, and as
persons skilled in the art with the benefit of the description of
the invention understand. Such circuitry include devices
known as programmable logic device (PLD), complex pro-
grammable logic device (CPLD), and programmable gate
array (PGA).

[0107] Referring to the figures, persons of ordinary skill in
the art will note that the various blocks shown may depict
mainly the conceptual functions and signal flow. The actual
circuit implementation may or may not contain separately
identifiable hardware for the various functional blocks and
may or may not use the particular circuitry shown.

[0108] For example, one may combine the functionality of
various blocks into one circuit block, as desired. Furthermore,
one may realize the functionality of a single block in several
circuit blocks, as desired. The choice of circuit implementa-
tion depends on various factors, such as particular design and
performance specifications for a given implementation, as
persons of ordinary skill in the art who have the benefit of the
description of the invention understand.
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[0109] Other modifications and alternative embodiments of
the invention in addition to those described here will be appar-
ent to persons of ordinary skill in the art who have the benefit
of'the description of the invention. Accordingly, this descrip-
tion teaches those skilled in the art the manner of carrying out
the invention and are to be construed as illustrative only.
[0110] The forms of the invention shown and described
should be taken as the presently preferred or illustrative
embodiments. Persons skilled in the art may make various
changes in the shape, size and arrangement of parts without
departing from the scope of the invention described in this
document. For example, persons skilled in the art may sub-
stitute equivalent elements for the elements illustrated and
described here. Moreover, persons skilled in the art who have
the benefit of this description of the invention may use certain
features of the invention independently of the use of other
features, without departing from the scope of the invention.

1-13. (canceled)

14. A time-multiplexed field programmable gate array
(TM-FPGA), comprising:

a plurality of programmable logic circuits, each program-

mable logic circuits comprising:

a set of r context registers configured according to rxN
bits of configuration data;

wherein Nzr and r=1; and

wherein r has an average value of k contexts registers per
programmable logic circuit, wherein k=N.

15. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 14, wherein the plurality of
programmable logic circuits are configured to implement a
specified circuit by using the N contexts of the time-multi-
plexed field programmable gate array (TM-FPGA).

16. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 14, wherein each context of
the time-multiplexed field programmable gate array (TM-
FPGA) is associated with a respective cycle of a first clock
signal.

17. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 16, wherein the first clock
signal comprises an internal clock signal of the time-multi-
plexed field programmable gate array (TM-FPGA).

18. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 14, wherein each program-
mable logic circuit further comprises a look-up table (LUT)
coupled to the plurality of r registers.

19. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 14, wherein each program-
mable logic circuit further comprises a first-in, first-out
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(FIFO) circuit coupled to the plurality of r registers, wherein
an enable signal for each register in the plurality of r registers
is derived from an output signal of the first-in, first-out (FIFO)
circuit.

20. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 19, wherein the enable signal
for each register in the plurality of r registers is derived by
gating the output signal of the first-in, first-out (FIFO) circuit
with an enable signal supplied to the respective program-
mable logic circuit.

21. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 19, wherein the first-in, first-
out (FIFO) circuit comprises error-correction circuitry.

22. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 16, wherein the first clock
signal clocks each register in the plurality of r registers in a
programmable logic circuit.

23. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 14, wherein each register in
the plurality of r registers comprises a context register.

24. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 23, wherein the number of
context registers varies among the plurality of programmable
logic circuits.

25. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 23, wherein an average of the
number of context registers in the plurality of programmable
logic circuits is less than the number of contexts of the time-
multiplexed field programmable gate array (TM-FPGA).

26. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 18, wherein an output signal
of the look-up table (LUT) couples to a data input of each
register in the plurality of r registers in each programmable
logic circuit.

27. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 18, wherein the look-up table
(LUT) in each programmable logic circuit is configured
according to configuration data residing in a configuration
memory.

28. The time-multiplexed field programmable gate array
(TM-FPGA) according to claim 16, wherein the first clock
signal has a frequency N times greater than a clock frequency
of the user’s circuit.

29-62. (canceled)



