
(12) United States Patent 
B00kman et al. 

USOO9614931B2 

US 9,614,931 B2 
Apr. 4, 2017 

(10) Patent No.: 
(45) Date of Patent: 

(54) 

(71) 

(72) 

(73) 

(*) 

(21) 

(22) 

(65) 

(51) 

(52) 

(58) 

IDENTIFYING ARESOURCE SET REQUIRE 
FOR A REQUESTED APPLICATION AND 
LAUNCHING THE RESOURCE SET IN A 
CONTAINER FOR EXECUTION IN A HOST 
OPERATING SYSTEM 

Applicant: Sphere 3D Inc., Mississauga (CA) 

Inventors: Peter G. Bookman, Huntsville, UT 
(US); Giovanni Morelli, Jr., Toronto 
(CA); Brandon Cowen, Mississauga 
(CA); Hussain Damji, Mississauga 
(CA) 

Assignee: SPHERE 3D INC., Mississauga, 
Ontario (CA) 

Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 0 days. 

Appl. No.: 14/600,246 

Filed: Jan. 20, 2015 

Prior Publication Data 

US 2016/0210173 A1 Jul. 21, 2016 

Int. C. 
G06F 9/455 (2006.01) 
G06F 9/445 (2006.01) 
H04L 29/08 (2006.01) 
U.S. C. 
CPC .......... H04L 67/34 (2013.01); G06F 9/44521 

(2013.01); G06F 9/455 (2013.01); G06F 
9/45537 (2013.01); H04L 67/06 (2013.01) 

Field of Classification Search 
CPC ..................................................... GO6F 9/5027 
See application file for complete search history. 

302(i) 
310a 31Ob 

302(ii) 

Application A 

(56) References Cited 

U.S. PATENT DOCUMENTS 

8,219,987 B1 7/2012 Vlaovic et al. 
8,667.459 B2 * 3/2014 Vlaovic .................... GO6F 8,71 

T17,104 
2001/0047393 A1* 11/2001 Arner .................... G06F 9,4445 

TO9,216 

(Continued) 

OTHER PUBLICATIONS 

Oracle, OracleVM Template Developer's Guide: Creating Pre-Built 
VMs for Rapid Software Deployment, Feb. 2009, An Oracle Tech 
nical White Paper.* 

(Continued) 

Primary Examiner — Abdullah Al Kawsar 
Assistant Examiner — Jorge A Chu Joy-Davila 

(57) ABSTRACT 

Methods and systems for providing one or more software 
applications. The methods and systems involve receiving an 
application request from a user device identifying, at least, 
a software application to be provided by a host computer 
server, providing a resource library for the host computer 
server that defines the resources required for providing each 
Software application; identifying, from the resource library, 
a set of resources required for providing the requested 
Software application, the set of resources includes at least 
one resource required for an application operating system to 
Support the requested Software application; and providing 
the requested Software application with the set of resources. 
The application operating system can be different from a 
host operating system at the host computer server. The set of 
resources can be launched as a containerized resource 
instance, which is operationally isolated from other contain 
erized resource instances provided by the host computer 
SeVe. 

25 Claims, 7 Drawing Sheets 

31Oc 310 

Applications Application C 

324 
320(iii) 

322 

  



US 9,614,931 B2 
Page 2 

(56) References Cited 2012/0084792 A1* 4/2012 Benedek ................. G06F 9,544 
T19, 313 

U.S. PATENT DOCUMENTS 2012/01 17212 A1* 5, 2012 Fries ......................... G06F 8.61 
709,223 

2006/0184931 A1* 8, 2006 Rochette ................... G06F 8.61 2013/0246932 A1* 9, 2013 Zaveri ..................... GO6F 3,017 
717/169 715,740 

2007,0255798 A1* 11, 2007 Schneider ............. GO6F9,5077 2013/0304693 A1* 11/2013 Jaeger ............... GO6F 17,30563 
709/217 707,602 

2008. O104379 A1* 5, 2008 Peterman ............ GO6F 9/44505 2014/0068718 A1 3/2014 Mureinik .............. G06F 21,604 
T13/1 T26/4 

2008/0239985 A1 * 10, 2008 Karve ................. HO4L 41,0856 
370,254 

2008/0320145 A1 12/2008 Rivera .................. HO4L 67,141 OTHER PUBLICATIONS 
709,227 

2009/O119664 A1* 5, 2009 Pike .................... GO6F 9/45558 Kerner, Sean Michael, “10 Quick Facts About Docker Container 
T18, 1 Virtualization', Jun. 19, 2014, 2 pages. 

2009/0282404 A1* 11/2009 Khandekar ......... GO6F 9/45558 Document relating to CA Patent Application No. 2,878,759, dated 

2009,0300057 A1* 12, 2009 Friedm Feb. 11, 2015 (Office Action). 16Call ............ 
2009/0313620 A1* 12/2009 Sedukhin .................. G06F 8.61 Document relating to CA Patent Application No. 2,878,759, dated 

T18, 1 May 11, 2015 (Office Action Response). 
2010/0306772 A1* 12/2010 Arnold ...................... G06F 8.36 Document relating to CA Patent Application No. 2,878,759, dated 

T18, 1 May 29, 2015 (Notice of Allowance). 
2011/029.5984 A1* 12/2011 Kunze ....................... G06F 8.62 

TO9.220 * cited by examiner 





U.S. Patent Apr. 4, 2017 Sheet 2 of 7 US 9,614.931 B2 

200 1. 

Receive an application request from a user device, the 
application request including an application identifier 

asSociated with a requested Software application 
210 

Provide a resource library defining the resources required for 220 
providing one or more Software applications 

Identify, from the resource library, a set of resources required 230 
for providing the requested Software application 

Provide the requested Software application with the identified 240 
Set of resources 

FIG. 2 

  



(II)OZ9 

099 

squauoduob eapawpupH 4soH 

US 9,614.931 B2 U.S. Patent 

A. 

  





squæ uoduoo 3.apaapupH 4soH 

US 9,614.931 B2 U.S. Patent 

099 079 

  







US 9,614,931 B2 
1. 

IDENTIFYING ARESOURCE SET REQUIRE 
FOR A REQUESTED APPLICATION AND 
LAUNCHING THE RESOURCE SET IN A 

CONTAINER FOR EXECUTION IN A HOST 
OPERATING SYSTEM 

FIELD 

The described embodiments relate to methods and sys 
tems for providing software applications. 

BACKGROUND 

Computer systems generally require, at least, an operating 
system and certain other system resources (hardware and/or 
Software) to provide applications to users. Operating sys 
tems can generally operate as an intermediary between the 
system resources at the computer systems and the applica 
tions. Different operating systems are, therefore, available 
for different computer architectures. 

Operating systems are generally configured to manage, at 
least, all the system resources at a computer system. Upon 
receipt of any application request, the computer system will 
typically implement the operating system in full even if only 
a Subset of the functionality of the operating system is 
required for providing the requested application. Conse 
quently, to provide the requested application, a computer 
system is likely to launch many unnecessary resources. Such 
as a desktop environment, and requiring use of system 
computational and/or storage bandwidth for those unneces 
sary resources. 

SUMMARY 

The various embodiments described herein generally 
relate to methods (and associated systems configured to 
implement the methods) for providing one or more software 
applications. 

In accordance with some embodiments, there is provided 
a method for providing one or more Software applications at 
a host computer server. The host computer server can 
include, at least, a host memory for storing a host operating 
system and a host processor configured for operating the 
host operating system. The method can include: receiving an 
application request from a user device, where the application 
request can include an application identifier associated with 
a requested Software application, the requested Software 
application can be a Software application to be provided by 
the host computer server, and the user device includes a 
device processor and a device memory; providing a resource 
library for the host computer server, where the resource 
library can define one or more resources required for pro 
viding each software application of the one or more software 
applications; identifying, from the resource library, a set of 
resources required for providing the requested Software 
application based on the application identifier, where the set 
of resources can include at least one resource required for an 
application operating system to Support the requested Soft 
ware application, the application operating system can be an 
operating system operable for providing the requested Soft 
ware application and the application operating system can be 
different from the host operating system; and providing the 
requested software application with the identified set of 
SOUCS. 

In some embodiments, the described methods can include 
operating the host processor to launch the set of resources as 
a containerized resource instance for providing the requested 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
Software application, where the containerized resource 
instance can be operationally isolated from one or more 
other containerized resource instances being provided by the 
host computer server. 

In some embodiments, the described methods can include, 
prior to operating the host processor to launch the set of 
resources as the containerized resource instance for provid 
ing the requested Software application, providing a session 
log for the host computer server, where the session log 
records one or more active containerized resource instances 
and, for each active containerized resource instance, one or 
more resources associated with that active containerized 
resource instance, and the one or more active containerized 
resource instances can be containerized resource instances 
currently provided by the host computer server; determin 
ing, from the session log, whether the one or more resources 
associated with at least one active containerized resource 
instance corresponds to the identified set of resources; and in 
response to determining the one or more resources associ 
ated with at least one active containerized resource instance 
corresponds to the identified set of resources, providing the 
requested Software application with one of the at least one 
active containerized resource instance, otherwise, operating 
the host processor to launch the set of resources for provid 
ing the requested Software application as a new container 
ized resource instance. 

In some embodiments, the described methods can include 
providing an application interface at the host computer 
server, where the application interface can facilitate elec 
tronic communication between the one or more active 
containerized resource instances and the user device. 

In some embodiments, the described methods can include 
allocating an application memory portion within the host 
memory for launching the set of resources, where the 
application memory portion can be dedicated for providing 
the requested Software application and each containerized 
resource instance can be associated with a different appli 
cation memory portion within the host memory; and launch 
ing the set of resources within the application memory 
portion. 

In some embodiments, the application request can 
include, at least, a user identifier corresponding to a user 
account from which the application request was received, 
and the described methods can include providing a session 
log for the host computer server, where the session log can 
record the user identifier in association with the container 
ized resource instance providing the requested Software 
application; and upon detecting the user device is not in 
electronic communication with the host computer server, 
continuing to provide the requested Software application 
with the containerized resource instance for that user 
acCOunt. 

In some embodiments, the described methods can include 
determining the requested Software application is incompat 
ible with the host operating system when at least one 
resource of the set of resources identified for the requested 
Software application is inoperable at the host operating 
system; and if the requested Software application is incom 
patible with the host operating system, then identifying an 
emulation application operable for providing the software 
application at the host operating system, where the emula 
tion application can be operable for facilitating compatibility 
between the host operating system and the requested Soft 
ware application, otherwise, sending an error message to the 
user device to indicate the requested Software application is 
unavailable. 



US 9,614,931 B2 
3 

In some embodiments, the described methods can include 
generating one or more resource templates, where each 
resource template can be a predefined resource set launch 
able by the host processor for providing at least one software 
application, and the predefined resource set can include one 
or more resources required for providing the at least one 
Software application. 

In accordance with some embodiments, there is provided 
a system for providing one or more Software applications. 
The system can include: at least one storage component for 
storing, at least, a host operating system and a resource 
library defining one or more resources required for provid 
ing each Software application of the one or more software 
applications; and a host processor configured for operating 
the host operating system. The host processor can be con 
figured to: receive an application request from a user device, 
where the application request can include an application 
identifier associated with a requested Software application, 
and the requested Software application can be a software 
application to be provided; identify, from the resource 
library, a set of resources required for providing the 
requested Software application based on the application 
identifier, where the set of resources can include at least one 
resource required for an application operating system to 
Support the requested Software application, the application 
operating system can be an operating system operable for 
providing the requested Software application and the appli 
cation operating system can be different from the host 
operating system; and provide the requested Software appli 
cation with the identified set of resources. 

In accordance with some embodiments, the at least one 
storage component can include a host memory for storing 
the host operating system and one or more storage compo 
nents for storing the resource library. The one or more 
storage components may be physically separate from the 
host memory. 

In accordance with some embodiments, the host processor 
can be configured to launch the set of resources as a 
containerized resource instance for providing the requested 
application, where the containerized resource instance can 
be operationally isolated from one or more other container 
ized resource instances being provided. 

In accordance with Some embodiments, the at least one 
storage component can include a session log for recording 
one or more active containerized resource instances and, for 
each active containerized resource instance, one or more 
resources associated with that active containerized resource 
instance, where the one or more active containerized 
resource instances can be containerized resource instances 
currently provided by the host computer server; and the host 
processor can be configured, prior to launching the set of 
resources as the containerized resource instance for provid 
ing the requested Software application, to: determine, from 
the session log, whether the one or more resources associ 
ated with at least one active containerized resource instance 
corresponds to the identified set of resources; and in 
response to determining the one or more resources associ 
ated with at least one active containerized resource instance 
corresponds to the identified set of resources, provide the 
requested Software application with one of the at least one 
active containerized resource instance, otherwise, the host 
processor is configured to launch the set of resources for 
providing the requested Software application as a new con 
tainerized resource instance. 

In accordance with some embodiments, the host processor 
can be configured to provide an application interface for 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
facilitating electronic communication between the one or 
more active containerized resource instances and the user 
device. 

In accordance with some embodiments, the host processor 
can be configured to: allocate an application memory portion 
within the at least one storage component for launching the 
set of resources, where the application memory portion can 
be dedicated for providing the requested Software applica 
tion and each containerized resource instance can be asso 
ciated with a different application memory portion within 
the at least one storage component; and launch the set of 
resources within the application memory portion. 

In accordance with Some embodiments, the application 
request can include a user identifier corresponding to a user 
account from which the application request was received. 
The at least one storage component may then include a 
session log for recording the user identifier in association 
with the containerized resource instance providing the 
requested Software application; and the host processor can 
be configured, upon detecting the user device is not in 
electronic communication with the system, to continue to 
provide the requested Software application with the contain 
erized resource instance for that user account. 

In accordance with some embodiments, the host processor 
can be configured to: determine the requested Software 
application is incompatible with the host operating system 
when the requested Software application is operable on a 
software architecture different from a software architecture 
of the host operating system; and if the requested Software 
application is incompatible with the host operating system, 
then identify an emulation application operable for provid 
ing the Software application at the host operating system, 
where the emulation application can be operable for facili 
tating compatibility between the host operating system and 
the requested Software application, otherwise, the host pro 
cessor is configured to send an error message to the user 
device to indicate the requested Software application is 
unavailable. 
The described systems can, in some embodiments, oper 

ate on a MicroSoftTM Windows architecture. 
In accordance with some embodiments, the host processor 

can be configured to: generate one or more resource tem 
plates, where each resource template can be a predefined 
resource set launchable by the host processor to provide at 
least one software application, and the predefined resource 
set can include one or more resources required for providing 
the at least one software application. 

In some embodiments, the one or more resources identi 
fied in the resource library can include at least one of a 
binary file and a library file. 

In some embodiments, the set of resources can include at 
least the requested Software application. 
The one or more resource templates can, in Some embodi 

ments, include at least one resource template launchable by 
the host processor for providing the at least one software 
application on a Windows-based operating system. 

BRIEF DESCRIPTION OF DRAWINGS 

Several embodiments will now be described in detail with 
reference to the drawings, in which: 

FIG. 1 is a block diagram illustrating a host computer 
system in communication with other components in accor 
dance with an example embodiment; 

FIG. 2 is a flowchart of an example method for providing 
one or more software applications; 



US 9,614,931 B2 
5 

FIGS. 3A and 3B are computer architecture diagrams of 
a host computer system in accordance with example 
embodiments; 

FIG. 4 is a computer architecture diagram of an example 
implementation of the host computer system of FIG. 3A in 
accordance with an example embodiment; 

FIG. 5 is a computer architecture diagram of another 
example implementation of the host computer system of 
FIG. 3A in accordance with yet another example embodi 
ment; and 

FIG. 6 is a computer architecture diagram of another 
example implementation of the host computer system of 
FIG. 3A in accordance with a further example embodiment. 
The drawings, described below, are provided for purposes 

of illustration, and not of limitation, of the aspects and 
features of various examples of embodiments described 
herein. The drawings are not intended to limit the scope of 
the teachings in any way. For simplicity and clarity of 
illustration, elements shown in the figures have not neces 
sarily been drawn to scale. The dimensions of some of the 
elements may be exaggerated relative to other elements for 
clarity. It will be appreciated that for simplicity and clarity 
of illustration, where considered appropriate, reference 
numerals may be repeated among the figures to indicate 
corresponding or analogous elements or steps. 

DESCRIPTION OF EXAMPLE EMBODIMENTS 

The various embodiments described herein generally 
relate to methods (and related systems) for providing one or 
more software applications. As will be described, software 
applications can generally include any program file execut 
able, or launchable, by a processor at a computer system for 
providing functionality to one or more user devices. 
When the systems described herein receive an application 

request requesting a software application to be provided for 
a user device, the described systems can then operate to 
determine an application identifier from the application 
request and one or more resources required for providing the 
requested Software application using the application identi 
fier. The described systems can determine the required 
resources from a resource library that defines the resources 
required for providing various different Software applica 
tions. The one or more resources, or set of resources, 
required for providing the Software application can include 
system resources and/or application resources. System 
resources can include resources associated with an operating 
system configured for providing the Software application. 
Application resources can include resources that are specific 
to providing the Software application itself. 

After determining the set of resources required for pro 
viding the requested Software application, the described 
systems can then operate to provide the requested Software 
application with the identified set of resources. By providing 
the Software applications with the required set of resources, 
the described systems can likely use less computational 
and/or storage bandwidth for providing the Software appli 
cation in comparison with Systems that implement complete 
instances of each operating system regardless of the set of 
resources required for providing the requested Software 
application. 
The described systems may also provide the software 

applications by launching the set of resources in a contain 
erized resource instance. As will be described, the contain 
erized resource instance can generally be operationally 
isolated from other containerized resource instances so that 
the operation of one containerized resource instance would 

5 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
not affect the operation of the other containerized resource 
instances. It may be possible for a containerized resource 
instance to be used for fulfilling multiple application 
requests, as will be described. As a result, further reduction 
in computational and/or storage bandwidth may be possible 
with the systems and methods described herein. 

It will be appreciated that numerous specific details are set 
forth in order to provide a thorough understanding of the 
example embodiments described herein. However, it will be 
understood by those of ordinary skill in the art that the 
embodiments described herein may be practiced without 
these specific details. In other instances, well-known meth 
ods, procedures and components have not been described in 
detail so as not to obscure the embodiments described 
herein. Furthermore, this description and the drawings are 
not to be considered as limiting the scope of the embodi 
ments described herein in any way, but rather as merely 
describing the implementation of the various embodiments 
described herein. 

In addition, as used herein, the wording “and/or is 
intended to represent an inclusive-or. That is, “X and/or Y” 
is intended to mean X or Y or both, for example. As a further 
example, “X, Y, and/or Z is intended to mean X or Y or Z 
or any combination thereof. 
The embodiments of the systems and methods described 

herein may be implemented in hardware or Software, or a 
combination of both. These embodiments may be imple 
mented in computer programs executing on programmable 
computers, each computer including at least one processor, 
a data storage system (including volatile memory or non 
Volatile memory or other data storage elements or a com 
bination thereof), and at least one communication interface. 
For example and without limitation, the programmable 
computers (referred to below as computing devices) may be 
a server, network appliance, embedded device, computer 
expansion module, a personal computer, laptop, personal 
data assistant, cellular telephone, Smart-phone device, tablet 
computer, a wireless device or any other computing device 
capable of being configured to carry out the methods 
described herein. 

In some embodiments, the communication interface may 
be a network communication interface. In embodiments in 
which elements are combined, the communication interface 
may be a software communication interface. Such as those 
for inter-process communication (IPC). In still other 
embodiments, there may be a combination of communica 
tion interfaces implemented as hardware, Software, and 
combination thereof. 

Program code may be applied to input data to perform the 
functions described herein and to generate output informa 
tion. The output information is applied to one or more output 
devices, in known fashion. 

Each program may be implemented in a high level 
procedural or object oriented programming and/or scripting 
language, or both, to communicate with a computer system. 
However, the programs may be implemented in assembly or 
machine language, if desired. In any case, the language may 
be a compiled or interpreted language. Each Such computer 
program may be stored on a storage media or a device (e.g. 
ROM, magnetic disk, optical disc) readable by a general or 
special purpose programmable computer, for configuring 
and operating the computer when the storage media or 
device is read by the computer to perform the procedures 
described herein. Embodiments of the system may also be 
considered to be implemented as a non-transitory computer 
readable storage medium, configured with a computer pro 
gram, where the storage medium so configured causes a 



US 9,614,931 B2 
7 

computer to operate in a specific and predefined manner to 
perform the functions described herein. 

Furthermore, the system, processes and methods of the 
described embodiments are capable of being distributed in a 
computer program product comprising a computer readable 
medium that bears computer usable instructions for one or 
more processors. The medium may be provided in various 
forms, including one or more diskettes, compact disks, 
tapes, chips, wireline transmissions, satellite transmissions, 
internet transmission or downloadings, magnetic and elec 
tronic storage media, digital and analog signals, and the like. 
The computer useable instructions may also be in various 
forms, including compiled and non-compiled code. 

Reference is first made to FIG. 1, which is an example 
block diagram 100 illustrating a host computer system 140 
in communication with one or more components. 
The host computer system 140 may communicate with 

one or more user devices 110, such as 110A and 110B, and 
a network storage component 130 via a network 120. 
Similarly, each user device 110 may communicate with the 
network storage component 130 via the network 120. It will 
be understood that, although two user devices, namely 110A 
and 110B, are illustrated in FIG. 1, a fewer or a greater 
number of user devices 110 may communicate with the host 
computer system 140 via the network 120. 
As shown in FIG. 1, the host computer system 140 can 

include one or more components, such as a host processor 
142, a host interface component 144, and a host storage 
component 146. The host processor 142, the host interface 
component 144, and the host storage component 146 may be 
combined into a fewer number of components or may be 
separated into further components. Also, the host processor 
142, the host interface component 144, and the host storage 
component 146 may be implemented in software or hard 
ware, or a combination of software and hardware. 

In some embodiments, the host computer system 140 may 
be provided using one or more user devices 110 described 
herein. 

Also, for ease of exposition, only one host computer 
system 140 is shown in FIG. 1. It will be understood that 
multiple host computer systems 140 may be distributed over 
a wide geographic area and be in electronic communication 
with each other, and with the other components shown in 
FIG. 1, via the network 120. 
The host processor 142 may generally be configured to 

control the operation of the host computer system 140. For 
example, the host processor 142 can initiate and manage the 
operations of each of the other components at the host 
computer system 140. The host processor 142 may also 
determine, based on received and/or stored data, user pref 
erences and/or predefined settings, how the host computer 
system 140 may generally operate. 
The host processor 142 may be any Suitable processor(s), 

controller(s) and/or digital signal processor(s) that can pro 
vide Sufficient processing power depending on the configu 
ration, purposes and requirements of the host computer 
system 140. In some embodiments, the host processor 142 
can include more than one processor with each processor 
being configured to perform different dedicated tasks. 

The host interface component 144 may be any interface 
that enables the host computer system 140 to communicate 
with other devices and systems. In some embodiments, the 
host interface component 144 can include at least one of a 
serial port, a parallel port or a USB port. The host interface 
component 144 may also include at least one of an Internet, 
Local Area Network (LAN), Ethernet, FirewireTM, modem 
or digital Subscriber line connection. Various combinations 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

8 
of these elements may be incorporated within the host 
interface component 144. For example, the host interface 
component 144 may receive an application request from the 
user device 110 via the network 120. 

Also, the host interface component 144 may include an 
application interface for facilitating electronic communica 
tion between any of the containerized resource instances 
being provided by the host computer system 140 and the 
user devices 110. The application interface may include a 
manager application that can enable the user device 110 to 
access one or more active containerized resource instances. 
Briefly referring to FIG. 3B, which is an example computer 
architecture diagram 300B for the host computer system 
140. As shown in FIG. 3B, an application interface 360 can 
be provided for managing access to the various different 
software applications 310a to 310d being provided by the 
host computer system 140. 
The host storage component 146 can generally store data 

and/or resources associated with providing Software appli 
cations by the host computer system 140. For example, the 
host storage component 146 can store resource data that 
define the resources required for providing each software 
application. One or more of the resources may be stored at 
the host storage component 146, and/or at the network 
storage component 130. Session data related to each appli 
cation request and corresponding application session may 
also be stored in the host storage component 146. 

Depending on the requirements and design of the host 
computer system 140, the host storage component 146 can 
include one or more storage and/or database components for 
storing the various different data and/or resources. For 
example, as shown in FIG. 1, the host storage component 
146 can include a resource library 150, a session log 152 and 
a host memory 154. 
The resource library 150 can include suitable data storage 

elements, such as one or more databases. Generally, the 
resource library 150 can store data for defining the resources 
required for providing the Software applications. The 
resource library 150 may define the resources required for 
providing the Software applications that the host computer 
system 140 can be configured to provide. For example, the 
host processor 142 may identify, from the resource library 
150, a set of resources required for providing a requested 
software application for the user device 110. It will be 
understood that the resource library 150 may similarly be 
provided as another type of storage component. 

In some embodiments, the resource library 150 may also 
store data related to resource templates. A resource template 
may generally include one or more resources grouped 
together as a predefined resource set, and can be launched by 
the host processor 142 for providing at least one software 
application. In some embodiments, at least one resource 
template can be associated with providing a Software appli 
cation on a Microsoft WindowsTM-based operating system, 
such as, but not limited to, Windows 7TM, Windows XPTM, 
Windows VistaTM, Windows METM, Windows 8TM, etc. 

Instead of defining the resources required for providing a 
particular software application individually, the resource 
library 150 can include a resource template for more com 
monly requested Software applications. It is possible that 
Some resource templates may include two or more resources 
that are more commonly required for providing various 
Software applications, but require other resources in order to 
provide any software applications. The resource templates 
can, as a result, minimize the processing required by the host 
processor 142 for providing certain Software applications. 



US 9,614,931 B2 
9 

For example, a resource template can include the 
resources required for providing the software application, 
CorelDRAWTM. The resource template can include the vari 
ous resources required for providing CorelDRAW, such as 
certain binary files and library files associated with Windows 
7, such as, but not limited to, the system binary file, 
“ntoskrnlexe', and the library file, “Win32k.dll. It will be 
understood that the listed example files are merely for 
illustration and that other binary and library files may be 
required. When the host computer system 140 receives an 
application request corresponding to CorelDRAW, the host 
processor 142 can determine from the resource library 150 
that the resources required for providing CorelDRAW is the 
resource template, which includes the multiple resources 
required for providing CorelDRAW. As a result, the host 
processor 142 does not need to retrieve the various required 
resources individually. 
The session log 152 can include Suitable data storage 

elements, such as one or more databases, for recording data 
associated with containerized resource instances that are 
active, or currently being provided by the host computer 
server 140 (referred herein as “active containerized resource 
instances'). The session log 152 may define the active 
containerized resource instances being currently provided 
by the host computer system 140. An entry in the session log 
152 can identify, for a particular software application being 
provided, the resources that have been launched for provid 
ing that software application, user data associated with a 
user account for which the software application is being 
provided (e.g., user identifier corresponding to the user 
account, etc.) and an application identifier corresponding to 
the software application being provided. It will be under 
stood that other information may also be provided in the 
session log 152. 
The host memory 154 may also store data and/or 

resources for providing the Software application at the host 
computer system 140. The host memory 154 can generally 
include RAM, ROM, one or more hard drives, or some other 
data storage elements, such as disk drives. The host memory 
154 may store the host operating system that is operated by 
the host processor 142. The host operating system can 
provide various basic operational processes for the host 
computer system 140. In some embodiments, the host oper 
ating system may include an operating system that operates 
on the Windows architecture, such as Windows Server 
2008TM. 

Also, the host memory 154 may be configured such that 
portions may also be allocated as application memory por 
tions for providing the requested Software applications, as 
will be described. Each application memory portion can be 
dedicated for that containerized resource instance. 

Although not explicitly shown in FIG. 1, the host storage 
component 146 may also store other data and/or resources 
associated with providing software applications at the host 
computer system 140. For example, various user data may 
also be stored at the host storage component 146. Each user 
is associated with a user account and each user account can 
be associated with a corresponding user identifier. The user 
account can include personal information (e.g., user name, 
contact information, etc.), user preferences associated with 
the host computer system 140 and other relevant user 
information. 
The host storage component 146 may, in some embodi 

ments, also store the resources required for providing the 
Software applications (e.g., binary files and library files 
associated with various different operating systems, resource 
templates defined for certain Software applications and/or 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

10 
operating systems, etc.) as well as the Software applications 
themselves. When the resources are not being used by the 
host computer system 140 for providing software applica 
tion(s), the host processor 142 may operate to apply the 
related software updates to the resources. The host computer 
system 140 may receive the software updates, or an update 
indication that software updates are available, from the 
software providers via the network 120. In response to 
receiving the Software updates or the update indication from 
the software providers, the host computer system 140 can 
determine an operational status of the relevant resource. 
When the resource is not being used for providing a software 
application, the resource may have the operational status of 
available and the host processor 142 can then operate to 
update the available relevant resource. When the resource is 
being used for providing a software application, the resource 
may have the operational status of unavailable and the host 
processor 142 can indicate in the resource library 150 that 
the software update is required for the resource. The host 
processor 142 can then operate to monitor the operational 
status of the relevant resource and to apply the software 
update in response to a change in the operational status to the 
available status. 

Referring still to FIG. 1, the network storage component 
130 can also store certain data and/or resources associated 
with providing the Software applications by the host com 
puter system 140. For example, the network storage com 
ponent 130 may store the resources that are less frequently 
required and/or data that is not as frequently accessed by the 
host computer system 140 and/or the user devices 110 in 
order to more effectively allocate the storage capacity of the 
host storage component 146. In some embodiments, the 
network storage component 130 may operate as a back-up 
storage component for the host computer system 140, and 
receive, at predefined time intervals, data already stored at 
the host storage component 146. 

Also, in embodiments where multiple host computer 
systems 140 are provided, the network storage component 
130 may store data and resources that are common to the 
various host computer systems 140. 
The user devices 110 may be any networked computing 

device operable to connect to the network 120. A networked 
device is a device capable of communicating with other 
devices through a network such as the network 120. A 
networked device may couple to the network 120 through a 
wired or wireless connection. 

These computing devices may include at least a processor 
and memory (not shown), and may be an electronic tablet 
device, a personal computer, workstation, server, portable 
computer, mobile device, personal digital assistant, laptop, 
smart phone, WAP phone, an interactive television, video 
display terminals, gaming consoles, and portable electronic 
devices or any combination of these. 

In some embodiments, these computing devices may be a 
laptop, or a Smartphone device equipped with a network 
adapter for connecting to the Internet. In some embodi 
ments, the connection request initiated from the user devices 
110 may be initiated from a web browser application stored 
at the user device 110 and directed at a browser-based 
application at the host computer system 140 for receiving 
the connection request. For example, the connection request 
may also include an authentication request for obtaining 
access to a user account at the host computer system 140 for 
a user operating the user device 110A. The host computer 
system 140 can then receive application requests from the 
user device 110A via the user account. 



US 9,614,931 B2 
11 

The network 120 may be any network capable of carrying 
data, including the Internet, Ethernet, plain old telephone 
service (POTS) line, public switch telephone network 
(PSTN), integrated services digital network (ISDN), digital 
subscriber line (DSL), coaxial cable, fiber optics, satelite, 
mobile, wireless (e.g. Wi-FiTM, WiMAXTM), SS7 signaling 
network, fixed line, local area network, wide area network, 
and others, including any combination of these, capable of 
interfacing with, and enabling communication between the 
host computer system 140, the network storage component 
130 and/or the user devices 110. 

Referring now to FIG. 2, which is a flowchart 200 of an 
example method for providing one or more Software appli 
cations. To illustrate the example method in FIG. 2, refer 
ence will be made simultaneously to FIGS. 3A to 6, which 
illustrate various example computer architecture diagrams 
of the host computer system 140. 

At 210, the host computer system 140 receives an appli 
cation request from a user device, such as 110A or 110B. 
The application request can include various information, 

Such as data related to the software application to be 
provided by the host computer system 140. For example, the 
application request can include an application identifier 
associated with the Software application being requested. 
The application request may, in some embodiments, also 
include data associated with the user account from which the 
application request was provided to the host computer 
system 140. 
The Software application as identified in the application 

request can generally include any program that is execut 
able, or launchable, by the host processor 142 for providing 
functionality to the user device 110. Example software 
applications can include, but is not limited to, various text, 
image, and/or video processing tools or programs (e.g., 
Microsoft WORDTM, CorelDRAW, etc.), gaming applica 
tions, Software development tools and/or applications, etc. 

At 220, the host computer system 140 provides the 
resource library 150. 
As described, the resource library 150 can be stored at the 

host storage component 146 and/or the network storage 
component 130. The resource library 150 can generally 
define one or more resources required for providing each 
Software application of the one or more software applica 
tions. 

Generally, the resources required for providing the soft 
ware application can include application resources, which 
are specific to providing the Software application, and/or 
system resources, which are specific to the Software archi 
tecture and/or operating systems on which the software 
application is to be provided. In typical computer systems, 
a complete instance of an operating system and related 
system resources, such as the desktop environment, are 
launched for providing any software applications. As a 
result, those computer systems typically launch resources 
that are unnecessary for providing the specific Software 
application and also occupy unnecessary computational and 
storage bandwidth. With the methods described herein, the 
host computer system 140 can provide the software appli 
cations with fewer resources, as compared to the typical 
computer systems, since the host computer system 140 can 
provide a particular software application by launching the 
required resources for that Software application, as deter 
mined from the resource library 150. 

In some embodiments, the resources required for provid 
ing a Software application can include one or more binary 
files and/or one or more library files. Each of the binary file 
and the library file can be specific to a software architecture, 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

12 
Such as Windows, and/or an application operating system 
(e.g., Windows 7, Windows XP, etc.). The application oper 
ating system is an operating system for Supporting the 
requested software application, and is different from the host 
operating system. Generally, the host operating system is a 
basic operating system for providing basic functionalities, 
Such as file systems, at the host computer system 140 (e.g., 
Windows Server 2008) whereas the application operating 
systems are configured for providing various functionalities 
to the user devices 110 through the software applications 
(e.g., Windows 7). The host operating system can generally 
provide a kernel that can be common to the various appli 
cation operating systems and on which the application 
operating systems can be provided. 

For example, a Software application may be designed for 
the Windows software architecture and configured to be 
compiled with Microsoft's Visual C++TM compiler. To pro 
vide that software application, the resource library 150 can 
indicate that the resources required for providing that soft 
ware application includes, at least, library files for the Visual 
C+ compiler, Such as C-style input/output calls and/or 
C-style memory allocation. 

Another example software application may also be 
designed for the Windows software architecture but config 
ured for another compiler, such as compiler based on C# or 
another Microsoft .NETTM language. To launch that software 
application, the resource library 150 can indicate that the 
resources required include, at least, the library files within 
the Microsoft .NET framework, which are different from the 
resources required for providing the Software application 
configured for the Visual C++ compiler. 
At 230, the host computer system 140 identifies, from the 

resource library 150, a set of resources required for provid 
ing the requested Software application based on the appli 
cation identifier. 
To provide the requested software application, the host 

processor 142 can operate to determine, from the resource 
library 150, the one or more resources, or the set of 
resources, required for providing the software application. 

Reference is now made to FIG. 3A, which is an example 
computer architecture diagram 300A for the host computer 
system 140. 
As shown in the computer architecture diagram 300, the 

host computer system 140 includes the host operating sys 
tem 340 and host hardware components 350. The host 
hardware components 350 can include hardware compo 
nents for Supporting the operation of the host computer 
system 140, such as the host processor 142 and the host 
storage component 146. It will be understood that, depend 
ing on the host computer system 140, other hardware 
components may also be provided at the host computer 
system 140. Such as Sounds cards, video cards, optical 
drives, etc. 
The host operating system 340 can provide basic opera 

tional processes and functionality for the host computer 
system 140. Example functionalities can include providing 
a file system for the host storage component 146, commu 
nicating with the host hardware components 350, commu 
nicating with the network 120 via the host interface com 
ponent 144 (e.g., a network printer, etc.) and other 
operations associated with the various containerized 
resource instances that can be provided by the host computer 
system 140. 
The host computer system 140 can operate to provide one 

or more software applications 310, such as “Application A 
310a, “Application B' 310b, “Application C 310c, and 
“Application D 310d. However, as shown in FIG. 3A, the 



US 9,614,931 B2 
13 

host computer system 140 generally requires resources in 
addition to the host operating system 340 in order to provide 
the software applications 310. The additional resources may 
be specific to the requirements of the Software applications 
310 and/or the software architecture on which the software 
applications 310 are to be launched. Also, although only four 
different software applications 310a to 310d are shown in 
FIG. 3A, it should be understood that the host computer 
system 140 may operate to provide a fewer or greater 
number of software applications 310. The number of soft 
ware applications 310 provided by the host computer system 
140 may be limited by the computational and/or storage 
capacities of the host computer system 140. 

For example, as shown in FIG. 3A, the host computer 
system 140 can determine from the resource library 150 that 
providing the software application 310a requires the 
resources in the resource set I 320(i). To provide the 
software applications 310b and 310c, the host computer 
system 140 can determine from the resource library 150 that 
the resources in the resource set II 320Cii) can be used for 
providing both software applications 310b and 310c. It is 
possible that software application 310a is configured for the 
same software architecture as software application 310b, but 
due to differences in the resources required for software 
application 310a and software application 310b, a different 
resource instance is provided for software application 310b. 

For providing the software application 310d, the host 
computer system 140 can determine from the resource 
library 150 that the software application 310d is designed for 
a software architecture that is incompatible with the soft 
ware architecture of the host operating system 340. That is, 
the software application 310d can be incompatible with the 
host operating system 340 when at least one resource of the 
resources 322 defined in the resource library 150 is inoper 
able at the host operating system 340. 

For example, the software application 310d may be con 
figured for operation on AndroidTM but the host operating 
system 340 may be Windows-based. The host processor 142 
can then determine that an emulation application, such as 
324, is required for facilitating compatibility between the 
host operating system 340 and the software application 310d 
since at least one resource of the resources 322 is inoperable 
on the host operating system 340. The emulation application 
324 and the resources 322, together, may then form the 
resource set 320(iii) to be launched by the host processor 
142 for providing the software application 310d. 
The emulation application 324 may be stored at the host 

storage component 146 and for the network storage com 
ponent 130. 

The emulation application 324 may operate to facilitate 
compatibility between specific types of operating systems, 
For example, one emulation application 324 may facilitate 
compatibility between only a Windows-based system and an 
Android TM-based system, Whereas another emulation appli 
cation 324 may facilitate compatibility between a Windows 
based system and both an AndroidTM-based system and a 
MacTMOSX-based system. 
The emulation application 324 may be operable for pro 

viding a virtual platform using various virtualization tech 
niques and/or tools. The virtual platform can operate as an 
interface tool between different software architectures, such 
as, but limited to, variations of LinuxTM, variations of 
Programmed Data Processors (PDP) architectures and other 
types of mainframe operating systems. 

In some embodiments, the emulation application 324 
required for facilitating compatibility may not be available. 
As a result, the host processor 142 and the host interface 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
component 144 may operate to send an error message to the 
corresponding user device 110 via the network 120 to 
indicate that the requested software application 310 is 
unavailable. 

FIG. 3B illustrates another example computer architecture 
diagram 300B for the host computer system 140. The 
computer architecture diagram 300B shown in FIG. 3B is 
generally similar to the computer architecture diagram 300A 
of FIG. 3A except the computer architecture diagram 300B 
includes the application interface 360. As described, the 
application interface 360 can operate to manage access to 
the various different software applications 310a to 310d 
being provided by the host computer system 140. The 
application interface 360 can include a manager application 
that operates to track the various different software appli 
cations being provided. The manager application may be 
operated by the host processor 142 for maintaining the 
session log 152 and also facilitating access to the various 
software applications 310. 
With the application interface 360, the host computer 

system 140 may provide the user device 110A with access to 
both software applications 310a and 310b. The software 
applications 310a and 310b may be associated with different 
operating systems. For example, the Software application 
310a may be associated with Windows 7 and the software 
application 310b may be associated with Windows 8. Access 
to both software applications 310a and 310b may be desir 
able for a user operating the user device 110A to facilitate 
the migration of user data from an older operating system 
(e.g., Windows 7) to a new operating system (e.g., Windows 
8TM) 
At 240, the host computer system 140 provides the 

requested software application 310 with the set of resources 
320 identified at 230. 

After identifying the set of resources 320 required for 
providing the software application 310, the host processor 
142 can proceed to provide the software application 310 for 
the user device 110 using the identified set of resources 320. 
The host processor 142 may, in Some embodiments, 

operate to launch the identified set of resources as a con 
tainerized resource instance. Referring still to FIG. 3A, as 
shown, the example computer architecture diagram 300A for 
the host computer system 140 illustrates three different 
containerized resource instances 302(i), 302(ii) and 302(iii). 
Each containerized resource instance 302 generally corre 
sponds to a launched instance of the set of resources 320 
required for providing a corresponding software application 
310. In some embodiments, a containerized resource 
instance 302 may also refer to a launched instance of the 
software application 310. Generally, each containerized 
resource instance 302 can be operationally isolated from one 
or more other containerized resource instances 302 being 
provided by the host computer system 140 so that the 
operations conducted by the host processor 142 for one 
containerized resource instance, such as 302(i), will not 
affect the operations conducted by the host processor 142 for 
another containerized resource instance, such as 302(ii). For 
example, if the containerized resource instance 302(i) is 
terminated due to an error in one of the resources in the 
corresponding resource set 420(i), the operation of the 
containerized resource instances 302(ii) and 302(iii) can 
continue as long as no failure errors occur in their respective 
resource sets 320(ii) and 320Ciii). 
To provide a containerized resource instance 302, the host 

processor 142 can allocate a portion of the host memory 154 
to be dedicated for providing that software application 310. 
The allocated portion of the host memory 154 may be 



US 9,614,931 B2 
15 

referred to as an application memory portion. The host 
processor 142 can then provide the software application 310 
by launching the corresponding set of resources 320 within 
the application memory portion. With the containerized 
resource instances, the host computer system 140 can pro 
vide the software applications 310 without launching unnec 
essary resources and as a result, reduce use of computational 
and processing bandwidth. 
By providing the software applications 310 with the 

containerized resource instances 302, the host computer 
system 140 may provide an enhanced user experience for the 
various users operating the user devices 110. No matter how 
reliable an electronic communication is between the user 
device 110 and the host computer system 140, it may be 
possible for a user device 110 to lose electronic communi 
cation with the host computer system 140 while the host 
computer system 140 is providing the Software application 
310 to the user device 110. With the containerized resource 
instances 302, certain memory portions and possibly other 
components at the host computer system 140 are dedicated 
for providing the software application 310 and thus, the host 
computer system 140 can continue to provide the contain 
erized resource instances 302 for the corresponding user 
account even when the host computer system 140 detects 
that a corresponding user device 110 is no longer in elec 
tronic communication with the host computer system 140. 

Despite detecting the user device 110 is no longer in 
electronic communication with the host computer system 
140, the host computer system 140 can continue to provide 
the containerized resource instance 302 for a predefined time 
period and/or until a predefined event occurs. For example, 
the predefined time periods and predefined event may vary 
according to the user preferences corresponding to a par 
ticular user account and/or system settings. For example, a 
system setting may indicate that the host computer system 
140 will terminate any containerized resource instance 302 
when the corresponding user device 110 has lost electronic 
communication with the host computer system 140 for more 
than an hour. A user preference may indicate that the host 
computer system 140 should never terminate any contain 
erized resource instance 302 until a specific input is received 
from that user account. Depending on the design and 
requirements of the host computer system 140 and/or the 
type of the user accounts, the host computer system 140 may 
be configured to prefer the system setting over user prefer 
ences, or vice versa, in the case of conflicting settings. 
When the host computer system 140 detects the user 

device 110 has resumed electronic communication with the 
host computer system, the host computer system 140 can 
reinstate access to the previous one or more containerized 
resource instances 302 for the user device 110. 
An example operation of the host computer server 140 for 

providing software applications 310 will now be described 
with reference to FIG. 4. FIG. 4 is another example com 
puter architecture diagram 400 for the host computer system 
140. Similar to the computer architecture diagram 300 in 
FIG. 3A, the computer architecture diagram 400 includes the 
host operating system 340 and the host hardware compo 
nents 350. 

In the example of FIG. 4, the host computer system 140 
operates to provide two different containerized resource 
instances, namely 402(i) and 402(ii). Each containerized 
resource instance 402(i), 402(ii) is associated with a differ 
ent software application, Microsoft WORD (software appli 
cation 410a) and Gaming XYZ application (software appli 
cation 410b), respectively. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

16 
The host computer system 140 can provide the software 

applications 410a, 410b in response to one or more appli 
cation requests received from one or more user devices 110. 
In some embodiments, an application request received from 
one user device, such as 110A, can correspond to both 
software applications 410a and 410b. 

In some embodiments, an application request correspond 
ing to the software application 410a can be received from 
the user device 110A while an application request corre 
sponding to the software application 410b can be received 
from the user device 110B. In response to the application 
request from the user device 110A, the host processor 142 
can determine the application identifier in the application 
request corresponds to the Software application 410a, 
Microsoft WORD. The host processor can then proceed to 
determine, from the resource library 150, that the resources 
required for providing software application 410a is the 
resource set 4200i). 

In the example of FIG. 4, the resource set 420(i) deter 
mined for the software application 410a is associated with 
the application operating system, Windows 7. In some 
embodiments, the host processor 142 can determine that the 
software application 410a may be provided with resources 
associated with multiple different application operating sys 
tems. For example, the software application 410a, Microsoft 
WORD, may be provided with resources associated with 
various Windows-based operating systems, such as Win 
dows 7. Windows XP, etc. In response to determining that 
different sets of resources may be available, the host pro 
cessor 142 may select one set of resource based on pre 
defined system settings or user preferences, or provide a 
selection interface for receiving a user selection of one of the 
resource sets from the user device 110. 
As shown in FIG. 4, the host processor 142 is operated to 

launch the resource set 420(i) as the containerized resource 
instance 402(i) for providing the software application 410a. 
To provide the software application 410b, the host processor 
142 can proceed to determine that the resource set 420(ii) is 
required for providing the software application 410b, and to 
launch the resource set 420(ii) as the containerized resource 
instance 402(ii). 
By providing the software applications 410a and 410b 

with the corresponding containerized resource instances 
402(i) and 402(ii), the host computer system 140 can operate 
to provide the software applications 410a and 410b so that 
the operation of the containerized resource instance 402(i) 
will not affect the operation of the containerized resource 
instance 402(ii). As described, each containerized resource 
instance 402(i), 402(ii) can be associated with a different 
application memory portion within the host memory 154. It 
may also be possible to dedicate certain processing band 
width of the host processor 142 for each of the containerized 
resource instances 402(i) and 402(ii). 

FIG. 5 is yet another example computer architecture 
diagram 500. The computer architecture diagram 500 con 
tinues from the example shown in FIG. 4. 
When the software applications 410a and 410b are pro 

vided with the respective containerized resource instances 
402(i) and 402(ii), respectively, the host computer system 
140 can also store data associated with each of these 
containerized resource instances 402(i) and 402(ii) in the 
session log 152. These containerized resource instances 
402(i) and 402(ii) can also be referred to as active contain 
erized resource instances since the host computer system 
140 is currently providing them for the user account asso 
ciated with the respective user devices 110A, 110B. Each 
entry in the session log 152 can include various information 



US 9,614,931 B2 
17 

associated with each active containerized resource instance 
402, such as the resources launched for that containerized 
resource instance 402 and the associated user identifier. 

With the session log 152, the host processor 142 can track 
and review the active containerized resource instances 402. 
In some embodiments, the host processor 142 may deter 
mine from the session log 152 at least one of the active 
containerized resource instance 402 that can be used to fulfil 
another application request. That is, if the resources 
launched for one of the active containerized resource 
instances 402 correspond to a set of resources required for 
providing a newly requested software application 310, the 
host processor 142 may provide the newly requested Soft 
ware application 310 with that active containerized resource 
instance 402. Otherwise, the host processor 142 can proceed 
to provide the newly requested software application 310 by 
launching the corresponding set of resources 320 as a new 
containerized resource instance 302. 

Referring still to FIG. 5 and continuing with the example 
shown in FIG. 4, the host computer system 140 may receive 
another application request corresponding also to the Soft 
ware application 410a, Microsoft WORD, but from another 
user account via the user device 110B. Before the host 
processor 142 operates to launch the resource set 420(i) as 
a new containerized resource instance 402 for providing the 
software application 410a (Microsoft WORD), the host 
processor 142 may determine, from the session log 152, that 
the active containerized resource instance 402(i) is also 
associated with the resource set 420(i). As described with 
respect to FIG. 4, the host computer system 140 is currently 
providing the software application 410a (Microsoft WORD) 
with the containerized resource instance 402(i). Therefore, 
from the session log 152, the host processor 142 can 
determine that the software application 410a can also be 
provided for the user device 110B using the containerized 
resource instance 402(i). As shown in FIG. 5, different user 
sessions can be provided in the containerized resource 
instance 402(i)—a user session 512 can be provided for the 
user device 110A and a user session 514 can be provided for 
the user device 110B, in this example. 

Another example application request received by the host 
computer system 140 may be associated with another soft 
ware application 510a, such as “Word Editor Application'. 
From the resource library 150, the host processor 142 may 
determine that the resource set 320 required for providing 
the software application 510a is the resource set 420(i). 
Before launching the resource set 420(i) as a new contain 
erized resource instance 302, the host processor 142 may 
determine that the active containerized resource instance 
402(i) is associated with resources within the resource set 
4200i), and can therefore provide the software application 
510a with the active containerized resource instance 402(i). 

Continuing with reference to FIG. 5, the host computer 
system 140 may receive another application request associ 
ated with a software application 510b, such a “Video Editor 
Application'. From the resource library 150, the host pro 
cessor 142 may determine that the resource set required for 
providing the software application 510b is the resource set 
520. Although, like the resource set 420(i), the resource set 
520 is also associated with the Windows 7 software archi 
tecture, the resource set 520 includes one or more resources 
that are specific to the software application 510b that are not 
present in the resource set 420(i). For example, the resource 
set 520 may include resources for encoding and/or decoding 
multimedia video files, which are required for providing the 
software application 510.b (a video editor application), but 
are not required for providing the software application 510a 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

18 
(a word editor application). Therefore, the host processor 
142 can proceed to provide the software application 510b by 
launching the resource set 520 as a new containerized 
resource instance 502. 

FIG. 6 is another example computer architecture diagram 
600 and, like the computer architecture diagram 500 of FIG. 
5, the computer architecture diagram 600 continues from the 
example shown in FIG. 4. 
As described with reference to FIG. 3A, the host com 

puter system 140 may receive an application request asso 
ciated with a software application that is configured for an 
application operating system that is incompatible with the 
host operating system 340. For example, in the example of 
FIGS. 4 to 6, the host operating system 340 is Window 
Server 2008, and the application operating system for a 
newly requested Software application may be Android. The 
resources required for the newly requested Software appli 
cation are, therefore, inoperable on the host operating sys 
tem 340 of this example. 

Referring now to FIG. 6 and continuing with the example 
shown in FIG. 4, the host computer system 140 may receive 
an application request associated with a software application 
610 configured for the Android software architecture, such 
as “Androids Messenger Application'. From the resource 
library 150, the host processor 142 may determine the 
resources 622 required for providing the Software applica 
tion 610. The host processor 142 may also determine from 
the resource library 150 that, at least one of the resources 
622 is inoperable on the host operating system 340 (Win 
dows Server 2008) since the software application 610 is 
configured for Android. The host processor 142 can then 
determine that the emulation application 624 is required for 
facilitating compatibility between the software application 
610 and the host operating system 340. The resource set 620 
for providing the software application 610 can include the 
resources 622 and the emulation application 624. 

Various embodiments have been described herein by way 
of example only. Various modification and variations may be 
made to these example embodiments without departing from 
the spirit and scope of the invention, which is limited only 
by the appended claims. 
We claim: 
1. A method for providing one or more software applica 

tions at a host computer server, the host computer server 
having, at least, a host memory for storing a host operating 
system and a host processor configured for operating the 
host operating system, the method comprising: 

receiving a software application request from a user 
device, the Software application request comprising an 
application identifier associated with a requested Soft 
ware application, the requested Software application 
being a software application to be executed at the host 
computer server, the user device comprising a device 
processor and a device memory; 

providing a resource library for the host computer server, 
the resource library defining one or more resources 
required for providing each Software application of the 
one or more software applications; 

identifying, from the resource library, a set of resources 
required for providing the requested Software applica 
tion based on the application identifier, the set of 
resources comprising at least one application resource 
and at least one host resource, wherein: 
the at least one application resource comprises one or 
more resources required for an application operating 
system to Support the requested Software application 
and is absent from the host operating system; 



US 9,614,931 B2 
19 

the at least one host resource comprises one or more 
resources required for the application operating sys 
tem to support the requested Software application 
and is provided by the host operating system, and 

the application operating system is an operating system 
operable for providing the requested Software appli 
cation and the application operating system is dif 
ferent from the host operating system; and 

providing the requested Software application with the 
identified set of resources for execution on the host 
operating system, wherein providing the requested Soft 
ware application comprises accessing the at least one 
application resource and operating the host processor to 
launch the set of resources as a containerized resource 
instance for providing the requested Software applica 
tion, the containerized resource instance being opera 
tionally isolated from other containerized resource 
instances, the other containerized resource instances 
including at least one other containerized resource 
instance for providing one or more other software 
applications that do not require the at least one appli 
cation resource, and the at least one application 
resource is not launched in the at least one other 
containerized resource instance; and 

prior to operating the host processor to launch the set of 
resources as the containerized resource instance for 
providing the requested Software application 
providing a session log for the host computer server, the 

session log recording one or more active container 
ized resource instances and, for each active contain 
erized resource instance, one or more resources 
associated with that active containerized resource 
instance, the one or more active containerized 
resource instances being containerized resource 
instances currently provided by the host computer 
server; 

determining, from the session log, whether the one or 
more resources associated with at least one active 
containerized resource instance corresponds to the 
identified set of resources; and 

in response to determining the one or more resources 
associated with at least one active containerized 
resource instance corresponds to the identified set of 
resources, providing the requested Software applica 
tion with one of the at least one active containerized 
resource instance, otherwise, operating the host pro 
cessor to launch the set of resources for providing the 
requested Software application as a new container 
ized resource instance. 

2. The method of claim 1, further comprising: 
providing an application interface at the host computer 

server, the application interface facilitating electronic 
communication between the one or more active con 
tainerized resource instances and the user device. 

3. The method of claim 1, wherein operating the host 
processor to launch the set of resources as the containerized 
resource instance comprises: 

allocating an application memory portion within the host 
memory for launching the set of resources, the appli 
cation memory portion being dedicated for providing 
the requested Software application and each container 
ized resource instance being associated with a different 
application memory portion within the host memory; 
and 

launching the set of resources within the application 
memory portion. 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

20 
4. The method of claim 1, wherein: 
the Software application request comprises a user identi 

fier corresponding to a user account from which the 
Software application request was received; and 

providing the requested Software application with the 
identified set of resources comprises: 
providing a session log for the host computer server, the 

session log recording the user identifier in associa 
tion with the containerized resource instance provid 
ing the requested Software application; and 

upon detecting the user device is not in electronic 
communication with the host computer server, con 
tinuing to provide the requested Software application 
with the containerized resource instance for that user 
acCOunt. 

5. The method of claim 1, wherein identifying the set of 
resources required for providing the requested Software 
application based on the application identifier comprises: 

determining the requested Software application is incom 
patible with the host operating system when at least one 
resource of the set of resources identified for the 
requested Software application is inoperable at the host 
operating system; and 

if the requested software application is incompatible with 
the host operating system, then identifying an emula 
tion application operable for providing the Software 
application at the host operating system, the emulation 
application being operable for facilitating compatibility 
between the host operating system and the requested 
Software application, otherwise, sending an error mes 
sage to the user device to indicate the requested soft 
ware application is unavailable. 

6. The method of claim 1, wherein the one or more 
resources identified in the resource library comprises at least 
one of a binary file and a library file. 

7. The method of claim 1, wherein the set of resources 
comprises at least the requested Software application. 

8. The method of claim 1, wherein the host operating 
system is based on a MicrosoftTM WindowsTM Server archi 
tecture and the application operating system is based on a 
MicrosoftTM Windows TM architecture. 

9. The method of claim 1, wherein providing the resource 
library comprises: 

generating one or more resource templates, each resource 
template being a predefined resource set launchable by 
the host processor for providing at least one software 
application, the predefined resource set including one 
or more resources required for providing the at least 
one software application. 

10. The method of claim 9, wherein the one or more 
resource templates comprises at least one resource template 
launchable by the host processor for providing the at least 
one software application on a Windows-based operating 
system. 

11. The method of claim 1, wherein accessing the at least 
one application resource comprises accessing the at least one 
application resource stored remotely from the host computer 
SeVe. 

12. The method of claim 1, wherein the one or more 
resources of the at least one application resource are part of 
the application operating system. 

13. A system for providing one or more Software appli 
cations, the system comprising: 

at least one storage component including a host memory 
for storing, at least, a host operating system and a 
resource library defining one or more resources 



US 9,614,931 B2 
21 

required for providing each Software application of the 
one or more software applications; and 

a host processor configured for operating the host oper 
ating system, the host processor being further config 
ured to: 
receive a Software application request from a user 

device, the Software application request comprising 
an application identifier associated with a requested 
Software application, the requested Software appli 
cation being a software application to be executed by 
the system; 

identify, from the resource library, a set of resources 
required for providing the requested Software appli 
cation based on the application identifier, the set of 
resources comprising at least one application 
resource and at least one host resource, wherein: 
the at least one application resource comprises one or 

more resources required for an application oper 
ating system to Support the requested Software 
application and is absent from the host operating 
system; 

the at least one host resource comprises one or more 
resources required for the application operating 
system to Support the requested Software applica 
tion and is provided by the host operating system, 
and 

the application operating system is an operating 
system operable for providing the requested Soft 
ware application and the application operating 
system is different from the host operating system; 

provide the requested software application with the 
identified set of resources for execution on the host 
operating system, wherein providing the requested 
Software application comprises accessing the at least 
one application resource; and 

launch the set of resources as a containerized resource 
instance for providing the requested application, the 
containerized resource instance being operationally 
isolated from other containerized resource instances 
being provided, the other containerized resource 
instances including at least one other containerized 
resource instance for providing one or more other 
Software applications that do not require the at least 
one application resource, and the at least one appli 
cation resource is not launched in the at least one 
other containerized resource instance; 

wherein 
the at least one storage component further comprises a 

session log for recording one or more active con 
tainerized resource instances and, for each active 
containerized resource instance, one or more 
resources associated with that active containerized 
resource instance, the one or more active container 
ized resource instances being containerized resource 
instances currently provided by the host computer 
server; and 

the host processor is configured, prior to launching the 
set of resources as the containerized resource 
instance for providing the requested Software appli 
cation, to: 

determine, from the session log, whether the one or 
more resources associated with at least one active 
containerized resource instance corresponds to the 
identified set of resources; and 

in response to determining the one or more resources 
associated with at least one active containerized 
resource instance corresponds to the identified set of 

10 

15 

25 

30 

35 

40 

45 

50 

55 

60 

65 

22 
resources, provide the requested Software applica 
tion with one of the at least one active containerized 
resource instance, otherwise, the host processor is 
configured to launch the set of resources for provid 
ing the requested Software application as a new 
containerized resource instance. 

14. The system of claim 13, wherein the at least one 
storage component comprises a host memory for storing the 
host operating system and one or more storage components 
for storing the resource library, the one or more storage 
components being physically separate from the host 
memory. 

15. The system of claim 13, wherein the host processor is 
further configured to provide an application interface for 
facilitating electronic communication between the one or 
more active containerized resource instances and the user 
device. 

16. The system of claim 13, wherein the host processor is 
further configured to: 

allocate an application memory portion within the at least 
one storage component for launching the set of 
resources, the application memory portion being dedi 
cated for providing the requested Software application 
and each containerized resource instance being associ 
ated with a different application memory portion within 
the at least one storage component; and 

launch the set of resources within the application memory 
portion. 

17. The system of claim 13, wherein: 
the Software application request comprises a user identi 

fier corresponding to a user account from which the 
software application request was received; 

the at least one storage component further comprises a 
session log for recording the user identifier in associa 
tion with the containerized resource instance providing 
the requested Software application; and 

the host processor is further configured, upon detecting 
the user device is not in electronic communication with 
the system, to continue to provide the requested Soft 
ware application with the containerized resource 
instance for that user account. 

18. The system of claim 13, wherein the host processor is 
configured to: 

determine the requested Software application is incom 
patible with the host operating system when the 
requested Software application is operable on a soft 
ware architecture different from a software architecture 
of the host operating system; and 

if the requested software application is incompatible with 
the host operating system, then identify an emulation 
application operable for providing the software appli 
cation at the host operating system, the emulation 
application being operable for facilitating compatibility 
between the host operating system and the requested 
Software application, otherwise, the host processor is 
configured to send an error message to the user device 
to indicate the requested Software application is 
unavailable. 

19. The system of claim 13, wherein the one or more 
resources identified in the resource library comprises at least 
one of a binary file and a library file. 

20. The system of claim 13, wherein the set of resources 
comprises at least the requested Software application. 

21. The system of claim 13, wherein the host operating 
system is based on a MicrosoftTM WindowsTM Server archi 
tecture and the application operating system is based on a 
MicrosoftTM WindowsTM architecture. 



US 9,614,931 B2 
23 

22. The system of claim 13, wherein the host processor is 
configured to: 

generate one or more resource templates, each resource 
template being a predefined resource set launchable by 
the host processor to provide at least one software 5 
application, the predefined resource set including one 
or more resources required for providing the at least 
one software application. 

23. The system of claim 22, wherein the one or more 
resource templates comprises at least one resource template 10 
launchable by the host processor to provide the at least one 
Software application on a Windows-based operating system. 

24. The system of claim 13, wherein accessing the at least 
one application resource comprises accessing the at least one 
application resource Stored remotely from the system. 15 

25. The system of claim 13, wherein the one or more 
resources of the at least one application resource are part of 
the application operating system. 

k k k k k 

24 


