
United States Patent

USOO961 2942B2

(12) (10) Patent No.: US 9,612,942 B2
Citron et al. (45) Date of Patent: Apr. 4, 2017

(54) VERIFICATION OF A COMPUTER 7,475,002 B1 1/2009 Mann
PROGRAM IN RESPECT TO AN 2003/0212989 A1 11/2003 Rokosz
UNEXPECTED RESPONSE TO AN ACCESS 2005, 0120276 A. 6/2005 Kolawa et al. T14? 38
REQUEST 2007/0100596 A1 5/2007 Hollis . TO3/14

2008/0270819 A1* 10, 2008 Hamilton T13,502
2010/0125836 A1* 5/2010 Sazegari et al. 717, 151

(75) Inventors: Daniel Citron, Haifa (IL); Yarden 2010/0250225 A1* 9/2010 Gray-Donald et al. 703/17
Nir-Buchbinder, Haifa (IL): Aviad 2012/0054551 A1 3/2012 Gao et al. 714,38.1
Zlotnick, Mitzpeh Netofah (IL)

(73) Assignee: International Business Machines OTHER PUBLICATIONS
Corporation, Armonk, NY (US) “SoftBase.” 2009, downloaded from the Wayback Machine dated

c - r Dec. 17, 2009, two pages.*
(*) Notice: Subject to any disclaimer, the term of this “IBM Application Time Facility for z/OS, User's Guide.” 2007,

patent is extended or adjusted under 35 International Business Machines 1-68.*
U.S.C. 154(b) by 1067 days. pp. -os.

(Continued)
(21) Appl. No.: 12/948,788

Primary Examiner — Kamini S Shah
(22) Filed: Nov. 18, 2010 Assistant Examiner — Russ Guill

(74) Attorney, Agent, or Firm — Ziv Glazberg
(65) Prior Publication Data

US 2012/0130702 A1 May 24, 2012 (57) ABSTRACT
Testing a computer program comprises identification of

(51) Int. Cl. resource access requests by the computer program to a
G06F 9/45 (2006.01) resource provided by an underlying host. The resource
G06F II/36 (2006.01) access requests may be intercepted and a determined

(52) U.S. Cl. response may be returned instead of the actual response of
CPC G06F II/3672 (2013.01) the underlying host. In some exemplary embodiments, the

(58) Field of Classification Search resource may a clock of the underlying host and the response
CPC ... GO6F 11 (3672 may be the time of the clock. In some exemplary embodi
USPC 703/22 ments, the computer program may be tested to check for
See application file for complete search history. validity during execution on a cloud computing environ

ment, in which access to resources may yield results that on
(56) References Cited a non-cloud computing environments are generally not

U.S. PATENT DOCUMENTS

5,974,569 A * 10/1999 Nickles G06F 11,3688
T14? 33

7,092,866 B2 * 8/2006 Rokosz 703/17

OBTAINA COMPUTER PROGRAM TO TEST

EXECUTING THE COMPUTER PROGRAMBYA
COMPUTERIZED DEVICE

DENTIFYING ACCESS REQUEST TO THE CLOCK

INTERCEPTING THE ACCESS REQUEST

expectable. The testing may be performed on a non-cloud
computing environments and simulate scenarios applicable
to cloud computing environments.

14 Claims, 5 Drawing Sheets

300

310

330

340
DETERMINING TIME TO PROVIDE IN RESPONSE TO ACCESS

OBTAIN PREVIOSULY L3
PROVIDED TVE

RANDOMZETIME
PRIOR TO THE
PREVIOUSLY

PROVIDED TIME

OBTAN PREVIOSULY
PROVIDED TIME

RANDOMIZE TIME
WHINA

PREDETERMINED
RANGE

US 9,612,942 B2
Page 2

(56) References Cited

OTHER PUBLICATIONS

Takayuki Bonzai et al., “D-cloud: design of a Software testing
environment for reliable distributed systems using cloud computing
technology,” May 17, 2010, 2010 10th IEEE/ACM International
Conference on Cluster, Cloud and Grid Computing, pp. 631-636.*
Hong Ong et al., “VCCP: A Transparent, Coordinated Checkpoint
ing System for Virtualization-based Cluster Computing.” 2009,
IEEE International Conference on Cluster Computing and Work
shops, ten pages.
"Time Machine” datasheet, 2008, SolutionSoft Systems, two
pages.
"Time Machine” home web page from the Wayback Machine, 2008,
Solution-Soft, three pages.*
Ian Lucas, “Testing times in computer validation.” 2003, Journal of
Validation Technology, vol. 9, No. 2, pp. 153-161.*
Optionistic, “Random Time Generator.” 2008, downloaded from
http://www.excelforum.com/excel-formulas-and-functions/662470
random-time-generator.html on Jun. 27, 2015, three pages.

Gerard, "Random Clock Time Generator,” Jun. 10, 2007, down
loaded from http://presurfer.blogspot.com/2007/06/random-clock
time-generator.html on Jun. 27, 2015, four pages.*
RichH. “Faking Time Without Changing Windows System Clock.”
Jan. 13, 2009, http://stackoverflow.com/questions/437599, faking
time-without-changing-windows-system-clock, 2 pages.
Moez Krichen et al., “Conformance testing for real-time systems.”
Feb. 14, 2009, Formal Methods in System Design, vol. 34, pp.
238-304.
Tom, “High-performance Timing on Linux/Windows,” Jun. 27.
2010, tdistler.com/2010/06/27/high-performance-timing-on-linux
windows, 8 pages.
“Year 2000 Computing Crisis: An Assessment Guide.” 1997, United
States General Accounting Office, pp. 1-34.*
Voretaq7, “what is the easiest way to test the impact of NTP step
changes on other software,” Jul. 15, 2010, http://serverfault.com/
questions 160724/what-is-the-easiest-way-to-test-the-impact-of
ntp-step-changes-on-other-software, two pages.
Brian Luzum, “The pros and cons of leap seconds,” 2006, Physics
Today, Nov. 2006, 2 pages.*
"Time Machine', URL: www.solution-soft.com.

* cited by examiner

U.S. Patent Apr. 4, 2017 Sheet 1 of 5 US 9,612,942 B2

1 OO

120

VERIFICATION APPARATUS

130

EXECUTION HOST

FIG. 1

U.S. Patent Apr. 4, 2017 Sheet 2 of 5 US 9,612,942 B2

APPARATUS

210
TESTING MODULE INTERCEPTOR 240

22 || RESPONSE DETERMINATOR
ACCESS IDENTIFIER 2 5 245

RANDOMIZING MODULE
CODE INSTRUMENTOR

202 205 2O7

STORAGE
PROCESSOR IOMODULE DEVICE

FIG. 2

U.S. Patent Apr. 4, 2017 Sheet 3 of 5 US 9,612,942 B2

O 30

OBTAIN A COMPUTER PROGRAM TO TEST

310
EXECUTING THE COMPUTER PROGRAM BY A

COMPUTERIZED DEVICE

32O

IDENTIFYING ACCESS REQUEST TO THE CLOCK

33

INTERCEPTING THE ACCESS REQUEST

340

O

DETERMINING TIME TO PROVIDE IN RESPONSE TO ACCESS

OBTAIN PREVIOSULY
PROVIDED TIME

RANDOMZE TIME
PRIOR TO THE
PREVIOUSLY

PROVIDED TIME

OBTAIN PREVIOSULY
PROVIDED TIME

RANDOMIZE TIME
WITHINA

PREDETERMINED
RANGE

FG. 3

US 9,612,942 B2 Sheet 4 of 5 Apr. 4, 2017 U.S. Patent

US 9,612,942 B2
1.

VERIFICATION OF A COMPUTER
PROGRAM IN RESPECT TO AN

UNEXPECTED RESPONSE TO AN ACCESS
REQUEST

BACKGROUND

The present disclosure relates to verification of a com
puter program in general, and to testing of a computer
program that may migrate from a first host to a second host
during the operation of the computer program, in particular.

Computerized devices control almost every aspect of our
life—from writing documents to controlling traffic lights.
However, computerized devices are bug-prone, and thus
require a testing phase in which the bugs should be discov
ered. The testing phase is considered one of the most difficult
tasks in designing a computerized device. The cost of not
discovering a bug may be enormous, as the consequences of
the bug may be disastrous. For example, a bug may cause the
injury of a person relying on the designated behavior of the
computerized device. Additionally, a bug in hardware or
firmware may be expensive to fix, as patching it requires
call-back of the computerized device. Hence, many devel
opers of computerized devices invest a Substantial portion of
the development cycle to discover erroneous behaviors of
the computerized device.
A computer program may be operated by a host, such as

a computer server. Today, cloud computing is a well estab
lished and utilized computing paradigm. In cloud comput
ing, the computer program may be executed by a "cloud of
processing devices, such as a network of servers and similar
computing machines. During execution of a computer pro
gram by a cloud, the computer program may migrate from
a first host to a second host. For example, the computer
program may be executed by a virtual machine. The virtual
machine may be first processed by a first server, and later on
the virtual machine may be migrated to a second sever to
continue execution of the computer program. The servers
and other computing machines are deemed as hosts. The
hosts may be responsible to provide resources to the virtual
machine, and therefore to the computer program. The
resources may be, for example, free memory, shared
memory, storage space, access to pseudo-random generator,
access to a clock, or the like.

SUMMARY

One exemplary embodiment of the disclosed subject
matter is a computer-implemented method, the method
comprising: testing a computer program by operating the
computer program by a computerized device, wherein the
computerized device is operative to provide the computer
program with access to a resource; intercepting an access
request to the resource by the computer program, wherein
the intercepting comprises: determining a response to be
provided to the computer program; and providing the deter
mined response to the computer program instead of a
response from the resource to the request.

Another exemplary embodiment of the disclosed subject
matter is a computerized apparatus having a processor, the
apparatus comprising: a testing module operative to operate
a computer program, wherein the testing module is config
ured to provide the computer program with access to a
resource; an interceptor operative to intercept an access
request to the resource by the computer program, wherein
the interceptor comprises a response determinator operative
to determine a response to be provided to the computer

2
program, and wherein the interceptor is further operative to
provide the determined response to the computer program
instead of a response from the resource to the request.

Yet another exemplary embodiment of the disclosed sub
5 ject matter is a computer program product, the product

10

15

25

30

35

40

45

50

55

60

65

comprising: a computer readable medium; a first program
instruction for testing a computer program by operating the
computer program by a computerized device, wherein the
computerized device is operative to provide the computer
program with access to a resource; a second program
instruction for intercepting an access request to the resource
by the computer program, wherein the second program
instruction comprises: a third program instruction for deter
mining a response to be provided to the computer program;
and a fourth program instruction for providing the deter
mined response to the computer program instead of a
response from the resource to the request; wherein the first,
second, third, and fourth program instructions are stored on
the computer readable medium.

THE BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The present disclosed subject matter will be understood
and appreciated more fully from the following detailed
description taken in conjunction with the drawings in which
corresponding or like numerals or characters indicate cor
responding or like components. Unless indicated otherwise,
the drawings provide exemplary embodiments or aspects of
the disclosure and do not limit the scope of the disclosure.
In the drawings:

FIG. 1 shows a computerized environment in which the
disclosed subject matter is used, in accordance with some
exemplary embodiments of the Subject matter.

FIG. 2 shows a block diagram of an apparatus, in accor
dance with some exemplary embodiments of the disclosed
Subject matter.

FIG. 3 shows a flowchart diagram of a method, in
accordance with some exemplary embodiments of the dis
closed subject matter.

FIG. 4 depicts a cloud computing environment, in accor
dance with some exemplary embodiments of the disclosed
Subject matter.

FIG. 5 depicts abstraction model layers, in accordance
with some exemplary embodiments of the disclosed subject
matter.

DETAILED DESCRIPTION

The disclosed subject matter is described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod
ucts according to embodiments of the subject matter. It will
be understood that each block of the flowchart illustrations
and/or block diagrams, and combinations of blocks in the
flowchart illustrations and/or block diagrams, can be imple
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or
other programmable data processing apparatus to produce a
machine, Such that the instructions, which execute via the
processor of the computer or other programmable data
processing apparatus, create means for implementing the
functions/acts specified in the flowchart and/or block dia
gram block or blocks.

These computer program instructions may also be stored
in a computer-readable medium that can direct a computer

US 9,612,942 B2
3

or other programmable data processing apparatus to function
in a particular manner, Such that the instructions stored in the
computer-readable medium produce an article of manufac
ture including instruction means which implement the func
tion/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer or other programmable data processing
apparatus to cause a series of operational steps to be per
formed on the computer or other programmable apparatus to
produce a computer implemented process such that the
instructions which execute on the computer or other pro
grammable apparatus provide processes for implementing
the functions/acts specified in the flowchart and/or block
diagram block or blocks.
One technical problem dealt with by the disclosed subject

matter is to test a computer program when operated by a
cloud. Another technical problem is to test whether migra
tion between hosts may invalidate operation of a computer
program. Yet another technical problem is to test the com
puter program in respect to cloud processing schema by
executing the computer program on a single host or by
another non-cloud processing system. Yet another technical
problem is to test the computer program in respect to
possible migration that is not specifically related to a cloud
computing environment.
One technical Solution is to simulate resource responses

from a host to requests by the computer program. The
simulated responses may be configured to simulate
responses that may occur in case migration occurs. Another
technical solution is to intercept resource requests and
provide alternative simulated responses. Yet another tech
nical solution is to intercept time requests directed to a clock
of the host, and to simulate alternative responses. Yet
another technical Solution is to simulate an alternative
response by randomly choosing a response within a prede
termined range of a previously provided response. For
example, in case a time of 06:32:16 was previously pro
vided, the simulated response may be a random time that is
within a range of one minute from the previously provided
time (i.e., a time between 06:31:16 and 06:33:16).
One technical effect of utilizing the disclosed subject

matter is to simulate the technical effect of migration without
having to perform an actual migration during the testing
phase. The testing environment may be a relatively simple
processing environment, and need not be a cloud processing
environment. Another technical effect is to simulate resource
responses that are unexpected in a single-host environment,
but may occur in a cloud processing environment. For
example, as time is a monotonically strictly increasing
function, a first provided time must be earlier than a second
provided time that is provided afterwards. However, in a
cloud computing environment, as the first time may be
provided based on a first clock and the second time may be
provided based on a second clock, this inherent feature of
the provided time may be violated. The disclosed subject
matter provides a technical effect of simulating Such a
scenario when executing the computer program by a single
host. Yet another technical effect is to simulate execution of
the computer program in which returned times are not
represented by a monotonically strictly increasing function.
Yet another technical effect is to test operation of the
computer program in respect to a clock skipping forward. In
Some exemplary embodiments, due to the clock skipping
forward, time out operations may be invoked and sensitivity
of the computer program to time out values may be tested.

5

10

15

25

30

35

40

45

50

55

60

65

4
Referring now to FIG. 1 showing a computerized envi

ronment in which the disclosed Subject matter is used, in
accordance with Some exemplary embodiments of the Sub
ject matter.
A computerized environment 100 may comprise a com

puter program 110. The computer program 110 may be a set
of instructions operative to operate a processing machine,
Such as a processor, also referred to as a host. The computer
program 110 may be embedded on a computer-readable
medium. The computer program 110 may be operated by a
cloud 105. The cloud 105 may comprise a plurality of hosts,
such as host 106. The hosts of the cloud 105 may be
connected in a computer network, such as a LAN, a WAN,
a WiFi, a WiMax, the Internet, an intranet, combination
thereof, or other communication network. In some exem
plary embodiments, the computer program 110 may be
indifferent of the specific implementation details of the
cloud 105. For example, the computer program 110 may not
be indifferent to the number of hosts of the cloud 105, the
type of hardware used thereof, the manner in which hosts are
connected, or the like. In some exemplary embodiments, the
computer program 110 may be executed using a Virtual
Machine (VM) (not shown). The VM may be used to
abstract implementation details from the computer program
110. The VM may be capable of being executed by the cloud
105. During execution of the computer program 110, the
cloud may migrate the VM from one host to another. The
computer program 110 may be unaware of Such an event
occurring. In some exemplary embodiments, migration may
occur also in an exemplary embodiment in which a VM is
not used.

In some exemplary embodiments, migration may com
prise taking a snapshot of the memory allocated for the VM,
setting memory of another host with the Snapshot and
freeing the allocated memory. As the memory retains current
state of the computer program 110, copying it may be
considered as moving the computer program 110 from one
host to another. It will be noted, that additional operations
may be required, such as setting Operating System (OS)
entities in a specific state (e.g., file handlers, semaphores, or
the like). A person of ordinary skill in the art is capable of
enabling migration of a computer program 110 (either with
or without a virtual machine) from one host in a cloud to
another host in the cloud.

It will be noted that migration may also occur in a
non-cloud computing environment. For example, a Snapshot
of the program may be taken and used later on to resume the
computer program in the same machine after reboot. As
another example, the Snapshot may be used to resume
operation of the computer program on another machine
(which need not, necessarily, be a part of a cloud).

In some exemplary embodiments, a verification apparatus
120 may be configured to test execution of the computer
program 110. The verification apparatus 120 may be con
figured to execute tests of the computer program 110. Such
as retained in a testing benchmark. A test may define
stimulus events to the computer program 110 Such as input
from a user, input from environment executing the computer
program 110 or the like. The verification apparatus 120 may
comprise an execution host 130 providing computation
capabilities and/or other resources to the executed computer
program 110. In some exemplary embodiments, the execu
tion host 130 may be a single host, such as 106. In other
exemplary embodiments, the execution host 130 may be a
cloud, such as 105. For the purpose of the disclosed subject
matter, implementation details of the execution host 130 are
generally of no particular importance.

US 9,612,942 B2
5

In some exemplary embodiments, a user 140 may interact
with the verification apparatus 120 using a Man-Machine
Interface (MMI) 145 such as a terminal, a display, a key
board, an input device or the like. The user 140 may define
the test to be used in respect to the computer program 110.
The user 140 may provide rules, commands, preferences,
and parameters to the verification apparatus 120. The user
140 may view output of the verification apparatus 120.
Based upon the output, the user 140 may determine to design
a new test, to modify the test (or a test template utilized to
generate of the test, in case of a generation-based test), or the
like. The user 140 may further identify bugs, report the
identified bugs and/or correct the identified bugs.

Referring now to FIG. 2 showing an apparatus in accor
dance with Some exemplary embodiments of the disclosed
subject matter. An apparatus 200, such as 120 of FIG. 1, may
be configured to test the functional operation of a computer
program, such as 110 of FIG. 1.

In some exemplary embodiments, a testing module 210
may be configured to operate a computer program, Such as
110 of FIG.1. The testing module 210 may be configured to
facilitate testing of the computer program by executing the
program. In some exemplary embodiments, the test program
is configured to access a resource of a host executing the
computer program. Some exemplary resources may be per
formance statistics (e.g., free memory space, number of
processes being executed, CPU usage, or the like), memory
locations of memory associated with the host, a clock, or the
like. In some exemplary embodiments, the testing module
210 is operative to test operation of the computer program,
when executed in a cloud processing environment.

In some exemplary embodiments, the testing module 210
may be operative to execute the test program on a host (or
a plurality of hosts) and provide the host with appropriate
stimuli associated with testing the computer program. A
non-exhaustive list of stimuli may include: input to be
provided to the computer program, scheduling of concurrent
entities such as threads, or the like.

In some exemplary embodiments, an access identifier 220
may be configured to identify an access request to the
resource by the computer program. The access identifier 220
may identify an access by adding a hook to a resource
request, such as for example, hooking up to a system call
request. In some exemplary embodiments, the access iden
tifier 220 may identify the access by reviewing the program
code of the computer program and identifying invocation of
pertinent function calls. In some exemplary embodiments,
the access identifier 220 may be configured to pre-process
the computer program prior to execution thereof by the
testing module 210. During the pre-processing, function
calls operative to access the resource may be identified and
invocation thereof during execution may be used to identify
access requests.

In some exemplary embodiments, a code instrumentor
225 may be utilized to instrument code operative to be
invoked in connection with invocation of the function. For
example, code may be instrumented in the beginning of the
function. As another example, a macro definition (e.g.,
#define command in C language) may be used to replace the
function call with invocation of the instrumented code. In
Some exemplary embodiments, instrumentation may be per
formed in respect to a binary representation of the computer
program, Such as in the case the source code is not available
(i.e., testing of a “black box'). The binary may be instru
mented in portions that are associated with performing an
access request, Such as for example invocation of system
calls, an Application Programming Interface (API) or the

10

15

25

30

35

40

45

50

55

60

65

6
like. A person of ordinary skill in the art is able to enable
identification by the access identifier 220 in additional and
alternative manners.

In some exemplary embodiments, invoking a function
operative to access the clock and return time, such as a
function of the C Time library, may be identified by the
access identifier 220. In some exemplary embodiments, the
code instrumentor 225 may be operative to replace function
calls to the function with alternative functions, such as
associated with an interceptor 230, as is further described
hereinbelow.

In some exemplary embodiments, an interceptor 230 may
be operative to intercept the access request, Such as identi
fied by the access identifier 220, and provide a determined
response thereof. The response may be determined by a
response determinator 240. Interception of the access
request may be performed using instrumented code, instru
mented by the code instrumentor 225. The interceptor 230
may be operative to provide the response with or without
access the resource of an executing host. For example, in
case of access request to the clock of the machine, a time
may be returned with or without accessing the clock itself.
The determined response may be a time that is different than
the time that the clock would return.

In some exemplary embodiments, a response determina
tor 240 may be configured to determine the response to the
access request. In some exemplary embodiments, the
response determinator 240 may determine a random
response. In some exemplary embodiments, the response
determinator 240 may determine a response based on pre
viously provided responses. In some exemplary embodi
ments, the response determinator 240 may be operative to
retain provided responses and utilize them for future
responses determination. In some exemplary embodiments,
a previously provided response may be used as a reference
value and the determined response may be a value that is
within a predetermined range of the reference value. The
range may be determined by a user, such as 140 of Figure,
and optionally provided to the apparatus 200 using an input
module, such as 205. The range may be affected by various
additional factors. As an example, consider a resource of
"clock', which provides a response of “time'. The deter
mined time may be based on a previously provided time as
a reference point. The determined time may be within a
range of two minutes from the previous response. In one
exemplary embodiment, the range may be affected by the
time that has passed since the previous response. In some
exemplary embodiments, some determined responses. Such
as for example a first response, may be determined by
accessing the actual resource (e.g., the clock of the host
machine).

In some exemplary embodiments, the response determi
nator 240 may be operative to provide a time that is before
a previously provided time. Such a response is generally not
a valid response in a non-cloud computing environment as
time is a monotonically strictly increasing function. How
ever, Such as response may occur in a cloud computing
environment, as a first response may be provided by a first
clock of a first host whereas a second response may be
provided by a second clock of a second host.

In some exemplary embodiments, the response determi
nator 240 may be operative to provide a time such that the
time difference between the time and a previously provided
time is longer than actual time difference between providing
the previously provided time and the time. In Such a manner,
skipping forward of the clock may be simulated. Alterna
tively, this may be used to simulate Some aspects of slow

US 9,612,942 B2
7

performance of operation by a computer executing the
computer program. In some exemplary embodiments, the
computer program may be responsive to time out values, and
the provided time may be used to test operation of the
computer program when time out values are reached. In
Some exemplary embodiments, the computer program may
inherently assume approximated timings of operations. For
example, a sleep command may be invoked for a predeter
mined amount of time, as the programmer of the computer
program assumed that during the predetermined amount of
time, some concurrent operation would be completed.

In some exemplary embodiments, the response determi
nator 240 may access the clock to determine current time.
The determined time may be a time after at least a prede
termined time duration from the current time. For example,
in case the current time is 09:10:20, and the predetermined
time duration is one minute, the determined time may be
09:11:22, 09:20:00, 10:00:00, 23:00:00 or the like. In some
exemplary embodiments, a maximum shift in time may be
predetermined in addition to or instead of minimal shift in
time. For example, the time may be shifted by a minimal
shift of two minutes and a maximal shift often minutes. In
Some exemplary embodiments, the apparatus 200 may be
configured to provide the current time in response to a first
request and a time in accordance with the present paragraph
in response to a consecutive request, hence providing for a
simulation of having a speedy clock. The speedy clock may
be substantially fast-paced (e.g., every second the speedy
clock skips ten seconds). In some exemplary embodiments,
the responses provide for a simulation of execution of the
computer program by a slow or fast processing device, as
reported time lapses between two consecutive time requests
are reported to be longer/shorter than in actuality. In other
words, the number of instructions performed in actuality
during a time period is reported to being performed in a
shorter/longer time period.

In some exemplary embodiments, a randomizing module
245 may be utilized to determine a response in a random or
pseudo-random manner. The randomizing module 245 may
be utilized to determine a response within a predetermined
range of a reference value.

In some exemplary embodiments, the apparatus 200 may
comprise a processor 202. The processor 202 may be a
Central Processing Unit (CPU), a microprocessor, an elec
tronic circuit, an Integrated Circuit (IC) or the like. The
processor 202 may be utilized to perform computations
required by the apparatus 200 or any of it subcomponents.

In some exemplary embodiments of the disclosed subject
matter, the apparatus 200 may comprise an Input/Output
(I/O) module 205. The I/O module 205 may be utilized to
provide an output to and receive input from a user, such as
140 of FIG. 1.

In some exemplary embodiments, the apparatus 200 may
comprise a storage device 207. The storage device 207 may
be a hard disk drive, a Flash disk, a Random Access Memory
(ROM), a memory chip, or the like. In some exemplary
embodiments, the storage device 207 may retain program
code operative to cause the processor 202 to perform acts
associated with any of the Subcomponents of the apparatus
200. In some exemplary embodiments, the storage device
207 may retain a previously provided response.

Referring now to FIG. 3 showing a flowchart diagram of
a method in accordance with Some exemplary embodiments
of the disclosed subject matter. Although FIG. 3 specifically
refers to an example in which an accessed resource is a clock
which returns time, the disclosed subject matter is not
limited to this example.

5

10

15

25

30

35

40

45

50

55

60

65

8
In step 300, a computer program to test may be obtained.

A binary representation of the computer program may be
obtained. A source code representation may be obtained. The
computer program may be obtained by an Input module,
Such as 205 of FIG. 2.

In step 310, the computer program may be executed by a
computerized device. The computer program may be
executed for the purpose of testing its operation. The com
puter program may be executed and tested by a testing
module, such as 210 of FIG. 2.

In step 320, an access request to the clock may be
identified. Identification may be performed by an access
identifier, such as 220 of FIG. 2. In some exemplary embodi
ments, identification may be enabled by pre-processing the
computer program, by instrumenting the computer program
prior to its execution with pertinent code, or the like.

In step 330, the access request may be intercepted. In
Some exemplary embodiments, the access request may be
intercepted and the clock may or may not be accessed. In
Some exemplary embodiments, the access request may be
intercepted by executing code instrumented by a code instru
mentor, such as 225 of FIG. 2. The interception may be
performed by an interceptor, such as 230 of FIG. 2.

In step 340, a time to be provided in response to the access
may be determined. The time may be determined by a
response determinator, such as 240 of FIG. 2. The time may
be provided to the computer program. After determining and
provided the determined time is performed, additional
access requests may be identified and responded to in
accordance with the disclosed Subject matter.

In some exemplary embodiments, determining the time to
provide comprises steps 342 and 344.

In step 342, a previously provided time may be obtained.
The time may be obtained from a storage device, such as 207
of FIG. 2.

In step 344, a time that is prior to the previously provided
time may be randomly determined. The determination may
be performed using a randomizing module. Such as 245 of
FIG. 2. The determined time may be earlier than previously
provided time and therefore may invalidate an assumption
that returned time is a monotonically strictly increasing
function, assumption that may not be correct in a cloud
computing environment. The determined time may deter
mined as to provide a longer time difference between the
time and the previously provided time, than the time that has
actually passed between providing of the two time values.

In some exemplary embodiments, determining the time to
provide comprises steps 346 and 348.

In step 346, a previously provided time may be obtain, in
a similar manner to that of step 342.

In step 348, a random time within a predetermined range
of the previously provided time may be determined. The
random time may be determined using a randomizing mod
ule, such as 245 of FIG. 2. The predetermined range may be
a range determined by a user, such as 140 of FIG. 1.

In some exemplary embodiments, after Sufficient testing
of the computer program is performed (e.g., based on
coverage metrics, determination by the QA Staff member, or
the like) the computer program may be deemed as “safe' to
be loaded onto the cloud to be operated thereon. In some
exemplary embodiments, an administrative authority of the
cloud may prohibit loading of a computer program that has
not sufficiently been tested. The disclosed subject matter
may be used as the sole test or an additional test to be
performed prior to loading of the computer program onto the
cloud.

US 9,612,942 B2

The following example is provided for clarity of disclo
Sure only, and should not be construed to limit the scope of
the disclosed subject matter. Consider a code Snippet:

time1=gettime()
time2=gettime()
timersub(time1, time2, &diff);
assert(diff.tv sec=0);

where timersub is a function that is operative to determine
a time difference between “time1 and “time2, by subtract
ing “time1 from “time2 and assign the time difference into
“diff. This code snippet, when testing in a non-cloud
computing environment is stable, as “time1 is set based on
a clock reading that is performed prior to a clock reading
associated with setting “time2. However, in a cloud com
puting environment, “time1 may comprise a time after to
“time2 and therefore the assertion may fail. The disclosed
Subject matter may be utilized to test this code Snippet and
determine that in Some scenarios in a cloud computing
environment, “time2 may be a time prior to “time1 even
though it is set afterwards.

The disclosed subject matter may be utilized to test the
computer program comprising this code Snippet by execut
ing the computer program, identifying access requests to a
resource (e.g., calling of the function "gettime'), intercept
ing the access requests and determining a response to be
provided in return.

It is understood that although this disclosure includes a
detailed description on cloud computing, implementation of
the teachings recited herein are not limited to a cloud
computing environment. Rather, embodiments of the present
invention are capable of being implemented in conjunction
with any other type of computing environment now known
or later developed.

For convenience, the following definitions are disclosed
to provide for a complete understanding of the cloud com
puting environment. The definitions have been derived from
the “Draft NIST Working Definition of Cloud Computing
by Peter Mell and Tim Grance, dated Oct. 7, 2009, which is
cited in an IDS filed herewith, and a copy of which is
attached thereto.

Cloud computing is a model of service delivery for
enabling convenient, on-demand network access to a shared
pool of configurable computing resources (e.g. networks,
network bandwidth, servers, processing, memory, storage,
applications, virtual machines, and services) that can be
rapidly provisioned and released with minimal management
effort or interaction with a provider of the service. This cloud
model may include at least five characteristics, at least three
service models, and at least four deployment models.

Characteristics are as follows:
On-demand self-service: a cloud consumer can unilater

ally provision computing capabilities, such as server time
and network storage, as needed automatically without
requiring human interaction with the service's provider.

Broad network access: capabilities are available over a
network and accessed through standard mechanisms that
promote use by heterogeneous thin or thick client platforms
(e.g., mobile phones, laptops, and PDAs).

Resource pooling: the provider's computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer
generally has no control or knowledge over the exact
location of the provided resources but may be able to specify
location at a higher level of abstraction (e.g., country, state,
or datacenter).

10

15

25

30

35

40

45

50

55

60

65

10
Rapid elasticity: capabilities can be rapidly and elastically

provisioned, in some cases automatically, to quickly scale
out and rapidly released to quickly scale in. To the consumer,
the capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time.

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capa
bility at some level of abstraction appropriate to the type of
service (e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.

Service Models are as follows:
Software as a Service (SaaS): the capability provided to

the consumer is to use the provider's applications running on
a cloud infrastructure. The applications are accessible from
various client devices through a thin client interface Such as
a web browser (e.g., web-based e-mail). The consumer does
not manage or control the underlying cloud infrastructure
including network, servers, operating systems, storage, or
even individual application capabilities, with the possible
exception of limited user-specific application configuration
Settings.

Platform as a Service (PaaS): the capability provided to
the consumer is to deploy onto the cloud infrastructure
consumer-created or acquired applications created using
programming languages and tools Supported by the provider.
The consumer does not manage or control the underlying
cloud infrastructure including networks, servers, operating
systems, or storage, but has control over the deployed
applications and possibly application hosting environment
configurations.

Infrastructure as a Service (IaaS): the capability provided
to the consumer is to provision processing, storage, net
works, and other fundamental computing resources where
the consumer is able to deploy and run arbitrary software,
which can include operating systems and applications. The
consumer does not manage or control the underlying cloud
infrastructure but has control over operating systems, Stor
age, deployed applications, and possibly limited control of
select networking components (e.g., host firewalls).

Deployment Models are as follows:
Private cloud: the cloud infrastructure is operated solely

for an organization. It may be managed by the organization
or a third party and may exist on-premises or off-premises.
Community cloud: the cloud infrastructure is shared by

several organizations and Supports a specific community that
has shared concerns (e.g., mission, Security requirements,
policy, and compliance considerations). It may be managed
by the organizations or a third party and may exist on
premises or off-premises.

Public cloud: the cloud infrastructure is made available to
the general public or a large industry group and is owned by
an organization selling cloud services.

Hybrid cloud: the cloud infrastructure is a composition of
two or more clouds (private, community, or public) that
remain unique entities but are bound together by standard
ized or proprietary technology that enables data and appli
cation portability (e.g., cloud bursting for load-balancing
between clouds).
A cloud computing environment is service oriented with

a focus on Statelessness, low coupling, modularity, and
semantic interoperability. At the heart of cloud computing is
an infrastructure comprising a network of interconnected
nodes.

Referring now to FIG. 4 illustrative cloud computing
environment 50, such as 105 of FIG. 1, is depicted. As

US 9,612,942 B2
11

shown, cloud computing environment 50 comprises one or
more cloud computing nodes 10 with which local computing
devices used by cloud consumers, such as, for example,
personal digital assistant (PDA) or cellular telephone 54A,
desktop computer 54B, laptop computer 54C, and/or auto
mobile computer system 54N may communicate. Nodes 10
may communicate with one another. They may be grouped
(not shown) physically or virtually, in one or more networks,
such as Private, Community, Public, or Hybrid clouds as
described hereinabove, or a combination thereof. This
allows cloud computing environment 50 to offer infrastruc
ture, platforms and/or software as services for which a cloud
consumer does not need to maintain resources on a local
computing device. It is understood that the types of com
puting devices 54A-N shown in FIG. 2 are intended to be
illustrative only and that computing nodes 10 and cloud
computing environment 50 can communicate with any type
of computerized device over any type of network and/or
network addressable connection (e.g., using a web browser).

Referring now to FIG. 5, a set of functional abstraction
layers provided by cloud computing environment 50 (FIG.
4) is shown. It should be understood in advance that the
components, layers, and functions shown in FIG. 3 are
intended to be illustrative only and embodiments of the
invention are not limited thereto. As depicted, the following
layers and corresponding functions are provided:

Hardware and software layer 60 includes hardware and
Software components. Examples of hardware components
include mainframes, in one example IBM(R) zSeries(R) sys
tems: RISC (Reduced Instruction Set Computer) architec
ture based servers, in one example IBM pSeries(R) systems:
IBM xSeries(R systems; IBM BladeCenterR) systems; stor
age devices; networks and networking components.
Examples of Software components include network appli
cation server software, in one example IBM WebSphere(R)
application server Software; and database software, in one
example IBM DB2(R) database software. (IBM, zSeries,
pSeries, xSeries, BladeCenter, WebSphere, and DB2 are
trademarks of International Business Machines Corporation
registered in many jurisdictions worldwide)

Virtualization layer 62 provides an abstraction layer from
which the following examples of virtual entities may be
provided: virtual servers; virtual storage; virtual networks,
including virtual private networks; virtual applications and
operating systems; and virtual clients.

In one example, management layer 64 may provide the
functions described below. Resource provisioning provides
dynamic procurement of computing resources and other
resources that are utilized to perform tasks within the cloud
computing environment. Metering and Pricing provide cost
tracking as resources are utilized within the cloud computing
environment, and billing or invoicing for consumption of
these resources. In one example, these resources may com
prise application Software licenses. Security provides iden
tity verification for cloud consumers and tasks, as well as
protection for data and other resources. User portal provides
access to the cloud computing environment for consumers
and system administrators. Service level management pro
vides cloud computing resource allocation and management
such that required service levels are met. Service Level
Agreement (SLA) planning and fulfillment provide pre
arrangement for, and procurement of cloud computing
resources for which a future requirement is anticipated in
accordance with an SLA.

Workloads layer 66 provides examples of functionality
for which the cloud computing environment may be utilized.
Examples of workloads and functions which may be pro

10

15

25

30

35

40

45

50

55

60

65

12
vided from this layer include: mapping and navigation;
Software development and lifecycle management; virtual
classroom education delivery; data analytics processing:
transaction processing; and the like.
The flowchart and block diagrams in the Figures illustrate

the architecture, functionality, and operation of possible
implementations of systems, methods and computer pro
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or
portion of program code, which comprises one or more
executable instructions for implementing the specified logi
cal function(s). It should also be noted that, in some alter
native implementations, the functions noted in the block
may occur out of the order noted in the figures. For example,
two blocks shown in Succession may, in fact, be executed
Substantially concurrently, or the blocks may sometimes be
executed in the reverse order, depending upon the function
ality involved. It will also be noted that each block of the
block diagrams and/or flowchart illustration, and combina
tions of blocks in the block diagrams and/or flowchart
illustration, can be implemented by special purpose hard
ware-based systems that perform the specified functions or
acts, or combinations of special purpose hardware and
computer instructions.
The terminology used herein is for the purpose of describ

ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an and “the are intended to include the plural forms
as well, unless the context clearly indicates otherwise. It will
be further understood that the terms “comprises” and/or
"comprising,” when used in this specification, specify the
presence of stated features, integers, steps, operations, ele
ments, and/or components, but do not preclude the presence
or addition of one or more other features, integers, steps,
operations, elements, components, and/or groups thereof.
As will be appreciated by one skilled in the art, the

disclosed subject matter may be embodied as a system,
method or computer program product. Accordingly, the
disclosed subject matter may take the form of an entirely
hardware embodiment, an entirely software embodiment
(including firmware, resident software, micro-code, etc.) or
an embodiment combining software and hardware aspects
that may all generally be referred to herein as a “circuit.”
“module' or “system.” Furthermore, the present invention
may take the form of a computer program product embodied
in any tangible medium of expression having computer
usable program code embodied in the medium.
Any combination of one or more computer usable or

computer readable medium(s) may be utilized. The com
puter-usable or computer-readable medium may be, for
example but not limited to, an electronic, magnetic, optical,
electromagnetic, infrared, or semiconductor system, appa
ratus, device, or propagation medium. More specific
examples (a non-exhaustive list) of the computer-readable
medium would include the following: an electrical connec
tion having one or more wires, a portable computer diskette,
a hard disk, a random access memory (RAM), a read-only
memory (ROM), an erasable programmable read-only
memory (EPROM or Flash memory), an optical fiber, a
portable compact disc read-only memory (CDROM), an
optical storage device, a transmission media Such as those
Supporting the Internet or an intranet, or a magnetic storage
device. Note that the computer-usable or computer-readable
medium could even be paper or another Suitable medium
upon which the program is printed, as the program can be
electronically captured, via, for instance, optical scanning of

US 9,612,942 B2
13

the paper or other medium, then compiled, interpreted, or
otherwise processed in a Suitable manner, if necessary, and
then stored in a computer memory. In the context of this
document, a computer-usable or computer-readable medium
may be any medium that can contain, store, communicate,
propagate, or transport the program for use by or in con
nection with the instruction execution system, apparatus, or
device. The computer-usable medium may include a propa
gated data signal with the computer-usable program code
embodied therewith, either in baseband or as part of a carrier
wave. The computer usable program code may be transmit
ted using any appropriate medium, including but not limited
to wireless, wireline, optical fiber cable, RF, and the like.

Computer program code for carrying out operations of the
present invention may be written in any combination of one
or more programming languages, including an object ori
ented programming language Such as Java, Smalltalk, C++
or the like and conventional procedural programming lan
guages, such as the “C” programming language or similar
programming languages. The program code may execute
entirely on the user's computer, partly on the user's com
puter, as a stand-alone software package, partly on the user's
computer and partly on a remote computer or entirely on the
remote computer or server. In the latter scenario, the remote
computer may be connected to the user's computer through
any type of network, including a local area network (LAN)
or a wide area network (WAN), or the connection may be
made to an external computer (for example, through the
Internet using an Internet Service Provider).
The corresponding structures, materials, acts, and equiva

lents of all means or step plus function elements in the
claims below are intended to include any structure, material,
or act for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the
invention and the practical application, and to enable others
of ordinary skill in the art to understand the invention for
various embodiments with various modifications as are
Suited to the particular use contemplated.
What is claimed is:
1. A computer-implemented method, the method compris

ing:
testing a computer program by operating the computer

program by a computerized device, wherein the com
puterized device is operative to provide the computer
program with access to a clock, wherein the clock is
configured to provide a time while preserving a mono
tonically strict increasing property; wherein said testing
comprises:

intercepting at least a first access request and a second
access request to the clock by the computer program,
wherein said intercepting comprises:
determining a first response and a second response to
be provided to the computer program in response to
the first access request and the second access request,
respectively, wherein the first response and the sec
ond response is a time of the clock,
wherein the first response is configured to simulate

execution of the computer program on a first
computerized device, and the second response is
configured to simulate execution of the computer

5

10

15

25

30

35

40

45

50

55

60

65

14
program on a second computerized device,
wherein the second response is intentionally
designed to be a response that would not have
been returned in response to the second access
request if the second access request was executed
on the first computerized device, thus simulating
migration of the computer program from the first
computerized device to the second computerized
device during execution,

wherein said determining the second response com
prises determining to violate a monotonically
strict increasing property of a time function of the
clock;

in response to said determining to violate the mono
tonically strict increasing property of the time
function:
retrieving a previously provided time; and
randomizing a time preceding the previously pro

vided time within a predetermined range,
wherein the randomized time is the second
response; and

providing the first response and the second response to
the computer program instead of a first and second
responses from the clock to the request.

2. The computer-implemented method of claim 1, further
comprising receiving from a user the predetermined range.

3. The computer-implemented method of claim 1,
wherein said determining comprises:

retrieving a current time from the clock; and
determining the time so as the time is after at least a

predetermined time duration from the current time.
4. The computer-implemented method of claim 1,

wherein said testing comprises testing validity of operation
of the computer program in a cloud computing environment,
wherein said testing is configured to test the validity of
operation in response to migration between devices in the
cloud computing environment.

5. The computer-implemented method of claim 4, further
comprises, in response to completion of said testing validity
of operation, loading the computer program onto the cloud
computing environment.

6. The computer-implemented method of claim 1, further
comprises pre-processing the computer program and iden
tifying a function call operative to access the clock.

7. The computer-implemented method of claim 6, further
comprising instrumenting the computer program with a code
operative to replace the function call; and wherein said
intercepting comprises executing the code.

8. A computerized apparatus, the apparatus comprising:
a testing module operative to operate a computer pro

gram, wherein the testing module is configured to
provide the computer program with access to a clock,
wherein the clock is configured to provide a time while
preserving a monotonically strict increasing property,
wherein said testing module is operatively coupled to
an interceptor;

said interceptor operative to intercept at least a first access
request and a second access request to the clock by the
computer program, wherein
said interceptor comprises a response determinator

operative to determine a first response and a second
response to be provided to the computer program in
response to the first access request and the second
access request, respectively, wherein the first
response and the second response is a time of the
clock,

US 9,612,942 B2
15

wherein the first response is configured to simulate
execution of the computer program on a first
computerized device, and the second response is
configured to simulate execution of the computer
program on a second computerized device,
wherein the second response is intentionally
designed to be a response that would not have
been returned in response to the second access
request if the second access request was executed
on the first computerized device, thus simulating
migration of the computer program from the first
computerized device to the second computerized
device during execution,

wherein said determining the second response com
prises determining to violate a monotonically
strict increasing property of a time function of the
clock;

in response to said determining to violate the mono
tonically strict increasing property of the time
function:
retrieving a previously provided time; and

randomizing a time preceding the previously provided
time within a predetermined range, wherein the
randomized time is the second response; and

wherein said interceptor is further operative to provide the
first and second responses to the computer program
instead of a first and second responses from the clock
to the request; and

a processor that is configured to be utilized by said testing
module and said interceptor.

9. The computerized apparatus of claim 8, further com
prising an input module operative to receive from a user the
predetermined range.

10. The computerized apparatus of claim 8, wherein said
response determinator is further operative to retrieve a
current time from the clock; and determine the time so as the
time is after at least a predetermined time duration from the
current time.

11. The computerized apparatus of claim 8, wherein said
testing module is configured to test validity of operation of
the computer program in a cloud computing environment,
wherein said testing is configured to test the validity of
operation in response to migration between devices in the
cloud computing environment.

12. The computerized apparatus of claim 8, further com
prising an access identifier operative to pre-process the
computer program and identify a function call operative to
access the clock.

10

15

25

30

35

40

45

16
13. The computerized apparatus of claim 12, wherein

pre-processing the computer program comprises instrument
ing the computer program with code operative to replace the
function call.

14. A computer program product comprising a non
transitory computer readable medium retaining program
instructions, which instructions when read by a processor,
cause the processor to perform a method comprising:

testing a computer program by operating the computer
program by a computerized device, wherein the com
puterized device is operative to provide the computer
program with access to a clock, wherein the clock is
configured to provide a time while preserving a mono
tonically strict increasing property;

wherein said testing comprises:
intercepting at least a first access request and a second

access request to the clock by the computer program,
wherein said intercepting comprises:
determining a first response and a second response to
be provided to the computer program in response to
the first access request and the second access request,
respectively, wherein the first response and the sec
ond response is a time of the clock,
wherein the first response is configured to simulate

execution of the computer program on a first
computerized device, and the second response is
configured to simulate execution of the computer
program on a second computerized device,
wherein the second response is intentionally
designed to be a response that would not have
been returned in response to the second access
request if the second access request was executed
on the first computerized device, thus simulating
migration of the computer program from the first
computerized device to the second computerized
device during execution,

wherein said determining the second response com
prises determining to violate a monotonically
strict increasing property of a time function of the
clock;

in response to said determining to violate the mono
tonically strict increasing property of the time
function:
retrieving a previously provided time; and

randomizing a time preceding the previously provided
time within a predetermined range, wherein the
randomized time is the second response; and

providing the first response and the second response to
the computer program instead of a first and second
responses from the clock to the request.

k k k k k

