
USOO96 12829B2

(12) United States Patent (10) Patent No.: US 9,612,829 B2
Naik et al. (45) Date of Patent: Apr. 4, 2017

(54) SYSTEM AND METHOD FOR PATTERN (56) References Cited
BASED SERVICES EXTRACTION

U.S. PATENT DOCUMENTS

(75) Inventors: Ravindra Naik, Mumbai (IN); Amit 6,122,622 A * 9/2000 Wiitala et al. 705/28
Saxena, Mumbai (IN) 6,389.385 B1* 5/2002 King 703/27

6,697,088 B1* 2/2004 Hollander T15,744
(73) Assignee: Tata Consultancy Services, Mumbai 7,171,655 B2 1/2007 Gordon et al. . T17.146

IN 8,090,744 B1* 1/2012 Baird 707/791
() 2002/0056012 A1* 5/2002 Abileah et al. TO9,310

2002.0099.790 A1* 7, 2002 Mosher HO4H2Of71
(*) Notice: Subject to any disclaimer, the term of this 709/217

patent is extended or adjusted under 35 2003, OO1451.0 A1* 1/2003 AV vari et al. ... TO9,223
2003/0033162 A1 2/2003 Houssiaux et al. 705/1

U.S.C. 154(b) by 1200 days. 2003/0051186 A1 3/2003 Boudnik et al. T14/2
2003/0056192 A1* 3/2003 Burgess T17/100

(21) Appl. No.: 12/298,527 2003/0097485 A1* 5, 2003 Horvitz et al. TO9,313
2003/0221170 A1* 11/2003 Yagi GO6F 17,212

1-1. 715,251
(22) Filed: Oct. 25, 2008 2004/0064788 A1* 4/2004 Gownder et al. 715,513

2004/0088653 A1* 5/2004 Bell et al. 715,523
(65) Prior Publication Data 2004/0133635 A1* 7/2004 Spriestersbach . G06F 17/30905

TO9,203
US 2011/0138350 A1 Jun. 9, 2011 2004/O136698 A1* 7/2004 Mock G11B 27.105

386.232
2004/0255048 A1* 12/2004 Lev Ran et al. TO9,249

Related U.S. Application Data (Continued)
(63) Continuation of application No.

PCT/IN2007/000169, filed on Apr. 26, 2007. OTHER PUBLICATIONS
“Service' definition. Electronically accessed on Oct. 31, 2012. y

(30) Foreign Application Priority Data URL: http://foldoc.org/service.*
Continued

Apr. 26, 2006 (IN) 654/MUMA2006 (Continued)
Primary Examiner — Henry Tsai
Assistant Examiner — Christopher Bartels (51) Int. Cl. stop

G06F 9/44 (2006.01) . E. E", or Firm — Akerman LLP, Mammen
G06F II/34 (2006.01) (Roy) P. Zachariah, Jr.

(52) U.S. Cl. (57) ABSTRACT
CPC G06F 8/74 (2013.01); G06F II/3466 The present invention relates to a method and system

(2013.01) comprising service pattern definitions and automated extrac
(58) Field of Classification Search t1On of Services from the legacy code based on the pattern

None matching.
See application file for complete search history. 6 Claims, 3 Drawing Sheets

101

104 105

US 9,612,829 B2
Page 2

(56) References Cited

U.S. PATENT DOCUMENTS

2005/0O28143 A1 2/2005 Aridor et al. 717/122
2005, OO60317 A1* 3, 2005 ... G06Q 10/00
2005/0066313 A1 3f2005 Bates G06F 11.3648

717/129
2005, 0125387 A1* 6, 2005 Fish GO6F 17,30997
2005, 0183066 A1* 8, 2005 Jabori G06F 11.3636

717/124
2005, 0198628 A1* 9, 2005 Graham G06F 8.64

717/174
2005/0210227 A1* 9, 2005 Emerson et al. T13/1
2005/0216555 A1* 9/2005 English G06Q 50/18

TO9.204
2005/0289527 A1* 12/2005 Illowsky G06F 1,3203

T17,148
2006/0106473 A1* 5/2006 Enright G06Q 10/06

TOOf 96
2006/0112175 A1* 5, 2006 Sellers et al. 709,223
2007/0168909 A1* 7/2007 Vaidyanathan et al. ... 717/100
2007/0226320 A1* 9/2007 Hager et al. ... TO9,219
2007,0255751 A1* 11, 2007 Bansal et al. TO7/103 R
2008. O148225 A1* 6, 2008 Sarkar et al. 717/107
2009/0282301 A1* 11/2009 Flynn et al. . T14f710
2010, 0083221 A1* 4, 2010 Naik et al. ... T17.108
2011/0113070 A1* 5/2011 McCurdy et al. 707/8O2
2012/0072583 A1* 3/2012 Kupferman GO6F 11.3495

TO9,224

OTHER PUBLICATIONS

“XML Toolkit for iSeries'. Publisher: IBM; Version 5 Release 2; 26
pages; Publication Date: Jul 19, 2010.*

* cited by examiner

U.S. Patent Apr. 4, 2017 Sheet 1 of 3 US 9,612,829 B2

FIG 1

U.S. Patent Apr. 4, 2017 Sheet 2 of 3 US 9,612,829 B2

/r/ 202 203 2O7 y - /

205 206

209

FIG 2

U.S. Patent Apr. 4, 2017 Sheet 3 of 3 US 9,612,829 B2

305 306 307 309

308

312

FIG 3

US 9,612,829 B2
1.

SYSTEMAND METHOD FOR PATTERN
BASED SERVICES EXTRACTION

FIELD OF THE INVENTION

The present invention relates to a system and method for
pattern based service extraction from legacy applications.
More particularly, the present invention relates to a

method and system comprising service pattern definitions
and automated extraction of Services from the legacy code
based on the pattern matching.

PRIOR ART

References

U.S. Pat. No. 6,687,873
U.S. Pat. No. 6,847,981
EP1221090

In U.S. Pat. No. 6,687,873 a method and system for
modifying program applications of a legacy computer sys
tem to directly output data in XML format models the legacy
computer system, maps the model to an XML Schema and
automatically modifies one or more applications to directly
output XML formatted data in cooperation with a writer
engine and a context table. A modeling engine lists the
incidents within the applications that write data and gener
ates a report data model. The report data model includes
statically determined value or type of the data fields and is
written in a formal grammar that describes how the write
operations are combined. A modification specification is
created to define modifications to the legacy computer
system applications that relate applications that write data to
the XML Schema. A code generation engine then applies the
modification specification to the applications to write modi
fied applications that, in cooperation with a writer engine
and context table, directly output XML formatted data from
the legacy computer system without a need for transforming
the data.

reverse engineering module for analyzing the existing
servlet program source, a visualizer for visualizing the
analyzed information, a business logic extractor for extract
ing a reusable business logic, and an EJB component gen
erator for generating the EJB components using the
extracted information. The servlet code analyzer considers
the flexibility of coding permitted by the servlet program
and the use of a multi-language and the visualizer helps the
understanding of the existing legacy program. The business
logic extractor extracts the reusable module by extracting
the business logic within many user interface related codes,
and thus enable the reuse of software. The EJB component
generator generates java codes in a jar file that can be
deployed.

In EP1221090, the concept of a service is introduced. A
service denotes collaboration between different software
artifacts of the software architecture at varying levels of
abstractions. This service concept provides the ability to
trace identified services from one abstraction level to
another within the software system, which supports the
mapping of features to code and vice versa. According to a
preferred embodiment, the method for describing software
architecture comprises steps such as determining interfaces
between software artifacts that make up the software archi
tecture and structuring the determined interfaces into basic
dialogues. The dialogues are recorded or written in formal
definitions of each, and the purpose and usage of dialogues
and interactions as services are documented. Each logical

10

15

25

30

35

40

45

50

55

60

65

2
service is then mapped to each physical service used in its
implementation, and a determination is made as to whether
the mapping is simple enough. When the mapping is simple
enough, it is formally documented. Prior to the documen
tation of purpose and usage of the dialogues, a determination
is made as to the interactions between applications within
the system.

BACKGROUND OF THE INVENTION

The advancement in technologies is demanding a need for
easy and effective development and maintenance of software
applications. Easy integration options for Software applica
tions are a must for today’s distributed & collaborative
environment. Legacy applications can also be re-architected
to take benefits from the state of the art practices if they can
be re-factored with ease.

In Legacy systems functionalities or activities are com
plex and inter twined. The present invention aims at re
architecting them by segregating activities/functionalities
into services.

Legacy systems/applications are software applications
that have been written some time ago and which do not
conform or are not extensible to new or modern software
platforms or modern Software architectures. For example, a
legacy system or application is any system or application
implemented and used by a company for a number of years
and which became an integral part of running the business.
More specifically, it is a system, which persists in use over
a large turnover of managers of the system. Such systems or
applications run fine, but each new manager has less knowl
edge of the system or application as time progresses.
Examples of Such, legacy systems include mainframe appli
cations written in Cobol, AS/400 applications written in
RPG etc. Such applications typically contain a great deal of
business knowledge. It is often desirable to extract the
business knowledge for implementation into a new applica
tion on more modern platforms. It is important to note that
even software systems programmed for modern platforms
may be legacy if they employ legacy design and architecting
principles.

It is the object of the invention to modularize the legacy
applications into Smaller units for better understanding of
the business logic contained within the application for
various purposes including but not limited to easier main
tenance.

It is yet another object of the invention to move legacy
applications from monolithic architecture to modern service
oriented architecture.

It is yet another object of the invention to migrate legacy
applications irrespective of the platforms.

It is the object of the present invention to formulate
various service patterns.

Legacy applications typically follow conversational and/
or pseudo conversational style of programming containing
code that implements presentation layer logic and the busi
ness logic in the same program. These programs deal with
multiple aspects of the architecture and pose challenges in
maintenance Such as identifying a problem or adding new
feature, as this would be more expensive and a time con
Suming exercise. These challenges are equally applicable to
batch-oriented legacy programs.

It eliminates the task of manual functioning thus facili
tating simplicity and saves time. It is a very cost effective
CaSU.

US 9,612,829 B2
3

These and other objects, features and advantages will be
readily apparent upon consideration of the following
detailed description in conjunction with the accompanying
drawings.

SUMMARY OF THE INVENTION

The invention is directed to a method and system of
defining patterns for identifying services, and extracting
services in an automated way from legacy applications. The
extracted services are utilized for better understanding of the
existing business applications or converting an existing
business application, typically a set of legacy programs, to
a new and more modern application, on the same or new
platforms.
The inventive step involved is a method and system of

defining Service patterns based on Service abstraction and to
extract Services from the Legacy application based on
pattern matching in an automated way. The present inven
tion employs a workbench for generating the pattern
matcher given the service patterns.

In the present invention the extracted services form a
basis for re-factoring the code utilizing State of the art
programming styles, which can either be used for better
understanding of the code or the transformation of the code
into new language and platform or re-engineer the code in
the same language for variety of purpose such as better
maintenance, better manageability and increase reusability.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 describes the method and system for service
extraction

FIG. 2 depicts the method for service extraction using
structural service pattern matching.

FIG. 3 depicts the method for service extraction using
functional service pattern matching.

Using the knowledge and experience of how legacy
applications are written, service patterns are defined and
stored in a pattern definition repository (101). These patterns
can be represented using the structure of the program
(Structural Service Pattern (102)) or depending on the
functionality governed by specific set of data entities (Func
tional Service Pattern (103)). These definitions have been
arrived at by analyzing variety of legacy applications and
abstracting out the logic in a way to be able to see multiple
services in action to achieve the intended objective. The
notion of repository (101) specifies that multiple patterns
can be stored here. The current invention focuses on two
distinct set of patterns namely structural service pattern
depicted as (102) and functional service pattern depicted as
(103). It is to be noted that these patterns are not syntactic
patterns, but capture the programming styles embodied in
legacy programs, thus can be expressed in terms of methods
utilized to match the patterns. These patterns are specified
(104), taking into consideration the specific programming
language syntax (105) that provide commands for specific
actions (example statement may be to perform user interac
tion), in the format understandable by the workbench (106)
to generate the service pattern matcher (110). Statement is a
program unit that defines a specific action intended by the
programmer.

Legacy applications (107) when passed through the sys
tem with language specific parser (108), as the first step, will
generate an intermediate representation, on which the pat
tern matcher (110) that utilizes the analysis information
generated by the program analyzer (109) is applied. Based

10

15

25

30

35

40

45

50

55

60

65

4
on the definition of the service pattern either or both of
pattern matching i.e. structural service pattern (102) and
functional service pattern (103) can be matched in the
selected program using the service pattern matcher (110).
The identified services are marked using the statement
marker (111), which can write the legacy code in human
readable format with service marking. Marked legacy code
(112) with extracted services can be further utilized for
various purposes that require application understanding
using either manual or automated methods.
The workbench (106) is used to build custom tools to

match given patterns in the legacy application. It provides a
specification driven approach backed by powerful program
search and program analysis engines to generate the pattern
matchers.

DETAILED DESCRIPTION OF PRESENT
INVENTION

Service Definition:
Service, by definition, is a request fulfilling mechanism

that performs pre-specified processing on available inputs
and provides the outputs to the requestor. Any business
application can be envisaged to have multiple services
invoked with pre-defined orchestration to complete a given
transaction. This invention presents pattern based service
extraction from the legacy application.

Service denotes an atomic unit of domain functionality (in
case of a banking domain example services are deposit,
withdraw, transfer, etc.), or it can denote a structural but
cohesive unit of work (example services are populate screen,
process Screen, etc.).
Service Pattern Definition
To identify services in legacy software systems, two types

of service patterns are defined.
Structural Services Pattern This pattern is defined based

on how program is structured to achieve a business function.
The definition involves user interaction statements within a
program and the control flow Surrounding those statements.
This pattern enables to extract the services based on the
structural properties of the application.
The program statements where user interaction is accom

plished are used to locate the boundaries of the services. A
boundary defines start and end of a service. Every statement
that directly or indirectly controls the execution of the
boundary Statement also becomes a boundary. The service
includes all the statements between the identified boundar
ies.

Functional Service Pattern This pattern uses the pre
liminary application knowledge to determine data entities
that are used to control a particular functionality. This
pattern is defined based on how select data entities are taking
different values and the statements getting executed for a
selected value, wherein each value represents a desired
business function.

This pattern makes use of select data entities and the
enumerated set of values that these entities can take. The
statements whose execution is controlled by the data entities
having specific value (among the enumerated set of values)
constitute the functionality that is represented by the specific
value. Based on the identified statements, the pattern also
defines identifying additional data entities and their values to
determine additional statements that constitute the service.

These two patterns are specified in terms of unique set of
steps in a workbench to generate the services pattern
matcher. When a legacy application is passed through this

US 9,612,829 B2
5

matcher, it performs pattern matching by executing the
pattern-matching steps in the defined order for both service
patterns.
Method for Structural Service Pattern Matching

FIG. 2 depicts the method for service extraction using
structural service pattern matching.

In the first step, the selected program (201) is parsed (202)
and a common intermediate representation is created for all
Subsequent tool-based analysis and pattern matching. The
entry (main) method to start the program analysis is iden
tified this serves as the Start block for the pattern match
1ng.

For the application, tool based analysis (203) is performed
to build the subroutine-call hierarchy and control-flow graph
for each subroutine. The program-level call hierarchy is also
built during this step.

All the statements that perform screen input-output
(screen interactions) are identified (204). These form the
boundaries of the services. All the statements that “control
the execution of such statements are also identified (205).
These form the additional boundaries of the services. All the
statements within two adjacent boundaries are identified as
a service (206). The block denoted as (209) depicts the
structural service pattern matching method. All identified
services are marked (207) to get the extracted services (208)
in human readable format.
Method for Functional Service Pattern Matching

FIG. 3 depicts the method for service extraction using
functional service pattern matching.

In the first step, the program (301) is parsed (302) and a
common intermediate representation is created for all Sub
sequent tool-based analysis and pattern matching. The entry
(main) method to start the program analysis is identified—
this serves as the Start block for the pattern matching. For
the application, tool based analysis (303) is performed to
build the subroutine-call hierarchy and control-flow graph
for each subroutine. For each data-entity, data-flow is iden
tified.

Data entities, which decide the execution of a specific
functionality, are identified with the help of available func
tional knowledge of the selected program (301). Along with
the data entities, the enumerated set of values used by these
variables to implement the functionalities is collected. The
functional service pattern consists of data entities and unique
values (304) held by these entities.

In the next step, the conditional statements where the
functional data-entities are used, are identified (305). The
blocks of statements controlled by these data-entities repre
sent the functionality—the functionality is identified (306)
by the values of the data entities. Combination of multiple
data-entities may represent single functionality.

Next, the blocks of statements so identified are used to
determine additional data-entities and their possible values
(307). The additional data-entities and their values are used
to identify additional statements that implement the same
functionality. This is depicted as iterative step (308). All
Such statements, possibly in different parts of the applica
tions, are collected together to represent a service (309). The
block denoted as (312) depicts the functional service pattern
matching method. All identified services are marked (310) to
get the extracted services (311) in human readable format.

All above steps are performed for each value of the
functional data-entities to identify different services.
Statement of the Invention

According to the present invention therefore a method of
pattern based service extraction from legacy application
comprises of defining service patterns, specifying the said

10

15

25

30

35

40

45

50

55

60

65

6
patterns into a workbench to generate the pattern matcher,
using said pattern matcher to identify services and marking
the identified services.
The said service patterns consist of structural service

pattern based on structural properties and functional service
pattern based on functionality implemented. There are at
least two service patterns defined and stored in a repository.
This repository is updated with the newly defined service
patterns.
The structural service pattern consists of identifying user

interface statements as service boundaries. All the State
ments controlling the execution of said service boundaries
form the additional service boundaries. The statements in
between said service boundaries form a service. The said
functional service pattern consists of pre-determined data
entities and its values. The said statements controlled by
unique values of said data entities form a service. The
additional data entities and its values are identified within
the said service. The Statements controlled by unique values
of said additional data entities extend the said service.
The present invention also comprises of a system of

automated pattern based service extraction from legacy
application employing a language specific parser, an ana
lyZer, a service pattern matcher and service marker in the
given order to identify and mark the services. The said
service pattern matcher is generated by specifying the Ser
vice patterns into a workbench. The said service pattern
matcher is independent of programming languages

Detailed descriptions of the preferred embodiment are
provided herein; however, it is to be understood that the
present invention may be embodied in various forms. There
fore, specific details disclosed herein are not to be inter
preted as limiting, but rather as a basis for the claims and as
a representative basis for teaching one skilled in the art to
employ the present invention in virtually any appropriately
detailed system, structure or matter.
The embodiments of the invention as described above and

the methods disclosed herein will suggest further modifica
tion and alternations to those skilled in the art. Such further
modifications and alterations may be made without depart
ing from the sprit and scope of the invention, which is
defined by the scope of the claims herein.

INDUSTRIAL APPLICATION & ADVANTAGES

1. It is a very effective tool in modern business.
2. It involves establishment of service patterns that can be

changed with changing times to Suit the application.
3. It saves manpower and cost.
4. It is a very intellectual tool that brings about effective

and efficient results.
. It helps modularize the legacy applications.

6. It helps modernize legacy applications to service
oriented architecture

7. It helps documentation of existing business applica
tions

8. It performs reverse engineering of applications to
extract services

We claim:
1. A method of automatically extracting a plurality of

services from a software application based on at least one
matching pattern, the method comprising:

defining one or more service patterns each corresponding
to a type of service in the Software application, wherein
the one or more service patterns are a functional service
pattern or a structural service pattern, and wherein the
Software application is a legacy Software application,

US 9,612,829 B2
7

and wherein the legacy Software application is built
with inter-twined source code jointly corresponding to
the plurality of services, and wherein the plurality of
services are not distinctly identifiable in the legacy
Software application;

inputting the one or more service patterns to a workbench
to generate a service pattern matcher, wherein the
workbench uses a specification driven approach backed
by program search and analysis to generate the service
pattern matcher, wherein the service pattern matcher
corresponds to the one or more service patterns;

parsing the inter-twined source code of the legacy soft
ware application using a language specific parser to
generate an intermediate representation of the inter
twined source code:

performing tool-based analysis to build a Subroutine-call
hierarchy and control-flow graph for each subroutine
upon parsing the inter-twined source code;

defining initial service boundaries for the plurality of
services by identifying interface statements;

identifying control statements from the legacy software
application, wherein the control statements control an
execution of the initial service boundaries and form
additional service boundaries;

identifying the plurality of services from the intermediate
representation of the inter-twined source code using the
service pattern matcher, wherein the structural service
pattern comprises identifying a plurality of user inter
face statements as the initial service boundaries and the
functional service pattern comprises a plurality of pre
determined data entities and values; and

marking the identified plurality of services to obtain
extracted services in human readable format, wherein
the extracted services form a basis for re-factoring the
inter-twined source code.

2. The method of claim 1, further comprising generating
the service pattern matcher by specifying a plurality of
service patterns into a workbench, wherein the service
pattern matcher is independent of programming languages.

3. The method of claim 1, wherein defining the functional
service pattern comprises:

locating a first set of data entities of the legacy Software
application, wherein each data entity of the first set of
data entities corresponds to a first set of code state
ments within the service, wherein each data entity
comprises a first data field and a corresponding first
data value, wherein the first data field and the corre
sponding first data value represent a particular service
of the plurality of services;

determining a second set of data entities, of the legacy
Software application, based upon the first set of data
entities, wherein each data entity of the second set of
data entities corresponds to a second set of code
statements within the service, wherein each data entity
of the second set of data entities comprise a second data
field and a corresponding second data value, wherein
the second data field and the corresponding second data
value represent the particular service of the plurality of
services;

determining the first set of code statements based upon the
first set of data entities, wherein the first set of code
statements perform a step within the service;

5

10

15

25

30

35

40

45

50

55

60

8
determining the second set of code statements based upon

the second set of data entities, wherein the second set
of code statements perform another step within the
service; and

defining the functional service pattern based upon the first
set of code statements and the second set of code
StatementS.

4. The method of claim 1, wherein the legacy software
application is a mainframe application or an Application
System 400 (AS 400) application.

5. A system for automatically extracting a service from a
Software application based on at least one matching pattern,
the system comprising:

a memory storing instructions;
a processor configured to execute the instructions to

perform operations, the processor configured to:
define one or more service patterns each corresponding to

a type of service of a plurality of services in the
Software application, wherein the one or more service
patterns are a functional service pattern or a structural
service pattern, and wherein the Software application is
a legacy Software application, and wherein the legacy
software application is built with intertwined source
code jointly corresponding to the plurality of services,
and wherein the plurality of services are not distinctly
identifiable in the legacy software application;

input the one or more service patterns to a workbench to
generate a service pattern matcher, wherein the work
bench uses a specification driven approach backed by
program search and analysis to generate the service
pattern matcher, wherein the service pattern matcher
corresponds to the one or more service patterns;

parse the inter-twined source code of the legacy software
application using a language specific parser to generate
an intermediate representation of the inter-twined
Source code;

perform tool-based analysis to build a subroutine-call
hierarchy and control-flow graph for each subroutine
upon parsing the inter-twined source code;

define initial service boundaries for the plurality of ser
vices by identifying interface statements;

identify control statements from the legacy software
application, wherein the control statements control an
execution of the initial service boundaries and form
additional service boundaries;

identify the plurality of services from the intermediate
representation of the inter-twined source code using the
service pattern matcher, wherein the structural service
pattern comprises identifying a plurality of user inter
face statements as the initial service boundaries and the
functional service pattern comprises a plurality of pre
determined data entities and values; and

mark the identified plurality of services to obtain
extracted services in human readable format, wherein
the extracted services form a basis for re-factoring the
inter-twined source code.

6. The system of claim 5 wherein the service pattern
matcher is independent of programming languages.

k k k k k

