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Various implementations of the invention provide for the 
determination of a test set that satisfies a coverage model, 
where portions of the search space need not be searched in 
order to generate the test set. With various implementations 
of the invention, a search space defined by a set of inputs for 
an electronic design and a coverage model is identified. The 
search space is then fractured into Subspaces. Subsequently, 
the subspaces are solved to determine if they include at least 
one input sequence that satisfies the coverage constraints 
defined in the coverage model. The subspaces found to 
include at least one input sequence that satisfies these 
coverage constraints, are then searched for unique input 
sequences in order to generate a test set. Subspaces found 
not to include at least one input sequence that satisfies the 
coverage constraints may be excluded from the overall 
search space. 
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1. 

INPUT SPACE REDUCTION FOR 
VERIFICATION TEST SET GENERATION 

CROSS REFERENCE TO RELATED 
APPLICATIONS 

This application claims priority to provisional application 
No. 61/641.222, filed on May 1, 2012, having the same title, 
and claims priority to provisional application No. 61/632, 
830, filed Jan. 31, 2012, and having the title “Search Space 
Reduction for Coverage Based Verification Test Set Gen 
eration,” each of which is hereby incorporated by reference 
in its entirety for all purposes. 

FIELD OF THE INVENTION 

The present invention is directed towards the verification 
of electronic designs. More specifically, various implemen 
tations of the invention are applicable to generating test sets, 
which satisfy specified verification criteria. 

BACKGROUND OF THE INVENTION 

Electronic devices are used in a variety of products, from 
personal computers to automobiles to toys. There are various 
different types of electronic devices. Such as, for example, an 
integrated circuit. Furthermore, as those of skill in the art 
will appreciate, electronic devices can be connected, to form 
other electronic devices or systems. The designing and 
fabricating of electronic devices typically involves many 
steps, sometimes referred to as the “design flow.” The 
particular steps of a design flow often are dependent upon 
the type of electronic device, its complexity, the design 
team, and the fabricator that will manufacture the device. 

Several steps are common to most design flows. Initially, 
the specification for a new design is expressed, often in an 
abstract form and then transformed into lower and lower 
abstraction levels until the design is ultimately ready for 
manufacture. The process of transforming the design from 
one level of abstraction to another is referred to as synthesis. 
At several stages of the design flow, for example, after each 
synthesis process, the design is verified. Verification aids in 
the discovery of errors in the design, and allows the design 
ers and engineers to corrector otherwise improve the design. 
The various synthesis and verification processes are facili 
tated by electronic design automation (EDA) tools. 
As those of ordinary skill in the art will appreciate, the 

synthesis and verification processes applied to modern 
designs are quite complex and include many different steps. 
An illustrative design flow, for an integrated circuit, for 
example, can start with a specification for the integrated 
circuit being expressed in a high-level programming lan 
guage, such as, for example, C". This level of abstraction 
is often referred to as the algorithmic level. At this abstrac 
tion level, the functionality of the design is described in 
terms of the functional behavior applied to specified inputs 
to generate outputs. The design will then be synthesized into 
a lower level of abstraction, typically, the logic level of 
abstraction. At this level of abstraction, the design is 
expressed in a hardware description language (HDL) such as 
Verilog, where the circuit is described in terms of both the 
exchange of signals between hardware registers and the 
logical operations that are performed on those signals. At 
this stage, verification is often performed to confirm the 
functional behavior of the design, i.e. that the logical design 
conforms to the algorithmic specification. 
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2 
After the logical design is verified, it is synthesized into 

a device design. The device design, which is typically in the 
form of a schematic or netlist, describes the specific elec 
tronic components (such as transistors, resistors, and capaci 
tors) that will be used in the circuit, along with their 
interconnections. This device design generally corresponds 
to the level of representation displayed in conventional 
circuit diagrams. Verification is again performed at this stage 
in order to confirm that the device design conforms to the 
logical design, and as a result, the algorithmic specification. 
Once the components and their interconnections are 

established, as represented by the device design, the design 
is again synthesized, this time into a physical design that 
describes specific geometric elements. The geometric ele 
ments define the shapes that will be created in various layers 
of material to manufacture the circuit. This type of design 
often is referred to as a “layout' design. The layout design 
is then used as a template to manufacture the integrated 
circuit. Verification is again performed, to ensure that the 
layout design conforms to the device design. 

Although there are different methods of performing veri 
fication, this invention is directed towards verification pro 
cesses that "exercise a design by applying input to the 
design and capturing the output resulting from application of 
the input. The applied input is often referred to as an input 
vector. The captured output then is compared to the output 
the design should have produced according to the input 
vector and the specification. Various technologies exist for 
exercising a design, for example, the response (i.e. the 
output) of the design to the input vector, may be simulated. 
In some cases the output may be captured from an emulator, 
emulating the design with the input vector as stimulus for the 
emulation. A prototype may also be used to generate the 
output. Those of ordinary skill in the art will appreciate that 
combinations of simulation, emulation, and prototyping 
could be used during verification and that various combi 
nations of technologies can be employed to implement a 
verification system as described here. 

Verification typically consists of applying multiple input 
vectors (where an input vector is a tuple of values for input 
variables.) referred to as the test set and capturing each 
resulting output, referred to as the output set. The individual 
outputs from the output set then are compared to the 
corresponding expected outputs. There are many ways to 
generate the input vectors to include in a test set. For 
example, directed tests, that is, where the input vectors are 
directly specified by a designer can be employed. Random 
combinations of inputs can also be selected and used to form 
input vectors. Although ideally one would generate a test set 
that corresponds to all possible input combinations. The set 
of all possible input vectors to a modern electronic design is 
so large however, that it is not computationally feasible to 
exhaustively test the design in this manner. As a result, 
another approach to generating input vectors for verification 
is often used. 
As those of ordinary skill in the art will appreciate, each 

input variable has a domain. The domain specifies the set of 
possible values that may be applied to the input correspond 
ing to the domain. Usually there are constraints which 
restrict the combinations of input values which may be used 
to generate an input vector. These constraints may include 
legality constraints (e.g., which are typically derived from 
the designs operating specification), apparatus constraints 
(e.g., which are typically derived from the specifications of 
the equipment used to exercise the design), and/or coverage 
constraints (e.g., which are often derived from a verification 
plan). Those of ordinary skill in the art will appreciate that 



US 9,619,598 B2 
3 

other types of constraints may also be used to limit or restrict 
the input values which may be used to generate input 
VectOrS. 

The process of finding a tuple of values which satisfies a 
set of constraints is often referred to as “constraint solving. 
The process of finding a set of tuples of values, within which 
every tuple satisfies a set of constraints, is sometimes 
referred to as “constraint exploration'. 

Conceptually, to find a solution (or a set of Solutions) to 
a constraint set, one could iterate through the set of possible 
value tuples (i.e. the cross products of the domains of the 
variables) and test each tuple against the constraints, select 
ing only those which satisfy every constraint, until the 
desired number of solutions is found. In practice, for modern 
electronic devices, the size of the set of possible value tuples 
(sometimes referred to as the "input space') is so large and 
the fraction of acceptable tuples is so small that the iteration 
approach is not practical. Instead, computational techniques 
Such as satisfiability analysis are used to locate acceptable 
tuples within the input space. Those of ordinary skill in the 
art will appreciate that such computational techniques gen 
erally run considerably faster if the size of the input space 
can be reduced. Therefore, methods which can identify 
Solution-free regions of an input space that can be pruned 
without affecting the verification results are of considerable 
interest. 

Example embodiments of the disclosure discuss methods 
and techniques for pruning the input space as indicated 
above. Although Such discussion is generally made with 
reference to coverage constraints, those of ordinary skill in 
the art will appreciate that other types of constraints may be 
used without departing from the spirit and scope of the 
invention. 

BRIEF SUMMARY OF THE INVENTION 

Various implementations of the invention provide for the 
determination of a test set that satisfies a coverage model, 
where portions of the input space need not be searched in 
order to generate the test set. 

With various implementations of the invention, an input 
space defined by a set of inputs for an electronic design and 
a coverage model is identified. The input space is then 
fractured into subspaces. Subsequently, the Subspaces are 
solved to determine if they include at least one input vector 
that satisfies the coverage constraints defined in the coverage 
model. The Subspaces found to include at least one input 
vector that satisfies these coverage constraints, are then 
searched for unique input vectors to include in the test set. 
Subspaces found not to include at least one input vector that 
satisfies the coverage constraints, then may not be searched. 

In various implementations of the invention, operation of 
the methods and techniques disclosed herein may be repeat 
able. More particularly, given the same input space and 
coverage constraints, the results will be reproducible over 
multiple iterations of the methods detailed herein. Further 
more, the results may be reproducible using different ones of 
the methods detailed herein. 

In various implementations of the invention, the search of 
a particular Subspace for unique input vectors will be 
initiated while the subspace is being solved as stated above. 
If it is determined by the solver that no solutions exist, then 
the search of the subspace will be aborted. With some 
implementations, multiple different solvers will be used to 
Solve a Subspace simultaneously. As soon as one of the 
solvers determines that no solution exists, the search of the 
subspace by all solvers may be aborted. 
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4 
These and additional implementations of invention will be 

further understood from the following detailed disclosure of 
illustrative embodiments. 

BRIEF DESCRIPTION OF THE DRAWINGS 

The present invention will be described by way of illus 
trative implementations shown in the accompanying draw 
ings in which like references denote similar elements, and in 
which: 

FIG. 1 illustrates a computing device. 
FIG. 2 illustrates a verification platform. 
FIG. 3 illustrates a method of performing verification. 
FIG. 4 illustrates a method of generating a test set. 
FIG. 5 illustrates component of the verification platform 

of FIG. 2 in greater detail. 
FIG. 6 illustrates a block diagram of constraint transla 

tion. 
FIG. 7 illustrates a search tree for a constraint problem 

example. 
FIG. 8 illustrates a search tree for a constraint problem 

example. 

DETAILED DESCRIPTION OF THE 
INVENTION 

The operations of the disclosed implementations may be 
described herein in a particular sequential order. However, it 
should be understood that this manner of description encom 
passes rearrangements, unless a particular ordering is 
required by specific language set forth below. For example, 
operations described sequentially may in some cases be 
rearranged or performed concurrently. Moreover, for the 
sake of simplicity, the illustrated flow charts and block 
diagrams typically do not show the various ways in which 
particular methods can be used in conjunction with other 
methods. 

It should also be noted that the detailed description 
sometimes uses terms like “generate to describe the dis 
closed implementations. Such terms are often high-level 
abstractions of the actual operations that are performed. The 
actual operations that correspond to these terms will often 
vary depending on the particular implementation. 
Illustrative Operating Environment 
As the techniques of the present invention may be imple 

mented using computer executable instructions, the compo 
nents and operation of a programmable computer system on 
which various implementations of the invention may be 
employed is described. Accordingly, FIG. 1 shows an illus 
trative computing device 101. As seen in this figure, the 
computing device 101 includes a computing unit 103 having 
a processing unit 105 and a system memory 107. The 
processing unit 105 may be any type of programmable 
electronic device for executing software instructions, but 
will conventionally be a microprocessor. The system 
memory 107 may include both a read-only memory 
(“ROM) 109 and a random access memory (“RAM) 111. 
As will be appreciated by those of ordinary skill in the art, 
both the ROM 109 and the RAM 111 may store software 
instructions for execution by the processing unit 105. 
The processing unit 105 and the system memory 107 are 

connected, either directly or indirectly, through a bus 113 or 
alternate communication structure, to one or more peripheral 
devices. For example, the processing unit 105 or the system 
memory 107 may be directly or indirectly connected to one 
or more additional devices, such as; a fixed memory storage 
device 115, for example, a magnetic disk drive; a removable 
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memory storage device 117, for example, a removable solid 
state disk drive; an optical media device 119, for example, 
a digital video disk drive; or a removable media device 121, 
for example, a removable floppy drive. The processing unit 
105 and the system memory 107 also may be directly or 
indirectly connected to one or more input devices 123 and 
one or more output devices 125. The input devices 123 may 
include, for example, a keyboard, a pointing device (such as 
a mouse, touchpad, stylus, trackball, or joystick), a scanner, 
a camera, and a microphone. The output devices 125 may 
include, for example, a monitor display, a printer and 
speakers. With various examples of the computing device 
101, one or more of the peripheral devices 115-127 may be 
internally housed with the computing unit 103. Alternately, 
one or more of the peripheral devices 115-127 may be 
external to the housing for the computing unit 103 and 
connected to the bus 113 through, for example, a Universal 
Serial Bus (“USB) connection. 

With some implementations, the computing unit 103 may 
be directly or indirectly connected to one or more network 
interfaces 127 for communicating with other devices making 
up a network. The network interface 127 translates data and 
control signals from the computing unit 103 into network 
messages according to one or more communication proto 
cols, such as the transmission control protocol (“TCP) and 
the Internet protocol (“IP). Also, the interface 127 may 
employ any suitable connection agent (or combination of 
agents) for connecting to a network, including, for example, 
a wireless transceiver, a modem, or an Ethernet connection. 

It should be appreciated that the computing device 101 is 
shown here for illustrative purposes only, and it is not 
intended to be limiting. Various embodiments of the inven 
tion may be implemented using one or more computers that 
include the components of the computing device 101 illus 
trated in FIG. 1, which include only a subset of the com 
ponents illustrated in FIG. 1, or which include an alternate 
combination of components, including components that are 
not shown in FIG. 1. For example, various embodiments of 
the invention may be implemented using a multi-processor 
computer, a plurality of single and/or multiprocessor com 
puters arranged into a network, or some combination of 
both. 
As stated above, various embodiments of the invention 

may be implemented using a programmable computer sys 
tem executing Software instructions, a computer readable 
medium having computer-executable Software instructions 
stored thereon, or some combination thereof. Particularly, 
these software instructions may be stored on one or more 
computer readable media or devices, such as, for example, 
the system memory 107, or an optical disk for use in the 
optical media device 119. As those of ordinary skill in the art 
will appreciate, Software instructions stored in the manner 
described herein are inherently non-transitory in nature. 
More specifically, the software instructions are available for 
execution by the computer system 101, as opposed to being 
transmitted to the computer system via a carrier wave or 
Some other transitory signal. 
Coverage Based Verification 
As detailed above, various implementations of the inven 

tion provide methods and apparatuses for generating a test 
set to be used for verifying an electronic design. Specifically, 
the test set may be generated without the need to search all 
portions of an input space defined by the potential inputs to 
the electronic design for unique input vectors that satisfy the 
coverage model. FIGS. 2 and 3 illustrate a verification 
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6 
platform 201 and a method 301 of performing verification 
that may be provided by various implementations of the 
present invention. 
As can be seen from FIG. 2, the verification platform 201 

includes a test bench 203 and a design under test (DUT) 205. 
With various instances of the invention, the DUT 205 will be 
implemented by an electronic design simulator. Such as, for 
example, the Questa simulator available from Mentor 
Graphics Corporation of Wilsonville, Oreg. In some 
instances, the DUT 205 will be implemented by an elec 
tronic design emulator, such as, for example, the Veloce 
emulator available from Mentor Graphics Corporation of 
Wilsonville, Oreg. In various instances, the DUT 205 will be 
implemented by a prototype of the electronic design for 
which the DUT 205 represents. Still, with some implemen 
tations of the invention, combinations of these different 
embodiments may be used. For the balance of this disclosure 
however, it is assumed for purposes of clarity that the DUT 
205 is implemented in a simulator. 

In some implementations, the DUT 205 may be a software 
program. As those of ordinary skill in the art will appreciate, 
Software programs are also verified during development. 
This verification process shares similarities to the hardware 
verification process detailed above. For example, a software 
program will have a set of valid inputs (e.g., button press, 
menu selection, key input, etc.). Furthermore, the software 
program may have a set of inputs with which the designer is 
particularly interested in testing. As such, coverage con 
straints may be specified for the Software program, and then 
various embodiments of the present disclosure may be 
implemented to determine a test set for the software program 
as detailed herein. 
The test bench 203 includes a test set generation module 

207 configured to derive a set of input vectors (i.e. the test 
set 213) for the DUT 205 that satisfy a set of coverage 
constraints 215. The derivation of input vectors by the test 
set generation module 207 will be discussed in greater detail 
below. The test bench 203 further includes a DUT stimula 
tion module 209 configured to apply the input vectors from 
the test set 213 to the DUT 205. The DUT Stimulation 
module 209 is also configured to capture the responses of the 
DUT 205 as it is simulated with the test set 213 as input. 
These captured responses are referred to as the captured 
outputs 217. Additionally, an error identification module 211 
is provided, which is configured to compare the captured 
outputs 217 to a set of expected outputs 219. The error 
identification module 211 is further configured to identify 
any discrepancies in the comparison and report them as 
potential errors in the DUT 205. 
As can be further seen from FIG. 2, the test set generation 

module 207 may, in some implementations, generate tests 
based on the state of the DUT 205. For examples, during a 
verification process, the state of the DUT 205 will change in 
response to various factors (e.g., inputs applied, etc.). As 
such, the test set generation module 207 may account for 
these changing states in generating inputs to include in the 
test Set 213. 
As stated, FIG. 3 shows the method 301, which may be 

applied using the verification platform described above. As 
can be seen from this figure, the method 301 includes an 
operation 303 for generating the test set 213, that is, for 
generating input vectors that satisfy the coverage constraints 
213. An operation 305 for applying the test set 213 to the 
DUT 205 and an operation 307 for recording the captured 
outputs 217 is also provided. An operation for comparing the 
captured outputs 217 to the expected outputs 219 and an 
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operation 311 for generating a report of any discrepancies 
from this comparison are then provided. 
Coverage Based Input Set Generation 
As stated, various implementations of the invention pro 

vide methods and apparatuses for generating a test set to be 
used for verifying an electronic design. Particularly, for 
generating the test set without the need to search all portions 
of an input space defined by the potential inputs to the 
electronic design. Furthermore, the test set generation mod 
ule 207 may be configured to generate the test set 213 in this 
manner, Such as, for example, by application of the operation 
3O3. 
As those of ordinary skill in the art will appreciate, a 

typical electronic design, which the DUT 205 may represent, 
will have multiple input ports, with multiple different inputs 
allowed per port. For discussion purposes, each input port 
may be represented by an input variable, where each input 
variable may have multiple possible values. For example, 
the DUT 205 may represent an electronic design with 5 input 
ports where each input is binary. Representing the input 
ports as variables a-e, the set of all possible inputs for the 
DUT 205 may then be represented as the set of all possible 
combinations of (a, b, c, d, e) where the variable values are 
either logic 0 or logic 1. Each input combination (e.g. 0, 0, 
0, 0, 1) is referred to here as an input vector. The set of all 
possible input vectors then is referred to as the input space. 
For this simple example, there are only 32 different input 
combinations, that is, there are 32 unique input vectors in the 
input space. However, if the variable values were allowed to 
be anything between 0 and 9, then the possible combinations 
increase to 100,000. For a design where there are 20 input 
ports and 10 possible input values per port, there are over 
10' potential input combinations. 
Modern electronic designs include hundreds of input 

ports, with many different combinations of potential input 
values per port. As such, it is not practical to derive and then 
test all possible unique input vectors in a verification pro 
cess. In order to reduce the number of inputs needed to test 
a design, input ports, input values, and combinations of input 
ports and values that exercise particular functionality are 
identified. The input space is then restricted based on these 
identified input ports and input values. This is done by 
writing a set of constraints that restricts the values that each 
input variable can take on. More particularly, given the 
example above, where there are 5 possible inputs, repre 
sented by variables a-e, and where the possible input values 
are allowed to be an integer value between 0 and 9, the input 
space may be restricted by the constraint that the input 
variable a only be allowed to take on values of (1, 2, 3, 4, 
5). Accordingly, the input space is now “restricted” based on 
this constraint, referred to herein as the coverage constraint, 
and the number of unique input vectors that satisfy this 
constraint is less than the total number of unique input 
vectors in the entire input space. 
The operation 303 of FIG. 3 then derives the unique input 

vectors within the input space that satisfy the coverage 
constraints. Similarly, the test set generation module 207 of 
FIG. 2 is configured to determine the unique input vectors 
within the input space that satisfy the coverage constraints. 
As stated, these unique input vectors form the test set 213. 

FIG. 4 illustrates a method 401 that may be provided by 
various implementations of the present invention to identify 
these unique input vectors in a search space defined by the 
coverage constraints 215 and the DUT 205. FIG. 5 illustrates 
the test set generation module 207 in greater detail. As can 
be seen, the test set generation module 207 includes an input 
space fracturing module 503. FIG. 5 shows an input space 
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8 
505, which corresponds to the inputs and possible input 
value of the DUT 205. Accordingly, the input space frac 
turing module 503 may be configured to split the search 
space 505 into subspaces 507. 
The method 401 includes an operation 403 for fracturing 

the input space 505 into the sub spaces 507. With various 
implementations, the search space is fractured by input 
variables. Using the system and constraints described above, 
with inputs a-e having possible values 0-9, and where the 
variable a is constrained between 1 and 5, the input space 
505, may be fractured by the variable a, into the following 
5 sub spaces 507: (1, b, c, d, e), (2, b, c, d, e), (3, b, c, d, e), 
(4., b, c, d, e), and (5, b, c, d, e). As those of ordinary skill 
in the art will appreciate, more Sophisticated methods of 
fracturing may be used. For example, the input space 505 
may be fractured based on multiple variables. Furthermore, 
an order of which variable is fractured on first may be 
selected. 
Search Space Reduction Using Auxiliary Solvers 
An operation 405 for selecting an unsearched one of the 

subspaces 507 and an operation 407a for searching the 
selected subspace 507 for unique input vectors 509 are 
provided. The test set generation module 207 shown in FIG. 
5 further includes a subspace searching module 511, which 
is configured to search the sub spaces 507 for unique input 
vectors 509. Any unique input vectors 509 found during the 
search are then are added to the test set 213. 
The method 401 further includes an operation 407b for 

deriving a solution to the sub space 507 selected by the 
operation 405, and for which the operation 407a is searching 
for unique input vectors. With various implementations, the 
operations 407a and 407 b are executed simultaneously, such 
as, for example, by executing them on separate program 
mable computer systems (e.g. the programmable computer 
system 101 detailed above). In various implementations, the 
operation 407b will determine if at least a single solution to 
the selected subspace 507 exists. More specifically, 407b 
will determine if at least one input vector satisfying the 
coverage constraints 215 exists within the selected subspace 
507. 
As detailed, the operation 407a searches the selected 

subspace 507 for unique input vectors 509, that is, input 
vectors that satisfy the coverage constraints, but are not yet 
included in the test set 213. The operation 407b however, 
derives a solution to the selected subspace 507, to determine 
if at least one input vector, not necessarily a unique input 
vector 509 exists within the subspace 507. Accordingly, as 
stated, the test set generation module 207 includes the 
Subspace searching module 511, which may be configured to 
search a sub space 507 for unique input vectors. Addition 
ally, a subspace solver module 513 is included in the test set 
generation module 207. Auxiliary solvers 515 are also 
provided, which the subspace solver module 513 may use as 
resources to solve a subspace 507. With various implemen 
tations, multiple auxiliary solvers 515 may be used, some 
times simultaneously, by, for example, executing the solvers 
on separate computer systems. More specifically, the Sub 
space solver module 513 may use multiple different auxil 
iary solvers 515 simultaneously to determine if a solution to 
the selected subspace 507 exists. Subsequently, whichever 
solver determines that a solution does not exist first will 
trigger the operation 409b. 

Operations 409a and 409b are provided for aborting the 
operations 407b and 407a respectively. As can be seen, if the 
operation 407b determines that no solutions to the selected 
subspace 507 exist (i.e. that no input vectors satisfying the 
coverage constraints 215 exist within the subspace 507) then 
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an operation 409b for aborting the current operation 407a is 
provided. If the operation 407b determines that a solution 
does exist, then the operation 407a is allowed to continue. 

Similarly, in the event that a unique input vector 509 is 
found by the operation 407a, and then the currently execut 
ing operation 407b is aborted by the operation 409a and an 
operation 411 for continuing to search the selected Subspace 
507 for unique input vectors 509 is provided. Additionally, 
if no input vectors are found within the subspace by the 
operation 407a, the operation 409a may be used to abort the 
operation 407b. Once either the currently selected subspace 
507 is searched or it is determined that there are no input 
vectors satisfying the coverage constraints 215, it is checked 
to see if any subspaces 507 still need searching. If so, then 
the method 401 returns to operation 405. If not, then the 
method 405 ends. 

With some implementations of the disclosed subject mat 
ter, the methods detailed in FIG. 4, and elsewhere herein 
may be performed in parallel. More specifically, multiple 
iterations of the method 401 may be performed concurrently. 
Additionally, the methods detailed herein may be performed 
in a hierarchical fashion. More particularly, an input space 
(e.g., the input space 505) may be fractured at different 
levels, forming a hierarchy of subspaces 507. Unique input 
vectors within these subspaces may be identified using the 
techniques disclosed herein, by for example, initiating mul 
tiple instances of the method 401 using the hierarchical 
Subspaces. As one non-limiting example, if a first Subspace 
at one level of hierarchy and a second Subspace at a lower 
level of hierarchy were being searched and it was deter 
mined that no solutions existed for the higher level subspace 
(i.e., the higher level Subspace did not include any input 
vectors that satisfy the constraints), then the search of both 
the higher and lower level subspace may be aborted. 

With various implementations of the disclosed technol 
ogy, the auxiliary solvers 515 may adhere to a numerical 
solver standard, such as, for example, DIMACS or SMT 
LIB. In further implementations, the auxiliary solvers 515 
may be of the following types of numerical solvers, CVC3, 
ABSolver, CVC4, MiniSMT, Yices, or Z3. The CVC3 solver 
and associated technical details are addressed in greater 
detail in Proceedings of the 19th International Conference 
on Computer Aided Verification (CAV '07), by Clark Barrett 
and Cesare Tinelli, Volume 4590 of Lecture Notes in Com 
puter Science, pages 298-302. Springer, July 2007. Berlin, 
Germany, which article is incorporated entirely herein by 
reference. 

In various implementations the subspaces 507 may be 
transformed into a particular format (e.g., Suitable for use by 
the auxiliary solvers 515), such as, for example, bit vector 
format. In some examples, the constraints associated with a 
particular subspace 507 may be translated into a correspond 
ing set of constraints, such as, for example, in bit-vector 
representation. With further implementations, the set of 
constraints may also be simplified. With some implementa 
tions, the translator works by generating a constraint expres 
sion tree and propagating the expression tree in the post 
order fashion. As shown below, constraint translation 
consists of (i) the Constraint Pattern Recognizer and the (ii) 
CVC3 Constraint Generator. The constraint pattern recog 
nizer identifies some constraint patterns involving non 
linear operators which can be converted to simpler opera 
tions. The CVC3 Constraint Generator translates theses 
identified sub-expressions into the simpler form. If a sub 
expression cannot be simplified or is not identified by the 
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10 
Constraint Pattern Recognizer then the CVC3 Constraint 
Generator translates the original constraints without simpli 
fication. 

FIG. 6 illustrates a block diagram of constraint transla 
tion. 

The following shows in Table 1 the patterns that are 
recognized by the Constraint Pattern Recognizer and the 
corresponding CVC3 bit vector constraints generated by the 
CVC3 Constraint Generator. 

Patterns Recognized in the inFact Constraints and the Cor 
responding Bi-Vector Representation. 
Variables and Domains: 

A: 0 . . . 255 
Bit Vector Representation: A-a", a', a. a. a. a. a', a 

TABLE 1. 

inFact CVC3 
Constraints Bit Vector Constraints Comments 

A%2 Al-& (2' - 1) Bitwise And Operantion 
A?2 A->> In Arithmetic Shift right operation 
A * or A-ss in Shift left operation 
2 <<A 24+n 
2 >> A: A < n 2-1 

Consider the following constraint problem with two con 
straints. The values of variables a, a and a can be repre 
sented using 3 bits. The constraint C1 says that a and a can 
only have a single “1”. 
Variables and Domains: 

a : 1 . . . 4 
a: 1 . . . 4 
as: 1 . . . 4 

inFact Constraints: 

C1: (aA(a-1))V(as A(a-1)) =0 /*a- and as have only 
one “1*/ 

Cl: (at 8(a2-1)) (asat&(asat-1))--000 
C2: (a &001) (a&011) (a8: 111) 111 
As can be seen, the constraint C1 could not be recognized 

to have any specific patterns. Hence it was translated without 
any simplification. But for constraint C2 the mod operator is 
eliminated as recognized by the masking operation being 
done using the mod operator. 

In some implementations, operation of the methods and 
techniques disclosed herein may be repeatable. More par 
ticularly, given the same input space 505 and coverage 
constraints 215, the results will be reproducible. The concept 
of repeatability is discussed below. 
Repeatability 
1. Introduction: 

As indicated, various implementations of the invention 
may provide repeatability for a given input space and set of 
constraints. Accordingly, for a given random seed and a 
given problem the solver should generate the same solution 
order among multiple solver runs. Repeatability is an impor 
tant consideration for testability and correctness of the 
Solver. It is important to note that the following discussion 
is provided for purposes of explanation only and is not 
intended to be limiting. 
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Example 1 

The following constraint problem will be used as an 
example for the rest of the section. 
Variables and Domains: 

a : 1 . . . 4 
a: 1 . . . 4 
as: 1 . . . 4 

Constraints: 
Cl: (aA(a-1))V(as A(a-1))=0 f* a and as have only 

one “1*/ 
C2: (a%2)V(a%4)V(a3%8)=7 

Complexity: 
Total number of possible solutions: 4-64 

Solutions: 
(a.a.,as-1,2,4} and {3.2.4} 
FIG. 7 illustrates a search tree for the above constraint 

problem example. 
FIG. 7 shows the search space for the above problem with 

the solution values shown in hatch shade. The fracturing 
order is (a.a...as which is done the stages {s1, s2,s}. The 
values next to the circles show the values assigned to the 
variables (a.a.a. At each stage, after assigning a variable 
value the heuristic solver runs an optimizer to propagate the 
assignment to all the constraints and simplifies them. This is 
not shown separately in the figure and is the part of the edges 
coming out of the circles. The triangles at the bottom 
represent all the values of a which are searched in the stage 
s. The node on the top denoted by “r” is the root node. We 
will use the following notation: 

(a1a2...as: This represents the values of a, a2 and as 
which are being assigned at various stages {s1.S.S. For 
example {2,3,1} means that in stage s value of a -2, in 
stage S. Value of a 3 and in stage S. Value of a 1. 

{a,-,-): This means that the value of a is assigned in 
stage S1 but a and as are unassigned. 

a.a.A: This means that we have assigned the values of 
a and a in stages S and S and we are searching for all the 
values of as in the stage ss. Similarly, we can have {a.A.A} 
or A.A.A. 

a.a.A: This represents the condition where we have 
assigned the values of a and a in the stages S and s, but 
we will not end up searching all the values of as in stage S. 
because the auxiliary solve returned that no solution exists 
in the search space {a,a2,A}. 
{a.A.X: This implies that, we will skip all the values of 

as and the remaining Values of a. 
FIG. 8 illustrates a search tree for the above constraint 

problem example 
FIG. 8 shows the scenario where an auxiliary solver is 

launched in the stages for the value of a=2 ({2,-,-). While 
the auxiliary is running, the heuristic solver continues 
Searching for 2.2.A as shown by the dotted longer triangle 
with a border. The auxiliary solver returns with a no-solution 
exists, when the heuristic solver is in {2,3. A} as shown by 
the “X” over circle 2 in the s level. The heuristic solver 
aborts the search, pops the stage stack and continues search 
ing for another value in stage S. 
2. Problem Definition 

In order to obtain repeatability of solution order in the 
constraint Solutions, constraint random solver employs a 
pseudo random number generator in order to assign a 
variable value at each stage of the search tree. The order of 
search progression depends on the random number 
sequence. A pseudo random number generator produces a 
unique sequence for a given seed parameter. For a given 
fracturing order of the solution space, the solution order is 
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12 
unique to the random number seed. The order of search 
progression is unique to a given pseudo random number 
sequence in case the search space is static. Table 2 shows the 
search space progression for a given pseudo-random 
sequence for the constraint problem in Example 1. 

TABLE 2 

Search space progression for a given pseudo randon number sequence 

pseudo-random sequence 1 Search progression Comments 

1 {1, -, -} Push stage stack 
4 {1, 4, -} Push stage stack 
2 {1, 4, 2} Push stage stack 
1 {1, 4, 1} 
2 {1, 4, 2} 
4 {1, 4, 4} 
3 {1, 4, 3} Pop Stack 
2 {1, 2, -} Push Stack 
4 {1, 2, 4} Solution Found 

The use of an auxiliary solver Sub-system used to improve 
the performance of constraint solution speeds up the search 
progression of the heuristic solver by indicating whether a 
Solution exists in a given Sub-space or not. Consequently, the 
heuristic does not search the Sub-space if an auxiliary solve 
indicated that there was no solution. As the use of auxiliary 
Solves changes the search progression, it puts the following 
requirements on repeatability. This requirement says that the 
final solution set and the solve order is independent of the 
following scenarios: 

a. Enabled or disabling the auxiliary solve mechanism: 
The final solution should not be affected by the search space 
pruning when the auxiliary solver mechanism is activated. 

b. The timing of the results returned from the auxiliary 
Solves: As the auxiliary solves are invoked as separate 
processes, the system should be tolerant of the non-deter 
minism of the solve execution time. 

In the previous implementation activating the auxiliary 
solve mechanism breaks repeatability due to the fact that the 
future order of search progression was dependent on the 
current search space pruning decisions. This is because it 
reused the same pseudo random number generator across 
stages without initializing it with a new seed value. This is 
a problem when the auxiliary solve mechanism asynchro 
nously eliminates a Sub-space without progressing the 
pseudo random number generator by the corresponding 
amount, hence affecting the solution order. Table 3 shows 
this scenario where we see the effect on the search space 
progression when auxiliary Solve mechanism is activated for 
the Example 1 above. An auxiliary solve starts in the third 
row in {1,4,-}. It returns with a solution not found when in 
{1.4.2}. This causes it to abort search for the space {1.4.A. 
Now instead of searching for space {1,2,- it searches for 
{1,1-} because the next random number generated is “1” 
instead of a '2''. 

TABLE 3 

Effect on Search space progression due to auxiliary solves 

Without Auxiliary Solve With Auxiliary 
pseudo- Mechanism Solve Mechanism 

random Search Search 
sequence progression Comments progression Comments 

{-, -, -}. Push stage {-, -, -}. Push stage stack 
stack 
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TABLE 3-continued 

Effect on Search Space progression due to auxiliary Solves 

Without Auxiliary Solve With Auxiliary 
pseudo- Mechanism Solve Mechanism 

random Search Search 
sequence progression Comments progression Comments 

1 {1, -, -}. Push stage {1, -, -}. Push stage stack 
Stack 

4 {1, 4, -} Push stage {1, 4, -} Push stage stack 
Stack and 

launch auxiliary 
solve 

2 {1, 4, 2} {1, 4, 2} Aux. Solve 
returned Solution 
not found so 
pop stage stack 

1 {1, 4, 1} {1, 1, -} Push Stage stack 
2 { , 4, 2} { 1, 2} 
4 { , 4, 4} { 1, 4} 
3 {1, 4, 3} Pop Stack {1, 1,3} 
2 {1, 2, — Push Stack 1, 1, 2} 
4 {1, 2, 4} Solution {1, 1, 4} 

Found 

The non-determinism of auxiliary solves can also effect 
the solution order. The auxiliary solver is started in a 
separate process in parallel while the heuristic solver is 
searching in the current Sub-space. Consequently, the time it 
takes for the auxiliary solver to solve a given problem 
depends on how the process is scheduled by the operating 
system. If the auxiliary solve returns with no-solution exists 
in a given sub-space before the heuristic solver finishes, then 
the heuristic solver stops searching in the given Sub-space 
and starts searching in a next Sub-space. The next random 
number in the sequence determines the next Sub-space to be 
searched. For a solver run, with the auxiliary solve mecha 
nism deactivated, the heuristic solver will finish searching 
within the current Sub-space where no-Solution exists. At 
this time the pseudo-random number generator may return a 
different value hence selecting a sub-space different from the 
one selected when the auxiliary solver mechanism is acti 
vated. This can be seen in the Table 4 below which compares 
the search progression of two cases of auxiliary solve 
mechanism where the auxiliary solver finishes at different 
times. 

TABLE 4 

Search space progression when auxiliary solves finishes at different times 

Case1: With Auxiliary Solve Case2: With Auxiliary 
pseudo- Mechanism Solve Mechanism 

random Search Search 
sequence progression Comments progression Comments 

{-, -, -}. Push stage stack {-, -, -}. Push stage 
stack 

1 {1, -, -}. Push stage stack {1, -, -}. Push stage 
stack 

4 {1, 4, -}. Push stage stack 1, 4, -}. Push stage 
and stack and 
launch auxiliary launch 
solve auxiliary 

solve 
2 {1, 4, 2} Aux. solve {1, 4, 2} 

returned 
Solution not 
found 
so pop stage stack 
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TABLE 4-continued 

Search space progression when auxiliary solves finishes at different times 

Case1: With Auxiliary Solve Case2: With Auxiliary 
pseudo- Mechanism Solve Mechanism 

random Search Search 

sequence progression Comments progression Comments 

1 {1, 1, -}. Push Stage stack 1, 4, 1} Aux. Solve 
returned 

Solution not 

found 

So pop stage 
stack 

2 {1, 1, 2} {1, 2, — Push stage 
stack 

4 {1, 1, 4} {1, 2, 4} Solution 
Found 

3 {1, 1,3} {1, 2, 3} 
{1, 1, 2} {1, 2, 2} 

4 {1, 1, 4} {1, 2, 4} 

3. Solution 

In order to make the solve order independent of non 
determinism and search space pruning done by the auxiliary 
Solve mechanism, we use separate pseudo-random number 
generators for each stage. These generators are initialized by 
a seed which is passed on by the previous stage and is based 
on the value to which a variable is assigned in the previous 
stage. Consider the following Table 5, which shows the 
random sequence generated at the level s, based on the 
branch take in the levels. As a result of this, the random 
number sequence at S, does not get effected by the fact that 
the auxiliary solve mechanism might be pruning out the 
Solution space at the stages, without searching it completely. 

TABLE 5 

Random number sequence at S, when a branch is taken at S 

Brach at S, Random sequence at S, 

a = 1 {1, 2, 4, 3} 
2 {2, 3, 1, 2} 
3 {1, 3, 4, 2} 
4 {4, 1, 2, 3} 

This enables us to launch auxiliary Solves at any stage 
without causing problems with the solution ordering. This is 
shown in Table 6, which compares the sequence of opera 
tions involved in launching jobs at various stages of the 
search. In Casel we are always launching jobs in the stage 
S while in Case2 we are doing the same for the stages. The 
random number generators at various stages initialized 
based on Table 5. It also shows the solve progression when 
the auxiliary solve mechanism is deactivated (Column 1). It 
can be seen that the Solution order remains the same. 
Moreover, in Casel even when the Job2 takes longer time 
than usual to return a solution, the Solution order does not 
change. 
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TABLE 6 

16 

Solve progression comparison when jobs are launched at stages and 
Stage s2 

: No solution exists 
: No solution exists 
: No solution exists 
: No solution exists 
: No solution exists 
: No solution exists 
: No solution exists 
: No solution exists 
: No solution exists 

b10: No solution exists 
b11: No solution exists 

Ole 

b13: No solution exists 
Ole 

b15: No solution exists 

Without Case1: With Aux being Case2: With Aux being 
AuX solve launched at stages launched at stage S. 

Solve Solve Aux. Solve Solve Aux. Solve 
Progression Progression Result Progression Result 

{4. 4. A {4, A, X} Job 1: No solution exists {4, 4, A Job 1 
{4, 1, A {4, 1, A Job2 
{4, 2, A {4, 2, A Job3 
{4, 3, A {4, 3, A Job4 
{2, 2, A {2, 2, A Job2: No solution exists {2, 2, A Job5 
{2, 3, A {2, 3,A} {2, 3, A Job6 
{2, 1, A {2, X, X} — {2, 1, A Job7 
{2, 2, A {2, 2, A Job8 
{3, 1, A {3, 1, A Job3: At least one {3, 1, A Job.9 

solution exists 
{3,3, A {3,3, A — {3,3, A Jo 
{3, 4, A {3, 4, A — {3, 4, A Jo 
{3, 2, A {3, 2, A — {3, 2, A Job 12: At leas 

Solution exists 
{1, 1, A {1, 1, A Job4: A Solution exists {1, 1, A}} Jo 
{1, 2, A {1, 2, A — {1, 2, A Job 14: At leas 

Solution exists 
{1, 4, A {1, 4, A — {1, 4, A Jo 
{1, 3, A {1, 3, A — {1, 3, A Jo 

Although certain devices and methods have been 
described above in terms of the illustrative embodiments, 
the person of ordinary skill in the art will recognize that 
other embodiments, examples, Substitutions, modification 
and alterations are possible. It is intended that the following 
claims cover Such other embodiments, examples, Substitu 
tions, modifications and alterations within the spirit and 
Scope of the claims. 

The invention claimed is: 
1. A method comprising: 
executing, by a computer system, a first process that 

performs a solving operation to determine if any input 
vector within a set of input vectors satisfy an input 
constraint; 

executing, by the computer system, in parallel with execu 
tion of the first process, a second process that performs 
a searching operation to search for unique input vectors 
that satisfy the input constraint; 

aborting the Solving operation on the set based on a 
determination that at least one unique input vector has 
been found by the searching operation to satisfy the 
input constraint; and 

applying, as part of a process for verifying an electronic 
circuit design of an electronic circuit that is to be 
fabricated or manufactured, the at least one unique 
input vector to the electronic circuit design. 

2. The method of claim 1, wherein the set forms a first 
Subspace of an input space for the electronic circuit design 
and an additional set of input vectors forms a second 
subspace of the input space, and wherein the method further 
comprises: 

performing the solving operation on the additional set; 
and 

performing, while performing the solving operation on 
the additional set, the searching operation on the addi 
tional set for additional unique input vectors that satisfy 
the input constraint based on a determination by the 
Solving operation that at least one input vector within 
the additional set satisfies the input constraint. 
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b16: No solution exists 

3. The method of claim 1, wherein the set forms a first 
Subspace of an input space for the electronic circuit design 
and an additional set of input vectors forms a second 
subspace of the input space, and wherein the method further 
comprises: 

performing the searching operation on the additional set 
for additional unique input vectors that satisfy the input 
constraint; 

performing, while performing the searching operation on 
the additional set, the Solving operation on the addi 
tional set; and 

aborting the Solving operation on the additional set based 
on a determination that the search of the additional set 
has found at least one input vector within the additional 
set that satisfies the input constraint. 

4. The method of claim 1, wherein the set forms at least 
a portion of an input space for the electronic circuit design. 

5. The method of claim 4, wherein the input constraint 
comprises coverage constraints of a coverage model of the 
electronic circuit design. 

6. The method of claim 4, wherein the electronic circuit 
design is a microcircuit design of a microcircuit that is to be 
fabricated or manufactured. 

7. The method of claim 1, wherein the set forms a first 
Subspace of an input space for the electronic circuit design 
and an additional set of input vectors forms a second 
subspace of the input space, and wherein the method further 
comprises: 

performing the solving operation on the additional set; 
performing, while performing the Solving operation on 

the additional set, the searching operation on the addi 
tional set for additional unique input vectors that satisfy 
the input constraint; and 

aborting the searching operation on the additional set in 
response to a determination by the Solving operation 
that no input vector within the additional set satisfies 
the input constraint, wherein after aborting the search 
ing operation on the additional set, a portion of the 
additional set is unsearched by the searching operation. 
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8. One or more computer readable memory devices com 
prising computer executable instructions, that when 
executed by one or more computers, cause the one or more 
computers to: 

execute a first process that performs a solving operation to 
determine if any input vector within a set of input 
vectors satisfy an input constraint; 

execute, in parallel with execution of the first process, a 
second process that performs a searching operation to 
search for unique input vectors that satisfy the input 
constraint; 

abort the solving operation on the set based on a deter 
mination that at least one unique input vector has been 
found by the searching operation to satisfy the input 
constraint; and 

apply, as part of a process for verifying an electronic 
circuit design of an electronic circuit that is to be 
fabricated or manufactured, the at least one unique 
input vector to the electronic circuit design. 

9. The one or more computer readable memory devices of 
claim 8, wherein the set forms a first subspace of an input 
space for the electronic circuit design and an additional set 
of input vectors forms a second Subspace of the input space, 
and wherein computer executable instructions, when 
executed by one or more computers, cause the one or more 
computers to: 

perform the Solving operation on the additional set; and 
perform, while performing the solving operation on the 

additional set, the searching operation on the additional 
set for additional unique input vectors that satisfy the 
input constraint based on a determination by the solv 
ing operation that at least one input vector within the 
additional set satisfies the input constraint. 

10. The one or more computer readable memory devices 
of claim 8, wherein the set forms a first subspace of an input 
space for the electronic circuit design and an additional set 
of input vectors forms a second Subspace of the input space, 
and wherein computer executable instructions, when 
executed by the one or more computers, cause the one or 
more computers to: 

perform the searching operation on the additional set for 
unique second input vectors that satisfy the input 
constraint; 

perform, while performing the searching operation on the 
additional set, the solving operation on the additional 
set; and 

abort the solving operation on the additional set based on 
a determination that the searching operation on the 
additional set has found at least one input vector within 
the additional set that satisfies the input constraint. 

11. The one or more computer readable memory devices 
of claim 8, wherein the set forms at least a portion of an input 
space for the electronic circuit design. 

12. The one or more computer readable memory devices 
of claim 11, wherein the input constraint comprises coverage 
constraints of a coverage model of the electronic circuit 
design. 

13. The one or more computer readable memory devices 
of claim 11, wherein the electronic circuit design is a 
microcircuit design of a microcircuit that is to be fabricated 
or manufactured. 

14. The one or more computer readable memory devices 
of claim 8, wherein the set forms a first subspace of an input 
space for the electronic circuit design and an additional set 
of input vectors forms a second Subspace of the input space, 
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18 
and wherein the computer executable instructions, when 
executed by the one or more computers, cause the one or 
more computers to: 

perform the Solving operation on the additional set; 
perform, while performing the solving operation on the 

additional set, the searching operation on the additional 
set for additional unique input vectors that satisfy the 
input construct; and 

abort the searching operation on the additional set in 
response to a determination by the Solving operation 
that no input vector within the additional set satisfies 
the input constraint, wherein after the searching opera 
tion on the additional set is aborted, a portion of the 
additional set is unsearched by the searching operation. 

15. An apparatus comprising: 
one or more processors; and 
one or memory storing executable instructions, that when 

executed by one or more processors, cause the appa 
ratuS to: 
execute a first process that performs a solving operation 

to determine if any input vector within a set of input 
vectors satisfy an input constraint; 

execute, in parallel with execution of the first process, 
a second process that performs a searching operation 
to search for unique input vectors that satisfy the 
input constraint; 

abort the Solving operation on the set based on a 
determination that at least one unique vector has 
been found by the searching operation on the set to 
satisfy the input constraint; and 

apply, as part of a process of Verifying an electronic 
circuit design of an electronic circuit that is to be 
fabricated or manufactured, the at least one unique 
input vector to the electronic circuit design. 

16. The apparatus of claim 15, wherein the set forms a first 
Subspace of an input space for the electronic design and an 
additional set of input vectors forms a second Subspace of 
the input space, and wherein the executable instructions, 
when executed by the one or more processors, cause the 
apparatus to: 

perform the Solving operation on the additional set; and 
perform, while performing the solving operation on the 

additional set, for additional unique input vectors that 
satisfy the input constraint based on a determination by 
the Solving operation on the additional set that at least 
one input vector within the additional set satisfies the 
input constraint. 

17. The apparatus of claim 15, wherein the set forms at 
least a portion of an input space for the electronic circuit 
design. 

18. The apparatus of claim 17, wherein the input con 
straint comprises coverage constraints of a coverage model 
of the electronic circuit design. 

19. The apparatus of claim 17, wherein the electronic 
circuit design is a microcircuit design of a microcircuit that 
is to be fabricated or manufactured. 

20. The apparatus of claim 15, wherein the set forms a first 
Subspace of an input space for an electronic circuit design 
and an additional set of input vectors forms a second 
Subspace of the input space, and wherein the executable 
instructions, when executed by the one or more processors, 
cause the apparatus to: 

perform the Solving operation on the additional set; 
perform, while performing the Solving operation, on the 

additional set, the searching operation on the additional 
set for additional unique input vectors that satisfy the 
input constraint; and 
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abort the searching operation on the additional set in 
response to a determination by the Solving operation 
that no input vector within the additional set satisfies 
the input constraint, wherein after the searching opera 
tion on the additional set is aborted, a portion of the 5 
additional set is unsearched by the searching operation. 
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