
(12) United States Patent
Lyons, Jr. et al.

US0096.19598B2

US 9,619,598 B2
Apr. 11, 2017

(10) Patent No.:
(45) Date of Patent:

(54)

(71)

(72)

(73)

(*)

(21)

(22)

(65)

(60)

(51)

(52)

(58)

INPUT SPACE REDUCTION FOR
VERIFICATION TEST SET GENERATION

Applicant: Mentor Graphics Corporation,
Wilsonville, OR (US)

Inventors: Clifton A. Lyons, Jr., Lake Oswego,
OR (US); Sudhir D. Kadkade, Lake
Oswego, OR (US); Kunal P.
Ganeshpure, Wilsonville, OR (US)

Assignee: Mentor Graphics Corporation,
Wilsonville, OR (US)

Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Appl. No.: 13/755,639

Filed: Jan. 31, 2013

Prior Publication Data

US 2014/OO1329.0 A1 Jan. 9, 2014

Related U.S. Application Data
Provisional application No. 61/641.222, filed on May
1, 2012, provisional application No. 61/632,830, filed
on Jan. 31, 2012.

Int. C.
G06F 9/455 (2006.01)
G06F 7/50 (2006.01)
G06F II/263 (2006.01)
U.S. C.
CPC G06F 17/5045 (2013.01); G06F II/263

(2013.01)
Field of Classification Search
USPC .. 71.6/106
See application file for complete search history.

401 N

47a
Search The Subspace for

Unique input Wectors.

At least One Unique input
Sequence Found?

Yes

409a
Abort Current

Operation 407b.

41
Continue Searching
Subspace For Unique

Input vectors.

403
Fracture input Space into Subspaces.

405
Select And Unsearched Subspace

Art Current
Operation 407b.

Do Amy Search subspaces st
Need Searching

(56) References Cited

U.S. PATENT DOCUMENTS

2003/0200244 A1 10, 2003 Abraham et al.
2004/0199887 A1* 10, 2004 Jain et al. 716.5
2005, 0021486 A1 1/2005 Naveh TO6/46

(Continued)

OTHER PUBLICATIONS

Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and

Holger Hermanns, editors, Proceedings of the 19th International
Conference on Computer Aided Verification (CAV'07), vol. 4590 of
Lecture Notes in Computer Science, pp. 298-302. Springer-Verlag,
Jul. 2007. Berlin, Germany.

(Continued)

Primary Examiner — Eric Lee
(74) Attorney, Agent, or Firm — Banner & Witcoff, Ltd.

(57) ABSTRACT

Various implementations of the invention provide for the
determination of a test set that satisfies a coverage model,
where portions of the search space need not be searched in
order to generate the test set. With various implementations
of the invention, a search space defined by a set of inputs for
an electronic design and a coverage model is identified. The
search space is then fractured into Subspaces. Subsequently,
the subspaces are solved to determine if they include at least
one input sequence that satisfies the coverage constraints
defined in the coverage model. The subspaces found to
include at least one input sequence that satisfies these
coverage constraints, are then searched for unique input
sequences in order to generate a test set. Subspaces found
not to include at least one input sequence that satisfies the
coverage constraints may be excluded from the overall
search space.

20 Claims, 8 Drawing Sheets

ab
Derive A Solution To The

Subspace.

Solution. To The Subspace
Fou?

No

42b
Abort Current Operation

407a.

US 9,619,598 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2008/0072190 A1 3f2008 Jain et al. 716.5

OTHER PUBLICATIONS

Non-final Office Action issued in U.S. Appl. No. 13/875,143 mailed
Jan. 7, 2014.
Final Office Action recevied in U.S. Appl. No. 13/875,143, mailed
on Jul. 30, 2014.
Platzner et al., “Design and Implementation of a Parallel Constraint
Satisfaction Algorithm”. Technical Report 96/04. Aug. 1996.

* cited by examiner

US 9,619,598 B2 U.S. Patent

9 || ||

U.S. Patent Apr. 11, 2017

Verification Platform 201

203
Test Bench

2O7
Test Set

Generation Module

215
Coverage

Constraints.

FIGURE 2

209
DUT Stimulation

Module

205
Design Under Test

(DUT)

Sheet 2 of 8 US 9,619,598 B2

217
Captured
Outputs

211
Error identification

Module

219
Expected
Outputs

U.S. Patent Apr. 11, 2017 Sheet 3 of 8

301 N
303

Generate input Vectors That Satisfy A Set
Of Coverage Constraints.

305
Apply The input Vectors To A Design

Under Test.

307
Capture The Outputs Of The Design

Under Test Corresponding To The Applied
inputs.

309
Compare The Captured Outputs To

Expected Outputs Of The Design Under
Test Corresponding To The Applied

inputs.

311
Generate A Report Of Discrepancies For A

User.

FIGURE 3

US 9,619,598 B2

U.S. Patent Apr. 11, 2017 Sheet 4 of 8 US 9,619,598 B2

403
Fracture input Space into Subspaces.

401 \

405
Select And Unsearched Subspace

4O7a
Search The Subspace For

Unique input Vectors.

407b
Derive A Solution To The

SubSpace.

At Least One Unique input
Sequence Found?

Solution To The Subspace
Found?

409a
Abort Current

Operation 407b.

409a
Abort Current

Operation 407b.
409b

Abort Current Operation
407a.

411
Continue Searching
Subspace For Unique

Input Vectors.

Do Any Search Subspaces Stil
Need Searching?

FIGURE 4

US 9,619,598 B2 Sheet 6 of 8 Apr. 11, 2017 U.S. Patent

US 9,619,598 B2 Sheet 7 of 8 Apr. 11, 2017 U.S. Patent

ææææ æ?egs

US 9,619,598 B2 Sheet 8 of 8 Apr. 11, 2017 U.S. Patent

US 9,619,598 B2
1.

INPUT SPACE REDUCTION FOR
VERIFICATION TEST SET GENERATION

CROSS REFERENCE TO RELATED
APPLICATIONS

This application claims priority to provisional application
No. 61/641.222, filed on May 1, 2012, having the same title,
and claims priority to provisional application No. 61/632,
830, filed Jan. 31, 2012, and having the title “Search Space
Reduction for Coverage Based Verification Test Set Gen
eration,” each of which is hereby incorporated by reference
in its entirety for all purposes.

FIELD OF THE INVENTION

The present invention is directed towards the verification
of electronic designs. More specifically, various implemen
tations of the invention are applicable to generating test sets,
which satisfy specified verification criteria.

BACKGROUND OF THE INVENTION

Electronic devices are used in a variety of products, from
personal computers to automobiles to toys. There are various
different types of electronic devices. Such as, for example, an
integrated circuit. Furthermore, as those of skill in the art
will appreciate, electronic devices can be connected, to form
other electronic devices or systems. The designing and
fabricating of electronic devices typically involves many
steps, sometimes referred to as the “design flow.” The
particular steps of a design flow often are dependent upon
the type of electronic device, its complexity, the design
team, and the fabricator that will manufacture the device.

Several steps are common to most design flows. Initially,
the specification for a new design is expressed, often in an
abstract form and then transformed into lower and lower
abstraction levels until the design is ultimately ready for
manufacture. The process of transforming the design from
one level of abstraction to another is referred to as synthesis.
At several stages of the design flow, for example, after each
synthesis process, the design is verified. Verification aids in
the discovery of errors in the design, and allows the design
ers and engineers to corrector otherwise improve the design.
The various synthesis and verification processes are facili
tated by electronic design automation (EDA) tools.
As those of ordinary skill in the art will appreciate, the

synthesis and verification processes applied to modern
designs are quite complex and include many different steps.
An illustrative design flow, for an integrated circuit, for
example, can start with a specification for the integrated
circuit being expressed in a high-level programming lan
guage, such as, for example, C". This level of abstraction
is often referred to as the algorithmic level. At this abstrac
tion level, the functionality of the design is described in
terms of the functional behavior applied to specified inputs
to generate outputs. The design will then be synthesized into
a lower level of abstraction, typically, the logic level of
abstraction. At this level of abstraction, the design is
expressed in a hardware description language (HDL) such as
Verilog, where the circuit is described in terms of both the
exchange of signals between hardware registers and the
logical operations that are performed on those signals. At
this stage, verification is often performed to confirm the
functional behavior of the design, i.e. that the logical design
conforms to the algorithmic specification.

10

15

25

30

35

40

45

50

55

60

65

2
After the logical design is verified, it is synthesized into

a device design. The device design, which is typically in the
form of a schematic or netlist, describes the specific elec
tronic components (such as transistors, resistors, and capaci
tors) that will be used in the circuit, along with their
interconnections. This device design generally corresponds
to the level of representation displayed in conventional
circuit diagrams. Verification is again performed at this stage
in order to confirm that the device design conforms to the
logical design, and as a result, the algorithmic specification.
Once the components and their interconnections are

established, as represented by the device design, the design
is again synthesized, this time into a physical design that
describes specific geometric elements. The geometric ele
ments define the shapes that will be created in various layers
of material to manufacture the circuit. This type of design
often is referred to as a “layout' design. The layout design
is then used as a template to manufacture the integrated
circuit. Verification is again performed, to ensure that the
layout design conforms to the device design.

Although there are different methods of performing veri
fication, this invention is directed towards verification pro
cesses that "exercise a design by applying input to the
design and capturing the output resulting from application of
the input. The applied input is often referred to as an input
vector. The captured output then is compared to the output
the design should have produced according to the input
vector and the specification. Various technologies exist for
exercising a design, for example, the response (i.e. the
output) of the design to the input vector, may be simulated.
In some cases the output may be captured from an emulator,
emulating the design with the input vector as stimulus for the
emulation. A prototype may also be used to generate the
output. Those of ordinary skill in the art will appreciate that
combinations of simulation, emulation, and prototyping
could be used during verification and that various combi
nations of technologies can be employed to implement a
verification system as described here.

Verification typically consists of applying multiple input
vectors (where an input vector is a tuple of values for input
variables.) referred to as the test set and capturing each
resulting output, referred to as the output set. The individual
outputs from the output set then are compared to the
corresponding expected outputs. There are many ways to
generate the input vectors to include in a test set. For
example, directed tests, that is, where the input vectors are
directly specified by a designer can be employed. Random
combinations of inputs can also be selected and used to form
input vectors. Although ideally one would generate a test set
that corresponds to all possible input combinations. The set
of all possible input vectors to a modern electronic design is
so large however, that it is not computationally feasible to
exhaustively test the design in this manner. As a result,
another approach to generating input vectors for verification
is often used.
As those of ordinary skill in the art will appreciate, each

input variable has a domain. The domain specifies the set of
possible values that may be applied to the input correspond
ing to the domain. Usually there are constraints which
restrict the combinations of input values which may be used
to generate an input vector. These constraints may include
legality constraints (e.g., which are typically derived from
the designs operating specification), apparatus constraints
(e.g., which are typically derived from the specifications of
the equipment used to exercise the design), and/or coverage
constraints (e.g., which are often derived from a verification
plan). Those of ordinary skill in the art will appreciate that

US 9,619,598 B2
3

other types of constraints may also be used to limit or restrict
the input values which may be used to generate input
VectOrS.

The process of finding a tuple of values which satisfies a
set of constraints is often referred to as “constraint solving.
The process of finding a set of tuples of values, within which
every tuple satisfies a set of constraints, is sometimes
referred to as “constraint exploration'.

Conceptually, to find a solution (or a set of Solutions) to
a constraint set, one could iterate through the set of possible
value tuples (i.e. the cross products of the domains of the
variables) and test each tuple against the constraints, select
ing only those which satisfy every constraint, until the
desired number of solutions is found. In practice, for modern
electronic devices, the size of the set of possible value tuples
(sometimes referred to as the "input space') is so large and
the fraction of acceptable tuples is so small that the iteration
approach is not practical. Instead, computational techniques
Such as satisfiability analysis are used to locate acceptable
tuples within the input space. Those of ordinary skill in the
art will appreciate that such computational techniques gen
erally run considerably faster if the size of the input space
can be reduced. Therefore, methods which can identify
Solution-free regions of an input space that can be pruned
without affecting the verification results are of considerable
interest.

Example embodiments of the disclosure discuss methods
and techniques for pruning the input space as indicated
above. Although Such discussion is generally made with
reference to coverage constraints, those of ordinary skill in
the art will appreciate that other types of constraints may be
used without departing from the spirit and scope of the
invention.

BRIEF SUMMARY OF THE INVENTION

Various implementations of the invention provide for the
determination of a test set that satisfies a coverage model,
where portions of the input space need not be searched in
order to generate the test set.

With various implementations of the invention, an input
space defined by a set of inputs for an electronic design and
a coverage model is identified. The input space is then
fractured into subspaces. Subsequently, the Subspaces are
solved to determine if they include at least one input vector
that satisfies the coverage constraints defined in the coverage
model. The Subspaces found to include at least one input
vector that satisfies these coverage constraints, are then
searched for unique input vectors to include in the test set.
Subspaces found not to include at least one input vector that
satisfies the coverage constraints, then may not be searched.

In various implementations of the invention, operation of
the methods and techniques disclosed herein may be repeat
able. More particularly, given the same input space and
coverage constraints, the results will be reproducible over
multiple iterations of the methods detailed herein. Further
more, the results may be reproducible using different ones of
the methods detailed herein.

In various implementations of the invention, the search of
a particular Subspace for unique input vectors will be
initiated while the subspace is being solved as stated above.
If it is determined by the solver that no solutions exist, then
the search of the subspace will be aborted. With some
implementations, multiple different solvers will be used to
Solve a Subspace simultaneously. As soon as one of the
solvers determines that no solution exists, the search of the
subspace by all solvers may be aborted.

10

15

25

30

35

40

45

50

55

60

65

4
These and additional implementations of invention will be

further understood from the following detailed disclosure of
illustrative embodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described by way of illus
trative implementations shown in the accompanying draw
ings in which like references denote similar elements, and in
which:

FIG. 1 illustrates a computing device.
FIG. 2 illustrates a verification platform.
FIG. 3 illustrates a method of performing verification.
FIG. 4 illustrates a method of generating a test set.
FIG. 5 illustrates component of the verification platform

of FIG. 2 in greater detail.
FIG. 6 illustrates a block diagram of constraint transla

tion.
FIG. 7 illustrates a search tree for a constraint problem

example.
FIG. 8 illustrates a search tree for a constraint problem

example.

DETAILED DESCRIPTION OF THE
INVENTION

The operations of the disclosed implementations may be
described herein in a particular sequential order. However, it
should be understood that this manner of description encom
passes rearrangements, unless a particular ordering is
required by specific language set forth below. For example,
operations described sequentially may in some cases be
rearranged or performed concurrently. Moreover, for the
sake of simplicity, the illustrated flow charts and block
diagrams typically do not show the various ways in which
particular methods can be used in conjunction with other
methods.

It should also be noted that the detailed description
sometimes uses terms like “generate to describe the dis
closed implementations. Such terms are often high-level
abstractions of the actual operations that are performed. The
actual operations that correspond to these terms will often
vary depending on the particular implementation.
Illustrative Operating Environment
As the techniques of the present invention may be imple

mented using computer executable instructions, the compo
nents and operation of a programmable computer system on
which various implementations of the invention may be
employed is described. Accordingly, FIG. 1 shows an illus
trative computing device 101. As seen in this figure, the
computing device 101 includes a computing unit 103 having
a processing unit 105 and a system memory 107. The
processing unit 105 may be any type of programmable
electronic device for executing software instructions, but
will conventionally be a microprocessor. The system
memory 107 may include both a read-only memory
(“ROM) 109 and a random access memory (“RAM) 111.
As will be appreciated by those of ordinary skill in the art,
both the ROM 109 and the RAM 111 may store software
instructions for execution by the processing unit 105.
The processing unit 105 and the system memory 107 are

connected, either directly or indirectly, through a bus 113 or
alternate communication structure, to one or more peripheral
devices. For example, the processing unit 105 or the system
memory 107 may be directly or indirectly connected to one
or more additional devices, such as; a fixed memory storage
device 115, for example, a magnetic disk drive; a removable

US 9,619,598 B2
5

memory storage device 117, for example, a removable solid
state disk drive; an optical media device 119, for example,
a digital video disk drive; or a removable media device 121,
for example, a removable floppy drive. The processing unit
105 and the system memory 107 also may be directly or
indirectly connected to one or more input devices 123 and
one or more output devices 125. The input devices 123 may
include, for example, a keyboard, a pointing device (such as
a mouse, touchpad, stylus, trackball, or joystick), a scanner,
a camera, and a microphone. The output devices 125 may
include, for example, a monitor display, a printer and
speakers. With various examples of the computing device
101, one or more of the peripheral devices 115-127 may be
internally housed with the computing unit 103. Alternately,
one or more of the peripheral devices 115-127 may be
external to the housing for the computing unit 103 and
connected to the bus 113 through, for example, a Universal
Serial Bus (“USB) connection.

With some implementations, the computing unit 103 may
be directly or indirectly connected to one or more network
interfaces 127 for communicating with other devices making
up a network. The network interface 127 translates data and
control signals from the computing unit 103 into network
messages according to one or more communication proto
cols, such as the transmission control protocol (“TCP) and
the Internet protocol (“IP). Also, the interface 127 may
employ any suitable connection agent (or combination of
agents) for connecting to a network, including, for example,
a wireless transceiver, a modem, or an Ethernet connection.

It should be appreciated that the computing device 101 is
shown here for illustrative purposes only, and it is not
intended to be limiting. Various embodiments of the inven
tion may be implemented using one or more computers that
include the components of the computing device 101 illus
trated in FIG. 1, which include only a subset of the com
ponents illustrated in FIG. 1, or which include an alternate
combination of components, including components that are
not shown in FIG. 1. For example, various embodiments of
the invention may be implemented using a multi-processor
computer, a plurality of single and/or multiprocessor com
puters arranged into a network, or some combination of
both.
As stated above, various embodiments of the invention

may be implemented using a programmable computer sys
tem executing Software instructions, a computer readable
medium having computer-executable Software instructions
stored thereon, or some combination thereof. Particularly,
these software instructions may be stored on one or more
computer readable media or devices, such as, for example,
the system memory 107, or an optical disk for use in the
optical media device 119. As those of ordinary skill in the art
will appreciate, Software instructions stored in the manner
described herein are inherently non-transitory in nature.
More specifically, the software instructions are available for
execution by the computer system 101, as opposed to being
transmitted to the computer system via a carrier wave or
Some other transitory signal.
Coverage Based Verification
As detailed above, various implementations of the inven

tion provide methods and apparatuses for generating a test
set to be used for verifying an electronic design. Specifically,
the test set may be generated without the need to search all
portions of an input space defined by the potential inputs to
the electronic design for unique input vectors that satisfy the
coverage model. FIGS. 2 and 3 illustrate a verification

10

15

25

30

35

40

45

50

55

60

65

6
platform 201 and a method 301 of performing verification
that may be provided by various implementations of the
present invention.
As can be seen from FIG. 2, the verification platform 201

includes a test bench 203 and a design under test (DUT) 205.
With various instances of the invention, the DUT 205 will be
implemented by an electronic design simulator. Such as, for
example, the Questa simulator available from Mentor
Graphics Corporation of Wilsonville, Oreg. In some
instances, the DUT 205 will be implemented by an elec
tronic design emulator, such as, for example, the Veloce
emulator available from Mentor Graphics Corporation of
Wilsonville, Oreg. In various instances, the DUT 205 will be
implemented by a prototype of the electronic design for
which the DUT 205 represents. Still, with some implemen
tations of the invention, combinations of these different
embodiments may be used. For the balance of this disclosure
however, it is assumed for purposes of clarity that the DUT
205 is implemented in a simulator.

In some implementations, the DUT 205 may be a software
program. As those of ordinary skill in the art will appreciate,
Software programs are also verified during development.
This verification process shares similarities to the hardware
verification process detailed above. For example, a software
program will have a set of valid inputs (e.g., button press,
menu selection, key input, etc.). Furthermore, the software
program may have a set of inputs with which the designer is
particularly interested in testing. As such, coverage con
straints may be specified for the Software program, and then
various embodiments of the present disclosure may be
implemented to determine a test set for the software program
as detailed herein.
The test bench 203 includes a test set generation module

207 configured to derive a set of input vectors (i.e. the test
set 213) for the DUT 205 that satisfy a set of coverage
constraints 215. The derivation of input vectors by the test
set generation module 207 will be discussed in greater detail
below. The test bench 203 further includes a DUT stimula
tion module 209 configured to apply the input vectors from
the test set 213 to the DUT 205. The DUT Stimulation
module 209 is also configured to capture the responses of the
DUT 205 as it is simulated with the test set 213 as input.
These captured responses are referred to as the captured
outputs 217. Additionally, an error identification module 211
is provided, which is configured to compare the captured
outputs 217 to a set of expected outputs 219. The error
identification module 211 is further configured to identify
any discrepancies in the comparison and report them as
potential errors in the DUT 205.
As can be further seen from FIG. 2, the test set generation

module 207 may, in some implementations, generate tests
based on the state of the DUT 205. For examples, during a
verification process, the state of the DUT 205 will change in
response to various factors (e.g., inputs applied, etc.). As
such, the test set generation module 207 may account for
these changing states in generating inputs to include in the
test Set 213.
As stated, FIG. 3 shows the method 301, which may be

applied using the verification platform described above. As
can be seen from this figure, the method 301 includes an
operation 303 for generating the test set 213, that is, for
generating input vectors that satisfy the coverage constraints
213. An operation 305 for applying the test set 213 to the
DUT 205 and an operation 307 for recording the captured
outputs 217 is also provided. An operation for comparing the
captured outputs 217 to the expected outputs 219 and an

US 9,619,598 B2
7

operation 311 for generating a report of any discrepancies
from this comparison are then provided.
Coverage Based Input Set Generation
As stated, various implementations of the invention pro

vide methods and apparatuses for generating a test set to be
used for verifying an electronic design. Particularly, for
generating the test set without the need to search all portions
of an input space defined by the potential inputs to the
electronic design. Furthermore, the test set generation mod
ule 207 may be configured to generate the test set 213 in this
manner, Such as, for example, by application of the operation
3O3.
As those of ordinary skill in the art will appreciate, a

typical electronic design, which the DUT 205 may represent,
will have multiple input ports, with multiple different inputs
allowed per port. For discussion purposes, each input port
may be represented by an input variable, where each input
variable may have multiple possible values. For example,
the DUT 205 may represent an electronic design with 5 input
ports where each input is binary. Representing the input
ports as variables a-e, the set of all possible inputs for the
DUT 205 may then be represented as the set of all possible
combinations of (a, b, c, d, e) where the variable values are
either logic 0 or logic 1. Each input combination (e.g. 0, 0,
0, 0, 1) is referred to here as an input vector. The set of all
possible input vectors then is referred to as the input space.
For this simple example, there are only 32 different input
combinations, that is, there are 32 unique input vectors in the
input space. However, if the variable values were allowed to
be anything between 0 and 9, then the possible combinations
increase to 100,000. For a design where there are 20 input
ports and 10 possible input values per port, there are over
10' potential input combinations.
Modern electronic designs include hundreds of input

ports, with many different combinations of potential input
values per port. As such, it is not practical to derive and then
test all possible unique input vectors in a verification pro
cess. In order to reduce the number of inputs needed to test
a design, input ports, input values, and combinations of input
ports and values that exercise particular functionality are
identified. The input space is then restricted based on these
identified input ports and input values. This is done by
writing a set of constraints that restricts the values that each
input variable can take on. More particularly, given the
example above, where there are 5 possible inputs, repre
sented by variables a-e, and where the possible input values
are allowed to be an integer value between 0 and 9, the input
space may be restricted by the constraint that the input
variable a only be allowed to take on values of (1, 2, 3, 4,
5). Accordingly, the input space is now “restricted” based on
this constraint, referred to herein as the coverage constraint,
and the number of unique input vectors that satisfy this
constraint is less than the total number of unique input
vectors in the entire input space.
The operation 303 of FIG. 3 then derives the unique input

vectors within the input space that satisfy the coverage
constraints. Similarly, the test set generation module 207 of
FIG. 2 is configured to determine the unique input vectors
within the input space that satisfy the coverage constraints.
As stated, these unique input vectors form the test set 213.

FIG. 4 illustrates a method 401 that may be provided by
various implementations of the present invention to identify
these unique input vectors in a search space defined by the
coverage constraints 215 and the DUT 205. FIG. 5 illustrates
the test set generation module 207 in greater detail. As can
be seen, the test set generation module 207 includes an input
space fracturing module 503. FIG. 5 shows an input space

10

15

25

30

35

40

45

50

55

60

65

8
505, which corresponds to the inputs and possible input
value of the DUT 205. Accordingly, the input space frac
turing module 503 may be configured to split the search
space 505 into subspaces 507.
The method 401 includes an operation 403 for fracturing

the input space 505 into the sub spaces 507. With various
implementations, the search space is fractured by input
variables. Using the system and constraints described above,
with inputs a-e having possible values 0-9, and where the
variable a is constrained between 1 and 5, the input space
505, may be fractured by the variable a, into the following
5 sub spaces 507: (1, b, c, d, e), (2, b, c, d, e), (3, b, c, d, e),
(4., b, c, d, e), and (5, b, c, d, e). As those of ordinary skill
in the art will appreciate, more Sophisticated methods of
fracturing may be used. For example, the input space 505
may be fractured based on multiple variables. Furthermore,
an order of which variable is fractured on first may be
selected.
Search Space Reduction Using Auxiliary Solvers
An operation 405 for selecting an unsearched one of the

subspaces 507 and an operation 407a for searching the
selected subspace 507 for unique input vectors 509 are
provided. The test set generation module 207 shown in FIG.
5 further includes a subspace searching module 511, which
is configured to search the sub spaces 507 for unique input
vectors 509. Any unique input vectors 509 found during the
search are then are added to the test set 213.
The method 401 further includes an operation 407b for

deriving a solution to the sub space 507 selected by the
operation 405, and for which the operation 407a is searching
for unique input vectors. With various implementations, the
operations 407a and 407 b are executed simultaneously, such
as, for example, by executing them on separate program
mable computer systems (e.g. the programmable computer
system 101 detailed above). In various implementations, the
operation 407b will determine if at least a single solution to
the selected subspace 507 exists. More specifically, 407b
will determine if at least one input vector satisfying the
coverage constraints 215 exists within the selected subspace
507.
As detailed, the operation 407a searches the selected

subspace 507 for unique input vectors 509, that is, input
vectors that satisfy the coverage constraints, but are not yet
included in the test set 213. The operation 407b however,
derives a solution to the selected subspace 507, to determine
if at least one input vector, not necessarily a unique input
vector 509 exists within the subspace 507. Accordingly, as
stated, the test set generation module 207 includes the
Subspace searching module 511, which may be configured to
search a sub space 507 for unique input vectors. Addition
ally, a subspace solver module 513 is included in the test set
generation module 207. Auxiliary solvers 515 are also
provided, which the subspace solver module 513 may use as
resources to solve a subspace 507. With various implemen
tations, multiple auxiliary solvers 515 may be used, some
times simultaneously, by, for example, executing the solvers
on separate computer systems. More specifically, the Sub
space solver module 513 may use multiple different auxil
iary solvers 515 simultaneously to determine if a solution to
the selected subspace 507 exists. Subsequently, whichever
solver determines that a solution does not exist first will
trigger the operation 409b.

Operations 409a and 409b are provided for aborting the
operations 407b and 407a respectively. As can be seen, if the
operation 407b determines that no solutions to the selected
subspace 507 exist (i.e. that no input vectors satisfying the
coverage constraints 215 exist within the subspace 507) then

US 9,619,598 B2

an operation 409b for aborting the current operation 407a is
provided. If the operation 407b determines that a solution
does exist, then the operation 407a is allowed to continue.

Similarly, in the event that a unique input vector 509 is
found by the operation 407a, and then the currently execut
ing operation 407b is aborted by the operation 409a and an
operation 411 for continuing to search the selected Subspace
507 for unique input vectors 509 is provided. Additionally,
if no input vectors are found within the subspace by the
operation 407a, the operation 409a may be used to abort the
operation 407b. Once either the currently selected subspace
507 is searched or it is determined that there are no input
vectors satisfying the coverage constraints 215, it is checked
to see if any subspaces 507 still need searching. If so, then
the method 401 returns to operation 405. If not, then the
method 405 ends.

With some implementations of the disclosed subject mat
ter, the methods detailed in FIG. 4, and elsewhere herein
may be performed in parallel. More specifically, multiple
iterations of the method 401 may be performed concurrently.
Additionally, the methods detailed herein may be performed
in a hierarchical fashion. More particularly, an input space
(e.g., the input space 505) may be fractured at different
levels, forming a hierarchy of subspaces 507. Unique input
vectors within these subspaces may be identified using the
techniques disclosed herein, by for example, initiating mul
tiple instances of the method 401 using the hierarchical
Subspaces. As one non-limiting example, if a first Subspace
at one level of hierarchy and a second Subspace at a lower
level of hierarchy were being searched and it was deter
mined that no solutions existed for the higher level subspace
(i.e., the higher level Subspace did not include any input
vectors that satisfy the constraints), then the search of both
the higher and lower level subspace may be aborted.

With various implementations of the disclosed technol
ogy, the auxiliary solvers 515 may adhere to a numerical
solver standard, such as, for example, DIMACS or SMT
LIB. In further implementations, the auxiliary solvers 515
may be of the following types of numerical solvers, CVC3,
ABSolver, CVC4, MiniSMT, Yices, or Z3. The CVC3 solver
and associated technical details are addressed in greater
detail in Proceedings of the 19th International Conference
on Computer Aided Verification (CAV '07), by Clark Barrett
and Cesare Tinelli, Volume 4590 of Lecture Notes in Com
puter Science, pages 298-302. Springer, July 2007. Berlin,
Germany, which article is incorporated entirely herein by
reference.

In various implementations the subspaces 507 may be
transformed into a particular format (e.g., Suitable for use by
the auxiliary solvers 515), such as, for example, bit vector
format. In some examples, the constraints associated with a
particular subspace 507 may be translated into a correspond
ing set of constraints, such as, for example, in bit-vector
representation. With further implementations, the set of
constraints may also be simplified. With some implementa
tions, the translator works by generating a constraint expres
sion tree and propagating the expression tree in the post
order fashion. As shown below, constraint translation
consists of (i) the Constraint Pattern Recognizer and the (ii)
CVC3 Constraint Generator. The constraint pattern recog
nizer identifies some constraint patterns involving non
linear operators which can be converted to simpler opera
tions. The CVC3 Constraint Generator translates theses
identified sub-expressions into the simpler form. If a sub
expression cannot be simplified or is not identified by the

10

15

25

30

35

40

45

50

55

60

65

10
Constraint Pattern Recognizer then the CVC3 Constraint
Generator translates the original constraints without simpli
fication.

FIG. 6 illustrates a block diagram of constraint transla
tion.

The following shows in Table 1 the patterns that are
recognized by the Constraint Pattern Recognizer and the
corresponding CVC3 bit vector constraints generated by the
CVC3 Constraint Generator.

Patterns Recognized in the inFact Constraints and the Cor
responding Bi-Vector Representation.
Variables and Domains:

A: 0 . . . 255
Bit Vector Representation: A-a", a', a. a. a. a. a', a

TABLE 1.

inFact CVC3
Constraints Bit Vector Constraints Comments

A%2 Al-& (2' - 1) Bitwise And Operantion
A?2 A->> In Arithmetic Shift right operation
A * or A-ss in Shift left operation
2 <<A 24+n
2 >> A: A < n 2-1

Consider the following constraint problem with two con
straints. The values of variables a, a and a can be repre
sented using 3 bits. The constraint C1 says that a and a can
only have a single “1”.
Variables and Domains:

a : 1 . . . 4
a: 1 . . . 4
as: 1 . . . 4

inFact Constraints:

C1: (aA(a-1))V(as A(a-1)) =0 /*a- and as have only
one “1*/

Cl: (at 8(a2-1)) (asat&(asat-1))--000
C2: (a &001) (a&011) (a8: 111) 111
As can be seen, the constraint C1 could not be recognized

to have any specific patterns. Hence it was translated without
any simplification. But for constraint C2 the mod operator is
eliminated as recognized by the masking operation being
done using the mod operator.

In some implementations, operation of the methods and
techniques disclosed herein may be repeatable. More par
ticularly, given the same input space 505 and coverage
constraints 215, the results will be reproducible. The concept
of repeatability is discussed below.
Repeatability
1. Introduction:

As indicated, various implementations of the invention
may provide repeatability for a given input space and set of
constraints. Accordingly, for a given random seed and a
given problem the solver should generate the same solution
order among multiple solver runs. Repeatability is an impor
tant consideration for testability and correctness of the
Solver. It is important to note that the following discussion
is provided for purposes of explanation only and is not
intended to be limiting.

US 9,619,598 B2
11

Example 1

The following constraint problem will be used as an
example for the rest of the section.
Variables and Domains:

a : 1 . . . 4
a: 1 . . . 4
as: 1 . . . 4

Constraints:
Cl: (aA(a-1))V(as A(a-1))=0 f* a and as have only

one “1*/
C2: (a%2)V(a%4)V(a3%8)=7

Complexity:
Total number of possible solutions: 4-64

Solutions:
(a.a.,as-1,2,4} and {3.2.4}
FIG. 7 illustrates a search tree for the above constraint

problem example.
FIG. 7 shows the search space for the above problem with

the solution values shown in hatch shade. The fracturing
order is (a.a...as which is done the stages {s1, s2,s}. The
values next to the circles show the values assigned to the
variables (a.a.a. At each stage, after assigning a variable
value the heuristic solver runs an optimizer to propagate the
assignment to all the constraints and simplifies them. This is
not shown separately in the figure and is the part of the edges
coming out of the circles. The triangles at the bottom
represent all the values of a which are searched in the stage
s. The node on the top denoted by “r” is the root node. We
will use the following notation:

(a1a2...as: This represents the values of a, a2 and as
which are being assigned at various stages {s1.S.S. For
example {2,3,1} means that in stage s value of a -2, in
stage S. Value of a 3 and in stage S. Value of a 1.

{a,-,-): This means that the value of a is assigned in
stage S1 but a and as are unassigned.

a.a.A: This means that we have assigned the values of
a and a in stages S and S and we are searching for all the
values of as in the stage ss. Similarly, we can have {a.A.A}
or A.A.A.

a.a.A: This represents the condition where we have
assigned the values of a and a in the stages S and s, but
we will not end up searching all the values of as in stage S.
because the auxiliary solve returned that no solution exists
in the search space {a,a2,A}.
{a.A.X: This implies that, we will skip all the values of

as and the remaining Values of a.
FIG. 8 illustrates a search tree for the above constraint

problem example
FIG. 8 shows the scenario where an auxiliary solver is

launched in the stages for the value of a=2 ({2,-,-). While
the auxiliary is running, the heuristic solver continues
Searching for 2.2.A as shown by the dotted longer triangle
with a border. The auxiliary solver returns with a no-solution
exists, when the heuristic solver is in {2,3. A} as shown by
the “X” over circle 2 in the s level. The heuristic solver
aborts the search, pops the stage stack and continues search
ing for another value in stage S.
2. Problem Definition

In order to obtain repeatability of solution order in the
constraint Solutions, constraint random solver employs a
pseudo random number generator in order to assign a
variable value at each stage of the search tree. The order of
search progression depends on the random number
sequence. A pseudo random number generator produces a
unique sequence for a given seed parameter. For a given
fracturing order of the solution space, the solution order is

5

10

15

25

30

35

40

45

50

55

60

65

12
unique to the random number seed. The order of search
progression is unique to a given pseudo random number
sequence in case the search space is static. Table 2 shows the
search space progression for a given pseudo-random
sequence for the constraint problem in Example 1.

TABLE 2

Search space progression for a given pseudo randon number sequence

pseudo-random sequence 1 Search progression Comments

1 {1, -, -} Push stage stack
4 {1, 4, -} Push stage stack
2 {1, 4, 2} Push stage stack
1 {1, 4, 1}
2 {1, 4, 2}
4 {1, 4, 4}
3 {1, 4, 3} Pop Stack
2 {1, 2, -} Push Stack
4 {1, 2, 4} Solution Found

The use of an auxiliary solver Sub-system used to improve
the performance of constraint solution speeds up the search
progression of the heuristic solver by indicating whether a
Solution exists in a given Sub-space or not. Consequently, the
heuristic does not search the Sub-space if an auxiliary solve
indicated that there was no solution. As the use of auxiliary
Solves changes the search progression, it puts the following
requirements on repeatability. This requirement says that the
final solution set and the solve order is independent of the
following scenarios:

a. Enabled or disabling the auxiliary solve mechanism:
The final solution should not be affected by the search space
pruning when the auxiliary solver mechanism is activated.

b. The timing of the results returned from the auxiliary
Solves: As the auxiliary solves are invoked as separate
processes, the system should be tolerant of the non-deter
minism of the solve execution time.

In the previous implementation activating the auxiliary
solve mechanism breaks repeatability due to the fact that the
future order of search progression was dependent on the
current search space pruning decisions. This is because it
reused the same pseudo random number generator across
stages without initializing it with a new seed value. This is
a problem when the auxiliary solve mechanism asynchro
nously eliminates a Sub-space without progressing the
pseudo random number generator by the corresponding
amount, hence affecting the solution order. Table 3 shows
this scenario where we see the effect on the search space
progression when auxiliary Solve mechanism is activated for
the Example 1 above. An auxiliary solve starts in the third
row in {1,4,-}. It returns with a solution not found when in
{1.4.2}. This causes it to abort search for the space {1.4.A.
Now instead of searching for space {1,2,- it searches for
{1,1-} because the next random number generated is “1”
instead of a '2''.

TABLE 3

Effect on Search space progression due to auxiliary solves

Without Auxiliary Solve With Auxiliary
pseudo- Mechanism Solve Mechanism

random Search Search
sequence progression Comments progression Comments

{-, -, -}. Push stage {-, -, -}. Push stage stack
stack

US 9,619,598 B2
13

TABLE 3-continued

Effect on Search Space progression due to auxiliary Solves

Without Auxiliary Solve With Auxiliary
pseudo- Mechanism Solve Mechanism

random Search Search
sequence progression Comments progression Comments

1 {1, -, -}. Push stage {1, -, -}. Push stage stack
Stack

4 {1, 4, -} Push stage {1, 4, -} Push stage stack
Stack and

launch auxiliary
solve

2 {1, 4, 2} {1, 4, 2} Aux. Solve
returned Solution
not found so
pop stage stack

1 {1, 4, 1} {1, 1, -} Push Stage stack
2 { , 4, 2} { 1, 2}
4 { , 4, 4} { 1, 4}
3 {1, 4, 3} Pop Stack {1, 1,3}
2 {1, 2, — Push Stack 1, 1, 2}
4 {1, 2, 4} Solution {1, 1, 4}

Found

The non-determinism of auxiliary solves can also effect
the solution order. The auxiliary solver is started in a
separate process in parallel while the heuristic solver is
searching in the current Sub-space. Consequently, the time it
takes for the auxiliary solver to solve a given problem
depends on how the process is scheduled by the operating
system. If the auxiliary solve returns with no-solution exists
in a given sub-space before the heuristic solver finishes, then
the heuristic solver stops searching in the given Sub-space
and starts searching in a next Sub-space. The next random
number in the sequence determines the next Sub-space to be
searched. For a solver run, with the auxiliary solve mecha
nism deactivated, the heuristic solver will finish searching
within the current Sub-space where no-Solution exists. At
this time the pseudo-random number generator may return a
different value hence selecting a sub-space different from the
one selected when the auxiliary solver mechanism is acti
vated. This can be seen in the Table 4 below which compares
the search progression of two cases of auxiliary solve
mechanism where the auxiliary solver finishes at different
times.

TABLE 4

Search space progression when auxiliary solves finishes at different times

Case1: With Auxiliary Solve Case2: With Auxiliary
pseudo- Mechanism Solve Mechanism

random Search Search
sequence progression Comments progression Comments

{-, -, -}. Push stage stack {-, -, -}. Push stage
stack

1 {1, -, -}. Push stage stack {1, -, -}. Push stage
stack

4 {1, 4, -}. Push stage stack 1, 4, -}. Push stage
and stack and
launch auxiliary launch
solve auxiliary

solve
2 {1, 4, 2} Aux. solve {1, 4, 2}

returned
Solution not
found
so pop stage stack

10

15

25

30

35

40

45

50

55

60

65

14
TABLE 4-continued

Search space progression when auxiliary solves finishes at different times

Case1: With Auxiliary Solve Case2: With Auxiliary
pseudo- Mechanism Solve Mechanism

random Search Search

sequence progression Comments progression Comments

1 {1, 1, -}. Push Stage stack 1, 4, 1} Aux. Solve
returned

Solution not

found

So pop stage
stack

2 {1, 1, 2} {1, 2, — Push stage
stack

4 {1, 1, 4} {1, 2, 4} Solution
Found

3 {1, 1,3} {1, 2, 3}
{1, 1, 2} {1, 2, 2}

4 {1, 1, 4} {1, 2, 4}

3. Solution

In order to make the solve order independent of non
determinism and search space pruning done by the auxiliary
Solve mechanism, we use separate pseudo-random number
generators for each stage. These generators are initialized by
a seed which is passed on by the previous stage and is based
on the value to which a variable is assigned in the previous
stage. Consider the following Table 5, which shows the
random sequence generated at the level s, based on the
branch take in the levels. As a result of this, the random
number sequence at S, does not get effected by the fact that
the auxiliary solve mechanism might be pruning out the
Solution space at the stages, without searching it completely.

TABLE 5

Random number sequence at S, when a branch is taken at S

Brach at S, Random sequence at S,

a = 1 {1, 2, 4, 3}
2 {2, 3, 1, 2}
3 {1, 3, 4, 2}
4 {4, 1, 2, 3}

This enables us to launch auxiliary Solves at any stage
without causing problems with the solution ordering. This is
shown in Table 6, which compares the sequence of opera
tions involved in launching jobs at various stages of the
search. In Casel we are always launching jobs in the stage
S while in Case2 we are doing the same for the stages. The
random number generators at various stages initialized
based on Table 5. It also shows the solve progression when
the auxiliary solve mechanism is deactivated (Column 1). It
can be seen that the Solution order remains the same.
Moreover, in Casel even when the Job2 takes longer time
than usual to return a solution, the Solution order does not
change.

US 9,619,598 B2
15

TABLE 6

16

Solve progression comparison when jobs are launched at stages and
Stage s2

: No solution exists
: No solution exists
: No solution exists
: No solution exists
: No solution exists
: No solution exists
: No solution exists
: No solution exists
: No solution exists

b10: No solution exists
b11: No solution exists

Ole

b13: No solution exists
Ole

b15: No solution exists

Without Case1: With Aux being Case2: With Aux being
AuX solve launched at stages launched at stage S.

Solve Solve Aux. Solve Solve Aux. Solve
Progression Progression Result Progression Result

{4. 4. A {4, A, X} Job 1: No solution exists {4, 4, A Job 1
{4, 1, A {4, 1, A Job2
{4, 2, A {4, 2, A Job3
{4, 3, A {4, 3, A Job4
{2, 2, A {2, 2, A Job2: No solution exists {2, 2, A Job5
{2, 3, A {2, 3,A} {2, 3, A Job6
{2, 1, A {2, X, X} — {2, 1, A Job7
{2, 2, A {2, 2, A Job8
{3, 1, A {3, 1, A Job3: At least one {3, 1, A Job.9

solution exists
{3,3, A {3,3, A — {3,3, A Jo
{3, 4, A {3, 4, A — {3, 4, A Jo
{3, 2, A {3, 2, A — {3, 2, A Job 12: At leas

Solution exists
{1, 1, A {1, 1, A Job4: A Solution exists {1, 1, A}} Jo
{1, 2, A {1, 2, A — {1, 2, A Job 14: At leas

Solution exists
{1, 4, A {1, 4, A — {1, 4, A Jo
{1, 3, A {1, 3, A — {1, 3, A Jo

Although certain devices and methods have been
described above in terms of the illustrative embodiments,
the person of ordinary skill in the art will recognize that
other embodiments, examples, Substitutions, modification
and alterations are possible. It is intended that the following
claims cover Such other embodiments, examples, Substitu
tions, modifications and alterations within the spirit and
Scope of the claims.

The invention claimed is:
1. A method comprising:
executing, by a computer system, a first process that

performs a solving operation to determine if any input
vector within a set of input vectors satisfy an input
constraint;

executing, by the computer system, in parallel with execu
tion of the first process, a second process that performs
a searching operation to search for unique input vectors
that satisfy the input constraint;

aborting the Solving operation on the set based on a
determination that at least one unique input vector has
been found by the searching operation to satisfy the
input constraint; and

applying, as part of a process for verifying an electronic
circuit design of an electronic circuit that is to be
fabricated or manufactured, the at least one unique
input vector to the electronic circuit design.

2. The method of claim 1, wherein the set forms a first
Subspace of an input space for the electronic circuit design
and an additional set of input vectors forms a second
subspace of the input space, and wherein the method further
comprises:

performing the solving operation on the additional set;
and

performing, while performing the solving operation on
the additional set, the searching operation on the addi
tional set for additional unique input vectors that satisfy
the input constraint based on a determination by the
Solving operation that at least one input vector within
the additional set satisfies the input constraint.

30

35

40

45

50

55

60

65

b16: No solution exists

3. The method of claim 1, wherein the set forms a first
Subspace of an input space for the electronic circuit design
and an additional set of input vectors forms a second
subspace of the input space, and wherein the method further
comprises:

performing the searching operation on the additional set
for additional unique input vectors that satisfy the input
constraint;

performing, while performing the searching operation on
the additional set, the Solving operation on the addi
tional set; and

aborting the Solving operation on the additional set based
on a determination that the search of the additional set
has found at least one input vector within the additional
set that satisfies the input constraint.

4. The method of claim 1, wherein the set forms at least
a portion of an input space for the electronic circuit design.

5. The method of claim 4, wherein the input constraint
comprises coverage constraints of a coverage model of the
electronic circuit design.

6. The method of claim 4, wherein the electronic circuit
design is a microcircuit design of a microcircuit that is to be
fabricated or manufactured.

7. The method of claim 1, wherein the set forms a first
Subspace of an input space for the electronic circuit design
and an additional set of input vectors forms a second
subspace of the input space, and wherein the method further
comprises:

performing the solving operation on the additional set;
performing, while performing the Solving operation on

the additional set, the searching operation on the addi
tional set for additional unique input vectors that satisfy
the input constraint; and

aborting the searching operation on the additional set in
response to a determination by the Solving operation
that no input vector within the additional set satisfies
the input constraint, wherein after aborting the search
ing operation on the additional set, a portion of the
additional set is unsearched by the searching operation.

US 9,619,598 B2
17

8. One or more computer readable memory devices com
prising computer executable instructions, that when
executed by one or more computers, cause the one or more
computers to:

execute a first process that performs a solving operation to
determine if any input vector within a set of input
vectors satisfy an input constraint;

execute, in parallel with execution of the first process, a
second process that performs a searching operation to
search for unique input vectors that satisfy the input
constraint;

abort the solving operation on the set based on a deter
mination that at least one unique input vector has been
found by the searching operation to satisfy the input
constraint; and

apply, as part of a process for verifying an electronic
circuit design of an electronic circuit that is to be
fabricated or manufactured, the at least one unique
input vector to the electronic circuit design.

9. The one or more computer readable memory devices of
claim 8, wherein the set forms a first subspace of an input
space for the electronic circuit design and an additional set
of input vectors forms a second Subspace of the input space,
and wherein computer executable instructions, when
executed by one or more computers, cause the one or more
computers to:

perform the Solving operation on the additional set; and
perform, while performing the solving operation on the

additional set, the searching operation on the additional
set for additional unique input vectors that satisfy the
input constraint based on a determination by the solv
ing operation that at least one input vector within the
additional set satisfies the input constraint.

10. The one or more computer readable memory devices
of claim 8, wherein the set forms a first subspace of an input
space for the electronic circuit design and an additional set
of input vectors forms a second Subspace of the input space,
and wherein computer executable instructions, when
executed by the one or more computers, cause the one or
more computers to:

perform the searching operation on the additional set for
unique second input vectors that satisfy the input
constraint;

perform, while performing the searching operation on the
additional set, the solving operation on the additional
set; and

abort the solving operation on the additional set based on
a determination that the searching operation on the
additional set has found at least one input vector within
the additional set that satisfies the input constraint.

11. The one or more computer readable memory devices
of claim 8, wherein the set forms at least a portion of an input
space for the electronic circuit design.

12. The one or more computer readable memory devices
of claim 11, wherein the input constraint comprises coverage
constraints of a coverage model of the electronic circuit
design.

13. The one or more computer readable memory devices
of claim 11, wherein the electronic circuit design is a
microcircuit design of a microcircuit that is to be fabricated
or manufactured.

14. The one or more computer readable memory devices
of claim 8, wherein the set forms a first subspace of an input
space for the electronic circuit design and an additional set
of input vectors forms a second Subspace of the input space,

5

10

15

25

30

35

40

45

50

55

60

65

18
and wherein the computer executable instructions, when
executed by the one or more computers, cause the one or
more computers to:

perform the Solving operation on the additional set;
perform, while performing the solving operation on the

additional set, the searching operation on the additional
set for additional unique input vectors that satisfy the
input construct; and

abort the searching operation on the additional set in
response to a determination by the Solving operation
that no input vector within the additional set satisfies
the input constraint, wherein after the searching opera
tion on the additional set is aborted, a portion of the
additional set is unsearched by the searching operation.

15. An apparatus comprising:
one or more processors; and
one or memory storing executable instructions, that when

executed by one or more processors, cause the appa
ratuS to:
execute a first process that performs a solving operation

to determine if any input vector within a set of input
vectors satisfy an input constraint;

execute, in parallel with execution of the first process,
a second process that performs a searching operation
to search for unique input vectors that satisfy the
input constraint;

abort the Solving operation on the set based on a
determination that at least one unique vector has
been found by the searching operation on the set to
satisfy the input constraint; and

apply, as part of a process of Verifying an electronic
circuit design of an electronic circuit that is to be
fabricated or manufactured, the at least one unique
input vector to the electronic circuit design.

16. The apparatus of claim 15, wherein the set forms a first
Subspace of an input space for the electronic design and an
additional set of input vectors forms a second Subspace of
the input space, and wherein the executable instructions,
when executed by the one or more processors, cause the
apparatus to:

perform the Solving operation on the additional set; and
perform, while performing the solving operation on the

additional set, for additional unique input vectors that
satisfy the input constraint based on a determination by
the Solving operation on the additional set that at least
one input vector within the additional set satisfies the
input constraint.

17. The apparatus of claim 15, wherein the set forms at
least a portion of an input space for the electronic circuit
design.

18. The apparatus of claim 17, wherein the input con
straint comprises coverage constraints of a coverage model
of the electronic circuit design.

19. The apparatus of claim 17, wherein the electronic
circuit design is a microcircuit design of a microcircuit that
is to be fabricated or manufactured.

20. The apparatus of claim 15, wherein the set forms a first
Subspace of an input space for an electronic circuit design
and an additional set of input vectors forms a second
Subspace of the input space, and wherein the executable
instructions, when executed by the one or more processors,
cause the apparatus to:

perform the Solving operation on the additional set;
perform, while performing the Solving operation, on the

additional set, the searching operation on the additional
set for additional unique input vectors that satisfy the
input constraint; and

US 9,619,598 B2
19

abort the searching operation on the additional set in
response to a determination by the Solving operation
that no input vector within the additional set satisfies
the input constraint, wherein after the searching opera
tion on the additional set is aborted, a portion of the 5
additional set is unsearched by the searching operation.

k k k k k

20

