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SYSTEMI METHOD FOR AO 
ACCELERATION IN HYBRD STORAGE 
WHEREIN COPES OF DATA SEGMENTS 
ARE DELETED IF IDENTIFIED SEGMENTS 

DOES NOT MEET QUALITY LEVEL 
THRESHOLD 

CROSS-REFERENCE TO RELATED 
APPLICATIONS 

This application claims the priority benefit of U.S. pro 
visional application 6 1/859,521, titled “I/O Acceleration in 
Hybrid Storage,” filed Jul. 29, 2013, the disclosure of which 
is incorporated herein by reference. 

BACKGROUND 

Modern direct-access storage devices fall into two cat 
egories: the traditional, rotating hard disk drives (HDDs) 
and new solid state storage devices (SSDs). While they are 
presented identically to the OS, they have very different 
performance characteristics and a magnitude of difference in 
the cost per gigabyte. 

Storage system vendors tend to rely on either rotating or 
Solid state media, creating two corresponding categories of 
storage systems: HDD-based systems that are characterized 
by lower performance and lower cost, and SSD-based sys 
tems that have significantly higher performance and cost as 
measured by generally available performance tools. 
Most unsophisticated “brute force' performance testing 

tools create artificial workloads, such as randomly writing 
4K blocks across the entire capacity of a storage volume or 
a file. Although the workload is valid, it hardly represents the 
behavior of a real-world application. 

Real-world computer data relevant to a particular pro 
cessing task (or application) tend to occur in quasi stable 
groups or clusters. This phenomenon is called “locality of 
reference, and it can typically take two forms: spatial and 
temporal localities. Spatial locality means that the applica 
tion data is placed closely to one other, Such as in a single 
file, folder or a storage device. Temporal locality is the 
notion that most of the application data will be accessed 
within a certain timeframe, such as when the application is 
being used. 

Spatial and temporal localities are often correlated. In 
other words, an application tends to access a limited data set 
during a given period of time. The footprint of the data 
Subset representing locality of reference varies depending on 
the applications and their behavior. 

The computer industry broadly relies on the locality of 
reference phenomenon by deploying various techniques 
where a subset of active data is placed in a “cache', or a 
high-speed temporary storage, and stays there until it is 
evicted by a higher activity workload. 
The caches are a standard fixture in modern CPUs where 

the instructions and data are loaded (“prefetched') from 
DRAM into high-speed on-chip memory on the first read 
access and are temporarily stored there upon writes with a 
subsequent write-back to the DRAM. There is usually more 
than one cache level, with the highest speed cache being the 
Smallest in capacity and vice versa. 

Caching technology is also used in storage systems, 
though to a more limited extent. Traditional storage caching 
solutions are based on some type of NVRAM (non-volatile 
SRAM or DRAM) that is relatively small (512 MB-8 GB), 
proprietary and expensive. Due to its limited size, the cache 
can hold only a small fraction (typically less than 0.1%) of 
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2 
storage system data, so the data is frequently and aggres 
sively evicted. Consequently, the use of caching technology 
in storage systems is generally limited to addressing goals 
Such as guaranteeing data consistency in parity RAID stripes 
across power loss, coalescing Small sequential writes into 
larger ones to improve write latency, and read-ahead for 
sequential streams (to load transfer pipeline). 
What is needed is a mechanism for efficient handling of 

storage I/O based on storage devices with mixed types. 

BRIEF DESCRIPTION OF FIGURES 

FIG. 1 is a block diagram illustrating accelerator tiers. 
FIG. 2 is a block diagram illustrating reactive I/O accel 

eration. 
FIG. 3 is a block diagram illustrating request separation. 
FIG. 4 is a method for improving I/O performance in a 

Storage System. 
FIG. 5 is a block diagram illustrating proactive I/O 

acceleration. 
FIG. 6 is a method for providing proactive I/O accelera 

tion. 
FIG. 7 is a block diagram of a computing environment for 

use in the present technology. 

SUMMARY 

The present system enables more efficient I/O processing 
by providing a mechanism for maintaining data within the 
locality of reference. One or more accelerator modules may 
be implemented within a solid state storage device (SSD). 
The accelerator modules form caching storage tiers that can 
receive, store and reproduce data. The one or more accel 
erator modules may place data into the SSD or hard disk 
drives based on parameters associated with the data. 
A method for maintaining data in a storage system may 

include organizing storage devices of different types into 
groups based on technology type and performance. Groups 
with low random IOPS and high throughput may be selected 
for a storage pool tier. Groups with high random IOPS but 
lower throughput may be selected for I/O accelerator tier. 
Copies of data segments may be maintained in a plurality of 
accelerator tiers. 
A method for improving I/O performance may include 

assigning at least one first storage system as a storage pool, 
wherein the at least one first storage system is of at least one 
first storage type. At least one second storage system may be 
assigned as one or more accelerator tiers for the storage 
pool. The at least one second storage system may be of at 
least one second storage type different from the at least one 
first storage type. The at least one first storage type may be 
chosen based on one or more first characteristics preferable 
to the at least one second storage type. The at least one 
second storage type may be chosen based on one or more 
second characteristics preferable to the at least one first 
Storage type. 
A computer system may include memory, one or more 

processors and an application. The application may be stored 
in memory and executable by the one or more processors to 
organize storage devices of different types into groups based 
on technology type and performance, select groups with low 
random IOPS and high throughput for a storage pool tier, 
select groups with high random IOPS but lower throughput 
for I/O accelerator tier, and maintain copies of data segments 
in a plurality of accelerator tiers. 
A computer system may include memory, one or more 

processors and an application. The application may be stored 
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in memory and executable by the one or more processors to 
assign at least one first storage system as a storage pool, 
wherein the at least one first storage system is of at least one 
first storage type, and assign at least one second storage 
system as one or more accelerator tiers for the storage pool, 
wherein the at least one second storage system is of at least 
one second storage type different from the at least one first 
storage type, the at least one first storage type is chosen 
based on one or more first characteristics preferable to the at 
least one second storage type, and the at least one second 
storage type is chosen based on one or more second char 
acteristics preferable to the at least one first storage type. 

DETAILED DESCRIPTION 

The present system enables more efficient I/O processing 
by providing a mechanism for maintaining data within the 
locality of reference. One or more accelerator modules may 
be implemented within a solid state storage device (SSD). 
The accelerator modules form caching Storage tiers that can 
receive, store and reproduce data. The one or more accel 
erator modules may place data into the SSD or hard disk 
drives based on parameters associated with the data. 

Solid-state storage devices can be thought of as non 
volatile memory (an increasing number of SSD models are 
fast enough), and can be used as a cache. Since they can also 
store data for a prolonged period of time without power and 
are Sufficiently large, they could simultaneously serve as a 
temporary storage tier where the data can stay for a long 
period of time as compared to traditional caching solutions 
(such as battery-backed SRAM). Note that although there 
are different technologies of SSDs, for purposes of the 
present technology, and particularly with respect to com 
parisons with HDDs, the different SSD technologies are 
herein treated as fungible within the overall SSD group. 

Combining the functions of data cache and data storage 
devices into one storage tier conceptually transcends the 
existing methods of storage caching or storage tiering as a 
means of improving I/O performance of a storage system. 
The traditional caching schemes are no longer effective with 
the present technology as the data could accumulate in large 
quantities without needing to be evicted for an observable 
period of time (e.g., initially the entire workload could fit 
into the fastest available tier). Since the application data 
could simultaneously reside on multiple storage tiers with 
different performance characteristics, the traditional tiering 
methods are not applicable either. 
The present technology combines the sharing of data 

cache and storage inside a single storage tier, and utilizes an 
I/O accelerator. The I/O accelerator maintains the data 
within a locality of reference inside the accelerator. In some 
instances, the present technology also assumes the footprint 
of the data Subset representing locality of reference is on 
average about 5% of the total capacity of the system. 

This concept can be also regarded as a dynamic vertical 
tiering, where data is not placed exclusively on a particular 
tier, but is simultaneously and dynamically present on 
multiple levels of acceleration. 

FIG. 1 is a block diagram illustrating accelerator tiers. 
FIG. 1 illustrates multiple accelerators and a storage pool of 
HDDs handling data. A first accelerator may handle writes 
and may pass the data to a storage pool. A second tier of 
accelerator may handle reads and pass the data to the storage 
pool as well. If the capacity of data residing in the fastest 
storage tier matches or exceeds the footprint of the appli 
cation's locality of reference, then from the application 
standpoint the performance of Such storage system will be as 
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4 
good as the performance of the fastest storage tier. Effec 
tively, this can make an HDD-based storage system appear 
to an application as an all-SSD system using the SSD to 
store only about 5% of the HDD storage. With cost of SSDs 
continuing to stay a magnitude higher than HDDs, this 
approach enables significant cost savings. 

Based on the above analysis, it is beneficial to construct 
a storage system that utilizes HDDs as a storage tier and 
SSDs as one or more acceleration tiers, therefore signifi 
cantly improving performance of the applications residing 
on Such storage system without resorting to an expensive 
all-SSD option. 

It is assumed that the underlying storage pool delivers a 
commonly acceptable level of redundancy (e.g., n-way 
mirror, single parity, double parity, erasure coding, non 
erasure coding, etc.), so that the data is reasonably protected 
from a failure of one or more storage devices. If the data is 
present in one or more of the accelerator tiers and has not 
been copied to the storage pool, at least one accelerator tier 
must deliver a similar or better redundancy level than the 
storage pool. 
The concept of I/O acceleration can be extended to 

encompass multiple, and possibly nested, reference locali 
ties as well as multiple storage accelerators based on storage 
tiers with varied performance, working together to acceler 
ate the I/O processing in a storage system. In this case, the 
fastest tier would keep the small, but active data sets while 
slower tiers will contain increasingly larger data sets, with 
one or more final (slowest) tiers collectively spanning the 
entire capacity in use by applications. Not all tiers will 
simultaneously cache and store data, but they can all be 
driven by unified acceleration schemes, therefore simplify 
ing the design. An example of multiple acceleration tiers 
includes for example, four accelerator tiers from fastest to 
slowest, using, respectively, NVRAM (e.g., non-volatile 
SRAM or DRAM), DRAM (Dynamic Random Access 
Memory), SLC (single-level cell SSD technology), SSDs 
(solid state storage devices, MLC (multi-level cell SSD 
technology) SSDs and HDDs (hard disk drives), as part of 
a single storage system serving data to applications. 
HDDs may perform best on large, sequential I/O requests. 

This is based on the mechanical design of the HDDs and 
resulting latency. Typical random I/O performance is only 
around 200-400 IOPS (Input/Output operations Per Second) 
for an HDD (relatively flat on request sizes up to 128 KB), 
while it is possible to see data transfer rates upwards of 140 
MB/s for large, sequential I/O. 

Solid-state Storage Devices (SSDs) have no moving 
mechanical parts and perform equally well with both ran 
dom and sequential I/O patterns. Modern SSDs deliver 
20,000-70,000 IOPS on random 4K access. SSDs however 
Suffer from write amplification, accumulating wear and data 
retention issues. These are largely addressed in latest SSD 
models, although they require internal NAND over-provi 
sioning, implementation of the SCSI UNMAP command and 
wear leveling algorithms. The UNMAP command tells the 
storage device that a certain block range is no longer being 
used by the application (such as when a large file is deleted 
or a volume is formatted). While it has virtually no use for 
HDD, modern SSD technologies rely heavily on it to begin 
a lengthy process of erasing cells to proactively mitigate the 
effects of “write amplification’ (the need to erase before 
writing) on performance. The impact of all these issues is 
proportional to the overall I/O volume directed to the SSD. 
In other words, relatively smaller I/O requests (random or 
not) are “easier on SSDs than relatively larger ones. 
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Data can be placed into the accelerator based on a 
just-in-time decision when a write I/O comes across. This 
type of acceleration can be regarded as “a posteriori', or 
reactive. FIG. 2 is a block diagram illustrating reactive I/O 
acceleration. It is best applied to write requests as the data 
hasn’t been stored anywhere yet. Although Such acceleration 
is write-oriented, it indirectly helps read I/O by allowing 
more bandwidth for it. Additionally, read requests for the 
data that had just been placed in accelerator will be serviced 
from the accelerator, Supporting the locality of reference. 
The following write-oriented (or “writeback”) I/O accel 

erator design takes advantage of the differences between 
SSDs and HDDs by separating the incoming virtual volume 
I/O according to request parameters (size, location, presence 
in cache). 
The design generally attempts to forward Smaller write 

requests to SSD, while large write requests (equal or greater 
than a predetermined size for a particular underlying storage 
layout) are forwarded to the virtualized (pooled) HDDs. As 
the data segments stored on the SSD coalesce into large 
enough, predetermined contiguous spans (e.g., hundreds of 
sectors) exceeding the above separation criteria, they can be 
optionally copied (flushed) into the HDD pool by a “lazy 
writer process. A separation criterion is basically the size of 
the request, but could involve other factors, for example, 
several sequential requests could be combined and regarded 
as a single large one. Given the relatively large capacity of 
SSDs (hundreds of GBs), there is little pressure for flushing, 
and it could be delayed by minutes or even hours and days. 

FIG. 3 is a block diagram illustrating request separation. 
In effect, this design uses the bandwidth and capacity of 
SSDs for processing of relatively small random requests that 
would challenge an HDD-based storage pool. At the same 
time, it bypasses the SSDs for large sequential requests that 
are most adequate for the HDDs, but could trigger write 
amplification on and wear out the SSDs. Among other 
benefits, this improves the performance of the SSD tier, 
extends its life and enables the use of SSDs with lesser 
program-erase (PE) cycles guarantee since they only need to 
absorb a subset of I/O containing relatively small data 
Segments. 
The SSD tier used for the above purpose may satisfy the 

following requirements: 
It must be redundant (e.g., mirror, single parity, etc.) 
It must ensure that writes reported as complete are guar 

anteed to be complete upon Sudden power loss; 
It should perform well on writes (tens of thousands of 

IOPS). 
The write requests are stored in a data area controlled 

using a conventional data space allocation method. For each 
request, one or more data segments are allocated. As the lazy 
writer copies the requests back to the HDD pool, the space 
can be optionally released making way for new data seg 
mentS. 

The mapping between the logical blocks of a virtual 
Volume and the segments stored in the writeback accelerator 
is kept in a binary tree that could be either in-memory 
(DRAM) or loadable on demand (B+ tree). Prior to the 
completion of write requests, new and modified tree entries 
are recorded into an additional circular journal index 
(“writeback journal’’) also located on the SSD. This is 
necessary to reconstruct the binary tree after a failover or 
power loss. During the recovery, the journal is read only 
once as the tree is rebuilt. 

If a data segment of a Volume is already stored in the 
writeback accelerator, Subsequent write requests require no 
new allocation and the requests are directed to the same 
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6 
writeback data area that’s already been mapped. This 
reduces allocation overhead when the same set of blocks is 
written repeatedly. There are a few exceptions to this rule, 
e.g., in presence of Snapshots and compressed data. With 
Snapshots, the same data segment can be referenced from 
more than one virtual volume, so when one volume is 
overwritten, the data segment needs to be preserved to 
facilitate the other volume. When the data is compressed, it 
can’t be partially modified as it needs to be decompressed, 
updated and then compressed again, likely altering the 
compressed length. 
Due to the locality of reference and depending on the 

workload specifics, the data segments stored in the write 
back accelerator are expected to combine into contiguous 
spans of various lengths due to effects of spatial locality. The 
spans are assembled in groups depending on their length. 
For example, there may be 4 groups, starting below 256 KB, 
from 256K to 4 MB, from 4 MB to 8 MB, and more than 8 
MB. The lazy writer attempts to select the spans from the 
longest groups for copying to HDD pool to capitalize on the 
efficiency of sequential I/O for HDDs. 

Sending large requests to the HDD pool has the additional 
benefit of avoiding read-modify-write cycles on RAID 
based and especially transaction-based (redirect on write) 
pools. If the request fully covers the pool stripe, there is no 
need for a costly “read before write' operation (i.e., reading 
previous stripe data to populate parts of Stripe that is not 
covered by accelerator segment, augmenting it with the data 
from the accelerator segment, and writing the full stripe out) 
impacting the performance. The entire stripe is written out 
and the old stripe (if any) can be simply released. 

FIG. 4 is a method for improving I/O performance in a 
storage system. Storage devices are organized into groups at 
step 410. The group may depend on technology type and 
performance of the particular drive. Groups for storage pool 
tier are selected at step 420. In particular, groups with a low 
random IOPS but high throughput may be selected for the 
storage pool tier. The “low” and “high” may be relative and 
predetermined by an administrator based on design prefer 
ence. Groups may be selected for the I/O accelerator tier at 
step 430. Groups selected for the accelerator tier may have 
high random IOPS but lower throughput. Finally, data in the 
accelerator tiers and storage pool tiers may be maintained at 
step 440. If the segments are not in the storage pool, at least 
one accelerator tier maintains the redundancy level matching 
or exceeding the redundancy level of the storage pool. 
The writeback accelerator capacity is flexible and can be 

increased essentially by adding more data space and grow 
ing the journal index. It is helpful when the area of reference 
increases as a consequence of adding new workloads. That 
way, the performance of the storage system can be readily 
improved with “plug and play” simplicity and without 
needing a "forklift upgrade (i.e., replacing the entire system 
hardware) or unnecessarily growing the HDD pool capacity 
just to add more spindles to increase the performance. 
The reactive acceleration works well for write requests by 

building up the locality of reference in the accelerator. 
Improving the performance of read requests calls for “a 
priori' knowledge of where the future requests will be 
placed and proactively moving corresponding data segments 
to the accelerator. 

Since the data being requested from the storage system 
were previously written there, it means at Some point they 
were present in the memory of the storage system. This 
creates an opportunity for a proactive storing of the qualified 
data segments in an accelerator, sometime after they have 
been written by the host. Alternatively, the data that was just 
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read and transmitted to the host can linger in memory until 
the memory must be reallocated for other needs. 

In other words, the segments can be first retained in 
memory and then optionally copied into the SSD accelerator 
tier instead of being simply discarded. This tier doesn’t need 
to be redundant as it contains a copy of data already present 
in a storage tier (HDD pool). A failure to read from the 
accelerator will result in redirecting the read request to the 
pool. The process of migrating data segments from memory 
to SSD accelerator tier can be thought as “spilling over of 
excessive segments from memory to the SSD, so we will 
refer to this design as the “spillover accelerator. 
When the data segments pass through memory, whether 

during initial write or Subsequent reads, they are considered 
for placement in the accelerator and copied there if they 
meet the criteria for acceleration. To make this determina 
tion, the accelerator logic must dynamically track and 
update the statistics of various logical block spans of the 
virtual volume. The statistics become part of metadata and 
persist across reboots and failovers. The statistics contribute 
to calculating the “quality level of a data segment (or 
collection thereof) that is later compared to a series of 
thresholds to make the determination. For example, the 
number of accesses to a data segment could be counted, and 
any segment with more than three accesses will be copied 
into the accelerator. 
The quality level could be calculated using any of a 

variety of methods. They should generally follow the same 
locality of reference ideas as for reactive I/O acceleration. In 
other words, the methods used should elevate the quality of 
random data segments determined to be Small, that are 
accessed within a certain timeframe and lower the quality of 
segments accessed as long contiguous data streams. This 
will result in proactive copying of Small randomly accessed 
segments into accelerators. In presence of multiple accel 
erator tiers, criteria and thresholds will be different for each 
tier, but the above process remains fundamentally the same. 
The criteria could include, for example, the number of 
references to a particular data segment across virtualized 
storage. The more references there are to a segment, the 
higher is the quality of the segment, all other parameters 
being equal. Thresholds would be steeper for smaller and 
faster accelerators, and to get into them, the data segments 
should be relatively smaller and/or accessed within a rela 
tively narrower time frame. 

For storage systems based on a dynamic storage pool, it 
is often optimal to store data segments that match the pool 
layout stripe size. As the Stripes are usually a magnitude or 
two larger than the storage device block size, this can also 
significantly reduce the metadata overhead of the accelera 
tor. Prior to copying to an accelerator SSD, the stripes are 
held in memory and optionally compressed. Since the com 
pression and copy occur outside of the host data path, they 
do not directly add to the latency of the host I/O. The 
diagram below (FIG. 5) shows the elements of proactive I/O 
acceleration. 

FIG. 5 is a block diagram illustrating proactive I/O 
acceleration. Here “compression' can be either compression 
or decompression, depending on the direction of I/O. While 
compression and decompression add a performance hit, it is 
typically much less than the time it takes to bring the data 
from HDD (and even SSD), particularly in software-defined 
architectures, such as x86_64 where the CPUs are excep 
tionally fast and multi-threaded. In other words, the benefits 
outweigh the minor performance hit. The accelerator data 
(both compressed and uncompressed) are stored in a data 
area of the spillover accelerator tier controlled by a data 
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8 
space allocation algorithm. For each data segment (e.g., pool 
stripe), the accelerator may allocate multiple contiguous 
spans. 
The mapping between the stripes of a storage pool and the 

data segments stored in the spillover accelerator is kept in a 
binary tree that could be either in-memory or loadable on 
demand (B+ tree). New and modified tree entries are 
recorded into a journal index (“spillover journal') also 
located on the redundant SSD. This is necessary to recon 
struct the binary tree after a failover or power loss. During 
the recovery, the journal is read only once as the tree is 
rebuilt. The entries are added to the journal after their data 
segments are Successfully copied to the accelerator data 
area. It is critical that the entries are reliably updated or 
invalidated when the data is no longer current, Such as when 
the corresponding area of the virtual volume is overwritten 
or unmapped. 

FIG. 6 is a method for providing proactive I/O accelera 
tion. A plurality of data segment parameters is dynamically 
calculated at step 610. The calculated parameters may be 
stored in metadata that may persist across storage system 
reboots and failovers. The data segment parameters may be 
stored at step 620. 
A data quality level may be determined for each data 

segment at step 630. The data quality level may be deter 
mined based on the parameters. I/O request data are retained 
in memory after the I/O operation is complete at step 640. 
A determination is made as to whether the quality level for 
the I/O request is greater than a first threshold at step 650. 
If the quality level is greater than the first threshold, the data 
is maintained uncompressed at Step 660. 

If the quality level is not greater than the first threshold, 
a determination is made as to whether the quality level is less 
than the first threshold but greater than a second threshold at 
step 670. If so, an attempt is made to compress the data at 
step 680. If the compression is successful, only the com 
pressed version is maintained. If the compression is not 
Successful, the uncompressed version is maintained. 

If the quality level is below the second threshold but 
exceeds a third threshold, an attempt is made to copy the 
data into an accelerator tier 690. If successful, the data is 
maintained in the accelerator tier 695. If the copy is not 
Successful, the data is maintained in the storage pool. 

FIG. 7 is a block diagram of a computing environment for 
use in the present technology. System 700 of FIG.7 may be 
implemented in the contexts of the likes of a server or other 
computing device that may provide one or more SDDS, 
HDDs, or other storage components suitable for implement 
ing the present technology. The computing system 700 of 
FIG. 7 includes one or more processors 710 and memory 
720. Main memory 720 stores, in part, instructions and data 
for execution by processor 710. Main memory 720 can store 
the executable code when in operation. The system 700 of 
FIG. 7 further includes a mass storage device 730, portable 
storage medium drive(s) 740, output devices 750, user input 
devices 760, a graphics display 770, and peripheral devices 
780. 
The components shown in FIG. 7 are depicted as being 

connected via a single bus 790. However, the components 
may be connected through one or more data transport means. 
For example, processor unit 710 and main memory 720 may 
be connected via a local microprocessor bus, and the mass 
storage device 730, peripheral device(s) 780, portable stor 
age device 740, and display system 770 may be connected 
via one or more input/output (I/O) buses 790. 
Mass storage device 730, which may be implemented 

with a magnetic disk drive or an optical disk drive, is a 
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non-volatile storage device for storing data and instructions 
for use by processor unit 710. Mass storage device 730 can 
store the system software for implementing embodiments of 
the present invention for purposes of loading that Software 
into main memory 720. 

Portable storage device 740 operates in conjunction with 
a portable non-volatile storage medium, memory card, USB 
memory stick, or on-board memory to input and output data 
and code to and from the computer system 700 of FIG. 7. 
The system software for implementing embodiments of the 
present invention may be stored on Such a portable medium 
and input to the computer system 700 via the portable 
storage device 740. 

Input devices 760 provide a portion of a user interface. 
Input devices 760 may include an alpha-numeric keypad, 
Such as a keyboard, for inputting alpha-numeric and other 
information, or a pointing device. Such as a mouse, a 
trackball, stylus, cursor direction keys, or touch panel. 
Additionally, the system 700 as shown in FIG. 7 includes 
output devices 750. Examples of suitable output devices 
include speakers, network interfaces, and monitors. 

Display system 770 may include a liquid crystal display 
(LCD) or other suitable display device. Display system 770 
receives textual and graphical information, and processes 
the information for output to the display device. 

Peripherals 780 may include any type of computer Sup 
port device to add additional functionality to the computer 
system. For example, peripheral device(s) 740 may include 
a modem or a router, network interface, or USB interface. 

In some embodiments, the system of FIG. 7 may imple 
ment a mobile device. Such as for example a Smartphone. In 
this case, the system may include additional components, 
Such as for example one or more antennas, radios, and other 
wireless communication equipment, microphones, and other 
components. 
A system antenna may include one or more antennas for 

communicating wirelessly with another device. Antenna 
may be used, for example, to communicate wirelessly via 
Wi-Fi, Bluetooth, with a cellular network, or with other 
wireless protocols and systems. The one or more antennas 
may be controlled by a processor, which may include a 
controller, to transmit and receive wireless signals. For 
example, a processor may execute programs stored in 
memory to control antenna to transmit a wireless signal to a 
cellular network and receive a wireless signal from a cellular 
network. 
Microphone may include one or more microphone 

devices which transmit captured acoustic signals to proces 
sor and memory. The acoustic signals may be processed to 
transmit over a network via antenna. 

The components contained in the computer system 700 of 
FIG. 7 are those typically found in computer systems that 
may be suitable for use with embodiments of the present 
invention and are intended to represent a broad category of 
Such computer components that are well known in the art. 
Thus, the computer system 700 of FIG. 7 can be a personal 
computer, hand held computing device, telephone, mobile 
computing device, workstation, server, minicomputer, main 
frame computer, or any other computing device. The com 
puter can also include different bus configurations, net 
worked platforms, multi-processor platforms, etc. Various 
operating systems can be used including Unix, Linux, Win 
dows, Macintosh OS, and other Suitable operating systems. 
The foregoing detailed description of the technology 

herein has been presented for purposes of illustration and 
description. It is not intended to be exhaustive or to limit the 
technology to the precise form disclosed. Many modifica 
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tions and variations are possible in light of the above 
teaching. The described embodiments were chosen in order 
to best explain the principles of the technology and its 
practical application to thereby enable others skilled in the 
art to best utilize the technology in various embodiments and 
with various modifications as are Suited to the particular use 
contemplated. It is intended that the scope of the technology 
be defined by the claims appended hereto. 

What is claimed is: 
1. A method for maintaining data in a storage system, the 

method comprising: 
organizing a plurality of storage devices of different types 

into a plurality of distinct groups based on their respec 
tive technology type and performance; 

selecting one or more groups of the plurality of distinct 
groups that are associated with low random input/ 
output operations per second (IOPS) and high through 
put performance for a storage pool tier, 

selecting one or more groups of the plurality of distinct 
groups that are associated with high random IOPS and 
low throughput performance for an input/output (I/O) 
accelerator tier of a plurality of accelerator tiers; 

identifying a plurality of data segments to be copied from 
memory that are already stored in the storage pool tier, 
wherein the identified data segments include statistics 
usable to assign a quality level for each data segment of 
the identified data segments; 

evaluating the identified data segments for storage in the 
plurality of accelerator tiers, wherein the evaluation is 
based on the quality level for a particular evaluated data 
segment of the identified data segments, and the plu 
rality of accelerator tiers each have their own respective 
quality level threshold; 

maintaining copies of the identified data segments in the 
plurality of accelerator tiers based on the evaluations 
that meet the respective quality level threshold for each 
of the plurality of accelerator tiers; and 

deleting copies of the identified data segments in the 
plurality of accelerator tiers based on the evaluations 
that do not meet the respective quality level threshold 
for each of the plurality of accelerator tiers. 

2. The method of claim 1, further comprising maintaining 
a redundancy level for at least one accelerator tier of the 
plurality of accelerator tiers, matching or exceeding a redun 
dancy level of the storage pool tier for data segments not in 
the storage pool tier. 

3. The method of claim 1, further comprising copying 
write request data to a write back accelerator tier by detect 
ing predetermined I/O parameters, directing Small (relative 
and predetermined) random write requests to groups that can 
handle higher IOPS but lower throughput and directing large 
(relative and predetermined) write requests to groups that 
can handle relatively higher throughput but relatively lower 
IOPS. 

4. The method of claim 3, wherein consecutive write 
requests already in a write-request queue are combined prior 
to directing a combined write request. 

5. The method of claim 1, further comprising: 
dynamically calculating and storing a plurality of param 

eters for each of the data segment in metadata that 
persist across storage system reboots and failovers; and 

identifying a data quality level for each of the data 
segments based on the plurality of parameters. 

6. The method of claim 5, wherein the data quality level 
comprises a level of relevance to spatial locality and a 
temporal locality. 
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7. The method of claim 5, further comprising populating 
an accelerator tier with the data segments based on data the 
identified quality level for each of the data segments. 

8. The method of claim 7, wherein populating the accel 
erator tier includes: 

retaining I/O request data in memory of the storage 
system after I/O is complete; 

maintaining the I/O request data uncompressed when the 
quality level exceeds a first threshold; 

attempting to compress the I/O request data when the 
quality level is below the first threshold but exceeds a 
second threshold; 

maintaining compressed copy of the I/O request data 
when the compression attempt is successful; 

maintaining the I/O request data uncompressed if the 
compression attempt is not successful; and 

attempting to copy the data into an accelerator tier when 
the quality level is below the second threshold but 
exceeds a third threshold. 

9. The method of claim 5, wherein the identifying of the 
quality level includes: 

decreasing the quality level when an access to a contigu 
ous data segment occurs sequentially during a given 
time frame; and 

increasing the quality level when access to two or more 
Small data segments located in nearby logical block 
range occurs randomly during a given timeframe. 

10. A method for improving I/O performance, the method 
comprising: 

organizing a plurality of storage devices of different types 
into a plurality of distinct groups based on their respec 
tive technology type and performance: 

Selecting one or more groups of the plurality of distinct 
groups that are of a first type of storage devices as a 
storage pool, wherein the first type of storage devices 
have low random input/output operations per second 
(IOPS) and high throughput performance; 

Selecting one or more groups of the plurality of distinct 
groups that are of a second type of storage devices as 
one or more accelerator tiers for the storage pool, 
wherein the second type of storage devices are distinct 
from the first type of storage devices, wherein the first 
storage type is chosen based on one or more charac 
teristics preferable to the second storage type, and 
wherein the second storage type is chosen based on 
characteristics preferable to the first storage type; 

receiving a write request to write data into one or more 
storage devices, wherein the received write request has 
an associated size; 

writing a plurality of larger sized write requests to the 
storage pool; 

writing a plurality of Smaller sized write requests to the 
one or more accelerator tiers; 

generating a write request to transfer data stored in an 
accelerator tier of the one or more accelerator tiers to 
the storage pool, wherein the generated write request 
comprises data read from the accelerator tier of the one 
or more accelerator tiers, wherein the generated write 
request optimizes a number of program erase cycles 
associated with the one or more accelerator tiers, and 
wherein the generated write request is triggered when 
a total size of all data written to a particular accelerator 
tier of the one or more accelerator tiers exceeds a 
predefined threshold; and 

writing the data read from the accelerator tier of the one 
or more accelerator tiers, via the generated write 
request to the storage pool, wherein the generated write 
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request includes one or more write requests that 
includes two or more Smaller sized read requests from 
the accelerator tier of the one or more accelerator tiers. 

11. The method of claim 10, wherein one or more first 
characteristics of the one or more characteristics include one 
or more of monetary cost, capacity, data recovery, reliability 
on power loss, commercial availability of a desired storage 
size, and a failure rate. 

12. The method of claim 10, wherein one or more second 
characteristics of the one or more characteristics comprise 
one or more of a random IOPS, sequential IOPS, and 
capacity. 

13. A non-transitory computer readable storage medium 
having embodied thereon a program, the program being 
executable by a processor to perform a method for main 
taining data in a storage system, the method comprising: 

organizing a plurality of storage devices of different types 
into a plurality of distinct groups based on their respec 
tive technology type and performance; 

selecting one or more groups of the plurality of distinct 
groups that are associated with low random input/ 
output operations per second (IOPS) and high through 
put performance for a storage pool tier, 

selecting one or more groups of the plurality of distinct 
groups that are associated with high random IOPS but 
lower throughput performance for input/output (I/O) 
accelerator tier of a plurality of accelerator tiers; 

identifying a plurality of data segments to be copied from 
memory that are already stored in the storage pool tier, 
wherein the identified data segments include statistics 
usable to assign a quality level for each data segment of 
the identified data segments; 

evaluating the identified data segments for storage in the 
plurality of accelerator tiers, wherein the evaluation is 
based on the quality level for a particular evaluated data 
segment, and the plurality of accelerator tiers each have 
their own respective quality level threshold; 

maintaining copies of the identified data segments in the 
plurality of accelerator tiers based on the evaluations 
that meet the respective quality level threshold for each 
of the plurality of accelerator tiers; and 

deleting copies of the identified data segments in the 
plurality of accelerator tiers based on the evaluations 
that do not meet the respective quality level threshold 
for each of the plurality of accelerator tiers. 

14. The non-transitory computer readable storage medium 
of claim 13, the program further executable to maintain a 
redundancy level for at least one accelerator tier of the 
plurality of accelerator tiers, and matching or exceeding a 
redundancy level of the storage pool for data segments not 
in the storage pool. 

15. The non-transitory computer readable storage medium 
of claim 13, program further executable to copy write 
request data to a write back accelerator tier by detecting 
predetermined I/O parameters, directing Small (relative and 
predetermined) random write requests to groups that can 
handle higher IOPS but lower throughput, and directing 
large (relative and predetermined) write requests to groups 
that can handle relatively higher throughput but relatively 
lower IOPS. 

16. The non-transitory computer readable storage medium 
of claim 15, wherein consecutive write requests already in a 
write-request queue are combined prior to directing a com 
bined write request. 

17. The non-transitory computer readable storage medium 
of claim 13, further comprising: 
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dynamically calculating and storing a plurality of param 
eters for each of the data segment in metadata that 
persist across storage system reboots and failovers; and 

identifying a data quality level for each of the data 
segments based on the plurality of parameters. 

18. The non-transitory computer readable storage medium 
of claim 17, wherein the data quality level comprises a level 
of relevance to spatial locality and a temporal locality. 

19. The non-transitory computer readable storage medium 
of claim 17, further comprising populating an accelerator 
tier with data segments based on the identified data quality 
level for each of the data segments. 

20. The non-transitory computer readable storage medium 
of claim 19, wherein populating an accelerator tier includes: 

retaining I/O request data in memory of the storage 
system after I/O is complete; 

maintaining the I/O request data uncompressed when the 
quality level exceeds a first threshold; 

attempting to compress the I/O request data when the 
quality level is below the first threshold but exceeds a 
second threshold; 

maintaining compressed copy of the I/O request data 
when the compression attempt is successful; 

maintaining the I/O request data uncompressed when the 
compression attempt is not successful; and 

attempting to copy the data into an accelerator tier when 
the quality level is below the second threshold but 
exceeds a third threshold. 

21. The non-transitory computer readable storage medium 
of claim 17, wherein the identifying of the quality level 
includes: 

decreasing the quality level when an access to a contigu 
ous data segment occurs sequentially during a given 
time frame; and 

increasing the quality level when access to two or more 
Small data segments located in nearby logical block 
range occurs randomly during a given timeframe. 

22. A non-transitory computer readable storage medium 
having embodied thereon a program, the program being 
executable by a processor to perform a method for improv 
ing I/O performance, the method comprising: 

organizing a plurality of storage devices of different types 
into a plurality of distinct groups based on their respec 
tive technology type and performance; 

Selecting one or more groups of the plurality of distinct 
groups that are of a first type of storage devices as a 
storage pool, wherein the first type of storage devices 
have low random input/output operations per second 
(IOPS) and high throughput performance; 

Selecting one or more groups of the plurality of distinct 
groups that are of a second type of storage devices as 
one or more accelerator tiers for the storage pool, 
wherein the second type of storage devices are distinct 
from the first type of storage devices, wherein the first 
storage type is chosen based on one or more charac 
teristics preferable to the second storage type, and 
wherein the second storage type is chosen based on 
characteristics preferable to the first storage type; 

receiving a write request to write data into one or more 
storage devices, wherein the received write request has 
an associated size; 

writing a plurality of larger sized write requests to the 
storage pool; 

writing a plurality of Smaller sized write requests to the 
one or more accelerator tiers; 

generating a write request to transfer data stored in an 
accelerator tier of the one or more accelerator tiers to 
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the storage pool, wherein the generated write request 
comprises data read from the accelerator tier, the gen 
erated write request optimizes a number of program 
erase cycles associated with the one or more accelerator 
tiers, and the generated write request is triggered when 
a total size of all data written to a particular accelerator 
tier of the one or more accelerator tiers exceeds a 
predefined threshold; and 

writing the data read from the one or more accelerator 
tiers, via the generated write request to the storage pool, 
wherein the generated write request includes one or 
more write requests that includes two or more Smaller 
sized read requests from the accelerator tiers. 

23. The non-transitory computer readable storage medium 
of claim 22, wherein one or more first characteristics of the 
one or more characteristics include one or more of monetary 
cost, capacity, data recovery, reliability on power loss, 
commercial availability of a desired storage size, and a 
failure rate. 

24. The non-transitory computer readable storage medium 
of claim 22, wherein the one or more second characteristics 
of the one or more characteristics comprise one or more of 
a random IOPS, sequential IOPS, and capacity. 

25. A computer system, comprising: 
memory; 
one or more processors; and 
an application stored in memory and executable by the 

one or more processors to: 
organize a plurality of storage devices of different types 

into a plurality of distinct groups based on their 
respective technology type and performance, 

select one or more groups of the plurality of distinct 
groups that are associated with low random input/ 
output operations per second (IOPS) and high 
throughput performance for a storage pool tier, 

Select one or more groups of the plurality of distinct 
groups that are associated with high random IOPS 
and low throughput performance for an input/output 
(I/O) accelerator tier of a plurality of accelerator 
tiers, 

identify a plurality of data segments to be copied from 
memory that are already stored in the storage pool 
tier, wherein the identified data segments include 
statistics usable to assign a quality level for each data 
segment of the identified data segments, 

evaluate the identified data segments for the plurality of 
accelerator tiers, wherein the evaluation is based on 
the quality level for a particular evaluated data 
segment of the identified data segments, and the 
plurality of accelerator tiers each have their own 
respective quality level threshold, 

maintain copies of the identified data segments in the 
plurality of accelerator tiers based on the evaluations 
that meet the quality level threshold for each of the 
plurality of accelerator tiers, and 

delete copies of the identified data segments in the 
plurality of accelerator tiers based on the evaluations 
that do not meet the respective quality level thresh 
old for each of the plurality of accelerator tiers. 

26. The computer system of claim 25, wherein a redun 
dancy level for at least one accelerator tier of the plurality of 
accelerator tiers is maintained, a redundancy level of the 
storage pool tier is matched or exceeded for data segments 
that are not stored in the storage pool tier. 

27. The computer system of claim 25, wherein the appli 
cation is further executable to copy write request data to a 
write back accelerator tier by detecting predetermined I/O 
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parameters, directing small (relative and predetermined) 
random write requests to groups that can handle higher IOPS 
but lower throughput and directing large (relative and pre 
determined) write requests to groups that can handle rela 
tively higher throughput but relatively lower IOPS. 

28. The computer system of claim 27, wherein consecu 
tive Write requests already in a write-request queue are 
combined prior to directing a combined write request. 

29. The computer system of claim 25, wherein the appli 
cation further executable to: 

dynamically calculate and store a plurality of parameters 
for each of the data segment in metadata that persist 
across storage system reboots and failovers, and 

identify a data quality level for each of the data segments 
based on the plurality of parameters. 

30. The computer system of claim 29, wherein the data 
quality level comprises a level of relevance to spatial 
locality and a temporal locality. 

31. The computer system of claim 29, wherein the appli 
cation is further executable to populate an accelerator tier 
with the data segments based on the identified data quality 
level for each of the data segments. 

32. The computer system of claim 31, wherein the the 
populating of the accelerator tier includes: 

retaining I/O request data in memory of the storage 
system after I/O is complete; 

maintaining the I/O request data uncompressed if the 
quality level exceeds a first threshold; 

attempting to compress the I/O request data when the 
quality level is below the first threshold but exceeds a 
second threshold; 

maintaining a compressed copy of the I/O request data 
when the compression attempt is successful; 

maintaining the I/O data uncompressed when the com 
pression attempt is not successful; and 

attempting to copy the data into an accelerator tier when 
the quality level is below the second threshold but 
exceeds a third threshold. 

33. The computer system of claim 29, wherein the iden 
tifying the quality level includes: 

decreasing the quality level when an access to a contigu 
ous data segment occurs sequentially during a given 
time frame; and 

increasing the quality level when access to two or more 
Small data segments located in nearby logical block 
range occurs randomly during a given timeframe. 

34. A computer system, comprising: 
memory; 
one or more processors; and 
an application stored in memory, and executable by the 

one or more processors to: 
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organize a plurality of storage devices of different types 

into a plurality of distinct groups based on their respec 
tive technology type and performance, 

Select one or more groups of the plurality of distinct 
groups that are of a first type of storage devices as a 
storage pool, wherein the first type of storage devices 
have low random input/output operations per second 
(IOPS) and high throughput performance, 

Select one or more groups of the plurality of distinct 
groups that are of a second type of storage devices as 
one or more accelerator tiers for the storage pool, 
wherein the second type of storage devices are distinct 
from the first type of storage devices, wherein the first 
storage type is chosen based on one or more charac 
teristics preferable to the second storage type, and 
wherein the second storage type is chosen based on 
characteristics preferable to the first storage type, 

receive a write request to write data into one or more 
storage devices, wherein the received write request has 
an associated size, wherein a plurality of larger sized 
Write requests are written to the storage pool, and 
wherein a plurality of smaller sized write requests are 
written to the one or more accelerator tiers, 

generate a write request to transfer data stored in an 
accelerator tier of the one or more accelerator tiers to 
the storage pool, wherein the generated write requests 
comprises of the data read from the accelerator tier, 
wherein the generated write request optimizes a num 
ber of program erase cycles associated with the one or 
more accelerator tiers, and wherein the generated write 
request is triggered when a total size of all data written 
to a particular accelerator tier of the one or more 
accelerator tiers exceeds a predefined threshold, and 

write the data read from the one or more accelerator tiers, 
via the generated write request, to the storage pool, 
wherein the generated write request includes one or 
more write requests that includes two or more smaller 
sized read requests from the accelerator tiers. 

35. The computer system of claim 34, wherein one or 
more first characteristics include one or more of monetary 
cost, capacity, data recovery, reliability on power loss, 
commercial availability of desired storage size and failure 
rate. 

36. The computer system of claim 34, wherein one or 
more second characteristics comprise one or more of a 
random input/output operations per second (IOPS), sequen 
tial IOPS, and capacity. 

37. The computer system of claim 25, further comprising 
a plurality of storage devices to provide the storage pool. 

38. The computer system of claim 34, further comprising 
a plurality of storage devices to provide the storage pool. 
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