
(12) United States Patent

USOO961918OB2

(10) Patent No.: US 9,619,180 B2
Malkin (45) Date of Patent: Apr. 11, 2017

(54) SYSTEM METHOD FOR I/O USPC 710/72–74; 711/162–164
ACCELERATION IN HYBRD STORAGE See application file for complete search history.
WHEREIN COPES OF DATA SEGMENTS 56 Ref Cited
ARE DELETED IF IDENTIFIED SEGMENTS (56) eferences Cite

SENSEET QUALITY LEVEL U.S. PATENT DOCUMENTS

6,349,357 B1 2/2002 Chong
(71) Applicant: Silicon Graphics International Corp., 8,478,731 B1 7/2013 Throop et al.

Milpitas, CA (US) 8,924,630 B2 * 12/2014 Cho G06F 12/0813
T11 103

8,984.243 B1* 3/2015 Chen et al. T11 162
(72) Inventor: Kirill Malkin, Morris Plains, NJ (US) 9,015,519 B2 * 4/2015 Anthonisamy et al. ... 714.f4.11

9,280,550 B1* 3/2016 Hsu G06F 3,061
(73) Assignee: Silicon Graphics International Corp., 2009,0292861 A1 11/2009 Kalevsky et al.

Milpitas, CA (US) 2010, 0122020 A1 5, 2010 Sikdar et al.
2010, 0199.036 A1 8, 2010 Siewert et al.

(*) Notice: Subject to any disclaimer, the term of this 2012/O117O29 A1 5.2012 Gold
patent is extended or adjusted under 35 (Continued)
U.S.C. 154(b) by 0 days.

FOREIGN PATENT DOCUMENTS

(21) Appl. No.: 14/335,752
WO WO 2012/065265 5, 2012

(22) Filed: Jul. 18, 2014 WO WO 2015,017147 2, 2015
e LV9

(65) Prior Publication Data OTHER PUBLICATIONS

US 2015/OO32921 A1 Jan. 29, 2015 PCT Application No. PCT/US2014/047305 International Search
Report and Written Opinion mailed Dec. 17, 2014.

Related U.S. Application Data (Continued)
(60) Provisional application No. 61/859,521, filed on Jul. Primary Examiner — Tammara Peyton

29, 2013. (74) Attorney, Agent, or Firm — Polsinelli LLP

(51) Int. Cl. (57) ABSTRACT
G06F 3/00 (2006.01) The present system enables more efficient I/O processing by
G06F 3/06 (2006.01) providing a mechanism for maintaining data within the

(52) U.S. Cl locality of reference. One or more accelerator modules may
CPC G06F 3/0685 (2013.01); G06F 3/061 be implemented within a solid state storage device (SSD).

- - - - - - - (2013 01); G06F 3,0619 (2013 01); G06F The accelerator modules form a caching storage tier that can
• u. fs 3,0649 (2013 01) receive, store and reproduce data. The one or more accel

(58) Field of Classification Search erator modules may place data into the SSD or hard disk
CPC G06F 3/0685; G06F 3/0619; G06F 3/061;

GO6F 3/O649

drives based on parameters associated with the data.
38 Claims, 7 Drawing Sheets

Organize storage devices into groups

Select groips for storage poo: tier

Select groups for iO acceleraior tier

faintain data i? accelerator tiers and
storage poo tier

US 9,619,180 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2013,003.1308 A1 1/2013 De Spiegeleer et al.
2013/0117286 A1 5, 2013 Gallant et al.

OTHER PUBLICATIONS

PCT/US 14/47305, I/O Acceleration in Hybrid Storage, Jul. 18,
2014.

* cited by examiner

U.S. Patent Apr. 11, 2017 Sheet 1 of 7 US 9,619,180 B2

-ix-stifo to fittia viciirie

Acceiterator i.i.

Ateeiertex i:

Storage gai

FGURE

U.S. Patent Apr. 11, 2017 Sheet 2 of 7 US 9,619,180 B2

RES ES

Redundancy
& healing

FGURE 2

U.S. Patent Apr. 11, 2017 Sheet 3 of 7 US 9,619,180 B2

GRE 3

U.S. Patent Apr. 11, 2017 Sheet 4 of 7 US 9,619,180 B2

Organize storage devices into groups
4. O

Select groups for storage poo tier
42

Select groups for iO accelerator tier
43

vaintai data in accelerator ties and
storage pool tier a.

440

GURE 4.

U.S. Patent Apr. 11, 2017 Sheet S of 7 US 9,619,180 B2

Congression
Writes A

Coirpressed
Cathe tigate

Redundancy
& healing

FGURE 5

U.S. Patent Apr. 11, 2017 Sheet 6 of 7 US 9,619,180 B2

Cyramically calciate plurality of data
segment parameters

Store data segment parameters

Deterinine data quality eve; for each data
segment based or paaneers

- vaintain data
incompressed Y
ar 660

- Guality. Ra

lievel < first threshold and > second
ox threshold? cr

w - Attempt to
compress data N.

o 63

ra- Quality ra.
lievel < second threshold and > third

se threshold?

Attempt to copy data
into accelerator tier

S3
695

FGURE 6

U.S. Patent Apr. 11, 2017 Sheet 7 of 7 US 9,619,180 B2

700

Output
70 Processor devices 750

input -- 780
720 Yr Memory)evices

Mass
730 Storage 770

Portable
740 -r 780 Storage

\- 790

FGURE 7

US 9,619,180 B2
1.

SYSTEMI METHOD FOR AO
ACCELERATION IN HYBRD STORAGE
WHEREIN COPES OF DATA SEGMENTS
ARE DELETED IF IDENTIFIED SEGMENTS

DOES NOT MEET QUALITY LEVEL
THRESHOLD

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the priority benefit of U.S. pro
visional application 6 1/859,521, titled “I/O Acceleration in
Hybrid Storage,” filed Jul. 29, 2013, the disclosure of which
is incorporated herein by reference.

BACKGROUND

Modern direct-access storage devices fall into two cat
egories: the traditional, rotating hard disk drives (HDDs)
and new solid state storage devices (SSDs). While they are
presented identically to the OS, they have very different
performance characteristics and a magnitude of difference in
the cost per gigabyte.

Storage system vendors tend to rely on either rotating or
Solid state media, creating two corresponding categories of
storage systems: HDD-based systems that are characterized
by lower performance and lower cost, and SSD-based sys
tems that have significantly higher performance and cost as
measured by generally available performance tools.
Most unsophisticated “brute force' performance testing

tools create artificial workloads, such as randomly writing
4K blocks across the entire capacity of a storage volume or
a file. Although the workload is valid, it hardly represents the
behavior of a real-world application.

Real-world computer data relevant to a particular pro
cessing task (or application) tend to occur in quasi stable
groups or clusters. This phenomenon is called “locality of
reference, and it can typically take two forms: spatial and
temporal localities. Spatial locality means that the applica
tion data is placed closely to one other, Such as in a single
file, folder or a storage device. Temporal locality is the
notion that most of the application data will be accessed
within a certain timeframe, such as when the application is
being used.

Spatial and temporal localities are often correlated. In
other words, an application tends to access a limited data set
during a given period of time. The footprint of the data
Subset representing locality of reference varies depending on
the applications and their behavior.

The computer industry broadly relies on the locality of
reference phenomenon by deploying various techniques
where a subset of active data is placed in a “cache', or a
high-speed temporary storage, and stays there until it is
evicted by a higher activity workload.
The caches are a standard fixture in modern CPUs where

the instructions and data are loaded (“prefetched') from
DRAM into high-speed on-chip memory on the first read
access and are temporarily stored there upon writes with a
subsequent write-back to the DRAM. There is usually more
than one cache level, with the highest speed cache being the
Smallest in capacity and vice versa.

Caching technology is also used in storage systems,
though to a more limited extent. Traditional storage caching
solutions are based on some type of NVRAM (non-volatile
SRAM or DRAM) that is relatively small (512 MB-8 GB),
proprietary and expensive. Due to its limited size, the cache
can hold only a small fraction (typically less than 0.1%) of

10

15

25

30

35

40

45

50

55

60

65

2
storage system data, so the data is frequently and aggres
sively evicted. Consequently, the use of caching technology
in storage systems is generally limited to addressing goals
Such as guaranteeing data consistency in parity RAID stripes
across power loss, coalescing Small sequential writes into
larger ones to improve write latency, and read-ahead for
sequential streams (to load transfer pipeline).
What is needed is a mechanism for efficient handling of

storage I/O based on storage devices with mixed types.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 is a block diagram illustrating accelerator tiers.
FIG. 2 is a block diagram illustrating reactive I/O accel

eration.
FIG. 3 is a block diagram illustrating request separation.
FIG. 4 is a method for improving I/O performance in a

Storage System.
FIG. 5 is a block diagram illustrating proactive I/O

acceleration.
FIG. 6 is a method for providing proactive I/O accelera

tion.
FIG. 7 is a block diagram of a computing environment for

use in the present technology.

SUMMARY

The present system enables more efficient I/O processing
by providing a mechanism for maintaining data within the
locality of reference. One or more accelerator modules may
be implemented within a solid state storage device (SSD).
The accelerator modules form caching storage tiers that can
receive, store and reproduce data. The one or more accel
erator modules may place data into the SSD or hard disk
drives based on parameters associated with the data.
A method for maintaining data in a storage system may

include organizing storage devices of different types into
groups based on technology type and performance. Groups
with low random IOPS and high throughput may be selected
for a storage pool tier. Groups with high random IOPS but
lower throughput may be selected for I/O accelerator tier.
Copies of data segments may be maintained in a plurality of
accelerator tiers.
A method for improving I/O performance may include

assigning at least one first storage system as a storage pool,
wherein the at least one first storage system is of at least one
first storage type. At least one second storage system may be
assigned as one or more accelerator tiers for the storage
pool. The at least one second storage system may be of at
least one second storage type different from the at least one
first storage type. The at least one first storage type may be
chosen based on one or more first characteristics preferable
to the at least one second storage type. The at least one
second storage type may be chosen based on one or more
second characteristics preferable to the at least one first
Storage type.
A computer system may include memory, one or more

processors and an application. The application may be stored
in memory and executable by the one or more processors to
organize storage devices of different types into groups based
on technology type and performance, select groups with low
random IOPS and high throughput for a storage pool tier,
select groups with high random IOPS but lower throughput
for I/O accelerator tier, and maintain copies of data segments
in a plurality of accelerator tiers.
A computer system may include memory, one or more

processors and an application. The application may be stored

US 9,619,180 B2
3

in memory and executable by the one or more processors to
assign at least one first storage system as a storage pool,
wherein the at least one first storage system is of at least one
first storage type, and assign at least one second storage
system as one or more accelerator tiers for the storage pool,
wherein the at least one second storage system is of at least
one second storage type different from the at least one first
storage type, the at least one first storage type is chosen
based on one or more first characteristics preferable to the at
least one second storage type, and the at least one second
storage type is chosen based on one or more second char
acteristics preferable to the at least one first storage type.

DETAILED DESCRIPTION

The present system enables more efficient I/O processing
by providing a mechanism for maintaining data within the
locality of reference. One or more accelerator modules may
be implemented within a solid state storage device (SSD).
The accelerator modules form caching Storage tiers that can
receive, store and reproduce data. The one or more accel
erator modules may place data into the SSD or hard disk
drives based on parameters associated with the data.

Solid-state storage devices can be thought of as non
volatile memory (an increasing number of SSD models are
fast enough), and can be used as a cache. Since they can also
store data for a prolonged period of time without power and
are Sufficiently large, they could simultaneously serve as a
temporary storage tier where the data can stay for a long
period of time as compared to traditional caching solutions
(such as battery-backed SRAM). Note that although there
are different technologies of SSDs, for purposes of the
present technology, and particularly with respect to com
parisons with HDDs, the different SSD technologies are
herein treated as fungible within the overall SSD group.

Combining the functions of data cache and data storage
devices into one storage tier conceptually transcends the
existing methods of storage caching or storage tiering as a
means of improving I/O performance of a storage system.
The traditional caching schemes are no longer effective with
the present technology as the data could accumulate in large
quantities without needing to be evicted for an observable
period of time (e.g., initially the entire workload could fit
into the fastest available tier). Since the application data
could simultaneously reside on multiple storage tiers with
different performance characteristics, the traditional tiering
methods are not applicable either.
The present technology combines the sharing of data

cache and storage inside a single storage tier, and utilizes an
I/O accelerator. The I/O accelerator maintains the data
within a locality of reference inside the accelerator. In some
instances, the present technology also assumes the footprint
of the data Subset representing locality of reference is on
average about 5% of the total capacity of the system.

This concept can be also regarded as a dynamic vertical
tiering, where data is not placed exclusively on a particular
tier, but is simultaneously and dynamically present on
multiple levels of acceleration.

FIG. 1 is a block diagram illustrating accelerator tiers.
FIG. 1 illustrates multiple accelerators and a storage pool of
HDDs handling data. A first accelerator may handle writes
and may pass the data to a storage pool. A second tier of
accelerator may handle reads and pass the data to the storage
pool as well. If the capacity of data residing in the fastest
storage tier matches or exceeds the footprint of the appli
cation's locality of reference, then from the application
standpoint the performance of Such storage system will be as

5

10

15

25

30

35

40

45

50

55

60

65

4
good as the performance of the fastest storage tier. Effec
tively, this can make an HDD-based storage system appear
to an application as an all-SSD system using the SSD to
store only about 5% of the HDD storage. With cost of SSDs
continuing to stay a magnitude higher than HDDs, this
approach enables significant cost savings.

Based on the above analysis, it is beneficial to construct
a storage system that utilizes HDDs as a storage tier and
SSDs as one or more acceleration tiers, therefore signifi
cantly improving performance of the applications residing
on Such storage system without resorting to an expensive
all-SSD option.

It is assumed that the underlying storage pool delivers a
commonly acceptable level of redundancy (e.g., n-way
mirror, single parity, double parity, erasure coding, non
erasure coding, etc.), so that the data is reasonably protected
from a failure of one or more storage devices. If the data is
present in one or more of the accelerator tiers and has not
been copied to the storage pool, at least one accelerator tier
must deliver a similar or better redundancy level than the
storage pool.
The concept of I/O acceleration can be extended to

encompass multiple, and possibly nested, reference locali
ties as well as multiple storage accelerators based on storage
tiers with varied performance, working together to acceler
ate the I/O processing in a storage system. In this case, the
fastest tier would keep the small, but active data sets while
slower tiers will contain increasingly larger data sets, with
one or more final (slowest) tiers collectively spanning the
entire capacity in use by applications. Not all tiers will
simultaneously cache and store data, but they can all be
driven by unified acceleration schemes, therefore simplify
ing the design. An example of multiple acceleration tiers
includes for example, four accelerator tiers from fastest to
slowest, using, respectively, NVRAM (e.g., non-volatile
SRAM or DRAM), DRAM (Dynamic Random Access
Memory), SLC (single-level cell SSD technology), SSDs
(solid state storage devices, MLC (multi-level cell SSD
technology) SSDs and HDDs (hard disk drives), as part of
a single storage system serving data to applications.
HDDs may perform best on large, sequential I/O requests.

This is based on the mechanical design of the HDDs and
resulting latency. Typical random I/O performance is only
around 200-400 IOPS (Input/Output operations Per Second)
for an HDD (relatively flat on request sizes up to 128 KB),
while it is possible to see data transfer rates upwards of 140
MB/s for large, sequential I/O.

Solid-state Storage Devices (SSDs) have no moving
mechanical parts and perform equally well with both ran
dom and sequential I/O patterns. Modern SSDs deliver
20,000-70,000 IOPS on random 4K access. SSDs however
Suffer from write amplification, accumulating wear and data
retention issues. These are largely addressed in latest SSD
models, although they require internal NAND over-provi
sioning, implementation of the SCSI UNMAP command and
wear leveling algorithms. The UNMAP command tells the
storage device that a certain block range is no longer being
used by the application (such as when a large file is deleted
or a volume is formatted). While it has virtually no use for
HDD, modern SSD technologies rely heavily on it to begin
a lengthy process of erasing cells to proactively mitigate the
effects of “write amplification’ (the need to erase before
writing) on performance. The impact of all these issues is
proportional to the overall I/O volume directed to the SSD.
In other words, relatively smaller I/O requests (random or
not) are “easier on SSDs than relatively larger ones.

US 9,619,180 B2
5

Data can be placed into the accelerator based on a
just-in-time decision when a write I/O comes across. This
type of acceleration can be regarded as “a posteriori', or
reactive. FIG. 2 is a block diagram illustrating reactive I/O
acceleration. It is best applied to write requests as the data
hasn’t been stored anywhere yet. Although Such acceleration
is write-oriented, it indirectly helps read I/O by allowing
more bandwidth for it. Additionally, read requests for the
data that had just been placed in accelerator will be serviced
from the accelerator, Supporting the locality of reference.
The following write-oriented (or “writeback”) I/O accel

erator design takes advantage of the differences between
SSDs and HDDs by separating the incoming virtual volume
I/O according to request parameters (size, location, presence
in cache).
The design generally attempts to forward Smaller write

requests to SSD, while large write requests (equal or greater
than a predetermined size for a particular underlying storage
layout) are forwarded to the virtualized (pooled) HDDs. As
the data segments stored on the SSD coalesce into large
enough, predetermined contiguous spans (e.g., hundreds of
sectors) exceeding the above separation criteria, they can be
optionally copied (flushed) into the HDD pool by a “lazy
writer process. A separation criterion is basically the size of
the request, but could involve other factors, for example,
several sequential requests could be combined and regarded
as a single large one. Given the relatively large capacity of
SSDs (hundreds of GBs), there is little pressure for flushing,
and it could be delayed by minutes or even hours and days.

FIG. 3 is a block diagram illustrating request separation.
In effect, this design uses the bandwidth and capacity of
SSDs for processing of relatively small random requests that
would challenge an HDD-based storage pool. At the same
time, it bypasses the SSDs for large sequential requests that
are most adequate for the HDDs, but could trigger write
amplification on and wear out the SSDs. Among other
benefits, this improves the performance of the SSD tier,
extends its life and enables the use of SSDs with lesser
program-erase (PE) cycles guarantee since they only need to
absorb a subset of I/O containing relatively small data
Segments.
The SSD tier used for the above purpose may satisfy the

following requirements:
It must be redundant (e.g., mirror, single parity, etc.)
It must ensure that writes reported as complete are guar

anteed to be complete upon Sudden power loss;
It should perform well on writes (tens of thousands of

IOPS).
The write requests are stored in a data area controlled

using a conventional data space allocation method. For each
request, one or more data segments are allocated. As the lazy
writer copies the requests back to the HDD pool, the space
can be optionally released making way for new data seg
mentS.

The mapping between the logical blocks of a virtual
Volume and the segments stored in the writeback accelerator
is kept in a binary tree that could be either in-memory
(DRAM) or loadable on demand (B+ tree). Prior to the
completion of write requests, new and modified tree entries
are recorded into an additional circular journal index
(“writeback journal’’) also located on the SSD. This is
necessary to reconstruct the binary tree after a failover or
power loss. During the recovery, the journal is read only
once as the tree is rebuilt.

If a data segment of a Volume is already stored in the
writeback accelerator, Subsequent write requests require no
new allocation and the requests are directed to the same

10

15

25

30

35

40

45

50

55

60

65

6
writeback data area that’s already been mapped. This
reduces allocation overhead when the same set of blocks is
written repeatedly. There are a few exceptions to this rule,
e.g., in presence of Snapshots and compressed data. With
Snapshots, the same data segment can be referenced from
more than one virtual volume, so when one volume is
overwritten, the data segment needs to be preserved to
facilitate the other volume. When the data is compressed, it
can’t be partially modified as it needs to be decompressed,
updated and then compressed again, likely altering the
compressed length.
Due to the locality of reference and depending on the

workload specifics, the data segments stored in the write
back accelerator are expected to combine into contiguous
spans of various lengths due to effects of spatial locality. The
spans are assembled in groups depending on their length.
For example, there may be 4 groups, starting below 256 KB,
from 256K to 4 MB, from 4 MB to 8 MB, and more than 8
MB. The lazy writer attempts to select the spans from the
longest groups for copying to HDD pool to capitalize on the
efficiency of sequential I/O for HDDs.

Sending large requests to the HDD pool has the additional
benefit of avoiding read-modify-write cycles on RAID
based and especially transaction-based (redirect on write)
pools. If the request fully covers the pool stripe, there is no
need for a costly “read before write' operation (i.e., reading
previous stripe data to populate parts of Stripe that is not
covered by accelerator segment, augmenting it with the data
from the accelerator segment, and writing the full stripe out)
impacting the performance. The entire stripe is written out
and the old stripe (if any) can be simply released.

FIG. 4 is a method for improving I/O performance in a
storage system. Storage devices are organized into groups at
step 410. The group may depend on technology type and
performance of the particular drive. Groups for storage pool
tier are selected at step 420. In particular, groups with a low
random IOPS but high throughput may be selected for the
storage pool tier. The “low” and “high” may be relative and
predetermined by an administrator based on design prefer
ence. Groups may be selected for the I/O accelerator tier at
step 430. Groups selected for the accelerator tier may have
high random IOPS but lower throughput. Finally, data in the
accelerator tiers and storage pool tiers may be maintained at
step 440. If the segments are not in the storage pool, at least
one accelerator tier maintains the redundancy level matching
or exceeding the redundancy level of the storage pool.
The writeback accelerator capacity is flexible and can be

increased essentially by adding more data space and grow
ing the journal index. It is helpful when the area of reference
increases as a consequence of adding new workloads. That
way, the performance of the storage system can be readily
improved with “plug and play” simplicity and without
needing a "forklift upgrade (i.e., replacing the entire system
hardware) or unnecessarily growing the HDD pool capacity
just to add more spindles to increase the performance.
The reactive acceleration works well for write requests by

building up the locality of reference in the accelerator.
Improving the performance of read requests calls for “a
priori' knowledge of where the future requests will be
placed and proactively moving corresponding data segments
to the accelerator.

Since the data being requested from the storage system
were previously written there, it means at Some point they
were present in the memory of the storage system. This
creates an opportunity for a proactive storing of the qualified
data segments in an accelerator, sometime after they have
been written by the host. Alternatively, the data that was just

US 9,619,180 B2
7

read and transmitted to the host can linger in memory until
the memory must be reallocated for other needs.

In other words, the segments can be first retained in
memory and then optionally copied into the SSD accelerator
tier instead of being simply discarded. This tier doesn’t need
to be redundant as it contains a copy of data already present
in a storage tier (HDD pool). A failure to read from the
accelerator will result in redirecting the read request to the
pool. The process of migrating data segments from memory
to SSD accelerator tier can be thought as “spilling over of
excessive segments from memory to the SSD, so we will
refer to this design as the “spillover accelerator.
When the data segments pass through memory, whether

during initial write or Subsequent reads, they are considered
for placement in the accelerator and copied there if they
meet the criteria for acceleration. To make this determina
tion, the accelerator logic must dynamically track and
update the statistics of various logical block spans of the
virtual volume. The statistics become part of metadata and
persist across reboots and failovers. The statistics contribute
to calculating the “quality level of a data segment (or
collection thereof) that is later compared to a series of
thresholds to make the determination. For example, the
number of accesses to a data segment could be counted, and
any segment with more than three accesses will be copied
into the accelerator.
The quality level could be calculated using any of a

variety of methods. They should generally follow the same
locality of reference ideas as for reactive I/O acceleration. In
other words, the methods used should elevate the quality of
random data segments determined to be Small, that are
accessed within a certain timeframe and lower the quality of
segments accessed as long contiguous data streams. This
will result in proactive copying of Small randomly accessed
segments into accelerators. In presence of multiple accel
erator tiers, criteria and thresholds will be different for each
tier, but the above process remains fundamentally the same.
The criteria could include, for example, the number of
references to a particular data segment across virtualized
storage. The more references there are to a segment, the
higher is the quality of the segment, all other parameters
being equal. Thresholds would be steeper for smaller and
faster accelerators, and to get into them, the data segments
should be relatively smaller and/or accessed within a rela
tively narrower time frame.

For storage systems based on a dynamic storage pool, it
is often optimal to store data segments that match the pool
layout stripe size. As the Stripes are usually a magnitude or
two larger than the storage device block size, this can also
significantly reduce the metadata overhead of the accelera
tor. Prior to copying to an accelerator SSD, the stripes are
held in memory and optionally compressed. Since the com
pression and copy occur outside of the host data path, they
do not directly add to the latency of the host I/O. The
diagram below (FIG. 5) shows the elements of proactive I/O
acceleration.

FIG. 5 is a block diagram illustrating proactive I/O
acceleration. Here “compression' can be either compression
or decompression, depending on the direction of I/O. While
compression and decompression add a performance hit, it is
typically much less than the time it takes to bring the data
from HDD (and even SSD), particularly in software-defined
architectures, such as x86_64 where the CPUs are excep
tionally fast and multi-threaded. In other words, the benefits
outweigh the minor performance hit. The accelerator data
(both compressed and uncompressed) are stored in a data
area of the spillover accelerator tier controlled by a data

5

10

15

25

30

35

40

45

50

55

60

65

8
space allocation algorithm. For each data segment (e.g., pool
stripe), the accelerator may allocate multiple contiguous
spans.
The mapping between the stripes of a storage pool and the

data segments stored in the spillover accelerator is kept in a
binary tree that could be either in-memory or loadable on
demand (B+ tree). New and modified tree entries are
recorded into a journal index (“spillover journal') also
located on the redundant SSD. This is necessary to recon
struct the binary tree after a failover or power loss. During
the recovery, the journal is read only once as the tree is
rebuilt. The entries are added to the journal after their data
segments are Successfully copied to the accelerator data
area. It is critical that the entries are reliably updated or
invalidated when the data is no longer current, Such as when
the corresponding area of the virtual volume is overwritten
or unmapped.

FIG. 6 is a method for providing proactive I/O accelera
tion. A plurality of data segment parameters is dynamically
calculated at step 610. The calculated parameters may be
stored in metadata that may persist across storage system
reboots and failovers. The data segment parameters may be
stored at step 620.
A data quality level may be determined for each data

segment at step 630. The data quality level may be deter
mined based on the parameters. I/O request data are retained
in memory after the I/O operation is complete at step 640.
A determination is made as to whether the quality level for
the I/O request is greater than a first threshold at step 650.
If the quality level is greater than the first threshold, the data
is maintained uncompressed at Step 660.

If the quality level is not greater than the first threshold,
a determination is made as to whether the quality level is less
than the first threshold but greater than a second threshold at
step 670. If so, an attempt is made to compress the data at
step 680. If the compression is successful, only the com
pressed version is maintained. If the compression is not
Successful, the uncompressed version is maintained.

If the quality level is below the second threshold but
exceeds a third threshold, an attempt is made to copy the
data into an accelerator tier 690. If successful, the data is
maintained in the accelerator tier 695. If the copy is not
Successful, the data is maintained in the storage pool.

FIG. 7 is a block diagram of a computing environment for
use in the present technology. System 700 of FIG.7 may be
implemented in the contexts of the likes of a server or other
computing device that may provide one or more SDDS,
HDDs, or other storage components suitable for implement
ing the present technology. The computing system 700 of
FIG. 7 includes one or more processors 710 and memory
720. Main memory 720 stores, in part, instructions and data
for execution by processor 710. Main memory 720 can store
the executable code when in operation. The system 700 of
FIG. 7 further includes a mass storage device 730, portable
storage medium drive(s) 740, output devices 750, user input
devices 760, a graphics display 770, and peripheral devices
780.
The components shown in FIG. 7 are depicted as being

connected via a single bus 790. However, the components
may be connected through one or more data transport means.
For example, processor unit 710 and main memory 720 may
be connected via a local microprocessor bus, and the mass
storage device 730, peripheral device(s) 780, portable stor
age device 740, and display system 770 may be connected
via one or more input/output (I/O) buses 790.
Mass storage device 730, which may be implemented

with a magnetic disk drive or an optical disk drive, is a

US 9,619,180 B2

non-volatile storage device for storing data and instructions
for use by processor unit 710. Mass storage device 730 can
store the system software for implementing embodiments of
the present invention for purposes of loading that Software
into main memory 720.

Portable storage device 740 operates in conjunction with
a portable non-volatile storage medium, memory card, USB
memory stick, or on-board memory to input and output data
and code to and from the computer system 700 of FIG. 7.
The system software for implementing embodiments of the
present invention may be stored on Such a portable medium
and input to the computer system 700 via the portable
storage device 740.

Input devices 760 provide a portion of a user interface.
Input devices 760 may include an alpha-numeric keypad,
Such as a keyboard, for inputting alpha-numeric and other
information, or a pointing device. Such as a mouse, a
trackball, stylus, cursor direction keys, or touch panel.
Additionally, the system 700 as shown in FIG. 7 includes
output devices 750. Examples of suitable output devices
include speakers, network interfaces, and monitors.

Display system 770 may include a liquid crystal display
(LCD) or other suitable display device. Display system 770
receives textual and graphical information, and processes
the information for output to the display device.

Peripherals 780 may include any type of computer Sup
port device to add additional functionality to the computer
system. For example, peripheral device(s) 740 may include
a modem or a router, network interface, or USB interface.

In some embodiments, the system of FIG. 7 may imple
ment a mobile device. Such as for example a Smartphone. In
this case, the system may include additional components,
Such as for example one or more antennas, radios, and other
wireless communication equipment, microphones, and other
components.
A system antenna may include one or more antennas for

communicating wirelessly with another device. Antenna
may be used, for example, to communicate wirelessly via
Wi-Fi, Bluetooth, with a cellular network, or with other
wireless protocols and systems. The one or more antennas
may be controlled by a processor, which may include a
controller, to transmit and receive wireless signals. For
example, a processor may execute programs stored in
memory to control antenna to transmit a wireless signal to a
cellular network and receive a wireless signal from a cellular
network.
Microphone may include one or more microphone

devices which transmit captured acoustic signals to proces
sor and memory. The acoustic signals may be processed to
transmit over a network via antenna.

The components contained in the computer system 700 of
FIG. 7 are those typically found in computer systems that
may be suitable for use with embodiments of the present
invention and are intended to represent a broad category of
Such computer components that are well known in the art.
Thus, the computer system 700 of FIG. 7 can be a personal
computer, hand held computing device, telephone, mobile
computing device, workstation, server, minicomputer, main
frame computer, or any other computing device. The com
puter can also include different bus configurations, net
worked platforms, multi-processor platforms, etc. Various
operating systems can be used including Unix, Linux, Win
dows, Macintosh OS, and other Suitable operating systems.
The foregoing detailed description of the technology

herein has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
technology to the precise form disclosed. Many modifica

10

15

25

30

35

40

45

50

55

60

65

10
tions and variations are possible in light of the above
teaching. The described embodiments were chosen in order
to best explain the principles of the technology and its
practical application to thereby enable others skilled in the
art to best utilize the technology in various embodiments and
with various modifications as are Suited to the particular use
contemplated. It is intended that the scope of the technology
be defined by the claims appended hereto.

What is claimed is:
1. A method for maintaining data in a storage system, the

method comprising:
organizing a plurality of storage devices of different types

into a plurality of distinct groups based on their respec
tive technology type and performance;

selecting one or more groups of the plurality of distinct
groups that are associated with low random input/
output operations per second (IOPS) and high through
put performance for a storage pool tier,

selecting one or more groups of the plurality of distinct
groups that are associated with high random IOPS and
low throughput performance for an input/output (I/O)
accelerator tier of a plurality of accelerator tiers;

identifying a plurality of data segments to be copied from
memory that are already stored in the storage pool tier,
wherein the identified data segments include statistics
usable to assign a quality level for each data segment of
the identified data segments;

evaluating the identified data segments for storage in the
plurality of accelerator tiers, wherein the evaluation is
based on the quality level for a particular evaluated data
segment of the identified data segments, and the plu
rality of accelerator tiers each have their own respective
quality level threshold;

maintaining copies of the identified data segments in the
plurality of accelerator tiers based on the evaluations
that meet the respective quality level threshold for each
of the plurality of accelerator tiers; and

deleting copies of the identified data segments in the
plurality of accelerator tiers based on the evaluations
that do not meet the respective quality level threshold
for each of the plurality of accelerator tiers.

2. The method of claim 1, further comprising maintaining
a redundancy level for at least one accelerator tier of the
plurality of accelerator tiers, matching or exceeding a redun
dancy level of the storage pool tier for data segments not in
the storage pool tier.

3. The method of claim 1, further comprising copying
write request data to a write back accelerator tier by detect
ing predetermined I/O parameters, directing Small (relative
and predetermined) random write requests to groups that can
handle higher IOPS but lower throughput and directing large
(relative and predetermined) write requests to groups that
can handle relatively higher throughput but relatively lower
IOPS.

4. The method of claim 3, wherein consecutive write
requests already in a write-request queue are combined prior
to directing a combined write request.

5. The method of claim 1, further comprising:
dynamically calculating and storing a plurality of param

eters for each of the data segment in metadata that
persist across storage system reboots and failovers; and

identifying a data quality level for each of the data
segments based on the plurality of parameters.

6. The method of claim 5, wherein the data quality level
comprises a level of relevance to spatial locality and a
temporal locality.

US 9,619,180 B2
11

7. The method of claim 5, further comprising populating
an accelerator tier with the data segments based on data the
identified quality level for each of the data segments.

8. The method of claim 7, wherein populating the accel
erator tier includes:

retaining I/O request data in memory of the storage
system after I/O is complete;

maintaining the I/O request data uncompressed when the
quality level exceeds a first threshold;

attempting to compress the I/O request data when the
quality level is below the first threshold but exceeds a
second threshold;

maintaining compressed copy of the I/O request data
when the compression attempt is successful;

maintaining the I/O request data uncompressed if the
compression attempt is not successful; and

attempting to copy the data into an accelerator tier when
the quality level is below the second threshold but
exceeds a third threshold.

9. The method of claim 5, wherein the identifying of the
quality level includes:

decreasing the quality level when an access to a contigu
ous data segment occurs sequentially during a given
time frame; and

increasing the quality level when access to two or more
Small data segments located in nearby logical block
range occurs randomly during a given timeframe.

10. A method for improving I/O performance, the method
comprising:

organizing a plurality of storage devices of different types
into a plurality of distinct groups based on their respec
tive technology type and performance:

Selecting one or more groups of the plurality of distinct
groups that are of a first type of storage devices as a
storage pool, wherein the first type of storage devices
have low random input/output operations per second
(IOPS) and high throughput performance;

Selecting one or more groups of the plurality of distinct
groups that are of a second type of storage devices as
one or more accelerator tiers for the storage pool,
wherein the second type of storage devices are distinct
from the first type of storage devices, wherein the first
storage type is chosen based on one or more charac
teristics preferable to the second storage type, and
wherein the second storage type is chosen based on
characteristics preferable to the first storage type;

receiving a write request to write data into one or more
storage devices, wherein the received write request has
an associated size;

writing a plurality of larger sized write requests to the
storage pool;

writing a plurality of Smaller sized write requests to the
one or more accelerator tiers;

generating a write request to transfer data stored in an
accelerator tier of the one or more accelerator tiers to
the storage pool, wherein the generated write request
comprises data read from the accelerator tier of the one
or more accelerator tiers, wherein the generated write
request optimizes a number of program erase cycles
associated with the one or more accelerator tiers, and
wherein the generated write request is triggered when
a total size of all data written to a particular accelerator
tier of the one or more accelerator tiers exceeds a
predefined threshold; and

writing the data read from the accelerator tier of the one
or more accelerator tiers, via the generated write
request to the storage pool, wherein the generated write

10

15

25

30

35

40

45

50

55

60

65

12
request includes one or more write requests that
includes two or more Smaller sized read requests from
the accelerator tier of the one or more accelerator tiers.

11. The method of claim 10, wherein one or more first
characteristics of the one or more characteristics include one
or more of monetary cost, capacity, data recovery, reliability
on power loss, commercial availability of a desired storage
size, and a failure rate.

12. The method of claim 10, wherein one or more second
characteristics of the one or more characteristics comprise
one or more of a random IOPS, sequential IOPS, and
capacity.

13. A non-transitory computer readable storage medium
having embodied thereon a program, the program being
executable by a processor to perform a method for main
taining data in a storage system, the method comprising:

organizing a plurality of storage devices of different types
into a plurality of distinct groups based on their respec
tive technology type and performance;

selecting one or more groups of the plurality of distinct
groups that are associated with low random input/
output operations per second (IOPS) and high through
put performance for a storage pool tier,

selecting one or more groups of the plurality of distinct
groups that are associated with high random IOPS but
lower throughput performance for input/output (I/O)
accelerator tier of a plurality of accelerator tiers;

identifying a plurality of data segments to be copied from
memory that are already stored in the storage pool tier,
wherein the identified data segments include statistics
usable to assign a quality level for each data segment of
the identified data segments;

evaluating the identified data segments for storage in the
plurality of accelerator tiers, wherein the evaluation is
based on the quality level for a particular evaluated data
segment, and the plurality of accelerator tiers each have
their own respective quality level threshold;

maintaining copies of the identified data segments in the
plurality of accelerator tiers based on the evaluations
that meet the respective quality level threshold for each
of the plurality of accelerator tiers; and

deleting copies of the identified data segments in the
plurality of accelerator tiers based on the evaluations
that do not meet the respective quality level threshold
for each of the plurality of accelerator tiers.

14. The non-transitory computer readable storage medium
of claim 13, the program further executable to maintain a
redundancy level for at least one accelerator tier of the
plurality of accelerator tiers, and matching or exceeding a
redundancy level of the storage pool for data segments not
in the storage pool.

15. The non-transitory computer readable storage medium
of claim 13, program further executable to copy write
request data to a write back accelerator tier by detecting
predetermined I/O parameters, directing Small (relative and
predetermined) random write requests to groups that can
handle higher IOPS but lower throughput, and directing
large (relative and predetermined) write requests to groups
that can handle relatively higher throughput but relatively
lower IOPS.

16. The non-transitory computer readable storage medium
of claim 15, wherein consecutive write requests already in a
write-request queue are combined prior to directing a com
bined write request.

17. The non-transitory computer readable storage medium
of claim 13, further comprising:

US 9,619,180 B2
13

dynamically calculating and storing a plurality of param
eters for each of the data segment in metadata that
persist across storage system reboots and failovers; and

identifying a data quality level for each of the data
segments based on the plurality of parameters.

18. The non-transitory computer readable storage medium
of claim 17, wherein the data quality level comprises a level
of relevance to spatial locality and a temporal locality.

19. The non-transitory computer readable storage medium
of claim 17, further comprising populating an accelerator
tier with data segments based on the identified data quality
level for each of the data segments.

20. The non-transitory computer readable storage medium
of claim 19, wherein populating an accelerator tier includes:

retaining I/O request data in memory of the storage
system after I/O is complete;

maintaining the I/O request data uncompressed when the
quality level exceeds a first threshold;

attempting to compress the I/O request data when the
quality level is below the first threshold but exceeds a
second threshold;

maintaining compressed copy of the I/O request data
when the compression attempt is successful;

maintaining the I/O request data uncompressed when the
compression attempt is not successful; and

attempting to copy the data into an accelerator tier when
the quality level is below the second threshold but
exceeds a third threshold.

21. The non-transitory computer readable storage medium
of claim 17, wherein the identifying of the quality level
includes:

decreasing the quality level when an access to a contigu
ous data segment occurs sequentially during a given
time frame; and

increasing the quality level when access to two or more
Small data segments located in nearby logical block
range occurs randomly during a given timeframe.

22. A non-transitory computer readable storage medium
having embodied thereon a program, the program being
executable by a processor to perform a method for improv
ing I/O performance, the method comprising:

organizing a plurality of storage devices of different types
into a plurality of distinct groups based on their respec
tive technology type and performance;

Selecting one or more groups of the plurality of distinct
groups that are of a first type of storage devices as a
storage pool, wherein the first type of storage devices
have low random input/output operations per second
(IOPS) and high throughput performance;

Selecting one or more groups of the plurality of distinct
groups that are of a second type of storage devices as
one or more accelerator tiers for the storage pool,
wherein the second type of storage devices are distinct
from the first type of storage devices, wherein the first
storage type is chosen based on one or more charac
teristics preferable to the second storage type, and
wherein the second storage type is chosen based on
characteristics preferable to the first storage type;

receiving a write request to write data into one or more
storage devices, wherein the received write request has
an associated size;

writing a plurality of larger sized write requests to the
storage pool;

writing a plurality of Smaller sized write requests to the
one or more accelerator tiers;

generating a write request to transfer data stored in an
accelerator tier of the one or more accelerator tiers to

10

15

25

30

35

40

45

50

55

60

65

14
the storage pool, wherein the generated write request
comprises data read from the accelerator tier, the gen
erated write request optimizes a number of program
erase cycles associated with the one or more accelerator
tiers, and the generated write request is triggered when
a total size of all data written to a particular accelerator
tier of the one or more accelerator tiers exceeds a
predefined threshold; and

writing the data read from the one or more accelerator
tiers, via the generated write request to the storage pool,
wherein the generated write request includes one or
more write requests that includes two or more Smaller
sized read requests from the accelerator tiers.

23. The non-transitory computer readable storage medium
of claim 22, wherein one or more first characteristics of the
one or more characteristics include one or more of monetary
cost, capacity, data recovery, reliability on power loss,
commercial availability of a desired storage size, and a
failure rate.

24. The non-transitory computer readable storage medium
of claim 22, wherein the one or more second characteristics
of the one or more characteristics comprise one or more of
a random IOPS, sequential IOPS, and capacity.

25. A computer system, comprising:
memory;
one or more processors; and
an application stored in memory and executable by the

one or more processors to:
organize a plurality of storage devices of different types

into a plurality of distinct groups based on their
respective technology type and performance,

select one or more groups of the plurality of distinct
groups that are associated with low random input/
output operations per second (IOPS) and high
throughput performance for a storage pool tier,

Select one or more groups of the plurality of distinct
groups that are associated with high random IOPS
and low throughput performance for an input/output
(I/O) accelerator tier of a plurality of accelerator
tiers,

identify a plurality of data segments to be copied from
memory that are already stored in the storage pool
tier, wherein the identified data segments include
statistics usable to assign a quality level for each data
segment of the identified data segments,

evaluate the identified data segments for the plurality of
accelerator tiers, wherein the evaluation is based on
the quality level for a particular evaluated data
segment of the identified data segments, and the
plurality of accelerator tiers each have their own
respective quality level threshold,

maintain copies of the identified data segments in the
plurality of accelerator tiers based on the evaluations
that meet the quality level threshold for each of the
plurality of accelerator tiers, and

delete copies of the identified data segments in the
plurality of accelerator tiers based on the evaluations
that do not meet the respective quality level thresh
old for each of the plurality of accelerator tiers.

26. The computer system of claim 25, wherein a redun
dancy level for at least one accelerator tier of the plurality of
accelerator tiers is maintained, a redundancy level of the
storage pool tier is matched or exceeded for data segments
that are not stored in the storage pool tier.

27. The computer system of claim 25, wherein the appli
cation is further executable to copy write request data to a
write back accelerator tier by detecting predetermined I/O

US 9,619, 180 B2
15

parameters, directing small (relative and predetermined)
random write requests to groups that can handle higher IOPS
but lower throughput and directing large (relative and pre
determined) write requests to groups that can handle rela
tively higher throughput but relatively lower IOPS.

28. The computer system of claim 27, wherein consecu
tive Write requests already in a write-request queue are
combined prior to directing a combined write request.

29. The computer system of claim 25, wherein the appli
cation further executable to:

dynamically calculate and store a plurality of parameters
for each of the data segment in metadata that persist
across storage system reboots and failovers, and

identify a data quality level for each of the data segments
based on the plurality of parameters.

30. The computer system of claim 29, wherein the data
quality level comprises a level of relevance to spatial
locality and a temporal locality.

31. The computer system of claim 29, wherein the appli
cation is further executable to populate an accelerator tier
with the data segments based on the identified data quality
level for each of the data segments.

32. The computer system of claim 31, wherein the the
populating of the accelerator tier includes:

retaining I/O request data in memory of the storage
system after I/O is complete;

maintaining the I/O request data uncompressed if the
quality level exceeds a first threshold;

attempting to compress the I/O request data when the
quality level is below the first threshold but exceeds a
second threshold;

maintaining a compressed copy of the I/O request data
when the compression attempt is successful;

maintaining the I/O data uncompressed when the com
pression attempt is not successful; and

attempting to copy the data into an accelerator tier when
the quality level is below the second threshold but
exceeds a third threshold.

33. The computer system of claim 29, wherein the iden
tifying the quality level includes:

decreasing the quality level when an access to a contigu
ous data segment occurs sequentially during a given
time frame; and

increasing the quality level when access to two or more
Small data segments located in nearby logical block
range occurs randomly during a given timeframe.

34. A computer system, comprising:
memory;
one or more processors; and
an application stored in memory, and executable by the

one or more processors to:

10

15

25

30

35

40

45

50

16
organize a plurality of storage devices of different types

into a plurality of distinct groups based on their respec
tive technology type and performance,

Select one or more groups of the plurality of distinct
groups that are of a first type of storage devices as a
storage pool, wherein the first type of storage devices
have low random input/output operations per second
(IOPS) and high throughput performance,

Select one or more groups of the plurality of distinct
groups that are of a second type of storage devices as
one or more accelerator tiers for the storage pool,
wherein the second type of storage devices are distinct
from the first type of storage devices, wherein the first
storage type is chosen based on one or more charac
teristics preferable to the second storage type, and
wherein the second storage type is chosen based on
characteristics preferable to the first storage type,

receive a write request to write data into one or more
storage devices, wherein the received write request has
an associated size, wherein a plurality of larger sized
Write requests are written to the storage pool, and
wherein a plurality of smaller sized write requests are
written to the one or more accelerator tiers,

generate a write request to transfer data stored in an
accelerator tier of the one or more accelerator tiers to
the storage pool, wherein the generated write requests
comprises of the data read from the accelerator tier,
wherein the generated write request optimizes a num
ber of program erase cycles associated with the one or
more accelerator tiers, and wherein the generated write
request is triggered when a total size of all data written
to a particular accelerator tier of the one or more
accelerator tiers exceeds a predefined threshold, and

write the data read from the one or more accelerator tiers,
via the generated write request, to the storage pool,
wherein the generated write request includes one or
more write requests that includes two or more smaller
sized read requests from the accelerator tiers.

35. The computer system of claim 34, wherein one or
more first characteristics include one or more of monetary
cost, capacity, data recovery, reliability on power loss,
commercial availability of desired storage size and failure
rate.

36. The computer system of claim 34, wherein one or
more second characteristics comprise one or more of a
random input/output operations per second (IOPS), sequen
tial IOPS, and capacity.

37. The computer system of claim 25, further comprising
a plurality of storage devices to provide the storage pool.

38. The computer system of claim 34, further comprising
a plurality of storage devices to provide the storage pool.

ck ck ck ck ck

